1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// \brief C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14///
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/AST/TemplateName.h"
22#include "clang/Basic/AddressSpaces.h"
23#include "clang/Basic/Diagnostic.h"
24#include "clang/Basic/ExceptionSpecificationType.h"
25#include "clang/Basic/LLVM.h"
26#include "clang/Basic/Linkage.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/Specifiers.h"
29#include "clang/Basic/Visibility.h"
30#include "llvm/ADT/APInt.h"
31#include "llvm/ADT/FoldingSet.h"
32#include "llvm/ADT/Optional.h"
33#include "llvm/ADT/PointerIntPair.h"
34#include "llvm/ADT/PointerUnion.h"
35#include "llvm/ADT/Twine.h"
36#include "llvm/ADT/iterator_range.h"
37#include "llvm/Support/ErrorHandling.h"
38
39namespace clang {
40  enum {
41    TypeAlignmentInBits = 4,
42    TypeAlignment = 1 << TypeAlignmentInBits
43  };
44  class Type;
45  class ExtQuals;
46  class QualType;
47}
48
49namespace llvm {
50  template <typename T>
51  class PointerLikeTypeTraits;
52  template<>
53  class PointerLikeTypeTraits< ::clang::Type*> {
54  public:
55    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
56    static inline ::clang::Type *getFromVoidPointer(void *P) {
57      return static_cast< ::clang::Type*>(P);
58    }
59    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
60  };
61  template<>
62  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
63  public:
64    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
65    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
66      return static_cast< ::clang::ExtQuals*>(P);
67    }
68    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
69  };
70
71  template <>
72  struct isPodLike<clang::QualType> { static const bool value = true; };
73}
74
75namespace clang {
76  class ASTContext;
77  class TypedefNameDecl;
78  class TemplateDecl;
79  class TemplateTypeParmDecl;
80  class NonTypeTemplateParmDecl;
81  class TemplateTemplateParmDecl;
82  class TagDecl;
83  class RecordDecl;
84  class CXXRecordDecl;
85  class EnumDecl;
86  class FieldDecl;
87  class FunctionDecl;
88  class ObjCInterfaceDecl;
89  class ObjCProtocolDecl;
90  class ObjCMethodDecl;
91  class UnresolvedUsingTypenameDecl;
92  class Expr;
93  class Stmt;
94  class SourceLocation;
95  class StmtIteratorBase;
96  class TemplateArgument;
97  class TemplateArgumentLoc;
98  class TemplateArgumentListInfo;
99  class ElaboratedType;
100  class ExtQuals;
101  class ExtQualsTypeCommonBase;
102  struct PrintingPolicy;
103
104  template <typename> class CanQual;
105  typedef CanQual<Type> CanQualType;
106
107  // Provide forward declarations for all of the *Type classes
108#define TYPE(Class, Base) class Class##Type;
109#include "clang/AST/TypeNodes.def"
110
111/// The collection of all-type qualifiers we support.
112/// Clang supports five independent qualifiers:
113/// * C99: const, volatile, and restrict
114/// * MS: __unaligned
115/// * Embedded C (TR18037): address spaces
116/// * Objective C: the GC attributes (none, weak, or strong)
117class Qualifiers {
118public:
119  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
120    Const    = 0x1,
121    Restrict = 0x2,
122    Volatile = 0x4,
123    CVRMask = Const | Volatile | Restrict
124  };
125
126  enum GC {
127    GCNone = 0,
128    Weak,
129    Strong
130  };
131
132  enum ObjCLifetime {
133    /// There is no lifetime qualification on this type.
134    OCL_None,
135
136    /// This object can be modified without requiring retains or
137    /// releases.
138    OCL_ExplicitNone,
139
140    /// Assigning into this object requires the old value to be
141    /// released and the new value to be retained.  The timing of the
142    /// release of the old value is inexact: it may be moved to
143    /// immediately after the last known point where the value is
144    /// live.
145    OCL_Strong,
146
147    /// Reading or writing from this object requires a barrier call.
148    OCL_Weak,
149
150    /// Assigning into this object requires a lifetime extension.
151    OCL_Autoreleasing
152  };
153
154  enum {
155    /// The maximum supported address space number.
156    /// 23 bits should be enough for anyone.
157    MaxAddressSpace = 0x7fffffu,
158
159    /// The width of the "fast" qualifier mask.
160    FastWidth = 3,
161
162    /// The fast qualifier mask.
163    FastMask = (1 << FastWidth) - 1
164  };
165
166  Qualifiers() : Mask(0) {}
167
168  /// Returns the common set of qualifiers while removing them from
169  /// the given sets.
170  static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
171    // If both are only CVR-qualified, bit operations are sufficient.
172    if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
173      Qualifiers Q;
174      Q.Mask = L.Mask & R.Mask;
175      L.Mask &= ~Q.Mask;
176      R.Mask &= ~Q.Mask;
177      return Q;
178    }
179
180    Qualifiers Q;
181    unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
182    Q.addCVRQualifiers(CommonCRV);
183    L.removeCVRQualifiers(CommonCRV);
184    R.removeCVRQualifiers(CommonCRV);
185
186    if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
187      Q.setObjCGCAttr(L.getObjCGCAttr());
188      L.removeObjCGCAttr();
189      R.removeObjCGCAttr();
190    }
191
192    if (L.getObjCLifetime() == R.getObjCLifetime()) {
193      Q.setObjCLifetime(L.getObjCLifetime());
194      L.removeObjCLifetime();
195      R.removeObjCLifetime();
196    }
197
198    if (L.getAddressSpace() == R.getAddressSpace()) {
199      Q.setAddressSpace(L.getAddressSpace());
200      L.removeAddressSpace();
201      R.removeAddressSpace();
202    }
203    return Q;
204  }
205
206  static Qualifiers fromFastMask(unsigned Mask) {
207    Qualifiers Qs;
208    Qs.addFastQualifiers(Mask);
209    return Qs;
210  }
211
212  static Qualifiers fromCVRMask(unsigned CVR) {
213    Qualifiers Qs;
214    Qs.addCVRQualifiers(CVR);
215    return Qs;
216  }
217
218  static Qualifiers fromCVRUMask(unsigned CVRU) {
219    Qualifiers Qs;
220    Qs.addCVRUQualifiers(CVRU);
221    return Qs;
222  }
223
224  // Deserialize qualifiers from an opaque representation.
225  static Qualifiers fromOpaqueValue(unsigned opaque) {
226    Qualifiers Qs;
227    Qs.Mask = opaque;
228    return Qs;
229  }
230
231  // Serialize these qualifiers into an opaque representation.
232  unsigned getAsOpaqueValue() const {
233    return Mask;
234  }
235
236  bool hasConst() const { return Mask & Const; }
237  void setConst(bool flag) {
238    Mask = (Mask & ~Const) | (flag ? Const : 0);
239  }
240  void removeConst() { Mask &= ~Const; }
241  void addConst() { Mask |= Const; }
242
243  bool hasVolatile() const { return Mask & Volatile; }
244  void setVolatile(bool flag) {
245    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
246  }
247  void removeVolatile() { Mask &= ~Volatile; }
248  void addVolatile() { Mask |= Volatile; }
249
250  bool hasRestrict() const { return Mask & Restrict; }
251  void setRestrict(bool flag) {
252    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
253  }
254  void removeRestrict() { Mask &= ~Restrict; }
255  void addRestrict() { Mask |= Restrict; }
256
257  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
258  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
259  void setCVRQualifiers(unsigned mask) {
260    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
261    Mask = (Mask & ~CVRMask) | mask;
262  }
263  void removeCVRQualifiers(unsigned mask) {
264    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
265    Mask &= ~mask;
266  }
267  void removeCVRQualifiers() {
268    removeCVRQualifiers(CVRMask);
269  }
270  void addCVRQualifiers(unsigned mask) {
271    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
272    Mask |= mask;
273  }
274  void addCVRUQualifiers(unsigned mask) {
275    assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits");
276    Mask |= mask;
277  }
278
279  bool hasUnaligned() const { return Mask & UMask; }
280  void setUnaligned(bool flag) {
281    Mask = (Mask & ~UMask) | (flag ? UMask : 0);
282  }
283  void removeUnaligned() { Mask &= ~UMask; }
284  void addUnaligned() { Mask |= UMask; }
285
286  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
287  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
288  void setObjCGCAttr(GC type) {
289    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
290  }
291  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
292  void addObjCGCAttr(GC type) {
293    assert(type);
294    setObjCGCAttr(type);
295  }
296  Qualifiers withoutObjCGCAttr() const {
297    Qualifiers qs = *this;
298    qs.removeObjCGCAttr();
299    return qs;
300  }
301  Qualifiers withoutObjCLifetime() const {
302    Qualifiers qs = *this;
303    qs.removeObjCLifetime();
304    return qs;
305  }
306
307  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
308  ObjCLifetime getObjCLifetime() const {
309    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
310  }
311  void setObjCLifetime(ObjCLifetime type) {
312    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
313  }
314  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
315  void addObjCLifetime(ObjCLifetime type) {
316    assert(type);
317    assert(!hasObjCLifetime());
318    Mask |= (type << LifetimeShift);
319  }
320
321  /// True if the lifetime is neither None or ExplicitNone.
322  bool hasNonTrivialObjCLifetime() const {
323    ObjCLifetime lifetime = getObjCLifetime();
324    return (lifetime > OCL_ExplicitNone);
325  }
326
327  /// True if the lifetime is either strong or weak.
328  bool hasStrongOrWeakObjCLifetime() const {
329    ObjCLifetime lifetime = getObjCLifetime();
330    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
331  }
332
333  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
334  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
335  void setAddressSpace(unsigned space) {
336    assert(space <= MaxAddressSpace);
337    Mask = (Mask & ~AddressSpaceMask)
338         | (((uint32_t) space) << AddressSpaceShift);
339  }
340  void removeAddressSpace() { setAddressSpace(0); }
341  void addAddressSpace(unsigned space) {
342    assert(space);
343    setAddressSpace(space);
344  }
345
346  // Fast qualifiers are those that can be allocated directly
347  // on a QualType object.
348  bool hasFastQualifiers() const { return getFastQualifiers(); }
349  unsigned getFastQualifiers() const { return Mask & FastMask; }
350  void setFastQualifiers(unsigned mask) {
351    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
352    Mask = (Mask & ~FastMask) | mask;
353  }
354  void removeFastQualifiers(unsigned mask) {
355    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
356    Mask &= ~mask;
357  }
358  void removeFastQualifiers() {
359    removeFastQualifiers(FastMask);
360  }
361  void addFastQualifiers(unsigned mask) {
362    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
363    Mask |= mask;
364  }
365
366  /// Return true if the set contains any qualifiers which require an ExtQuals
367  /// node to be allocated.
368  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
369  Qualifiers getNonFastQualifiers() const {
370    Qualifiers Quals = *this;
371    Quals.setFastQualifiers(0);
372    return Quals;
373  }
374
375  /// Return true if the set contains any qualifiers.
376  bool hasQualifiers() const { return Mask; }
377  bool empty() const { return !Mask; }
378
379  /// Add the qualifiers from the given set to this set.
380  void addQualifiers(Qualifiers Q) {
381    // If the other set doesn't have any non-boolean qualifiers, just
382    // bit-or it in.
383    if (!(Q.Mask & ~CVRMask))
384      Mask |= Q.Mask;
385    else {
386      Mask |= (Q.Mask & CVRMask);
387      if (Q.hasAddressSpace())
388        addAddressSpace(Q.getAddressSpace());
389      if (Q.hasObjCGCAttr())
390        addObjCGCAttr(Q.getObjCGCAttr());
391      if (Q.hasObjCLifetime())
392        addObjCLifetime(Q.getObjCLifetime());
393    }
394  }
395
396  /// \brief Remove the qualifiers from the given set from this set.
397  void removeQualifiers(Qualifiers Q) {
398    // If the other set doesn't have any non-boolean qualifiers, just
399    // bit-and the inverse in.
400    if (!(Q.Mask & ~CVRMask))
401      Mask &= ~Q.Mask;
402    else {
403      Mask &= ~(Q.Mask & CVRMask);
404      if (getObjCGCAttr() == Q.getObjCGCAttr())
405        removeObjCGCAttr();
406      if (getObjCLifetime() == Q.getObjCLifetime())
407        removeObjCLifetime();
408      if (getAddressSpace() == Q.getAddressSpace())
409        removeAddressSpace();
410    }
411  }
412
413  /// Add the qualifiers from the given set to this set, given that
414  /// they don't conflict.
415  void addConsistentQualifiers(Qualifiers qs) {
416    assert(getAddressSpace() == qs.getAddressSpace() ||
417           !hasAddressSpace() || !qs.hasAddressSpace());
418    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
419           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
420    assert(getObjCLifetime() == qs.getObjCLifetime() ||
421           !hasObjCLifetime() || !qs.hasObjCLifetime());
422    Mask |= qs.Mask;
423  }
424
425  /// Returns true if this address space is a superset of the other one.
426  /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
427  /// overlapping address spaces.
428  /// CL1.1 or CL1.2:
429  ///   every address space is a superset of itself.
430  /// CL2.0 adds:
431  ///   __generic is a superset of any address space except for __constant.
432  bool isAddressSpaceSupersetOf(Qualifiers other) const {
433    return
434        // Address spaces must match exactly.
435        getAddressSpace() == other.getAddressSpace() ||
436        // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
437        // for __constant can be used as __generic.
438        (getAddressSpace() == LangAS::opencl_generic &&
439         other.getAddressSpace() != LangAS::opencl_constant);
440  }
441
442  /// Determines if these qualifiers compatibly include another set.
443  /// Generally this answers the question of whether an object with the other
444  /// qualifiers can be safely used as an object with these qualifiers.
445  bool compatiblyIncludes(Qualifiers other) const {
446    return isAddressSpaceSupersetOf(other) &&
447           // ObjC GC qualifiers can match, be added, or be removed, but can't
448           // be changed.
449           (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
450            !other.hasObjCGCAttr()) &&
451           // ObjC lifetime qualifiers must match exactly.
452           getObjCLifetime() == other.getObjCLifetime() &&
453           // CVR qualifiers may subset.
454           (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
455           // U qualifier may superset.
456           (!other.hasUnaligned() || hasUnaligned());
457  }
458
459  /// \brief Determines if these qualifiers compatibly include another set of
460  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
461  ///
462  /// One set of Objective-C lifetime qualifiers compatibly includes the other
463  /// if the lifetime qualifiers match, or if both are non-__weak and the
464  /// including set also contains the 'const' qualifier, or both are non-__weak
465  /// and one is None (which can only happen in non-ARC modes).
466  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
467    if (getObjCLifetime() == other.getObjCLifetime())
468      return true;
469
470    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
471      return false;
472
473    if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
474      return true;
475
476    return hasConst();
477  }
478
479  /// \brief Determine whether this set of qualifiers is a strict superset of
480  /// another set of qualifiers, not considering qualifier compatibility.
481  bool isStrictSupersetOf(Qualifiers Other) const;
482
483  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
484  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
485
486  explicit operator bool() const { return hasQualifiers(); }
487
488  Qualifiers &operator+=(Qualifiers R) {
489    addQualifiers(R);
490    return *this;
491  }
492
493  // Union two qualifier sets.  If an enumerated qualifier appears
494  // in both sets, use the one from the right.
495  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
496    L += R;
497    return L;
498  }
499
500  Qualifiers &operator-=(Qualifiers R) {
501    removeQualifiers(R);
502    return *this;
503  }
504
505  /// \brief Compute the difference between two qualifier sets.
506  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
507    L -= R;
508    return L;
509  }
510
511  std::string getAsString() const;
512  std::string getAsString(const PrintingPolicy &Policy) const;
513
514  bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
515  void print(raw_ostream &OS, const PrintingPolicy &Policy,
516             bool appendSpaceIfNonEmpty = false) const;
517
518  void Profile(llvm::FoldingSetNodeID &ID) const {
519    ID.AddInteger(Mask);
520  }
521
522private:
523
524  // bits:     |0 1 2|3|4 .. 5|6  ..  8|9   ...   31|
525  //           |C R V|U|GCAttr|Lifetime|AddressSpace|
526  uint32_t Mask;
527
528  static const uint32_t UMask = 0x8;
529  static const uint32_t UShift = 3;
530  static const uint32_t GCAttrMask = 0x30;
531  static const uint32_t GCAttrShift = 4;
532  static const uint32_t LifetimeMask = 0x1C0;
533  static const uint32_t LifetimeShift = 6;
534  static const uint32_t AddressSpaceMask =
535      ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
536  static const uint32_t AddressSpaceShift = 9;
537};
538
539/// A std::pair-like structure for storing a qualified type split
540/// into its local qualifiers and its locally-unqualified type.
