1/* Originally written by Bodo Moeller for the OpenSSL project.
2 * ====================================================================
3 * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in
14 *    the documentation and/or other materials provided with the
15 *    distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 *    software must display the following acknowledgment:
19 *    "This product includes software developed by the OpenSSL Project
20 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 *    endorse or promote products derived from this software without
24 *    prior written permission. For written permission, please contact
25 *    openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 *    nor may "OpenSSL" appear in their names without prior written
29 *    permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 *    acknowledgment:
33 *    "This product includes software developed by the OpenSSL Project
34 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com).  This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55/* ====================================================================
56 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57 *
58 * Portions of the attached software ("Contribution") are developed by
59 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60 *
61 * The Contribution is licensed pursuant to the OpenSSL open source
62 * license provided above.
63 *
64 * The elliptic curve binary polynomial software is originally written by
65 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66 * Laboratories. */
67
68#ifndef OPENSSL_HEADER_EC_INTERNAL_H
69#define OPENSSL_HEADER_EC_INTERNAL_H
70
71#include <openssl/base.h>
72
73#include <openssl/bn.h>
74#include <openssl/ex_data.h>
75#include <openssl/thread.h>
76#include <openssl/type_check.h>
77
78#include "../bn/internal.h"
79
80#if defined(__cplusplus)
81extern "C" {
82#endif
83
84
85// Cap the size of all field elements and scalars, including custom curves, to
86// 66 bytes, large enough to fit secp521r1 and brainpoolP512r1, which appear to
87// be the largest fields anyone plausibly uses.
88#define EC_MAX_SCALAR_BYTES 66
89#define EC_MAX_SCALAR_WORDS ((66 + BN_BYTES - 1) / BN_BYTES)
90
91OPENSSL_COMPILE_ASSERT(EC_MAX_SCALAR_WORDS <= BN_SMALL_MAX_WORDS,
92                       bn_small_functions_applicable);
93
94// An EC_SCALAR is an integer fully reduced modulo the order. Only the first
95// |order->top| words are used. An |EC_SCALAR| is specific to an |EC_GROUP| and
96// must not be mixed between groups.
97typedef union {
98  // bytes is the representation of the scalar in little-endian order.
99  uint8_t bytes[EC_MAX_SCALAR_BYTES];
100  BN_ULONG words[EC_MAX_SCALAR_WORDS];
101} EC_SCALAR;
102
103struct ec_method_st {
104  int (*group_init)(EC_GROUP *);
105  void (*group_finish)(EC_GROUP *);
106  int (*group_set_curve)(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
107                         const BIGNUM *b, BN_CTX *);
108  int (*point_get_affine_coordinates)(const EC_GROUP *, const EC_POINT *,
109                                      BIGNUM *x, BIGNUM *y, BN_CTX *);
110
111  // Computes |r = g_scalar*generator + p_scalar*p| if |g_scalar| and |p_scalar|
112  // are both non-null. Computes |r = g_scalar*generator| if |p_scalar| is null.
113  // Computes |r = p_scalar*p| if g_scalar is null. At least one of |g_scalar|
114  // and |p_scalar| must be non-null, and |p| must be non-null if |p_scalar| is
115  // non-null.
116  int (*mul)(const EC_GROUP *group, EC_POINT *r, const EC_SCALAR *g_scalar,
117             const EC_POINT *p, const EC_SCALAR *p_scalar, BN_CTX *ctx);
118  // mul_public performs the same computation as mul. It further assumes that
119  // the inputs are public so there is no concern about leaking their values
120  // through timing.
121  int (*mul_public)(const EC_GROUP *group, EC_POINT *r,
122                    const EC_SCALAR *g_scalar, const EC_POINT *p,
123                    const EC_SCALAR *p_scalar, BN_CTX *ctx);
124
125  // 'field_mul' and 'field_sqr' can be used by 'add' and 'dbl' so that the
126  // same implementations of point operations can be used with different
127  // optimized implementations of expensive field operations:
128  int (*field_mul)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
129                   const BIGNUM *b, BN_CTX *);
130  int (*field_sqr)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *);
131
132  int (*field_encode)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
133                      BN_CTX *);  // e.g. to Montgomery
134  int (*field_decode)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
135                      BN_CTX *);  // e.g. from Montgomery
136} /* EC_METHOD */;
137
138const EC_METHOD *EC_GFp_mont_method(void);
139
140struct ec_group_st {
141  const EC_METHOD *meth;
142
143  // Unlike all other |EC_POINT|s, |generator| does not own |generator->group|
144  // to avoid a reference cycle.
