1/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to.  The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 *    notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 *    notice, this list of conditions and the following disclaimer in the
29 *    documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 *    must display the following acknowledgement:
32 *    "This product includes cryptographic software written by
33 *     Eric Young (eay@cryptsoft.com)"
34 *    The word 'cryptographic' can be left out if the rouines from the library
35 *    being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 *    the apps directory (application code) you must include an acknowledgement:
38 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed.  i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]. */
56
57#include <openssl/cast.h>
58
59#if defined(OPENSSL_WINDOWS)
60OPENSSL_MSVC_PRAGMA(warning(push, 3))
61#include <intrin.h>
62OPENSSL_MSVC_PRAGMA(warning(pop))
63#endif
64
65#include "internal.h"
66#include "../macros.h"
67
68
69void CAST_ecb_encrypt(const uint8_t *in, uint8_t *out, const CAST_KEY *ks,
70                      int enc) {
71  uint32_t d[2];
72
73  n2l(in, d[0]);
74  n2l(in, d[1]);
75  if (enc) {
76    CAST_encrypt(d, ks);
77  } else {
78    CAST_decrypt(d, ks);
79  }
80  l2n(d[0], out);
81  l2n(d[1], out);
82}
83
84#if defined(OPENSSL_WINDOWS) && defined(_MSC_VER)
85#define ROTL(a, n) (_lrotl(a, n))
86#else
87#define ROTL(a, n) ((((a) << (n)) | ((a) >> ((-(n))&31))) & 0xffffffffL)
88#endif
89
90#define E_CAST(n, key, L, R, OP1, OP2, OP3)                                   \
91  {                                                                           \
92    uint32_t a, b, c, d;                                                      \
93    t = (key[n * 2] OP1 R) & 0xffffffff;                                      \
94    t = ROTL(t, (key[n * 2 + 1]));                                            \
95    a = CAST_S_table0[(t >> 8) & 0xff];                                       \
96    b = CAST_S_table1[(t)&0xff];                                              \
97    c = CAST_S_table2[(t >> 24) & 0xff];                                      \
98    d = CAST_S_table3[(t >> 16) & 0xff];                                      \
99    L ^= (((((a OP2 b)&0xffffffffL)OP3 c) & 0xffffffffL)OP1 d) & 0xffffffffL; \
100  }
101
102void CAST_encrypt(uint32_t *data, const CAST_KEY *key) {
103  uint32_t l, r, t;
104  const uint32_t *k;
105
106  k = &key->data[0];
107  l = data[0];
108  r = data[1];
109
110  E_CAST(0, k, l, r, +, ^, -);
111  E_CAST(1, k, r, l, ^, -, +);
112  E_CAST(2, k, l, r, -, +, ^);
113  E_CAST(3, k, r, l, +, ^, -);
114  E_CAST(4, k, l, r, ^, -, +);
115  E_CAST(5, k, r, l, -, +, ^);
116  E_CAST(6, k, l, r, +, ^, -);
117  E_CAST(7, k, r, l, ^, -, +);
118  E_CAST(8, k, l, r, -, +, ^);
119  E_CAST(9, k, r, l, +, ^, -);
120  E_CAST(10, k, l, r, ^, -, +);
121  E_CAST(11, k, r, l, -, +, ^);
122
123  if (!key->short_key) {
124    E_CAST(12, k, l, r, +, ^, -);
125    E_CAST(13, k, r, l, ^, -, +);
126    E_CAST(14, k, l, r, -, +, ^);
127    E_CAST(15, k, r, l, +, ^, -);
128  }
129
130  data[1] = l & 0xffffffffL;
131  data[0] = r & 0xffffffffL;
132}
133
134void CAST_decrypt(uint32_t *data, const CAST_KEY *key) {
135  uint32_t l, r, t;
136  const uint32_t *k;
137
138  k = &key->data[0];
139  l = data[0];
140  r = data[1];
141
142  if (!key->short_key) {
143    E_CAST(15, k, l, r, +, ^, -);
144    E_CAST(14, k, r, l, -, +, ^);
145    E_CAST(13, k, l, r, ^, -, +);
146    E_CAST(12, k, r, l, +, ^, -);
147  }
148
149  E_CAST(11, k, l, r, -, +, ^);
150  E_CAST(10, k, r, l, ^, -, +);
151  E_CAST(9, k, l, r, +, ^, -);
152  E_CAST(8, k, r, l, -, +, ^);
153  E_CAST(7, k, l, r, ^, -, +);
154  E_CAST(6, k, r, l, +, ^, -);
155  E_CAST(5, k, l, r, -, +, ^);