541struct SplitQualType {
542  /// The locally-unqualified type.
543  const Type *Ty;
544
545  /// The local qualifiers.
546  Qualifiers Quals;
547
548  SplitQualType() : Ty(nullptr), Quals() {}
549  SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
550
551  SplitQualType getSingleStepDesugaredType() const; // end of this file
552
553  // Make std::tie work.
554  std::pair<const Type *,Qualifiers> asPair() const {
555    return std::pair<const Type *, Qualifiers>(Ty, Quals);
556  }
557
558  friend bool operator==(SplitQualType a, SplitQualType b) {
559    return a.Ty == b.Ty && a.Quals == b.Quals;
560  }
561  friend bool operator!=(SplitQualType a, SplitQualType b) {
562    return a.Ty != b.Ty || a.Quals != b.Quals;
563  }
564};
565
566/// The kind of type we are substituting Objective-C type arguments into.
567///
568/// The kind of substitution affects the replacement of type parameters when
569/// no concrete type information is provided, e.g., when dealing with an
570/// unspecialized type.
571enum class ObjCSubstitutionContext {
572  /// An ordinary type.
573  Ordinary,
574  /// The result type of a method or function.
575  Result,
576  /// The parameter type of a method or function.
577  Parameter,
578  /// The type of a property.
579  Property,
580  /// The superclass of a type.
581  Superclass,
582};
583
584/// A (possibly-)qualified type.
585///
586/// For efficiency, we don't store CV-qualified types as nodes on their
587/// own: instead each reference to a type stores the qualifiers.  This
588/// greatly reduces the number of nodes we need to allocate for types (for
589/// example we only need one for 'int', 'const int', 'volatile int',
590/// 'const volatile int', etc).
591///
592/// As an added efficiency bonus, instead of making this a pair, we
593/// just store the two bits we care about in the low bits of the
594/// pointer.  To handle the packing/unpacking, we make QualType be a
595/// simple wrapper class that acts like a smart pointer.  A third bit
596/// indicates whether there are extended qualifiers present, in which
597/// case the pointer points to a special structure.
598class QualType {
599  // Thankfully, these are efficiently composable.
600  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
601                       Qualifiers::FastWidth> Value;
602
603  const ExtQuals *getExtQualsUnsafe() const {
604    return Value.getPointer().get<const ExtQuals*>();
605  }
606
607  const Type *getTypePtrUnsafe() const {
608    return Value.getPointer().get<const Type*>();
609  }
610
611  const ExtQualsTypeCommonBase *getCommonPtr() const {
612    assert(!isNull() && "Cannot retrieve a NULL type pointer");
613    uintptr_t CommonPtrVal
614      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
615    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
616    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
617  }
618
619  friend class QualifierCollector;
620public:
621  QualType() {}
622
623  QualType(const Type *Ptr, unsigned Quals)
624    : Value(Ptr, Quals) {}
625  QualType(const ExtQuals *Ptr, unsigned Quals)
626    : Value(Ptr, Quals) {}
627
628  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
629  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
630
631  /// Retrieves a pointer to the underlying (unqualified) type.
632  ///
633  /// This function requires that the type not be NULL. If the type might be
634  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
635  const Type *getTypePtr() const;
636
637  const Type *getTypePtrOrNull() const;
638
639  /// Retrieves a pointer to the name of the base type.
640  const IdentifierInfo *getBaseTypeIdentifier() const;
641
642  /// Divides a QualType into its unqualified type and a set of local
643  /// qualifiers.
644  SplitQualType split() const;
645
646  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
647  static QualType getFromOpaquePtr(const void *Ptr) {
648    QualType T;
649    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
650    return T;
651  }
652
653  const Type &operator*() const {
654    return *getTypePtr();
655  }
656
657  const Type *operator->() const {
658    return getTypePtr();
659  }
660
661  bool isCanonical() const;
662  bool isCanonicalAsParam() const;
663
664  /// Return true if this QualType doesn't point to a type yet.
665  bool isNull() const {
666    return Value.getPointer().isNull();
667  }
668
669  /// \brief Determine whether this particular QualType instance has the
670  /// "const" qualifier set, without looking through typedefs that may have
671  /// added "const" at a different level.
672  bool isLocalConstQualified() const {
673    return (getLocalFastQualifiers() & Qualifiers::Const);
674  }
675
676  /// \brief Determine whether this type is const-qualified.
677  bool isConstQualified() const;
678
679  /// \brief Determine whether this particular QualType instance has the
680  /// "restrict" qualifier set, without looking through typedefs that may have
681  /// added "restrict" at a different level.
682  bool isLocalRestrictQualified() const {
683    return (getLocalFastQualifiers() & Qualifiers::Restrict);
684  }
685
686  /// \brief Determine whether this type is restrict-qualified.
687  bool isRestrictQualified() const;
688
689  /// \brief Determine whether this particular QualType instance has the
690  /// "volatile" qualifier set, without looking through typedefs that may have
691  /// added "volatile" at a different level.
692  bool isLocalVolatileQualified() const {
693    return (getLocalFastQualifiers() & Qualifiers::Volatile);
694  }
695
696  /// \brief Determine whether this type is volatile-qualified.
697  bool isVolatileQualified() const;
698
699  /// \brief Determine whether this particular QualType instance has any
700  /// qualifiers, without looking through any typedefs that might add
701  /// qualifiers at a different level.
702  bool hasLocalQualifiers() const {
703    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
704  }
705
706  /// \brief Determine whether this type has any qualifiers.
707  bool hasQualifiers() const;
708
709  /// \brief Determine whether this particular QualType instance has any
710  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
711  /// instance.
712  bool hasLocalNonFastQualifiers() const {
713    return Value.getPointer().is<const ExtQuals*>();
714  }
715
716  /// \brief Retrieve the set of qualifiers local to this particular QualType
717  /// instance, not including any qualifiers acquired through typedefs or
718  /// other sugar.
719  Qualifiers getLocalQualifiers() const;
720
721  /// \brief Retrieve the set of qualifiers applied to this type.
722  Qualifiers getQualifiers() const;
723
724  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
725  /// local to this particular QualType instance, not including any qualifiers
726  /// acquired through typedefs or other sugar.
727  unsigned getLocalCVRQualifiers() const {
728    return getLocalFastQualifiers();
729  }
730
731  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
732  /// applied to this type.
733  unsigned getCVRQualifiers() const;
734
735  bool isConstant(const ASTContext& Ctx) const {
736    return QualType::isConstant(*this, Ctx);
737  }
738
739  /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
740  bool isPODType(const ASTContext &Context) const;
741
742  /// Return true if this is a POD type according to the rules of the C++98
743  /// standard, regardless of the current compilation's language.
744  bool isCXX98PODType(const ASTContext &Context) const;
745
746  /// Return true if this is a POD type according to the more relaxed rules
747  /// of the C++11 standard, regardless of the current compilation's language.
748  /// (C++0x [basic.types]p9)
749  bool isCXX11PODType(const ASTContext &Context) const;
750
751  /// Return true if this is a trivial type per (C++0x [basic.types]p9)
752  bool isTrivialType(const ASTContext &Context) const;
753
754  /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
755  bool isTriviallyCopyableType(const ASTContext &Context) const;
756
757  // Don't promise in the API that anything besides 'const' can be
758  // easily added.
759
760  /// Add the `const` type qualifier to this QualType.
761  void addConst() {
762    addFastQualifiers(Qualifiers::Const);
763  }
764  QualType withConst() const {
765    return withFastQualifiers(Qualifiers::Const);
766  }
767
768  /// Add the `volatile` type qualifier to this QualType.
769  void addVolatile() {
770    addFastQualifiers(Qualifiers::Volatile);
771  }
772  QualType withVolatile() const {
773    return withFastQualifiers(Qualifiers::Volatile);
774  }
775
776  /// Add the `restrict` qualifier to this QualType.
777  void addRestrict() {
778    addFastQualifiers(Qualifiers::Restrict);
779  }
780  QualType withRestrict() const {
781    return withFastQualifiers(Qualifiers::Restrict);
782  }
783
784  QualType withCVRQualifiers(unsigned CVR) const {
785    return withFastQualifiers(CVR);
786  }
787
788  void addFastQualifiers(unsigned TQs) {
789    assert(!(TQs & ~Qualifiers::FastMask)
790           && "non-fast qualifier bits set in mask!");
791    Value.setInt(Value.getInt() | TQs);
792  }
793
794  void removeLocalConst();
795  void removeLocalVolatile();
796  void removeLocalRestrict();
797  void removeLocalCVRQualifiers(unsigned Mask);
798
799  void removeLocalFastQualifiers() { Value.setInt(0); }
800  void removeLocalFastQualifiers(unsigned Mask) {
801    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
802    Value.setInt(Value.getInt() & ~Mask);
803  }
804
805  // Creates a type with the given qualifiers in addition to any
806  // qualifiers already on this type.
807  QualType withFastQualifiers(unsigned TQs) const {
808    QualType T = *this;
809    T.addFastQualifiers(TQs);
810    return T;
811  }
812
813  // Creates a type with exactly the given fast qualifiers, removing
814  // any existing fast qualifiers.
815  QualType withExactLocalFastQualifiers(unsigned TQs) const {
816    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
817  }
818
819  // Removes fast qualifiers, but leaves any extended qualifiers in place.
820  QualType withoutLocalFastQualifiers() const {
821    QualType T = *this;
822    T.removeLocalFastQualifiers();
823    return T;
824  }
825
826  QualType getCanonicalType() const;
827
828  /// \brief Return this type with all of the instance-specific qualifiers
829  /// removed, but without removing any qualifiers that may have been applied
830  /// through typedefs.
831  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
832
833  /// \brief Retrieve the unqualified variant of the given type,
834  /// removing as little sugar as possible.
835  ///
836  /// This routine looks through various kinds of sugar to find the
837  /// least-desugared type that is unqualified. For example, given:
838  ///
839  /// \code
840  /// typedef int Integer;
841  /// typedef const Integer CInteger;
842  /// typedef CInteger DifferenceType;
843  /// \endcode
844  ///
845  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
846  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
847  ///
848  /// The resulting type might still be qualified if it's sugar for an array
849  /// type.  To strip qualifiers even from within a sugared array type, use
850  /// ASTContext::getUnqualifiedArrayType.
851  inline QualType getUnqualifiedType() const;
852
853  /// Retrieve the unqualified variant of the given type, removing as little
854  /// sugar as possible.
855  ///
856  /// Like getUnqualifiedType(), but also returns the set of
857  /// qualifiers that were built up.
858  ///
859  /// The resulting type might still be qualified if it's sugar for an array
860  /// type.  To strip qualifiers even from within a sugared array type, use
861  /// ASTContext::getUnqualifiedArrayType.
862  inline SplitQualType getSplitUnqualifiedType() const;
863
864  /// \brief Determine whether this type is more qualified than the other
865  /// given type, requiring exact equality for non-CVR qualifiers.
866  bool isMoreQualifiedThan(QualType Other) const;
867
868  /// \brief Determine whether this type is at least as qualified as the other
869  /// given type, requiring exact equality for non-CVR qualifiers.
870  bool isAtLeastAsQualifiedAs(QualType Other) const;
871
872  QualType getNonReferenceType() const;
873
874  /// \brief Determine the type of a (typically non-lvalue) expression with the
875  /// specified result type.
876  ///
877  /// This routine should be used for expressions for which the return type is
878  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
879  /// an lvalue. It removes a top-level reference (since there are no
880  /// expressions of reference type) and deletes top-level cvr-qualifiers
881  /// from non-class types (in C++) or all types (in C).
882  QualType getNonLValueExprType(const ASTContext &Context) const;
883
884  /// Return the specified type with any "sugar" removed from
885  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
886  /// the type is already concrete, it returns it unmodified.  This is similar
887  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
888  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
889  /// concrete.
890  ///
891  /// Qualifiers are left in place.
892  QualType getDesugaredType(const ASTContext &Context) const {
893    return getDesugaredType(*this, Context);
894  }
895
896  SplitQualType getSplitDesugaredType() const {
897    return getSplitDesugaredType(*this);
898  }
899
900  /// \brief Return the specified type with one level of "sugar" removed from
901  /// the type.
902  ///
903  /// This routine takes off the first typedef, typeof, etc. If the outer level
904  /// of the type is already concrete, it returns it unmodified.
905  QualType getSingleStepDesugaredType(const ASTContext &Context) const {
906    return getSingleStepDesugaredTypeImpl(*this, Context);
907  }
908
909  /// Returns the specified type after dropping any
910  /// outer-level parentheses.
911  QualType IgnoreParens() const {
912    if (isa<ParenType>(*this))
913      return QualType::IgnoreParens(*this);
914    return *this;
915  }
916
917  /// Indicate whether the specified types and qualifiers are identical.
918  friend bool operator==(const QualType &LHS, const QualType &RHS) {
919    return LHS.Value == RHS.Value;
920  }
921  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
922    return LHS.Value != RHS.Value;
923  }
924  std::string getAsString() const {
925    return getAsString(split());
926  }
927  static std::string getAsString(SplitQualType split) {
928    return getAsString(split.Ty, split.Quals);
929  }
930  static std::string getAsString(const Type *ty, Qualifiers qs);
931
932  std::string getAsString(const PrintingPolicy &Policy) const;
933
934  void print(raw_ostream &OS, const PrintingPolicy &Policy,
935             const Twine &PlaceHolder = Twine(),
936             unsigned Indentation = 0) const {
937    print(split(), OS, Policy, PlaceHolder, Indentation);
938  }
939  static void print(SplitQualType split, raw_ostream &OS,
940                    const PrintingPolicy &policy, const Twine &PlaceHolder,
941                    unsigned Indentation = 0) {
942    return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
943  }
944  static void print(const Type *ty, Qualifiers qs,
945                    raw_ostream &OS, const PrintingPolicy &policy,
946                    const Twine &PlaceHolder,
947                    unsigned Indentation = 0);
948
949  void getAsStringInternal(std::string &Str,
950                           const PrintingPolicy &Policy) const {
951    return getAsStringInternal(split(), Str, Policy);
952  }
953  static void getAsStringInternal(SplitQualType split, std::string &out,
954                                  const PrintingPolicy &policy) {
955    return getAsStringInternal(split.Ty, split.Quals, out, policy);
956  }
957  static void getAsStringInternal(const Type *ty, Qualifiers qs,
958                                  std::string &out,
959                                  const PrintingPolicy &policy);
960
961  class StreamedQualTypeHelper {
962    const QualType &T;
963    const PrintingPolicy &Policy;
964    const Twine &PlaceHolder;
965    unsigned Indentation;
966  public:
967    StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
968                           const Twine &PlaceHolder, unsigned Indentation)
969      : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
970        Indentation(Indentation) { }
971
972    friend raw_ostream &operator<<(raw_ostream &OS,
973                                   const StreamedQualTypeHelper &SQT) {
974      SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
975      return OS;
976    }
977  };
978
979  StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
980                                const Twine &PlaceHolder = Twine(),
981                                unsigned Indentation = 0) const {
982    return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
983  }
984
985  void dump(const char *s) const;
986  void dump() const;
987
988  void Profile(llvm::FoldingSetNodeID &ID) const {
989    ID.AddPointer(getAsOpaquePtr());
990  }
991
992  /// Return the address space of this type.
993  inline unsigned getAddressSpace() const;
994
995  /// Returns gc attribute of this type.
996  inline Qualifiers::GC getObjCGCAttr() const;
997
998  /// true when Type is objc's weak.
999  bool isObjCGCWeak() const {
1000    return getObjCGCAttr() == Qualifiers::Weak;
1001  }
1002
1003  /// true when Type is objc's strong.
1004  bool isObjCGCStrong() const {
1005    return getObjCGCAttr() == Qualifiers::Strong;
1006  }
1007
1008  /// Returns lifetime attribute of this type.
1009  Qualifiers::ObjCLifetime getObjCLifetime() const {
1010    return getQualifiers().getObjCLifetime();
1011  }
1012
1013  bool hasNonTrivialObjCLifetime() const {
1014    return getQualifiers().hasNonTrivialObjCLifetime();
1015  }
1016
1017  bool hasStrongOrWeakObjCLifetime() const {
1018    return getQualifiers().hasStrongOrWeakObjCLifetime();
1019  }
1020
1021  enum DestructionKind {
1022    DK_none,
1023    DK_cxx_destructor,
1024    DK_objc_strong_lifetime,
1025    DK_objc_weak_lifetime
1026  };
1027
1028  /// Returns a nonzero value if objects of this type require
1029  /// non-trivial work to clean up after.  Non-zero because it's
1030  /// conceivable that qualifiers (objc_gc(weak)?) could make
1031  /// something require destruction.