145  EC_POINT *generator;
146  BIGNUM order;
147
148  int curve_name;  // optional NID for named curve
149
150  BN_MONT_CTX *order_mont;  // data for ECDSA inverse
151
152  // The following members are handled by the method functions,
153  // even if they appear generic
154
155  BIGNUM field;  // For curves over GF(p), this is the modulus.
156
157  BIGNUM a, b;  // Curve coefficients.
158
159  int a_is_minus3;  // enable optimized point arithmetics for special case
160
161  CRYPTO_refcount_t references;
162
163  BN_MONT_CTX *mont;  // Montgomery structure.
164
165  BIGNUM one;  // The value one.
166} /* EC_GROUP */;
167
168struct ec_point_st {
169  // group is an owning reference to |group|, unless this is
170  // |group->generator|.
171  EC_GROUP *group;
172
173  BIGNUM X;
174  BIGNUM Y;
175  BIGNUM Z;  // Jacobian projective coordinates:
176             // (X, Y, Z)  represents  (X/Z^2, Y/Z^3)  if  Z != 0
177} /* EC_POINT */;
178
179EC_GROUP *ec_group_new(const EC_METHOD *meth);
180
181// ec_bignum_to_scalar converts |in| to an |EC_SCALAR| and writes it to
182// |*out|. It returns one on success and zero if |in| is out of range.
183int ec_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
184                        const BIGNUM *in);
185
186// ec_bignum_to_scalar_unchecked behaves like |ec_bignum_to_scalar| but does not
187// check |in| is fully reduced.
188int ec_bignum_to_scalar_unchecked(const EC_GROUP *group, EC_SCALAR *out,
189                                  const BIGNUM *in);
190
191// ec_random_nonzero_scalar sets |out| to a uniformly selected random value from
192// 1 to |group->order| - 1. It returns one on success and zero on error.
193int ec_random_nonzero_scalar(const EC_GROUP *group, EC_SCALAR *out,
194                             const uint8_t additional_data[32]);
195
196// ec_point_mul_scalar sets |r| to generator * |g_scalar| + |p| *
197// |p_scalar|. Unlike other functions which take |EC_SCALAR|, |g_scalar| and
198// |p_scalar| need not be fully reduced. They need only contain as many bits as
199// the order.
200int ec_point_mul_scalar(const EC_GROUP *group, EC_POINT *r,
201                        const EC_SCALAR *g_scalar, const EC_POINT *p,
202                        const EC_SCALAR *p_scalar, BN_CTX *ctx);
203
204// ec_point_mul_scalar_public performs the same computation as
205// ec_point_mul_scalar.  It further assumes that the inputs are public so
206// there is no concern about leaking their values through timing.