156  E_CAST(4, k, r, l, ^, -, +);
157  E_CAST(3, k, l, r, +, ^, -);
158  E_CAST(2, k, r, l, -, +, ^);
159  E_CAST(1, k, l, r, ^, -, +);
160  E_CAST(0, k, r, l, +, ^, -);
161
162  data[1] = l & 0xffffffffL;
163  data[0] = r & 0xffffffffL;
164}
165
166void CAST_cbc_encrypt(const uint8_t *in, uint8_t *out, long length,
167                      const CAST_KEY *ks, uint8_t *iv, int enc) {
168  uint32_t tin0, tin1;
169  uint32_t tout0, tout1, xor0, xor1;
170  long l = length;
171  uint32_t tin[2];
172
173  if (enc) {
174    n2l(iv, tout0);
175    n2l(iv, tout1);
176    iv -= 8;
177    for (l -= 8; l >= 0; l -= 8) {
178      n2l(in, tin0);
179      n2l(in, tin1);
180      tin0 ^= tout0;
181      tin1 ^= tout1;
182      tin[0] = tin0;
183      tin[1] = tin1;
184      CAST_encrypt(tin, ks);
185      tout0 = tin[0];
186      tout1 = tin[1];
187      l2n(tout0, out);
188      l2n(tout1, out);
189    }
190    if (l != -8) {
191      n2ln(in, tin0, tin1, l + 8);
192      tin0 ^= tout0;
193      tin1 ^= tout1;
194      tin[0] = tin0;
195      tin[1] = tin1;
196      CAST_encrypt(tin, ks);
197      tout0 = tin[0];
198      tout1 = tin[1];
199      l2n(tout0, out);
200      l2n(tout1, out);
201    }
202    l2n(tout0, iv);
203    l2n(tout1, iv);
204  } else {
205    n2l(iv, xor0);
206    n2l(iv, xor1);
207    iv -= 8;
208    for (l -= 8; l >= 0; l -= 8) {
209      n2l(in, tin0);
210      n2l(in, tin1);
211      tin[0] = tin0;
212      tin[1] = tin1;
213      CAST_decrypt(tin, ks);
214      tout0 = tin[0] ^ xor0;
215      tout1 = tin[1] ^ xor1;
216      l2n(tout0, out);
217      l2n(tout1, out);
218      xor0 = tin0;
219      xor1 = tin1;
220    }
221    if (l != -8) {
222      n2l(in, tin0);
223      n2l(in, tin1);
224      tin[0] = tin0;
225      tin[1] = tin1;
226      CAST_decrypt(tin, ks);
227      tout0 = tin[0] ^ xor0;
228      tout1 = tin[1] ^ xor1;
229      l2nn(tout0, tout1, out, l + 8);
230      xor0 = tin0;
231      xor1 = tin1;
232    }
233    l2n(xor0, iv);
234    l2n(xor1, iv);
235  }
236  tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0;
237  tin[0] = tin[1] = 0;
238}
239
240#define CAST_exp(l, A, a, n)   \
241  A[n / 4] = l;                \
242  a[n + 3] = (l)&0xff;         \
243  a[n + 2] = (l >> 8) & 0xff;  \
244  a[n + 1] = (l >> 16) & 0xff; \
245  a[n + 0] = (l >> 24) & 0xff;
246#define S4 CAST_S_table4
247#define S5 CAST_S_table5
248#define S6 CAST_S_table6
249#define S7 CAST_S_table7
250
251void CAST_set_key(CAST_KEY *key, size_t len, const uint8_t *data) {
252  uint32_t x[16];
253  uint32_t z[16];
254  uint32_t k[32];
255  uint32_t X[4], Z[4];
256  uint32_t l, *K;
257  size_t i;
258
259  for (i = 0; i < 16; i++) {
260    x[i] = 0;
261  }
262
263  if (len > 16) {
264    len = 16;
265  }
266
267  for (i = 0; i < len; i++) {
268    x[i] = data[i];
269  }
270
271  if (len <= 10) {
272    key->short_key = 1;
273  } else {
274    key->short_key = 0;
275  }
276
277  K = &k[0];
278  X[0] = ((x[0] << 24) | (x[1] << 16) | (x[2] << 8) | x[3]) & 0xffffffffL;
279  X[1] = ((x[4] << 24) | (x[5] << 16) | (x[6] << 8) | x[7]) & 0xffffffffL;
280  X[2] = ((x[8] << 24) | (x[9] << 16) | (x[10] << 8) | x[11]) & 0xffffffffL;
281  X[3] = ((x[12] << 24) | (x[13] << 16) | (x[14] << 8) | x[15]) & 0xffffffffL;
282
283  for (;;) {
284    l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
285    CAST_exp(l, Z, z, 0);
286    l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
287    CAST_exp(l, Z, z, 4);
288    l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
289    CAST_exp(l, Z, z, 8);
290    l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
291    CAST_exp(l, Z, z, 12);
292
293    K[0] = S4[z[8]] ^ S5[z[9]] ^ S6[z[7]] ^ S7[z[6]] ^ S4[z[2]];
294    K[1] = S4[z[10]] ^ S5[z[11]] ^ S6[z[5]] ^ S7[z[4]] ^ S5[z[6]];