1032  DestructionKind isDestructedType() const {
1033    return isDestructedTypeImpl(*this);
1034  }
1035
1036  /// Determine whether expressions of the given type are forbidden
1037  /// from being lvalues in C.
1038  ///
1039  /// The expression types that are forbidden to be lvalues are:
1040  ///   - 'void', but not qualified void
1041  ///   - function types
1042  ///
1043  /// The exact rule here is C99 6.3.2.1:
1044  ///   An lvalue is an expression with an object type or an incomplete
1045  ///   type other than void.
1046  bool isCForbiddenLValueType() const;
1047
1048  /// Substitute type arguments for the Objective-C type parameters used in the
1049  /// subject type.
1050  ///
1051  /// \param ctx ASTContext in which the type exists.
1052  ///
1053  /// \param typeArgs The type arguments that will be substituted for the
1054  /// Objective-C type parameters in the subject type, which are generally
1055  /// computed via \c Type::getObjCSubstitutions. If empty, the type
1056  /// parameters will be replaced with their bounds or id/Class, as appropriate
1057  /// for the context.
1058  ///
1059  /// \param context The context in which the subject type was written.
1060  ///
1061  /// \returns the resulting type.
1062  QualType substObjCTypeArgs(ASTContext &ctx,
1063                             ArrayRef<QualType> typeArgs,
1064                             ObjCSubstitutionContext context) const;
1065
1066  /// Substitute type arguments from an object type for the Objective-C type
1067  /// parameters used in the subject type.
1068  ///
1069  /// This operation combines the computation of type arguments for
1070  /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1071  /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1072  /// callers that need to perform a single substitution in isolation.
1073  ///
1074  /// \param objectType The type of the object whose member type we're
1075  /// substituting into. For example, this might be the receiver of a message
1076  /// or the base of a property access.
1077  ///
1078  /// \param dc The declaration context from which the subject type was
1079  /// retrieved, which indicates (for example) which type parameters should
1080  /// be substituted.
1081  ///
1082  /// \param context The context in which the subject type was written.
1083  ///
1084  /// \returns the subject type after replacing all of the Objective-C type
1085  /// parameters with their corresponding arguments.
1086  QualType substObjCMemberType(QualType objectType,
1087                               const DeclContext *dc,
1088                               ObjCSubstitutionContext context) const;
1089
1090  /// Strip Objective-C "__kindof" types from the given type.
1091  QualType stripObjCKindOfType(const ASTContext &ctx) const;
1092
1093  /// Remove all qualifiers including _Atomic.
1094  QualType getAtomicUnqualifiedType() const;
1095
1096private:
1097  // These methods are implemented in a separate translation unit;
1098  // "static"-ize them to avoid creating temporary QualTypes in the
1099  // caller.
1100  static bool isConstant(QualType T, const ASTContext& Ctx);
1101  static QualType getDesugaredType(QualType T, const ASTContext &Context);
1102  static SplitQualType getSplitDesugaredType(QualType T);
1103  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1104  static QualType getSingleStepDesugaredTypeImpl(QualType type,
1105                                                 const ASTContext &C);
1106  static QualType IgnoreParens(QualType T);
1107  static DestructionKind isDestructedTypeImpl(QualType type);
1108};
1109
1110} // end clang.
1111
1112namespace llvm {
1113/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1114/// to a specific Type class.
1115template<> struct simplify_type< ::clang::QualType> {
1116  typedef const ::clang::Type *SimpleType;
1117  static SimpleType getSimplifiedValue(::clang::QualType Val) {
1118    return Val.getTypePtr();
1119  }
1120};
1121
1122// Teach SmallPtrSet that QualType is "basically a pointer".
1123template<>
1124class PointerLikeTypeTraits<clang::QualType> {
1125public:
1126  static inline void *getAsVoidPointer(clang::QualType P) {
1127    return P.getAsOpaquePtr();
1128  }
1129  static inline clang::QualType getFromVoidPointer(void *P) {
1130    return clang::QualType::getFromOpaquePtr(P);
1131  }
1132  // Various qualifiers go in low bits.
1133  enum { NumLowBitsAvailable = 0 };
1134};
1135
1136} // end namespace llvm
1137
1138namespace clang {
1139
1140/// \brief Base class that is common to both the \c ExtQuals and \c Type
1141/// classes, which allows \c QualType to access the common fields between the
1142/// two.
1143///
1144class ExtQualsTypeCommonBase {
1145  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1146    : BaseType(baseType), CanonicalType(canon) {}
1147
1148  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
1149  /// a self-referential pointer (for \c Type).
1150  ///
1151  /// This pointer allows an efficient mapping from a QualType to its
1152  /// underlying type pointer.
1153  const Type *const BaseType;
1154
1155  /// \brief The canonical type of this type.  A QualType.
1156  QualType CanonicalType;
1157
1158  friend class QualType;
1159  friend class Type;
1160  friend class ExtQuals;
1161};
1162
1163/// We can encode up to four bits in the low bits of a
1164/// type pointer, but there are many more type qualifiers that we want
1165/// to be able to apply to an arbitrary type.  Therefore we have this
1166/// struct, intended to be heap-allocated and used by QualType to
1167/// store qualifiers.
1168///
1169/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1170/// in three low bits on the QualType pointer; a fourth bit records whether
1171/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1172/// Objective-C GC attributes) are much more rare.
1173class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1174  // NOTE: changing the fast qualifiers should be straightforward as
1175  // long as you don't make 'const' non-fast.
1176  // 1. Qualifiers:
1177  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1178  //       Fast qualifiers must occupy the low-order bits.
1179  //    b) Update Qualifiers::FastWidth and FastMask.
1180  // 2. QualType:
1181  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
1182  //    b) Update remove{Volatile,Restrict}, defined near the end of
1183  //       this header.
1184  // 3. ASTContext:
1185  //    a) Update get{Volatile,Restrict}Type.
1186
1187  /// The immutable set of qualifiers applied by this node. Always contains
1188  /// extended qualifiers.
1189  Qualifiers Quals;
1190
1191  ExtQuals *this_() { return this; }
1192
1193public:
1194  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1195    : ExtQualsTypeCommonBase(baseType,
1196                             canon.isNull() ? QualType(this_(), 0) : canon),
1197      Quals(quals)
1198  {
1199    assert(Quals.hasNonFastQualifiers()
1200           && "ExtQuals created with no fast qualifiers");
1201    assert(!Quals.hasFastQualifiers()
1202           && "ExtQuals created with fast qualifiers");
1203  }
1204
1205  Qualifiers getQualifiers() const { return Quals; }
1206
1207  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1208  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1209
1210  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1211  Qualifiers::ObjCLifetime getObjCLifetime() const {
1212    return Quals.getObjCLifetime();
1213  }
1214
1215  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1216  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
1217
1218  const Type *getBaseType() const { return BaseType; }
1219
1220public:
1221  void Profile(llvm::FoldingSetNodeID &ID) const {
1222    Profile(ID, getBaseType(), Quals);
1223  }
1224  static void Profile(llvm::FoldingSetNodeID &ID,
1225                      const Type *BaseType,
1226                      Qualifiers Quals) {
1227    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
1228    ID.AddPointer(BaseType);
1229    Quals.Profile(ID);
1230  }
1231};
1232
1233/// The kind of C++11 ref-qualifier associated with a function type.
1234/// This determines whether a member function's "this" object can be an
1235/// lvalue, rvalue, or neither.
1236enum RefQualifierKind {
1237  /// \brief No ref-qualifier was provided.
1238  RQ_None = 0,
1239  /// \brief An lvalue ref-qualifier was provided (\c &).
1240  RQ_LValue,
1241  /// \brief An rvalue ref-qualifier was provided (\c &&).
1242  RQ_RValue
1243};
1244
1245/// Which keyword(s) were used to create an AutoType.
1246enum class AutoTypeKeyword {
1247  /// \brief auto
1248  Auto,
1249  /// \brief decltype(auto)
1250  DecltypeAuto,
1251  /// \brief __auto_type (GNU extension)
1252  GNUAutoType
1253};
1254
1255/// The base class of the type hierarchy.
1256///
1257/// A central concept with types is that each type always has a canonical
1258/// type.  A canonical type is the type with any typedef names stripped out
1259/// of it or the types it references.  For example, consider:
1260///
1261///  typedef int  foo;
1262///  typedef foo* bar;
1263///    'int *'    'foo *'    'bar'
1264///
1265/// There will be a Type object created for 'int'.  Since int is canonical, its
1266/// CanonicalType pointer points to itself.  There is also a Type for 'foo' (a
1267/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
1268/// there is a PointerType that represents 'int*', which, like 'int', is
1269/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
1270/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1271/// is also 'int*'.
1272///
1273/// Non-canonical types are useful for emitting diagnostics, without losing
1274/// information about typedefs being used.  Canonical types are useful for type
1275/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1276/// about whether something has a particular form (e.g. is a function type),
1277/// because they implicitly, recursively, strip all typedefs out of a type.
1278///
1279/// Types, once created, are immutable.
1280///
1281class Type : public ExtQualsTypeCommonBase {
1282public:
1283  enum TypeClass {
1284#define TYPE(Class, Base) Class,
1285#define LAST_TYPE(Class) TypeLast = Class,
1286#define ABSTRACT_TYPE(Class, Base)
1287#include "clang/AST/TypeNodes.def"
1288    TagFirst = Record, TagLast = Enum
1289  };
1290
1291private:
1292  Type(const Type &) = delete;
1293  void operator=(const Type &) = delete;
1294
1295  /// Bitfields required by the Type class.
1296  class TypeBitfields {
1297    friend class Type;
1298    template <class T> friend class TypePropertyCache;
1299
1300    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1301    unsigned TC : 8;
1302
1303    /// Whether this type is a dependent type (C++ [temp.dep.type]).
1304    unsigned Dependent : 1;
1305
1306    /// Whether this type somehow involves a template parameter, even
1307    /// if the resolution of the type does not depend on a template parameter.
1308    unsigned InstantiationDependent : 1;
1309
1310    /// Whether this type is a variably-modified type (C99 6.7.5).
1311    unsigned VariablyModified : 1;
1312
1313    /// \brief Whether this type contains an unexpanded parameter pack
1314    /// (for C++11 variadic templates).
1315    unsigned ContainsUnexpandedParameterPack : 1;
1316
1317    /// \brief True if the cache (i.e. the bitfields here starting with
1318    /// 'Cache') is valid.
1319    mutable unsigned CacheValid : 1;
1320
1321    /// \brief Linkage of this type.
1322    mutable unsigned CachedLinkage : 3;
1323
1324    /// \brief Whether this type involves and local or unnamed types.
1325    mutable unsigned CachedLocalOrUnnamed : 1;
1326
1327    /// \brief Whether this type comes from an AST file.
1328    mutable unsigned FromAST : 1;
1329
1330    bool isCacheValid() const {
1331      return CacheValid;
1332    }
1333    Linkage getLinkage() const {
1334      assert(isCacheValid() && "getting linkage from invalid cache");
1335      return static_cast<Linkage>(CachedLinkage);
1336    }
1337    bool hasLocalOrUnnamedType() const {
1338      assert(isCacheValid() && "getting linkage from invalid cache");
1339      return CachedLocalOrUnnamed;
1340    }
1341  };
1342  enum { NumTypeBits = 18 };
1343
1344protected:
1345  // These classes allow subclasses to somewhat cleanly pack bitfields
1346  // into Type.
1347
1348  class ArrayTypeBitfields {
1349    friend class ArrayType;
1350
1351    unsigned : NumTypeBits;
1352
1353    /// CVR qualifiers from declarations like
1354    /// 'int X[static restrict 4]'. For function parameters only.
1355    unsigned IndexTypeQuals : 3;
1356
1357    /// Storage class qualifiers from declarations like
1358    /// 'int X[static restrict 4]'. For function parameters only.
1359    /// Actually an ArrayType::ArraySizeModifier.
1360    unsigned SizeModifier : 3;
1361  };
1362
1363  class BuiltinTypeBitfields {
1364    friend class BuiltinType;
1365
1366    unsigned : NumTypeBits;
1367
1368    /// The kind (BuiltinType::Kind) of builtin type this is.
1369    unsigned Kind : 8;
1370  };
1371
1372  class FunctionTypeBitfields {
1373    friend class FunctionType;
1374    friend class FunctionProtoType;
1375
1376    unsigned : NumTypeBits;
1377
1378    /// Extra information which affects how the function is called, like
1379    /// regparm and the calling convention.
1380    unsigned ExtInfo : 9;
1381
1382    /// Used only by FunctionProtoType, put here to pack with the
1383    /// other bitfields.
1384    /// The qualifiers are part of FunctionProtoType because...
1385    ///
1386    /// C++ 8.3.5p4: The return type, the parameter type list and the
1387    /// cv-qualifier-seq, [...], are part of the function type.
1388    unsigned TypeQuals : 4;
1389
1390    /// \brief The ref-qualifier associated with a \c FunctionProtoType.
1391    ///
1392    /// This is a value of type \c RefQualifierKind.
1393    unsigned RefQualifier : 2;
1394  };
1395
1396  class ObjCObjectTypeBitfields {
1397    friend class ObjCObjectType;
1398
1399    unsigned : NumTypeBits;
1400
1401    /// The number of type arguments stored directly on this object type.
1402    unsigned NumTypeArgs : 7;
1403
1404    /// The number of protocols stored directly on this object type.
1405    unsigned NumProtocols : 6;
1406
1407    /// Whether this is a "kindof" type.
1408    unsigned IsKindOf : 1;
1409  };
1410  static_assert(NumTypeBits + 7 + 6 + 1 <= 32, "Does not fit in an unsigned");
1411
1412  class ReferenceTypeBitfields {
1413    friend class ReferenceType;
1414
1415    unsigned : NumTypeBits;
1416
1417    /// True if the type was originally spelled with an lvalue sigil.
1418    /// This is never true of rvalue references but can also be false
1419    /// on lvalue references because of C++0x [dcl.typedef]p9,
1420    /// as follows:
1421    ///
1422    ///   typedef int &ref;    // lvalue, spelled lvalue
1423    ///   typedef int &&rvref; // rvalue
1424    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1425    ///   ref &&a;             // lvalue, inner ref
1426    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1427    ///   rvref &&a;           // rvalue, inner ref
1428    unsigned SpelledAsLValue : 1;
1429
1430    /// True if the inner type is a reference type.  This only happens
1431    /// in non-canonical forms.
1432    unsigned InnerRef : 1;
1433  };
1434
1435  class TypeWithKeywordBitfields {
1436    friend class TypeWithKeyword;
1437
1438    unsigned : NumTypeBits;
1439
1440    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1441    unsigned Keyword : 8;
1442  };
1443
1444  class VectorTypeBitfields {
1445    friend class VectorType;
1446
1447    unsigned : NumTypeBits;
1448
1449    /// The kind of vector, either a generic vector type or some
1450    /// target-specific vector type such as for AltiVec or Neon.
1451    unsigned VecKind : 3;
1452
1453    /// The number of elements in the vector.
1454    unsigned NumElements : 29 - NumTypeBits;
1455
1456    enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
1457  };
1458
1459  class AttributedTypeBitfields {
1460    friend class AttributedType;
1461
1462    unsigned : NumTypeBits;
1463
1464    /// An AttributedType::Kind
1465    unsigned AttrKind : 32 - NumTypeBits;
1466  };
1467
1468  class AutoTypeBitfields {
1469    friend class AutoType;
1470
1471    unsigned : NumTypeBits;
1472
1473    /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1474    /// or '__auto_type'?  AutoTypeKeyword value.
1475    unsigned Keyword : 2;
1476  };
1477
1478  union {
1479    TypeBitfields TypeBits;
1480    ArrayTypeBitfields ArrayTypeBits;
1481    AttributedTypeBitfields AttributedTypeBits;
1482    AutoTypeBitfields AutoTypeBits;
1483    BuiltinTypeBitfields BuiltinTypeBits;
1484    FunctionTypeBitfields FunctionTypeBits;
1485    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1486    ReferenceTypeBitfields ReferenceTypeBits;
1487    TypeWithKeywordBitfields TypeWithKeywordBits;
1488    VectorTypeBitfields VectorTypeBits;
1489  };
1490
1491private:
1492  /// \brief Set whether this type comes from an AST file.