207int ec_point_mul_scalar_public(const EC_GROUP *group, EC_POINT *r,
208                               const EC_SCALAR *g_scalar, const EC_POINT *p,
209                               const EC_SCALAR *p_scalar, BN_CTX *ctx);
210
211int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const EC_SCALAR *g_scalar,
212                const EC_POINT *p, const EC_SCALAR *p_scalar, BN_CTX *ctx);
213
214// method functions in simple.c
215int ec_GFp_simple_group_init(EC_GROUP *);
216void ec_GFp_simple_group_finish(EC_GROUP *);
217int ec_GFp_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
218                                  const BIGNUM *b, BN_CTX *);
219int ec_GFp_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a,
220                                  BIGNUM *b, BN_CTX *);
221unsigned ec_GFp_simple_group_get_degree(const EC_GROUP *);
222int ec_GFp_simple_point_init(EC_POINT *);
223void ec_GFp_simple_point_finish(EC_POINT *);
224int ec_GFp_simple_point_copy(EC_POINT *, const EC_POINT *);
225int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *, EC_POINT *);
226int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *, EC_POINT *,
227                                               const BIGNUM *x, const BIGNUM *y,
228                                               BN_CTX *);
229int ec_GFp_simple_add(const EC_GROUP *, EC_POINT *r, const EC_POINT *a,
230                      const EC_POINT *b, BN_CTX *);
231int ec_GFp_simple_dbl(const EC_GROUP *, EC_POINT *r, const EC_POINT *a,
232                      BN_CTX *);
233int ec_GFp_simple_invert(const EC_GROUP *, EC_POINT *, BN_CTX *);
234int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_POINT *);
235int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_POINT *, BN_CTX *);
236int ec_GFp_simple_cmp(const EC_GROUP *, const EC_POINT *a, const EC_POINT *b,
237                      BN_CTX *);
238int ec_GFp_simple_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *);
239int ec_GFp_simple_points_make_affine(const EC_GROUP *, size_t num,
240                                     EC_POINT * [], BN_CTX *);
241int ec_GFp_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
242                            const BIGNUM *b, BN_CTX *);
243int ec_GFp_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
244                            BN_CTX *);
245
246// method functions in montgomery.c
247int ec_GFp_mont_group_init(EC_GROUP *);
248int ec_GFp_mont_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
249                                const BIGNUM *b, BN_CTX *);
250void ec_GFp_mont_group_finish(EC_GROUP *);
251int ec_GFp_mont_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
252                          const BIGNUM *b, BN_CTX *);
253int ec_GFp_mont_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
254                          BN_CTX *);
255int ec_GFp_mont_field_encode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
256                             BN_CTX *);
257int ec_GFp_mont_field_decode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
258                             BN_CTX *);
259
260void ec_GFp_nistp_recode_scalar_bits(uint8_t *sign, uint8_t *digit, uint8_t in);
261
262const EC_METHOD *EC_GFp_nistp224_method(void);
263const EC_METHOD *EC_GFp_nistp256_method(void);
264
265// EC_GFp_nistz256_method is a GFp method using montgomery multiplication, with
266// x86-64 optimized P256. See http://eprint.iacr.org/2013/816.
267const EC_METHOD *EC_GFp_nistz256_method(void);
268
269struct ec_key_st {
270  EC_GROUP *group;
271
272  EC_POINT *pub_key;
273  BIGNUM *priv_key;
274
275  // fixed_k may contain a specific value of 'k', to be used in ECDSA signing.
276  // This is only for the FIPS power-on tests.
277  BIGNUM *fixed_k;
278
279  unsigned int enc_flag;
280  point_conversion_form_t conv_form;
281
282  CRYPTO_refcount_t references;
283
284  ECDSA_METHOD *ecdsa_meth;
285
286  CRYPTO_EX_DATA ex_data;
287} /* EC_KEY */;
288
289struct built_in_curve {
290  int nid;
291  const uint8_t *oid;
292  uint8_t oid_len;
293  // comment is a human-readable string describing the curve.
294  const char *comment;
295  // param_len is the number of bytes needed to store a field element.
296  uint8_t param_len;
297  // params points to an array of 6*|param_len| bytes which hold the field
298  // elements of the following (in big-endian order): prime, a, b, generator x,
299  // generator y, order.
300  const uint8_t *params;
301  const EC_METHOD *method;
302};
303
304#define OPENSSL_NUM_BUILT_IN_CURVES 4
305
306struct built_in_curves {
307  struct built_in_curve curves[OPENSSL_NUM_BUILT_IN_CURVES];
308};
309
310// OPENSSL_built_in_curves returns a pointer to static information about
311// standard curves. The array is terminated with an entry where |nid| is
312// |NID_undef|.
313const struct built_in_curves *OPENSSL_built_in_curves(void);
314
315#if defined(__cplusplus)
316}  // extern C
317#endif
318
319#endif  // OPENSSL_HEADER_EC_INTERNAL_H
320