295    K[2] = S4[z[12]] ^ S5[z[13]] ^ S6[z[3]] ^ S7[z[2]] ^ S6[z[9]];
296    K[3] = S4[z[14]] ^ S5[z[15]] ^ S6[z[1]] ^ S7[z[0]] ^ S7[z[12]];
297
298    l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
299    CAST_exp(l, X, x, 0);
300    l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
301    CAST_exp(l, X, x, 4);
302    l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
303    CAST_exp(l, X, x, 8);
304    l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
305    CAST_exp(l, X, x, 12);
306
307    K[4] = S4[x[3]] ^ S5[x[2]] ^ S6[x[12]] ^ S7[x[13]] ^ S4[x[8]];
308    K[5] = S4[x[1]] ^ S5[x[0]] ^ S6[x[14]] ^ S7[x[15]] ^ S5[x[13]];
309    K[6] = S4[x[7]] ^ S5[x[6]] ^ S6[x[8]] ^ S7[x[9]] ^ S6[x[3]];
310    K[7] = S4[x[5]] ^ S5[x[4]] ^ S6[x[10]] ^ S7[x[11]] ^ S7[x[7]];
311
312    l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
313    CAST_exp(l, Z, z, 0);
314    l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
315    CAST_exp(l, Z, z, 4);
316    l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
317    CAST_exp(l, Z, z, 8);
318    l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
319    CAST_exp(l, Z, z, 12);
320
321    K[8] = S4[z[3]] ^ S5[z[2]] ^ S6[z[12]] ^ S7[z[13]] ^ S4[z[9]];
322    K[9] = S4[z[1]] ^ S5[z[0]] ^ S6[z[14]] ^ S7[z[15]] ^ S5[z[12]];
323    K[10] = S4[z[7]] ^ S5[z[6]] ^ S6[z[8]] ^ S7[z[9]] ^ S6[z[2]];
324    K[11] = S4[z[5]] ^ S5[z[4]] ^ S6[z[10]] ^ S7[z[11]] ^ S7[z[6]];
325
326    l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
327    CAST_exp(l, X, x, 0);
328    l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
329    CAST_exp(l, X, x, 4);
330    l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
331    CAST_exp(l, X, x, 8);
332    l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
333    CAST_exp(l, X, x, 12);
334
335    K[12] = S4[x[8]] ^ S5[x[9]] ^ S6[x[7]] ^ S7[x[6]] ^ S4[x[3]];
336    K[13] = S4[x[10]] ^ S5[x[11]] ^ S6[x[5]] ^ S7[x[4]] ^ S5[x[7]];
337    K[14] = S4[x[12]] ^ S5[x[13]] ^ S6[x[3]] ^ S7[x[2]] ^ S6[x[8]];
338    K[15] = S4[x[14]] ^ S5[x[15]] ^ S6[x[1]] ^ S7[x[0]] ^ S7[x[13]];
339    if (K != k) {
340      break;
341    }
342    K += 16;
343  }
344
345  for (i = 0; i < 16; i++) {
346    key->data[i * 2] = k[i];
347    key->data[i * 2 + 1] = ((k[i + 16]) + 16) & 0x1f;
348  }
349}
350
351// The input and output encrypted as though 64bit cfb mode is being used. The
352// extra state information to record how much of the 64bit block we have used
353// is contained in *num.
354void CAST_cfb64_encrypt(const uint8_t *in, uint8_t *out, long length,
355                        const CAST_KEY *schedule, uint8_t *ivec, int *num,
356                        int enc) {
357  uint32_t v0, v1, t;
358  int n = *num;
359  long l = length;
360  uint32_t ti[2];
361  uint8_t *iv, c, cc;
362
363  iv = ivec;
364  if (enc) {
365    while (l--) {
366      if (n == 0) {
367        n2l(iv, v0);
368        ti[0] = v0;
369        n2l(iv, v1);
370        ti[1] = v1;
371        CAST_encrypt((uint32_t *)ti, schedule);
372        iv = ivec;
373        t = ti[0];
374        l2n(t, iv);
375        t = ti[1];
376        l2n(t, iv);
377        iv = ivec;
378      }
379      c = *(in++) ^ iv[n];
380      *(out++) = c;
381      iv[n] = c;
382      n = (n + 1) & 0x07;
383    }
384  } else {
385    while (l--) {
386      if (n == 0) {
387        n2l(iv, v0);
388        ti[0] = v0;
389        n2l(iv, v1);
390        ti[1] = v1;
391        CAST_encrypt((uint32_t *)ti, schedule);
392        iv = ivec;
393        t = ti[0];
394        l2n(t, iv);
395        t = ti[1];
396        l2n(t, iv);
397        iv = ivec;
398      }
399      cc = *(in++);
400      c = iv[n];
401      iv[n] = cc;
402      *(out++) = c ^ cc;
403      n = (n + 1) & 0x07;
404    }
405  }
406  v0 = v1 = ti[0] = ti[1] = t = c = cc = 0;
407  *num = n;
408}
409