1493  void setFromAST(bool V = true) const {
1494    TypeBits.FromAST = V;
1495  }
1496
1497  template <class T> friend class TypePropertyCache;
1498
1499protected:
1500  // silence VC++ warning C4355: 'this' : used in base member initializer list
1501  Type *this_() { return this; }
1502  Type(TypeClass tc, QualType canon, bool Dependent,
1503       bool InstantiationDependent, bool VariablyModified,
1504       bool ContainsUnexpandedParameterPack)
1505    : ExtQualsTypeCommonBase(this,
1506                             canon.isNull() ? QualType(this_(), 0) : canon) {
1507    TypeBits.TC = tc;
1508    TypeBits.Dependent = Dependent;
1509    TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1510    TypeBits.VariablyModified = VariablyModified;
1511    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1512    TypeBits.CacheValid = false;
1513    TypeBits.CachedLocalOrUnnamed = false;
1514    TypeBits.CachedLinkage = NoLinkage;
1515    TypeBits.FromAST = false;
1516  }
1517  friend class ASTContext;
1518
1519  void setDependent(bool D = true) {
1520    TypeBits.Dependent = D;
1521    if (D)
1522      TypeBits.InstantiationDependent = true;
1523  }
1524  void setInstantiationDependent(bool D = true) {
1525    TypeBits.InstantiationDependent = D; }
1526  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
1527  }
1528  void setContainsUnexpandedParameterPack(bool PP = true) {
1529    TypeBits.ContainsUnexpandedParameterPack = PP;
1530  }
1531
1532public:
1533  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1534
1535  /// \brief Whether this type comes from an AST file.
1536  bool isFromAST() const { return TypeBits.FromAST; }
1537
1538  /// \brief Whether this type is or contains an unexpanded parameter
1539  /// pack, used to support C++0x variadic templates.
1540  ///
1541  /// A type that contains a parameter pack shall be expanded by the
1542  /// ellipsis operator at some point. For example, the typedef in the
1543  /// following example contains an unexpanded parameter pack 'T':
1544  ///
1545  /// \code
1546  /// template<typename ...T>
1547  /// struct X {
1548  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1549  /// };
1550  /// \endcode
1551  ///
1552  /// Note that this routine does not specify which
1553  bool containsUnexpandedParameterPack() const {
1554    return TypeBits.ContainsUnexpandedParameterPack;
1555  }
1556
1557  /// Determines if this type would be canonical if it had no further
1558  /// qualification.
1559  bool isCanonicalUnqualified() const {
1560    return CanonicalType == QualType(this, 0);
1561  }
1562
1563  /// Pull a single level of sugar off of this locally-unqualified type.
1564  /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1565  /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1566  QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1567
1568  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1569  /// object types, function types, and incomplete types.
1570
1571  /// Return true if this is an incomplete type.
1572  /// A type that can describe objects, but which lacks information needed to
1573  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1574  /// routine will need to determine if the size is actually required.
1575  ///
1576  /// \brief Def If non-null, and the type refers to some kind of declaration
1577  /// that can be completed (such as a C struct, C++ class, or Objective-C
1578  /// class), will be set to the declaration.
1579  bool isIncompleteType(NamedDecl **Def = nullptr) const;
1580
1581  /// Return true if this is an incomplete or object
1582  /// type, in other words, not a function type.
1583  bool isIncompleteOrObjectType() const {
1584    return !isFunctionType();
1585  }
1586
1587  /// \brief Determine whether this type is an object type.
1588  bool isObjectType() const {
1589    // C++ [basic.types]p8:
1590    //   An object type is a (possibly cv-qualified) type that is not a
1591    //   function type, not a reference type, and not a void type.
1592    return !isReferenceType() && !isFunctionType() && !isVoidType();
1593  }
1594
1595  /// Return true if this is a literal type
1596  /// (C++11 [basic.types]p10)
1597  bool isLiteralType(const ASTContext &Ctx) const;
1598
1599  /// Test if this type is a standard-layout type.
1600  /// (C++0x [basic.type]p9)
1601  bool isStandardLayoutType() const;
1602
1603  /// Helper methods to distinguish type categories. All type predicates
1604  /// operate on the canonical type, ignoring typedefs and qualifiers.
1605
1606  /// Returns true if the type is a builtin type.
1607  bool isBuiltinType() const;
1608
1609  /// Test for a particular builtin type.
1610  bool isSpecificBuiltinType(unsigned K) const;
1611
1612  /// Test for a type which does not represent an actual type-system type but
1613  /// is instead used as a placeholder for various convenient purposes within
1614  /// Clang.  All such types are BuiltinTypes.
1615  bool isPlaceholderType() const;
1616  const BuiltinType *getAsPlaceholderType() const;
1617
1618  /// Test for a specific placeholder type.
1619  bool isSpecificPlaceholderType(unsigned K) const;
1620
1621  /// Test for a placeholder type other than Overload; see
1622  /// BuiltinType::isNonOverloadPlaceholderType.
1623  bool isNonOverloadPlaceholderType() const;
1624
1625  /// isIntegerType() does *not* include complex integers (a GCC extension).
1626  /// isComplexIntegerType() can be used to test for complex integers.
1627  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1628  bool isEnumeralType() const;
1629  bool isBooleanType() const;
1630  bool isCharType() const;
1631  bool isWideCharType() const;
1632  bool isChar16Type() const;
1633  bool isChar32Type() const;
1634  bool isAnyCharacterType() const;
1635  bool isIntegralType(const ASTContext &Ctx) const;
1636
1637  /// Determine whether this type is an integral or enumeration type.
1638  bool isIntegralOrEnumerationType() const;
1639  /// Determine whether this type is an integral or unscoped enumeration type.
1640  bool isIntegralOrUnscopedEnumerationType() const;
1641
1642  /// Floating point categories.
1643  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1644  /// isComplexType() does *not* include complex integers (a GCC extension).
1645  /// isComplexIntegerType() can be used to test for complex integers.
1646  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1647  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1648  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1649  bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1650  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1651  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1652  bool isVoidType() const;         // C99 6.2.5p19
1653  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1654  bool isAggregateType() const;
1655  bool isFundamentalType() const;
1656  bool isCompoundType() const;
1657
1658  // Type Predicates: Check to see if this type is structurally the specified
1659  // type, ignoring typedefs and qualifiers.
1660  bool isFunctionType() const;
1661  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1662  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1663  bool isPointerType() const;
1664  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1665  bool isBlockPointerType() const;
1666  bool isVoidPointerType() const;
1667  bool isReferenceType() const;
1668  bool isLValueReferenceType() const;
1669  bool isRValueReferenceType() const;
1670  bool isFunctionPointerType() const;
1671  bool isMemberPointerType() const;
1672  bool isMemberFunctionPointerType() const;
1673  bool isMemberDataPointerType() const;
1674  bool isArrayType() const;
1675  bool isConstantArrayType() const;
1676  bool isIncompleteArrayType() const;
1677  bool isVariableArrayType() const;
1678  bool isDependentSizedArrayType() const;
1679  bool isRecordType() const;
1680  bool isClassType() const;
1681  bool isStructureType() const;
1682  bool isObjCBoxableRecordType() const;
1683  bool isInterfaceType() const;
1684  bool isStructureOrClassType() const;
1685  bool isUnionType() const;
1686  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1687  bool isVectorType() const;                    // GCC vector type.
1688  bool isExtVectorType() const;                 // Extended vector type.
1689  bool isObjCObjectPointerType() const;         // pointer to ObjC object
1690  bool isObjCRetainableType() const;            // ObjC object or block pointer
1691  bool isObjCLifetimeType() const;              // (array of)* retainable type
1692  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
1693  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
1694  bool isObjCIndependentClassType() const;      // __attribute__((objc_independent_class))
1695  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1696  // for the common case.
1697  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1698  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1699  bool isObjCQualifiedIdType() const;           // id<foo>
1700  bool isObjCQualifiedClassType() const;        // Class<foo>
1701  bool isObjCObjectOrInterfaceType() const;
1702  bool isObjCIdType() const;                    // id
1703  bool isObjCInertUnsafeUnretainedType() const;
1704
1705  /// Whether the type is Objective-C 'id' or a __kindof type of an
1706  /// object type, e.g., __kindof NSView * or __kindof id
1707  /// <NSCopying>.
1708  ///
1709  /// \param bound Will be set to the bound on non-id subtype types,
1710  /// which will be (possibly specialized) Objective-C class type, or
1711  /// null for 'id.
1712  bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
1713                                  const ObjCObjectType *&bound) const;
1714
1715  bool isObjCClassType() const;                 // Class
1716
1717  /// Whether the type is Objective-C 'Class' or a __kindof type of an
1718  /// Class type, e.g., __kindof Class <NSCopying>.
1719  ///
1720  /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
1721  /// here because Objective-C's type system cannot express "a class
1722  /// object for a subclass of NSFoo".
1723  bool isObjCClassOrClassKindOfType() const;
1724
1725  bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
1726  bool isObjCSelType() const;                 // Class
1727  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1728  bool isObjCARCBridgableType() const;
1729  bool isCARCBridgableType() const;
1730  bool isTemplateTypeParmType() const;          // C++ template type parameter
1731  bool isNullPtrType() const;                   // C++0x nullptr_t
1732  bool isAtomicType() const;                    // C11 _Atomic()
1733
1734#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1735  bool is##Id##Type() const;
1736#include "clang/Basic/OpenCLImageTypes.def"
1737
1738  bool isImageType() const;                     // Any OpenCL image type
1739
1740  bool isSamplerT() const;                      // OpenCL sampler_t
1741  bool isEventT() const;                        // OpenCL event_t
1742  bool isClkEventT() const;                     // OpenCL clk_event_t
1743  bool isQueueT() const;                        // OpenCL queue_t
1744  bool isNDRangeT() const;                      // OpenCL ndrange_t
1745  bool isReserveIDT() const;                    // OpenCL reserve_id_t
1746
1747  bool isPipeType() const;                      // OpenCL pipe type
1748  bool isOpenCLSpecificType() const;            // Any OpenCL specific type
1749
1750  /// Determines if this type, which must satisfy
1751  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
1752  /// than implicitly __strong.
1753  bool isObjCARCImplicitlyUnretainedType() const;
1754
1755  /// Return the implicit lifetime for this type, which must not be dependent.
1756  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
1757
1758  enum ScalarTypeKind {
1759    STK_CPointer,
1760    STK_BlockPointer,
1761    STK_ObjCObjectPointer,
1762    STK_MemberPointer,
1763    STK_Bool,
1764    STK_Integral,
1765    STK_Floating,
1766    STK_IntegralComplex,
1767    STK_FloatingComplex
1768  };
1769  /// Given that this is a scalar type, classify it.
1770  ScalarTypeKind getScalarTypeKind() const;
1771
1772  /// Whether this type is a dependent type, meaning that its definition
1773  /// somehow depends on a template parameter (C++ [temp.dep.type]).
1774  bool isDependentType() const { return TypeBits.Dependent; }
1775
1776  /// \brief Determine whether this type is an instantiation-dependent type,
1777  /// meaning that the type involves a template parameter (even if the
1778  /// definition does not actually depend on the type substituted for that
1779  /// template parameter).
1780  bool isInstantiationDependentType() const {
1781    return TypeBits.InstantiationDependent;
1782  }
1783
1784  /// \brief Determine whether this type is an undeduced type, meaning that
1785  /// it somehow involves a C++11 'auto' type which has not yet been deduced.
1786  bool isUndeducedType() const;
1787
1788  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1789  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1790
1791  /// \brief Whether this type involves a variable-length array type
1792  /// with a definite size.
1793  bool hasSizedVLAType() const;
1794
1795  /// \brief Whether this type is or contains a local or unnamed type.
1796  bool hasUnnamedOrLocalType() const;
1797
1798  bool isOverloadableType() const;
1799
1800  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1801  bool isElaboratedTypeSpecifier() const;
1802
1803  bool canDecayToPointerType() const;
1804
1805  /// Whether this type is represented natively as a pointer.  This includes
1806  /// pointers, references, block pointers, and Objective-C interface,
1807  /// qualified id, and qualified interface types, as well as nullptr_t.
1808  bool hasPointerRepresentation() const;
1809
1810  /// Whether this type can represent an objective pointer type for the
1811  /// purpose of GC'ability
1812  bool hasObjCPointerRepresentation() const;
1813
1814  /// \brief Determine whether this type has an integer representation
1815  /// of some sort, e.g., it is an integer type or a vector.
1816  bool hasIntegerRepresentation() const;
1817
1818  /// \brief Determine whether this type has an signed integer representation
1819  /// of some sort, e.g., it is an signed integer type or a vector.
1820  bool hasSignedIntegerRepresentation() const;
1821
1822  /// \brief Determine whether this type has an unsigned integer representation
1823  /// of some sort, e.g., it is an unsigned integer type or a vector.
1824  bool hasUnsignedIntegerRepresentation() const;
1825
1826  /// \brief Determine whether this type has a floating-point representation
1827  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1828  bool hasFloatingRepresentation() const;
1829
1830  // Type Checking Functions: Check to see if this type is structurally the
1831  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1832  // the best type we can.
1833  const RecordType *getAsStructureType() const;
1834  /// NOTE: getAs*ArrayType are methods on ASTContext.
1835  const RecordType *getAsUnionType() const;
1836  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1837  const ObjCObjectType *getAsObjCInterfaceType() const;
1838  // The following is a convenience method that returns an ObjCObjectPointerType
1839  // for object declared using an interface.
1840  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1841  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1842  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1843  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1844
1845  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1846  /// because the type is a RecordType or because it is the injected-class-name
1847  /// type of a class template or class template partial specialization.
1848  CXXRecordDecl *getAsCXXRecordDecl() const;
1849
1850  /// \brief Retrieves the TagDecl that this type refers to, either
1851  /// because the type is a TagType or because it is the injected-class-name
1852  /// type of a class template or class template partial specialization.
1853  TagDecl *getAsTagDecl() const;
1854
1855  /// If this is a pointer or reference to a RecordType, return the
1856  /// CXXRecordDecl that that type refers to.
1857  ///
1858  /// If this is not a pointer or reference, or the type being pointed to does
1859  /// not refer to a CXXRecordDecl, returns NULL.
1860  const CXXRecordDecl *getPointeeCXXRecordDecl() const;
1861
1862  /// Get the AutoType whose type will be deduced for a variable with
1863  /// an initializer of this type. This looks through declarators like pointer
1864  /// types, but not through decltype or typedefs.
1865  AutoType *getContainedAutoType() const;
1866
1867  /// Member-template getAs<specific type>'.  Look through sugar for
1868  /// an instance of \<specific type>.   This scheme will eventually
1869  /// replace the specific getAsXXXX methods above.
1870  ///
1871  /// There are some specializations of this member template listed
1872  /// immediately following this class.
1873  template <typename T> const T *getAs() const;
1874
1875  /// A variant of getAs<> for array types which silently discards
1876  /// qualifiers from the outermost type.
1877  const ArrayType *getAsArrayTypeUnsafe() const;
1878
1879  /// Member-template castAs<specific type>.  Look through sugar for
1880  /// the underlying instance of \<specific type>.
1881  ///
1882  /// This method has the same relationship to getAs<T> as cast<T> has
1883  /// to dyn_cast<T>; which is to say, the underlying type *must*
1884  /// have the intended type, and this method will never return null.
1885  template <typename T> const T *castAs() const;
1886
1887  /// A variant of castAs<> for array type which silently discards
1888  /// qualifiers from the outermost type.
1889  const ArrayType *castAsArrayTypeUnsafe() const;
1890
1891  /// Get the base element type of this type, potentially discarding type
1892  /// qualifiers.  This should never be used when type qualifiers
1893  /// are meaningful.
1894  const Type *getBaseElementTypeUnsafe() const;
1895
1896  /// If this is an array type, return the element type of the array,
1897  /// potentially with type qualifiers missing.
1898  /// This should never be used when type qualifiers are meaningful.
1899  const Type *getArrayElementTypeNoTypeQual() const;
1900
1901  /// If this is a pointer type, return the pointee type.
1902  /// If this is an array type, return the array element type.
1903  /// This should never be used when type qualifiers are meaningful.
1904  const Type *getPointeeOrArrayElementType() const;
1905
1906  /// If this is a pointer, ObjC object pointer, or block
1907  /// pointer, this returns the respective pointee.
1908  QualType getPointeeType() const;
1909
1910  /// Return the specified type with any "sugar" removed from the type,
1911  /// removing any typedefs, typeofs, etc., as well as any qualifiers.
1912  const Type *getUnqualifiedDesugaredType() const;
1913
1914  /// More type predicates useful for type checking/promotion
1915  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1916
1917  /// Return true if this is an integer type that is
1918  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1919  /// or an enum decl which has a signed representation.
1920  bool isSignedIntegerType() const;
1921
1922  /// Return true if this is an integer type that is
1923  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
1924  /// or an enum decl which has an unsigned representation.
1925  bool isUnsignedIntegerType() const;
1926
1927  /// Determines whether this is an integer type that is signed or an
1928  /// enumeration types whose underlying type is a signed integer type.
1929  bool isSignedIntegerOrEnumerationType() const;
1930
1931  /// Determines whether this is an integer type that is unsigned or an
1932  /// enumeration types whose underlying type is a unsigned integer type.
1933  bool isUnsignedIntegerOrEnumerationType() const;
1934
1935  /// Return true if this is not a variable sized type,
1936  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1937  /// incomplete types.
1938  bool isConstantSizeType() const;
1939
1940  /// Returns true if this type can be represented by some
1941  /// set of type specifiers.
1942  bool isSpecifierType() const;
1943
1944  /// Determine the linkage of this type.
1945  Linkage getLinkage() const;
1946
1947  /// Determine the visibility of this type.
1948  Visibility getVisibility() const {
1949    return getLinkageAndVisibility().getVisibility();
1950  }
1951
1952  /// Return true if the visibility was explicitly set is the code.
1953  bool isVisibilityExplicit() const {
1954    return getLinkageAndVisibility().isVisibilityExplicit();
1955  }
1956
1957  /// Determine the linkage and visibility of this type.
1958  LinkageInfo getLinkageAndVisibility() const;
1959
1960  /// True if the computed linkage is valid. Used for consistency
1961  /// checking. Should always return true.
1962  bool isLinkageValid() const;
1963
1964  /// Determine the nullability of the given type.
1965  ///
1966  /// Note that nullability is only captured as sugar within the type
1967  /// system, not as part of the canonical type, so nullability will
1968  /// be lost by canonicalization and desugaring.
1969  Optional<NullabilityKind> getNullability(const ASTContext &context) const;
1970
1971  /// Determine whether the given type can have a nullability
1972  /// specifier applied to it, i.e., if it is any kind of pointer type
1973  /// or a dependent type that could instantiate to any kind of
1974  /// pointer type.
1975  bool canHaveNullability() const;
1976
1977  /// Retrieve the set of substitutions required when accessing a member
1978  /// of the Objective-C receiver type that is declared in the given context.
1979  ///
1980  /// \c *this is the type of the object we're operating on, e.g., the
1981  /// receiver for a message send or the base of a property access, and is
1982  /// expected to be of some object or object pointer type.
1983  ///
1984  /// \param dc The declaration context for which we are building up a
1985  /// substitution mapping, which should be an Objective-C class, extension,
1986  /// category, or method within.
1987  ///
1988  /// \returns an array of type arguments that can be substituted for
1989  /// the type parameters of the given declaration context in any type described
1990  /// within that context, or an empty optional to indicate that no
1991  /// substitution is required.
1992  Optional<ArrayRef<QualType>>
1993  getObjCSubstitutions(const DeclContext *dc) const;
1994
1995  /// Determines if this is an ObjC interface type that may accept type
1996  /// parameters.
1997  bool acceptsObjCTypeParams() const;
1998
1999  const char *getTypeClassName() const;
2000
2001  QualType getCanonicalTypeInternal() const {
2002    return CanonicalType;
2003  }
2004  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2005  void dump() const;
2006
2007  friend class ASTReader;
2008  friend class ASTWriter;
2009};
2010
2011/// \brief This will check for a TypedefType by removing any existing sugar
2012/// until it reaches a TypedefType or a non-sugared type.
2013template <> const TypedefType *Type::getAs() const;
2014
2015/// \brief This will check for a TemplateSpecializationType by removing any
2016/// existing sugar until it reaches a TemplateSpecializationType or a
2017/// non-sugared type.
2018template <> const TemplateSpecializationType *Type::getAs() const;
2019
2020/// \brief This will check for an AttributedType by removing any existing sugar
2021/// until it reaches an AttributedType or a non-sugared type.
2022template <> const AttributedType *Type::getAs() const;
2023
2024// We can do canonical leaf types faster, because we don't have to
2025// worry about preserving child type decoration.
2026#define TYPE(Class, Base)
2027#define LEAF_TYPE(Class) \
2028template <> inline const Class##Type *Type::getAs() const { \
2029  return dyn_cast<Class##Type>(CanonicalType); \
2030} \
2031template <> inline const Class##Type *Type::castAs() const { \
2032  return cast<Class##Type>(CanonicalType); \
2033}
2034#include "clang/AST/TypeNodes.def"
2035
2036
2037/// This class is used for builtin types like 'int'.  Builtin
2038/// types are always canonical and have a literal name field.
2039class BuiltinType : public Type {
2040public:
2041  enum Kind {
2042// OpenCL image types
2043#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2044#include "clang/Basic/OpenCLImageTypes.def"
2045// All other builtin types
2046#define BUILTIN_TYPE(Id, SingletonId) Id,
2047#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2048#include "clang/AST/BuiltinTypes.def"
2049  };
2050
2051public:
2052  BuiltinType(Kind K)
2053    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
2054           /*InstantiationDependent=*/(K == Dependent),
2055           /*VariablyModified=*/false,
2056           /*Unexpanded paramter pack=*/false) {
2057    BuiltinTypeBits.Kind = K;
2058  }
2059
2060  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2061  StringRef getName(const PrintingPolicy &Policy) const;
2062  const char *getNameAsCString(const PrintingPolicy &Policy) const {
2063    // The StringRef is null-terminated.
2064    StringRef str = getName(Policy);
2065    assert(!str.empty() && str.data()[str.size()] == '\0');
2066    return str.data();
2067  }
2068
2069  bool isSugared() const { return false; }
2070  QualType desugar() const { return QualType(this, 0); }
2071
2072  bool isInteger() const {
2073    return getKind() >= Bool && getKind() <= Int128;
2074  }
2075
2076  bool isSignedInteger() const {
2077    return getKind() >= Char_S && getKind() <= Int128;
2078  }
2079
2080  bool isUnsignedInteger() const {
2081    return getKind() >= Bool && getKind() <= UInt128;
2082  }
2083
2084  bool isFloatingPoint() const {
2085    return getKind() >= Half && getKind() <= Float128;
2086  }
2087
2088  /// Determines whether the given kind corresponds to a placeholder type.
2089  static bool isPlaceholderTypeKind(Kind K) {
2090    return K >= Overload;
2091  }
2092
2093  /// Determines whether this type is a placeholder type, i.e. a type
2094  /// which cannot appear in arbitrary positions in a fully-formed
2095  /// expression.
2096  bool isPlaceholderType() const {
2097    return isPlaceholderTypeKind(getKind());
2098  }
2099
2100  /// Determines whether this type is a placeholder type other than
2101  /// Overload.  Most placeholder types require only syntactic
2102  /// information about their context in order to be resolved (e.g.
2103  /// whether it is a call expression), which means they can (and
2104  /// should) be resolved in an earlier "phase" of analysis.
2105  /// Overload expressions sometimes pick up further information
2106  /// from their context, like whether the context expects a
2107  /// specific function-pointer type, and so frequently need
2108  /// special treatment.
2109  bool isNonOverloadPlaceholderType() const {
2110    return getKind() > Overload;
2111  }
2112
2113  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2114};
2115
2116/// Complex values, per C99 6.2.5p11.  This supports the C99 complex
2117/// types (_Complex float etc) as well as the GCC integer complex extensions.
2118///
2119class ComplexType : public Type, public llvm::FoldingSetNode {
2120  QualType ElementType;
2121  ComplexType(QualType Element, QualType CanonicalPtr) :
2122    Type(Complex, CanonicalPtr, Element->isDependentType(),
2123         Element->isInstantiationDependentType(),
2124         Element->isVariablyModifiedType(),
2125         Element->containsUnexpandedParameterPack()),
2126    ElementType(Element) {
2127  }
2128  friend class ASTContext;  // ASTContext creates these.
2129
2130public:
2131  QualType getElementType() const { return ElementType; }
2132
2133  bool isSugared() const { return false; }
2134  QualType desugar() const { return QualType(this, 0); }
2135
2136  void Profile(llvm::FoldingSetNodeID &ID) {
2137    Profile(ID, getElementType());
2138  }
2139  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2140    ID.AddPointer(Element.getAsOpaquePtr());
2141  }
2142
2143  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2144};
2145
2146/// Sugar for parentheses used when specifying types.
2147///
2148class ParenType : public Type, public llvm::FoldingSetNode {
2149  QualType Inner;
2150
2151  ParenType(QualType InnerType, QualType CanonType) :
2152    Type(Paren, CanonType, InnerType->isDependentType(),
2153         InnerType->isInstantiationDependentType(),
2154         InnerType->isVariablyModifiedType(),
2155         InnerType->containsUnexpandedParameterPack()),
2156    Inner(InnerType) {
2157  }
2158  friend class ASTContext;  // ASTContext creates these.
2159
2160public:
2161
2162  QualType getInnerType() const { return Inner; }
2163
2164  bool isSugared() const { return true; }
2165  QualType desugar() const { return getInnerType(); }
2166
2167  void Profile(llvm::FoldingSetNodeID &ID) {
2168    Profile(ID, getInnerType());
2169  }
2170  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2171    Inner.Profile(ID);
2172  }
2173
2174  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2175};
2176
2177/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2178///
2179class PointerType : public Type, public llvm::FoldingSetNode {
2180  QualType PointeeType;
2181
2182  PointerType(QualType Pointee, QualType CanonicalPtr) :
2183    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
2184         Pointee->isInstantiationDependentType(),
2185         Pointee->isVariablyModifiedType(),
2186         Pointee->containsUnexpandedParameterPack()),
2187    PointeeType(Pointee) {
2188  }
2189  friend class ASTContext;  // ASTContext creates these.
2190
2191public:
2192
2193  QualType getPointeeType() const { return PointeeType; }
2194
2195  /// Returns true if address spaces of pointers overlap.
2196  /// OpenCL v2.0 defines conversion rules for pointers to different
2197  /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
2198  /// address spaces.
2199  /// CL1.1 or CL1.2:
2200  ///   address spaces overlap iff they are they same.
2201  /// CL2.0 adds:
2202  ///   __generic overlaps with any address space except for __constant.
2203  bool isAddressSpaceOverlapping(const PointerType &other) const {
2204    Qualifiers thisQuals = PointeeType.getQualifiers();
2205    Qualifiers otherQuals = other.getPointeeType().getQualifiers();
2206    // Address spaces overlap if at least one of them is a superset of another
2207    return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
2208           otherQuals.isAddressSpaceSupersetOf(thisQuals);
2209  }
2210
2211  bool isSugared() const { return false; }
2212  QualType desugar() const { return QualType(this, 0); }
2213
2214  void Profile(llvm::FoldingSetNodeID &ID) {
2215    Profile(ID, getPointeeType());
2216  }
2217  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2218    ID.AddPointer(Pointee.getAsOpaquePtr());
2219  }
2220
2221  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2222};
2223
2224/// Represents a type which was implicitly adjusted by the semantic
2225/// engine for arbitrary reasons.  For example, array and function types can
2226/// decay, and function types can have their calling conventions adjusted.
2227class AdjustedType : public Type, public llvm::FoldingSetNode {
2228  QualType OriginalTy;
2229  QualType AdjustedTy;
2230
2231protected:
2232  AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2233               QualType CanonicalPtr)
2234      : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
2235             OriginalTy->isInstantiationDependentType(),
2236             OriginalTy->isVariablyModifiedType(),
2237             OriginalTy->containsUnexpandedParameterPack()),
2238        OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2239
2240  friend class ASTContext;  // ASTContext creates these.
2241
2242public:
2243  QualType getOriginalType() const { return OriginalTy; }
2244  QualType getAdjustedType() const { return AdjustedTy; }
2245
2246  bool isSugared() const { return true; }
2247  QualType desugar() const { return AdjustedTy; }
2248
2249  void Profile(llvm::FoldingSetNodeID &ID) {
2250    Profile(ID, OriginalTy, AdjustedTy);
2251  }
2252  static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2253    ID.AddPointer(Orig.getAsOpaquePtr());
2254    ID.AddPointer(New.getAsOpaquePtr());
2255  }
2256
2257  static bool classof(const Type *T) {
2258    return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2259  }
2260};
2261
2262/// Represents a pointer type decayed from an array or function type.
2263class DecayedType : public AdjustedType {
2264
2265  DecayedType(QualType OriginalType, QualType DecayedPtr, QualType CanonicalPtr)
2266      : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
2267    assert(isa<PointerType>(getAdjustedType()));
2268  }
2269
2270  friend class ASTContext;  // ASTContext creates these.
2271
2272public:
2273  QualType getDecayedType() const { return getAdjustedType(); }
2274
2275  QualType getPointeeType() const {
2276    return cast<PointerType>(getDecayedType())->getPointeeType();
2277  }
2278
2279  static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2280};
2281
2282/// Pointer to a block type.
2283/// This type is to represent types syntactically represented as
2284/// "void (^)(int)", etc. Pointee is required to always be a function type.
2285///
2286class BlockPointerType : public Type, public llvm::FoldingSetNode {
2287  QualType PointeeType;  // Block is some kind of pointer type
2288  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
2289    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
2290         Pointee->isInstantiationDependentType(),
2291         Pointee->isVariablyModifiedType(),
2292         Pointee->containsUnexpandedParameterPack()),
2293    PointeeType(Pointee) {
2294  }
2295  friend class ASTContext;  // ASTContext creates these.
2296
2297public:
2298
2299  // Get the pointee type. Pointee is required to always be a function type.
2300  QualType getPointeeType() const { return PointeeType; }
2301
2302  bool isSugared() const { return false; }
2303  QualType desugar() const { return QualType(this, 0); }
2304
2305  void Profile(llvm::FoldingSetNodeID &ID) {
2306      Profile(ID, getPointeeType());
2307  }
2308  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2309      ID.AddPointer(Pointee.getAsOpaquePtr());
2310  }
2311
2312  static bool classof(const Type *T) {
2313    return T->getTypeClass() == BlockPointer;
2314  }
2315};
2316
2317/// Base for LValueReferenceType and RValueReferenceType
2318///
2319class ReferenceType : public Type, public llvm::FoldingSetNode {
2320  QualType PointeeType;
2321
2322protected:
2323  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2324                bool SpelledAsLValue) :
2325    Type(tc, CanonicalRef, Referencee->isDependentType(),
2326         Referencee->isInstantiationDependentType(),
2327         Referencee->isVariablyModifiedType(),
2328         Referencee->containsUnexpandedParameterPack()),
2329    PointeeType(Referencee)
2330  {
2331    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2332    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2333  }
2334
2335public:
2336  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2337  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2338
2339  QualType getPointeeTypeAsWritten() const { return PointeeType; }
2340  QualType getPointeeType() const {
2341    // FIXME: this might strip inner qualifiers; okay?
2342    const ReferenceType *T = this;
2343    while (T->isInnerRef())
2344      T = T->PointeeType->castAs<ReferenceType>();
2345    return T->PointeeType;
2346  }
2347
2348  void Profile(llvm::FoldingSetNodeID &ID) {
2349    Profile(ID, PointeeType, isSpelledAsLValue());
2350  }
2351  static void Profile(llvm::FoldingSetNodeID &ID,
2352                      QualType Referencee,
2353                      bool SpelledAsLValue) {
2354    ID.AddPointer(Referencee.getAsOpaquePtr());
2355    ID.AddBoolean(SpelledAsLValue);
2356  }
2357
2358  static bool classof(const Type *T) {
2359    return T->getTypeClass() == LValueReference ||
2360           T->getTypeClass() == RValueReference;
2361  }
2362};
2363
2364/// An lvalue reference type, per C++11 [dcl.ref].
2365///
2366class LValueReferenceType : public ReferenceType {
2367  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2368                      bool SpelledAsLValue) :
2369    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
2370  {}
2371  friend class ASTContext; // ASTContext creates these
2372public:
2373  bool isSugared() const { return false; }
2374  QualType desugar() const { return QualType(this, 0); }
2375
2376  static bool classof(const Type *T) {
2377    return T->getTypeClass() == LValueReference;
2378  }
2379};
2380
2381/// An rvalue reference type, per C++11 [dcl.ref].
2382///
2383class RValueReferenceType : public ReferenceType {
2384  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
2385    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
2386  }
2387  friend class ASTContext; // ASTContext creates these
2388public:
2389  bool isSugared() const { return false; }
2390  QualType desugar() const { return QualType(this, 0); }
2391
2392  static bool classof(const Type *T) {
2393    return T->getTypeClass() == RValueReference;
2394  }
2395};
2396
2397/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2398///
2399/// This includes both pointers to data members and pointer to member functions.
2400///
2401class MemberPointerType : public Type, public llvm::FoldingSetNode {
2402  QualType PointeeType;
2403  /// The class of which the pointee is a member. Must ultimately be a
2404  /// RecordType, but could be a typedef or a template parameter too.
2405  const Type *Class;
2406
2407  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
2408    Type(MemberPointer, CanonicalPtr,
2409         Cls->isDependentType() || Pointee->isDependentType(),
2410         (Cls->isInstantiationDependentType() ||
2411          Pointee->isInstantiationDependentType()),
2412         Pointee->isVariablyModifiedType(),
2413         (Cls->containsUnexpandedParameterPack() ||
2414          Pointee->containsUnexpandedParameterPack())),
2415    PointeeType(Pointee), Class(Cls) {
2416  }
2417  friend class ASTContext; // ASTContext creates these.
2418
2419public:
2420  QualType getPointeeType() const { return PointeeType; }
2421
2422  /// Returns true if the member type (i.e. the pointee type) is a
2423  /// function type rather than a data-member type.
2424  bool isMemberFunctionPointer() const {
2425    return PointeeType->isFunctionProtoType();
2426  }
2427
2428  /// Returns true if the member type (i.e. the pointee type) is a
2429  /// data type rather than a function type.
2430  bool isMemberDataPointer() const {
2431    return !PointeeType->isFunctionProtoType();
2432  }
2433
2434  const Type *getClass() const { return Class; }
2435  CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2436
2437  bool isSugared() const { return false; }
2438  QualType desugar() const { return QualType(this, 0); }
2439
2440  void Profile(llvm::FoldingSetNodeID &ID) {
2441    Profile(ID, getPointeeType(), getClass());
2442  }
2443  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2444                      const Type *Class) {
2445    ID.AddPointer(Pointee.getAsOpaquePtr());
2446    ID.AddPointer(Class);
2447  }
2448
2449  static bool classof(const Type *T) {
2450    return T->getTypeClass() == MemberPointer;
2451  }
2452};
2453
2454/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2455///
2456class ArrayType : public Type, public llvm::FoldingSetNode {
2457public:
2458  /// Capture whether this is a normal array (e.g. int X[4])
2459  /// an array with a static size (e.g. int X[static 4]), or an array
2460  /// with a star size (e.g. int X[*]).
2461  /// 'static' is only allowed on function parameters.
2462  enum ArraySizeModifier {
2463    Normal, Static, Star
2464  };
2465private:
2466  /// The element type of the array.
2467  QualType ElementType;
2468
2469protected:
2470  // C++ [temp.dep.type]p1:
2471  //   A type is dependent if it is...
2472  //     - an array type constructed from any dependent type or whose
2473  //       size is specified by a constant expression that is
2474  //       value-dependent,
2475  ArrayType(TypeClass tc, QualType et, QualType can,
2476            ArraySizeModifier sm, unsigned tq,
2477            bool ContainsUnexpandedParameterPack)
2478    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2479           et->isInstantiationDependentType() || tc == DependentSizedArray,
2480           (tc == VariableArray || et->isVariablyModifiedType()),
2481           ContainsUnexpandedParameterPack),
2482      ElementType(et) {
2483    ArrayTypeBits.IndexTypeQuals = tq;
2484    ArrayTypeBits.SizeModifier = sm;
2485  }
2486
2487  friend class ASTContext;  // ASTContext creates these.
2488
2489public:
2490  QualType getElementType() const { return ElementType; }
2491  ArraySizeModifier getSizeModifier() const {
2492    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2493  }
2494  Qualifiers getIndexTypeQualifiers() const {
2495    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2496  }
2497  unsigned getIndexTypeCVRQualifiers() const {
2498    return ArrayTypeBits.IndexTypeQuals;
2499  }
2500
2501  static bool classof(const Type *T) {
2502    return T->getTypeClass() == ConstantArray ||
2503           T->getTypeClass() == VariableArray ||
2504           T->getTypeClass() == IncompleteArray ||
2505           T->getTypeClass() == DependentSizedArray;
2506  }
2507};
2508
2509/// Represents the canonical version of C arrays with a specified constant size.
2510/// For example, the canonical type for 'int A[4 + 4*100]' is a
2511/// ConstantArrayType where the element type is 'int' and the size is 404.
2512class ConstantArrayType : public ArrayType {
2513  llvm::APInt Size; // Allows us to unique the type.
2514
2515  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2516                    ArraySizeModifier sm, unsigned tq)
2517    : ArrayType(ConstantArray, et, can, sm, tq,
2518                et->containsUnexpandedParameterPack()),
2519      Size(size) {}
2520protected:
2521  ConstantArrayType(TypeClass tc, QualType et, QualType can,
2522                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2523    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2524      Size(size) {}
2525  friend class ASTContext;  // ASTContext creates these.
2526public:
2527  const llvm::APInt &getSize() const { return Size; }
2528  bool isSugared() const { return false; }
2529  QualType desugar() const { return QualType(this, 0); }
2530
2531
2532  /// \brief Determine the number of bits required to address a member of
2533  // an array with the given element type and number of elements.
2534  static unsigned getNumAddressingBits(const ASTContext &Context,
2535                                       QualType ElementType,
2536                                       const llvm::APInt &NumElements);
2537
2538  /// \brief Determine the maximum number of active bits that an array's size
2539  /// can require, which limits the maximum size of the array.
2540  static unsigned getMaxSizeBits(const ASTContext &Context);
2541
2542  void Profile(llvm::FoldingSetNodeID &ID) {
2543    Profile(ID, getElementType(), getSize(),
2544            getSizeModifier(), getIndexTypeCVRQualifiers());
2545  }
2546  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2547                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2548                      unsigned TypeQuals) {
2549    ID.AddPointer(ET.getAsOpaquePtr());
2550    ID.AddInteger(ArraySize.getZExtValue());
2551    ID.AddInteger(SizeMod);
2552    ID.AddInteger(TypeQuals);
2553  }
2554  static bool classof(const Type *T) {
2555    return T->getTypeClass() == ConstantArray;
2556  }
2557};
2558
2559/// Represents a C array with an unspecified size.  For example 'int A[]' has
2560/// an IncompleteArrayType where the element type is 'int' and the size is
2561/// unspecified.
2562class IncompleteArrayType : public ArrayType {
2563
2564  IncompleteArrayType(QualType et, QualType can,
2565                      ArraySizeModifier sm, unsigned tq)
2566    : ArrayType(IncompleteArray, et, can, sm, tq,
2567                et->containsUnexpandedParameterPack()) {}
2568  friend class ASTContext;  // ASTContext creates these.
2569public:
2570  bool isSugared() const { return false; }
2571  QualType desugar() const { return QualType(this, 0); }
2572
2573  static bool classof(const Type *T) {
2574    return T->getTypeClass() == IncompleteArray;
2575  }
2576
2577  friend class StmtIteratorBase;
2578
2579  void Profile(llvm::FoldingSetNodeID &ID) {
2580    Profile(ID, getElementType(), getSizeModifier(),
2581            getIndexTypeCVRQualifiers());
2582  }
2583
2584  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2585                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
2586    ID.AddPointer(ET.getAsOpaquePtr());
2587    ID.AddInteger(SizeMod);
2588    ID.AddInteger(TypeQuals);
2589  }
2590};
2591
2592/// Represents a C array with a specified size that is not an
2593/// integer-constant-expression.  For example, 'int s[x+foo()]'.
2594/// Since the size expression is an arbitrary expression, we store it as such.
2595///
2596/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2597/// should not be: two lexically equivalent variable array types could mean
2598/// different things, for example, these variables do not have the same type
2599/// dynamically:
2600///
2601/// void foo(int x) {
2602///   int Y[x];
2603///   ++x;
2604///   int Z[x];
2605/// }
2606///
2607class VariableArrayType : public ArrayType {
2608  /// An assignment-expression. VLA's are only permitted within
2609  /// a function block.
2610  Stmt *SizeExpr;
2611  /// The range spanned by the left and right array brackets.
2612  SourceRange Brackets;
2613
2614  VariableArrayType(QualType et, QualType can, Expr *e,
2615                    ArraySizeModifier sm, unsigned tq,
2616                    SourceRange brackets)
2617    : ArrayType(VariableArray, et, can, sm, tq,
2618                et->containsUnexpandedParameterPack()),
2619      SizeExpr((Stmt*) e), Brackets(brackets) {}
2620  friend class ASTContext;  // ASTContext creates these.
2621
2622public:
2623  Expr *getSizeExpr() const {
2624    // We use C-style casts instead of cast<> here because we do not wish
2625    // to have a dependency of Type.h on Stmt.h/Expr.h.
2626    return (Expr*) SizeExpr;
2627  }
2628  SourceRange getBracketsRange() const { return Brackets; }
2629  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2630  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2631
2632  bool isSugared() const { return false; }
2633  QualType desugar() const { return QualType(this, 0); }
2634
2635  static bool classof(const Type *T) {
2636    return T->getTypeClass() == VariableArray;
2637  }
2638
2639  friend class StmtIteratorBase;
2640
2641  void Profile(llvm::FoldingSetNodeID &ID) {
2642    llvm_unreachable("Cannot unique VariableArrayTypes.");
2643  }
2644};
2645
2646/// Represents an array type in C++ whose size is a value-dependent expression.
2647///
2648/// For example:
2649/// \code
2650/// template<typename T, int Size>
2651/// class array {
2652///   T data[Size];
2653/// };
2654/// \endcode
2655///
2656/// For these types, we won't actually know what the array bound is
2657/// until template instantiation occurs, at which point this will
2658/// become either a ConstantArrayType or a VariableArrayType.
2659class DependentSizedArrayType : public ArrayType {
2660  const ASTContext &Context;
2661
2662  /// \brief An assignment expression that will instantiate to the
2663  /// size of the array.
2664  ///
2665  /// The expression itself might be null, in which case the array
2666  /// type will have its size deduced from an initializer.
2667  Stmt *SizeExpr;
2668
2669  /// The range spanned by the left and right array brackets.
2670  SourceRange Brackets;
2671
2672  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2673                          Expr *e, ArraySizeModifier sm, unsigned tq,
2674                          SourceRange brackets);
2675
2676  friend class ASTContext;  // ASTContext creates these.
2677
2678public:
2679  Expr *getSizeExpr() const {
2680    // We use C-style casts instead of cast<> here because we do not wish
2681    // to have a dependency of Type.h on Stmt.h/Expr.h.
2682    return (Expr*) SizeExpr;
2683  }
2684  SourceRange getBracketsRange() const { return Brackets; }
2685  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2686  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2687
2688  bool isSugared() const { return false; }
2689  QualType desugar() const { return QualType(this, 0); }
2690
2691  static bool classof(const Type *T) {
2692    return T->getTypeClass() == DependentSizedArray;
2693  }
2694
2695  friend class StmtIteratorBase;
2696
2697
2698  void Profile(llvm::FoldingSetNodeID &ID) {
2699    Profile(ID, Context, getElementType(),
2700            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2701  }
2702
2703  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2704                      QualType ET, ArraySizeModifier SizeMod,
2705                      unsigned TypeQuals, Expr *E);
2706};
2707
2708/// Represents an extended vector type where either the type or size is
2709/// dependent.
2710///
2711/// For example:
2712/// \code
2713/// template<typename T, int Size>
2714/// class vector {
2715///   typedef T __attribute__((ext_vector_type(Size))) type;
2716/// }
2717/// \endcode
2718class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2719  const ASTContext &Context;
2720  Expr *SizeExpr;
2721  /// The element type of the array.
2722  QualType ElementType;
2723  SourceLocation loc;
2724
2725  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2726                              QualType can, Expr *SizeExpr, SourceLocation loc);
2727
2728  friend class ASTContext;
2729
2730public:
2731  Expr *getSizeExpr() const { return SizeExpr; }
2732  QualType getElementType() const { return ElementType; }
2733  SourceLocation getAttributeLoc() const { return loc; }
2734
2735  bool isSugared() const { return false; }
2736  QualType desugar() const { return QualType(this, 0); }
2737
2738  static bool classof(const Type *T) {
2739    return T->getTypeClass() == DependentSizedExtVector;
2740  }
2741
2742  void Profile(llvm::FoldingSetNodeID &ID) {
2743    Profile(ID, Context, getElementType(), getSizeExpr());
2744  }
2745
2746  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2747                      QualType ElementType, Expr *SizeExpr);
2748};
2749
2750
2751/// Represents a GCC generic vector type. This type is created using
2752/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2753/// bytes; or from an Altivec __vector or vector declaration.
2754/// Since the constructor takes the number of vector elements, the
2755/// client is responsible for converting the size into the number of elements.
2756class VectorType : public Type, public llvm::FoldingSetNode {
2757public:
2758  enum VectorKind {
2759    GenericVector,  ///< not a target-specific vector type
2760    AltiVecVector,  ///< is AltiVec vector
2761    AltiVecPixel,   ///< is AltiVec 'vector Pixel'
2762    AltiVecBool,    ///< is AltiVec 'vector bool ...'
2763    NeonVector,     ///< is ARM Neon vector
2764    NeonPolyVector  ///< is ARM Neon polynomial vector
2765  };
2766protected:
2767  /// The element type of the vector.
2768  QualType ElementType;
2769
2770  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2771             VectorKind vecKind);
2772
2773  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2774             QualType canonType, VectorKind vecKind);
2775
2776  friend class ASTContext;  // ASTContext creates these.
2777
2778public:
2779
2780  QualType getElementType() const { return ElementType; }
2781  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2782  static bool isVectorSizeTooLarge(unsigned NumElements) {
2783    return NumElements > VectorTypeBitfields::MaxNumElements;
2784  }
2785
2786  bool isSugared() const { return false; }
2787  QualType desugar() const { return QualType(this, 0); }
2788
2789  VectorKind getVectorKind() const {
2790    return VectorKind(VectorTypeBits.VecKind);
2791  }
2792
2793  void Profile(llvm::FoldingSetNodeID &ID) {
2794    Profile(ID, getElementType(), getNumElements(),
2795            getTypeClass(), getVectorKind());
2796  }
2797  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2798                      unsigned NumElements, TypeClass TypeClass,
2799                      VectorKind VecKind) {
2800    ID.AddPointer(ElementType.getAsOpaquePtr());
2801    ID.AddInteger(NumElements);
2802    ID.AddInteger(TypeClass);
2803    ID.AddInteger(VecKind);
2804  }
2805
2806  static bool classof(const Type *T) {
2807    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2808  }
2809};
2810
2811/// ExtVectorType - Extended vector type. This type is created using
2812/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2813/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2814/// class enables syntactic extensions, like Vector Components for accessing
2815/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
2816/// Shading Language).
2817class ExtVectorType : public VectorType {
2818  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2819    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2820  friend class ASTContext;  // ASTContext creates these.
2821public:
2822  static int getPointAccessorIdx(char c) {
2823    switch (c) {
2824    default: return -1;
2825    case 'x': case 'r': return 0;
2826    case 'y': case 'g': return 1;
2827    case 'z': case 'b': return 2;
2828    case 'w': case 'a': return 3;
2829    }
2830  }
2831  static int getNumericAccessorIdx(char c) {
2832    switch (c) {
2833      default: return -1;
2834      case '0': return 0;
2835      case '1': return 1;
2836      case '2': return 2;
2837      case '3': return 3;
2838      case '4': return 4;
2839      case '5': return 5;
2840      case '6': return 6;
2841      case '7': return 7;
2842      case '8': return 8;
2843      case '9': return 9;
2844      case 'A':
2845      case 'a': return 10;
2846      case 'B':
2847      case 'b': return 11;
2848      case 'C':
2849      case 'c': return 12;
2850      case 'D':
2851      case 'd': return 13;
2852      case 'E':
2853      case 'e': return 14;
2854      case 'F':
2855      case 'f': return 15;
2856    }
2857  }
2858
2859  static int getAccessorIdx(char c, bool isNumericAccessor) {
2860    if (isNumericAccessor)
2861      return getNumericAccessorIdx(c);
2862    else
2863      return getPointAccessorIdx(c);
2864  }
2865
2866  bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
2867    if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
2868      return unsigned(idx-1) < getNumElements();
2869    return false;
2870  }
2871  bool isSugared() const { return false; }
2872  QualType desugar() const { return QualType(this, 0); }
2873
2874  static bool classof(const Type *T) {
2875    return T->getTypeClass() == ExtVector;
2876  }
2877};
2878
2879/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2880/// class of FunctionNoProtoType and FunctionProtoType.
2881///
2882class FunctionType : public Type {
2883  // The type returned by the function.
2884  QualType ResultType;
2885
2886 public:
2887  /// A class which abstracts out some details necessary for
2888  /// making a call.
2889  ///
2890  /// It is not actually used directly for storing this information in
2891  /// a FunctionType, although FunctionType does currently use the
2892  /// same bit-pattern.
2893  ///
2894  // If you add a field (say Foo), other than the obvious places (both,
2895  // constructors, compile failures), what you need to update is
2896  // * Operator==
2897  // * getFoo
2898  // * withFoo
2899  // * functionType. Add Foo, getFoo.
2900  // * ASTContext::getFooType
2901  // * ASTContext::mergeFunctionTypes
2902  // * FunctionNoProtoType::Profile
2903  // * FunctionProtoType::Profile
2904  // * TypePrinter::PrintFunctionProto
2905  // * AST read and write
2906  // * Codegen
2907  class ExtInfo {
2908    // Feel free to rearrange or add bits, but if you go over 9,
2909    // you'll need to adjust both the Bits field below and
2910    // Type::FunctionTypeBitfields.
2911
2912    //   |  CC  |noreturn|produces|regparm|
2913    //   |0 .. 3|   4    |    5   | 6 .. 8|
2914    //
2915    // regparm is either 0 (no regparm attribute) or the regparm value+1.
2916    enum { CallConvMask = 0xF };
2917    enum { NoReturnMask = 0x10 };
2918    enum { ProducesResultMask = 0x20 };
2919    enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
2920           RegParmOffset = 6 }; // Assumed to be the last field
2921
2922    uint16_t Bits;
2923
2924    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
2925
2926    friend class FunctionType;
2927
2928   public:
2929    // Constructor with no defaults. Use this when you know that you
2930    // have all the elements (when reading an AST file for example).
2931    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
2932            bool producesResult) {
2933      assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
2934      Bits = ((unsigned) cc) |
2935             (noReturn ? NoReturnMask : 0) |
2936             (producesResult ? ProducesResultMask : 0) |
2937             (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
2938    }
2939
2940    // Constructor with all defaults. Use when for example creating a
2941    // function known to use defaults.
2942    ExtInfo() : Bits(CC_C) { }
2943
2944    // Constructor with just the calling convention, which is an important part
2945    // of the canonical type.
2946    ExtInfo(CallingConv CC) : Bits(CC) { }
2947
2948    bool getNoReturn() const { return Bits & NoReturnMask; }
2949    bool getProducesResult() const { return Bits & ProducesResultMask; }
2950    bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
2951    unsigned getRegParm() const {
2952      unsigned RegParm = Bits >> RegParmOffset;
2953      if (RegParm > 0)
2954        --RegParm;
2955      return RegParm;
2956    }
2957    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2958
2959    bool operator==(ExtInfo Other) const {
2960      return Bits == Other.Bits;
2961    }
2962    bool operator!=(ExtInfo Other) const {
2963      return Bits != Other.Bits;
2964    }
2965
2966    // Note that we don't have setters. That is by design, use
2967    // the following with methods instead of mutating these objects.
2968
2969    ExtInfo withNoReturn(bool noReturn) const {
2970      if (noReturn)
2971        return ExtInfo(Bits | NoReturnMask);
2972      else
2973        return ExtInfo(Bits & ~NoReturnMask);
2974    }
2975
2976    ExtInfo withProducesResult(bool producesResult) const {
2977      if (producesResult)
2978        return ExtInfo(Bits | ProducesResultMask);
2979      else
2980        return ExtInfo(Bits & ~ProducesResultMask);
2981    }
2982
2983    ExtInfo withRegParm(unsigned RegParm) const {
2984      assert(RegParm < 7 && "Invalid regparm value");
2985      return ExtInfo((Bits & ~RegParmMask) |
2986                     ((RegParm + 1) << RegParmOffset));
2987    }
2988
2989    ExtInfo withCallingConv(CallingConv cc) const {
2990      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2991    }
2992
2993    void Profile(llvm::FoldingSetNodeID &ID) const {
2994      ID.AddInteger(Bits);
2995    }
2996  };
2997
2998protected:
2999  FunctionType(TypeClass tc, QualType res,
3000               QualType Canonical, bool Dependent,
3001               bool InstantiationDependent,
3002               bool VariablyModified, bool ContainsUnexpandedParameterPack,
3003               ExtInfo Info)
3004    : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3005           ContainsUnexpandedParameterPack),
3006      ResultType(res) {
3007    FunctionTypeBits.ExtInfo = Info.Bits;
3008  }
3009  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
3010
3011public:
3012  QualType getReturnType() const { return ResultType; }
3013
3014  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3015  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3016  /// Determine whether this function type includes the GNU noreturn
3017  /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3018  /// type.
3019  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3020  CallingConv getCallConv() const { return getExtInfo().getCC(); }
3021  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3022  bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
3023  bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
3024  bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
3025
3026  /// \brief Determine the type of an expression that calls a function of
3027  /// this type.
3028  QualType getCallResultType(const ASTContext &Context) const {
3029    return getReturnType().getNonLValueExprType(Context);
3030  }
3031
3032  static StringRef getNameForCallConv(CallingConv CC);
3033
3034  static bool classof(const Type *T) {
3035    return T->getTypeClass() == FunctionNoProto ||
3036           T->getTypeClass() == FunctionProto;
3037  }
3038};
3039
3040/// Represents a K&R-style 'int foo()' function, which has
3041/// no information available about its arguments.
3042class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3043  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3044    : FunctionType(FunctionNoProto, Result, Canonical,
3045                   /*Dependent=*/false, /*InstantiationDependent=*/false,
3046                   Result->isVariablyModifiedType(),
3047                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
3048
3049  friend class ASTContext;  // ASTContext creates these.
3050
3051public:
3052  // No additional state past what FunctionType provides.
3053
3054  bool isSugared() const { return false; }
3055  QualType desugar() const { return QualType(this, 0); }
3056
3057  void Profile(llvm::FoldingSetNodeID &ID) {
3058    Profile(ID, getReturnType(), getExtInfo());
3059  }
3060  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3061                      ExtInfo Info) {
3062    Info.Profile(ID);
3063    ID.AddPointer(ResultType.getAsOpaquePtr());
3064  }
3065
3066  static bool classof(const Type *T) {
3067    return T->getTypeClass() == FunctionNoProto;
3068  }
3069};
3070
3071/// Represents a prototype with parameter type info, e.g.
3072/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
3073/// parameters, not as having a single void parameter. Such a type can have an
3074/// exception specification, but this specification is not part of the canonical
3075/// type.
3076class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
3077public:
3078  /// Interesting information about a specific parameter that can't simply
3079  /// be reflected in parameter's type.
3080  ///
3081  /// It makes sense to model language features this way when there's some
3082  /// sort of parameter-specific override (such as an attribute) that
3083  /// affects how the function is called.  For example, the ARC ns_consumed
3084  /// attribute changes whether a parameter is passed at +0 (the default)
3085  /// or +1 (ns_consumed).  This must be reflected in the function type,
3086  /// but isn't really a change to the parameter type.
3087  ///
3088  /// One serious disadvantage of modelling language features this way is
3089  /// that they generally do not work with language features that attempt
3090  /// to destructure types.  For example, template argument deduction will
3091  /// not be able to match a parameter declared as
3092  ///   T (*)(U)
3093  /// against an argument of type
3094  ///   void (*)(__attribute__((ns_consumed)) id)
3095  /// because the substitution of T=void, U=id into the former will
3096  /// not produce the latter.
3097  class ExtParameterInfo {
3098    enum {
3099      ABIMask         = 0x0F,
3100      IsConsumed      = 0x10
3101    };
3102    unsigned char Data;
3103  public:
3104    ExtParameterInfo() : Data(0) {}
3105
3106    /// Return the ABI treatment of this parameter.
3107    ParameterABI getABI() const {
3108      return ParameterABI(Data & ABIMask);
3109    }
3110    ExtParameterInfo withABI(ParameterABI kind) const {
3111      ExtParameterInfo copy = *this;
3112      copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3113      return copy;
3114    }
3115
3116    /// Is this parameter considered "consumed" by Objective-C ARC?
3117    /// Consumed parameters must have retainable object type.
3118    bool isConsumed() const {
3119      return (Data & IsConsumed);
3120    }
3121    ExtParameterInfo withIsConsumed(bool consumed) const {
3122      ExtParameterInfo copy = *this;
3123      if (consumed) {
3124        copy.Data |= IsConsumed;
3125      } else {
3126        copy.Data &= ~IsConsumed;
3127      }
3128      return copy;
3129    }
3130
3131    unsigned char getOpaqueValue() const { return Data; }
3132    static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3133      ExtParameterInfo result;
3134      result.Data = data;
3135      return result;
3136    }
3137
3138    friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3139      return lhs.Data == rhs.Data;
3140    }
3141    friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3142      return lhs.Data != rhs.Data;
3143    }
3144  };
3145
3146  struct ExceptionSpecInfo {
3147    ExceptionSpecInfo()
3148        : Type(EST_None), NoexceptExpr(nullptr),
3149          SourceDecl(nullptr), SourceTemplate(nullptr) {}
3150
3151    ExceptionSpecInfo(ExceptionSpecificationType EST)
3152        : Type(EST), NoexceptExpr(nullptr), SourceDecl(nullptr),
3153          SourceTemplate(nullptr) {}
3154
3155    /// The kind of exception specification this is.
3156    ExceptionSpecificationType Type;
3157    /// Explicitly-specified list of exception types.
3158    ArrayRef<QualType> Exceptions;
3159    /// Noexcept expression, if this is EST_ComputedNoexcept.
3160    Expr *NoexceptExpr;
3161    /// The function whose exception specification this is, for
3162    /// EST_Unevaluated and EST_Uninstantiated.
3163    FunctionDecl *SourceDecl;
3164    /// The function template whose exception specification this is instantiated
3165    /// from, for EST_Uninstantiated.
3166    FunctionDecl *SourceTemplate;
3167  };
3168
3169  /// Extra information about a function prototype.
3170  struct ExtProtoInfo {
3171    ExtProtoInfo()
3172        : Variadic(false), HasTrailingReturn(false), TypeQuals(0),
3173          RefQualifier(RQ_None), ExtParameterInfos(nullptr) {}
3174
3175    ExtProtoInfo(CallingConv CC)
3176        : ExtInfo(CC), Variadic(false), HasTrailingReturn(false), TypeQuals(0),
3177          RefQualifier(RQ_None), ExtParameterInfos(nullptr) {}
3178
3179    ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &O) {
3180      ExtProtoInfo Result(*this);
3181      Result.ExceptionSpec = O;
3182      return Result;
3183    }
3184
3185    FunctionType::ExtInfo ExtInfo;
3186    bool Variadic : 1;
3187    bool HasTrailingReturn : 1;
3188    unsigned char TypeQuals;
3189    RefQualifierKind RefQualifier;
3190    ExceptionSpecInfo ExceptionSpec;
3191    const ExtParameterInfo *ExtParameterInfos;
3192  };
3193
3194private:
3195  /// \brief Determine whether there are any argument types that
3196  /// contain an unexpanded parameter pack.
3197  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
3198                                                 unsigned numArgs) {
3199    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
3200      if (ArgArray[Idx]->containsUnexpandedParameterPack())
3201        return true;
3202
3203    return false;
3204  }
3205
3206  FunctionProtoType(QualType result, ArrayRef<QualType> params,
3207                    QualType canonical, const ExtProtoInfo &epi);
3208
3209  /// The number of parameters this function has, not counting '...'.
3210  unsigned NumParams : 15;
3211
3212  /// The number of types in the exception spec, if any.
3213  unsigned NumExceptions : 9;
3214
3215  /// The type of exception specification this function has.
3216  unsigned ExceptionSpecType : 4;
3217
3218  /// Whether this function has extended parameter information.
3219  unsigned HasExtParameterInfos : 1;
3220
3221  /// Whether the function is variadic.
3222  unsigned Variadic : 1;
3223
3224  /// Whether this function has a trailing return type.
3225  unsigned HasTrailingReturn : 1;
3226
3227  // ParamInfo - There is an variable size array after the class in memory that
3228  // holds the parameter types.
3229
3230  // Exceptions - There is another variable size array after ArgInfo that
3231  // holds the exception types.
3232
3233  // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
3234  // to the expression in the noexcept() specifier.
3235
3236  // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
3237  // be a pair of FunctionDecl* pointing to the function which should be used to
3238  // instantiate this function type's exception specification, and the function
3239  // from which it should be instantiated.
3240
3241  // ExtParameterInfos - A variable size array, following the exception
3242  // specification and of length NumParams, holding an ExtParameterInfo
3243  // for each of the parameters.  This only appears if HasExtParameterInfos
3244  // is true.
3245
3246  friend class ASTContext;  // ASTContext creates these.
3247
3248  const ExtParameterInfo *getExtParameterInfosBuffer() const {
3249    assert(hasExtParameterInfos());
3250
3251    // Find the end of the exception specification.
3252    const char *ptr = reinterpret_cast<const char *>(exception_begin());
3253    ptr += getExceptionSpecSize();
3254
3255    return reinterpret_cast<const ExtParameterInfo *>(ptr);
3256  }
3257
3258  size_t getExceptionSpecSize() const {
3259    switch (getExceptionSpecType()) {
3260    case EST_None:             return 0;
3261    case EST_DynamicNone:      return 0;
3262    case EST_MSAny:            return 0;
3263    case EST_BasicNoexcept:    return 0;
3264    case EST_Unparsed:         return 0;
3265    case EST_Dynamic:          return getNumExceptions() * sizeof(QualType);
3266    case EST_ComputedNoexcept: return sizeof(Expr*);
3267    case EST_Uninstantiated:   return 2 * sizeof(FunctionDecl*);
3268    case EST_Unevaluated:      return sizeof(FunctionDecl*);
3269    }
3270    llvm_unreachable("bad exception specification kind");
3271  }
3272
3273public:
3274  unsigned getNumParams() const { return NumParams; }
3275  QualType getParamType(unsigned i) const {
3276    assert(i < NumParams && "invalid parameter index");
3277    return param_type_begin()[i];
3278  }
3279  ArrayRef<QualType> getParamTypes() const {
3280    return llvm::makeArrayRef(param_type_begin(), param_type_end());
3281  }
3282
3283  ExtProtoInfo getExtProtoInfo() const {
3284    ExtProtoInfo EPI;
3285    EPI.ExtInfo = getExtInfo();
3286    EPI.Variadic = isVariadic();
3287    EPI.HasTrailingReturn = hasTrailingReturn();
3288    EPI.ExceptionSpec.Type = getExceptionSpecType();
3289    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
3290    EPI.RefQualifier = getRefQualifier();
3291    if (EPI.ExceptionSpec.Type == EST_Dynamic) {
3292      EPI.ExceptionSpec.Exceptions = exceptions();
3293    } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
3294      EPI.ExceptionSpec.NoexceptExpr = getNoexceptExpr();
3295    } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
3296      EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
3297      EPI.ExceptionSpec.SourceTemplate = getExceptionSpecTemplate();
3298    } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
3299      EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
3300    }
3301    if (hasExtParameterInfos())
3302      EPI.ExtParameterInfos = getExtParameterInfosBuffer();
3303    return EPI;
3304  }
3305
3306  /// Get the kind of exception specification on this function.
3307  ExceptionSpecificationType getExceptionSpecType() const {
3308    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
3309  }
3310  /// Return whether this function has any kind of exception spec.
3311  bool hasExceptionSpec() const {
3312    return getExceptionSpecType() != EST_None;
3313  }
3314  /// Return whether this function has a dynamic (throw) exception spec.
3315  bool hasDynamicExceptionSpec() const {
3316    return isDynamicExceptionSpec(getExceptionSpecType());
3317  }
3318  /// Return whether this function has a noexcept exception spec.
3319  bool hasNoexceptExceptionSpec() const {
3320    return isNoexceptExceptionSpec(getExceptionSpecType());
3321  }
3322  /// Return whether this function has a dependent exception spec.
3323  bool hasDependentExceptionSpec() const;
3324  /// Result type of getNoexceptSpec().
3325  enum NoexceptResult {
3326    NR_NoNoexcept,  ///< There is no noexcept specifier.
3327    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
3328    NR_Dependent,   ///< The noexcept specifier is dependent.
3329    NR_Throw,       ///< The noexcept specifier evaluates to false.
3330    NR_Nothrow      ///< The noexcept specifier evaluates to true.
3331  };
3332  /// Get the meaning of the noexcept spec on this function, if any.
3333  NoexceptResult getNoexceptSpec(const ASTContext &Ctx) const;
3334  unsigned getNumExceptions() const { return NumExceptions; }
3335  QualType getExceptionType(unsigned i) const {
3336    assert(i < NumExceptions && "Invalid exception number!");
3337    return exception_begin()[i];
3338  }
3339  Expr *getNoexceptExpr() const {
3340    if (getExceptionSpecType() != EST_ComputedNoexcept)
3341      return nullptr;
3342    // NoexceptExpr sits where the arguments end.
3343    return *reinterpret_cast<Expr *const *>(param_type_end());
3344  }
3345  /// \brief If this function type has an exception specification which hasn't
3346  /// been determined yet (either because it has not been evaluated or because
3347  /// it has not been instantiated), this is the function whose exception
3348  /// specification is represented by this type.
3349  FunctionDecl *getExceptionSpecDecl() const {
3350    if (getExceptionSpecType() != EST_Uninstantiated &&
3351        getExceptionSpecType() != EST_Unevaluated)
3352      return nullptr;
3353    return reinterpret_cast<FunctionDecl *const *>(param_type_end())[0];
3354  }
3355  /// \brief If this function type has an uninstantiated exception
3356  /// specification, this is the function whose exception specification
3357  /// should be instantiated to find the exception specification for
3358  /// this type.
3359  FunctionDecl *getExceptionSpecTemplate() const {
3360    if (getExceptionSpecType() != EST_Uninstantiated)
3361      return nullptr;
3362    return reinterpret_cast<FunctionDecl *const *>(param_type_end())[1];
3363  }
3364  /// Determine whether this function type has a non-throwing exception
3365  /// specification. If this depends on template arguments, returns
3366  /// \c ResultIfDependent.
3367  bool isNothrow(const ASTContext &Ctx, bool ResultIfDependent = false) const;
3368
3369  bool isVariadic() const { return Variadic; }
3370
3371  /// Determines whether this function prototype contains a
3372  /// parameter pack at the end.
3373  ///
3374  /// A function template whose last parameter is a parameter pack can be
3375  /// called with an arbitrary number of arguments, much like a variadic
3376  /// function.
3377  bool isTemplateVariadic() const;
3378
3379  bool hasTrailingReturn() const { return HasTrailingReturn; }
3380
3381  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
3382
3383
3384  /// Retrieve the ref-qualifier associated with this function type.
3385  RefQualifierKind getRefQualifier() const {
3386    return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
3387  }
3388
3389  typedef const QualType *param_type_iterator;
3390  typedef llvm::iterator_range<param_type_iterator> param_type_range;
3391
3392  param_type_range param_types() const {
3393    return param_type_range(param_type_begin(), param_type_end());
3394  }
3395  param_type_iterator param_type_begin() const {
3396    return reinterpret_cast<const QualType *>(this+1);
3397  }
3398  param_type_iterator param_type_end() const {
3399    return param_type_begin() + NumParams;
3400  }
3401
3402  typedef const QualType *exception_iterator;
3403
3404  ArrayRef<QualType> exceptions() const {
3405    return llvm::makeArrayRef(exception_begin(), exception_end());
3406  }
3407  exception_iterator exception_begin() const {
3408    // exceptions begin where arguments end
3409    return param_type_end();
3410  }
3411  exception_iterator exception_end() const {
3412    if (getExceptionSpecType() != EST_Dynamic)
3413      return exception_begin();
3414    return exception_begin() + NumExceptions;
3415  }
3416
3417  /// Is there any interesting extra information for any of the parameters
3418  /// of this function type?
3419  bool hasExtParameterInfos() const { return HasExtParameterInfos; }
3420  ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
3421    assert(hasExtParameterInfos());
3422    return ArrayRef<ExtParameterInfo>(getExtParameterInfosBuffer(),
3423                                      getNumParams());
3424  }
3425  /// Return a pointer to the beginning of the array of extra parameter
3426  /// information, if present, or else null if none of the parameters
3427  /// carry it.  This is equivalent to getExtProtoInfo().ExtParameterInfos.
3428  const ExtParameterInfo *getExtParameterInfosOrNull() const {
3429    if (!hasExtParameterInfos())
3430      return nullptr;
3431    return getExtParameterInfosBuffer();
3432  }
3433
3434  ExtParameterInfo getExtParameterInfo(unsigned I) const {
3435    assert(I < getNumParams() && "parameter index out of range");
3436    if (hasExtParameterInfos())
3437      return getExtParameterInfosBuffer()[I];
3438    return ExtParameterInfo();
3439  }
3440
3441  ParameterABI getParameterABI(unsigned I) const {
3442    assert(I < getNumParams() && "parameter index out of range");
3443    if (hasExtParameterInfos())
3444      return getExtParameterInfosBuffer()[I].getABI();
3445    return ParameterABI::Ordinary;
3446  }
3447
3448  bool isParamConsumed(unsigned I) const {
3449    assert(I < getNumParams() && "parameter index out of range");
3450    if (hasExtParameterInfos())
3451      return getExtParameterInfosBuffer()[I].isConsumed();
3452    return false;
3453  }
3454
3455  bool isSugared() const { return false; }
3456  QualType desugar() const { return QualType(this, 0); }
3457
3458  void printExceptionSpecification(raw_ostream &OS,
3459                                   const PrintingPolicy &Policy) const;
3460
3461  static bool classof(const Type *T) {
3462    return T->getTypeClass() == FunctionProto;
3463  }
3464
3465  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
3466  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3467                      param_type_iterator ArgTys, unsigned NumArgs,
3468                      const ExtProtoInfo &EPI, const ASTContext &Context);
3469};
3470
3471/// \brief Represents the dependent type named by a dependently-scoped
3472/// typename using declaration, e.g.
3473///   using typename Base<T>::foo;
3474///
3475/// Template instantiation turns these into the underlying type.
3476class UnresolvedUsingType : public Type {
3477  UnresolvedUsingTypenameDecl *Decl;
3478
3479  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
3480    : Type(UnresolvedUsing, QualType(), true, true, false,
3481           /*ContainsUnexpandedParameterPack=*/false),
3482      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
3483  friend class ASTContext; // ASTContext creates these.
3484public:
3485
3486  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
3487
3488  bool isSugared() const { return false; }
3489  QualType desugar() const { return QualType(this, 0); }
3490
3491  static bool classof(const Type *T) {
3492    return T->getTypeClass() == UnresolvedUsing;
3493  }
3494
3495  void Profile(llvm::FoldingSetNodeID &ID) {
3496    return Profile(ID, Decl);
3497  }
3498  static void Profile(llvm::FoldingSetNodeID &ID,
3499                      UnresolvedUsingTypenameDecl *D) {
3500    ID.AddPointer(D);
3501  }
3502};
3503
3504
3505class TypedefType : public Type {
3506  TypedefNameDecl *Decl;
3507protected:
3508  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
3509    : Type(tc, can, can->isDependentType(),
3510           can->isInstantiationDependentType(),
3511           can->isVariablyModifiedType(),
3512           /*ContainsUnexpandedParameterPack=*/false),
3513      Decl(const_cast<TypedefNameDecl*>(D)) {
3514    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3515  }
3516  friend class ASTContext;  // ASTContext creates these.
3517public:
3518
3519  TypedefNameDecl *getDecl() const { return Decl; }
3520
3521  bool isSugared() const { return true; }
3522  QualType desugar() const;
3523
3524  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
3525};
3526
3527/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
3528class TypeOfExprType : public Type {
3529  Expr *TOExpr;
3530
3531protected:
3532  TypeOfExprType(Expr *E, QualType can = QualType());
3533  friend class ASTContext;  // ASTContext creates these.
3534public:
3535  Expr *getUnderlyingExpr() const { return TOExpr; }
3536
3537  /// \brief Remove a single level of sugar.
3538  QualType desugar() const;
3539
3540  /// \brief Returns whether this type directly provides sugar.
3541  bool isSugared() const;
3542
3543  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
3544};
3545
3546/// \brief Internal representation of canonical, dependent
3547/// `typeof(expr)` types.
3548///
3549/// This class is used internally by the ASTContext to manage
3550/// canonical, dependent types, only. Clients will only see instances
3551/// of this class via TypeOfExprType nodes.
3552class DependentTypeOfExprType
3553  : public TypeOfExprType, public llvm::FoldingSetNode {
3554  const ASTContext &Context;
3555
3556public:
3557  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
3558    : TypeOfExprType(E), Context(Context) { }
3559
3560  void Profile(llvm::FoldingSetNodeID &ID) {
3561    Profile(ID, Context, getUnderlyingExpr());
3562  }
3563
3564  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3565                      Expr *E);
3566};
3567
3568/// Represents `typeof(type)`, a GCC extension.
3569class TypeOfType : public Type {
3570  QualType TOType;
3571  TypeOfType(QualType T, QualType can)
3572    : Type(TypeOf, can, T->isDependentType(),
3573           T->isInstantiationDependentType(),
3574           T->isVariablyModifiedType(),
3575           T->containsUnexpandedParameterPack()),
3576      TOType(T) {
3577    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3578  }
3579  friend class ASTContext;  // ASTContext creates these.
3580public:
3581  QualType getUnderlyingType() const { return TOType; }
3582
3583  /// \brief Remove a single level of sugar.
3584  QualType desugar() const { return getUnderlyingType(); }
3585
3586  /// \brief Returns whether this type directly provides sugar.
3587  bool isSugared() const { return true; }
3588
3589  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
3590};
3591
3592/// Represents the type `decltype(expr)` (C++11).
3593class DecltypeType : public Type {
3594  Expr *E;
3595  QualType UnderlyingType;
3596
3597protected:
3598  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
3599  friend class ASTContext;  // ASTContext creates these.
3600public:
3601  Expr *getUnderlyingExpr() const { return E; }
3602  QualType getUnderlyingType() const { return UnderlyingType; }
3603
3604  /// \brief Remove a single level of sugar.
3605  QualType desugar() const;
3606
3607  /// \brief Returns whether this type directly provides sugar.
3608  bool isSugared() const;
3609
3610  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
3611};
3612
3613/// \brief Internal representation of canonical, dependent
3614/// decltype(expr) types.
3615///
3616/// This class is used internally by the ASTContext to manage
3617/// canonical, dependent types, only. Clients will only see instances
3618/// of this class via DecltypeType nodes.
3619class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
3620  const ASTContext &Context;
3621
3622public:
3623  DependentDecltypeType(const ASTContext &Context, Expr *E);
3624
3625  void Profile(llvm::FoldingSetNodeID &ID) {
3626    Profile(ID, Context, getUnderlyingExpr());
3627  }
3628
3629  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3630                      Expr *E);
3631};
3632
3633/// A unary type transform, which is a type constructed from another.
3634class UnaryTransformType : public Type {
3635public:
3636  enum UTTKind {
3637    EnumUnderlyingType
3638  };
3639
3640private:
3641  /// The untransformed type.
3642  QualType BaseType;
3643  /// The transformed type if not dependent, otherwise the same as BaseType.
3644  QualType UnderlyingType;
3645
3646  UTTKind UKind;
3647protected:
3648  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
3649                     QualType CanonicalTy);
3650  friend class ASTContext;
3651public:
3652  bool isSugared() const { return !isDependentType(); }
3653  QualType desugar() const { return UnderlyingType; }
3654
3655  QualType getUnderlyingType() const { return UnderlyingType; }
3656  QualType getBaseType() const { return BaseType; }
3657
3658  UTTKind getUTTKind() const { return UKind; }
3659
3660  static bool classof(const Type *T) {
3661    return T->getTypeClass() == UnaryTransform;
3662  }
3663};
3664
3665/// \brief Internal representation of canonical, dependent
3666/// __underlying_type(type) types.
3667///
3668/// This class is used internally by the ASTContext to manage
3669/// canonical, dependent types, only. Clients will only see instances
3670/// of this class via UnaryTransformType nodes.
3671class DependentUnaryTransformType : public UnaryTransformType,
3672                                    public llvm::FoldingSetNode {
3673public:
3674  DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
3675                              UTTKind UKind);
3676  void Profile(llvm::FoldingSetNodeID &ID) {
3677    Profile(ID, getBaseType(), getUTTKind());
3678  }
3679
3680  static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
3681                      UTTKind UKind) {
3682    ID.AddPointer(BaseType.getAsOpaquePtr());
3683    ID.AddInteger((unsigned)UKind);
3684  }
3685};
3686
3687class TagType : public Type {
3688  /// Stores the TagDecl associated with this type. The decl may point to any
3689  /// TagDecl that declares the entity.
3690  TagDecl * decl;
3691
3692  friend class ASTReader;
3693
3694protected:
3695  TagType(TypeClass TC, const TagDecl *D, QualType can);
3696
3697public:
3698  TagDecl *getDecl() const;
3699
3700  /// Determines whether this type is in the process of being defined.
3701  bool isBeingDefined() const;
3702
3703  static bool classof(const Type *T) {
3704    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
3705  }
3706};
3707
3708/// A helper class that allows the use of isa/cast/dyncast
3709/// to detect TagType objects of structs/unions/classes.
3710class RecordType : public TagType {
3711protected:
3712  explicit RecordType(const RecordDecl *D)
3713    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3714  explicit RecordType(TypeClass TC, RecordDecl *D)
3715    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3716  friend class ASTContext;   // ASTContext creates these.
3717public:
3718
3719  RecordDecl *getDecl() const {
3720    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
3721  }
3722
3723  // FIXME: This predicate is a helper to QualType/Type. It needs to
3724  // recursively check all fields for const-ness. If any field is declared
3725  // const, it needs to return false.
3726  bool hasConstFields() const { return false; }
3727
3728  bool isSugared() const { return false; }
3729  QualType desugar() const { return QualType(this, 0); }
3730
3731  static bool classof(const Type *T) { return T->getTypeClass() == Record; }
3732};
3733
3734/// A helper class that allows the use of isa/cast/dyncast
3735/// to detect TagType objects of enums.
3736class EnumType : public TagType {
3737  explicit EnumType(const EnumDecl *D)
3738    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3739  friend class ASTContext;   // ASTContext creates these.
3740public:
3741
3742  EnumDecl *getDecl() const {
3743    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
3744  }
3745
3746  bool isSugared() const { return false; }
3747  QualType desugar() const { return QualType(this, 0); }
3748
3749  static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
3750};
3751
3752/// An attributed type is a type to which a type attribute has been applied.
3753///
3754/// The "modified type" is the fully-sugared type to which the attributed
3755/// type was applied; generally it is not canonically equivalent to the
3756/// attributed type. The "equivalent type" is the minimally-desugared type
3757/// which the type is canonically equivalent to.
3758///
3759/// For example, in the following attributed type:
3760///     int32_t __attribute__((vector_size(16)))
3761///   - the modified type is the TypedefType for int32_t
3762///   - the equivalent type is VectorType(16, int32_t)
3763///   - the canonical type is VectorType(16, int)
3764class AttributedType : public Type, public llvm::FoldingSetNode {
3765public:
3766  // It is really silly to have yet another attribute-kind enum, but
3767  // clang::attr::Kind doesn't currently cover the pure type attrs.
3768  enum Kind {
3769    // Expression operand.
3770    attr_address_space,
3771    attr_regparm,
3772    attr_vector_size,
3773    attr_neon_vector_type,
3774    attr_neon_polyvector_type,
3775
3776    FirstExprOperandKind = attr_address_space,
3777    LastExprOperandKind = attr_neon_polyvector_type,
3778
3779    // Enumerated operand (string or keyword).
3780    attr_objc_gc,
3781    attr_objc_ownership,
3782    attr_pcs,
3783    attr_pcs_vfp,
3784
3785    FirstEnumOperandKind = attr_objc_gc,
3786    LastEnumOperandKind = attr_pcs_vfp,
3787
3788    // No operand.
3789    attr_noreturn,
3790    attr_cdecl,
3791    attr_fastcall,
3792    attr_stdcall,
3793    attr_thiscall,
3794    attr_pascal,
3795    attr_swiftcall,
3796    attr_vectorcall,
3797    attr_inteloclbicc,
3798    attr_ms_abi,
3799    attr_sysv_abi,
3800    attr_preserve_most,
3801    attr_preserve_all,
3802    attr_ptr32,
3803    attr_ptr64,
3804    attr_sptr,
3805    attr_uptr,
3806    attr_nonnull,
3807    attr_nullable,
3808    attr_null_unspecified,
3809    attr_objc_kindof,
3810    attr_objc_inert_unsafe_unretained,
3811  };
3812
3813private:
3814  QualType ModifiedType;
3815  QualType EquivalentType;
3816
3817  friend class ASTContext; // creates these
3818
3819  AttributedType(QualType canon, Kind attrKind,
3820                 QualType modified, QualType equivalent)
3821    : Type(Attributed, canon, canon->isDependentType(),
3822           canon->isInstantiationDependentType(),
3823           canon->isVariablyModifiedType(),
3824           canon->containsUnexpandedParameterPack()),
3825      ModifiedType(modified), EquivalentType(equivalent) {
3826    AttributedTypeBits.AttrKind = attrKind;
3827  }
3828
3829public:
3830  Kind getAttrKind() const {
3831    return static_cast<Kind>(AttributedTypeBits.AttrKind);
3832  }
3833
3834  QualType getModifiedType() const { return ModifiedType; }
3835  QualType getEquivalentType() const { return EquivalentType; }
3836
3837  bool isSugared() const { return true; }
3838  QualType desugar() const { return getEquivalentType(); }
3839
3840  /// Does this attribute behave like a type qualifier?
3841  ///
3842  /// A type qualifier adjusts a type to provide specialized rules for
3843  /// a specific object, like the standard const and volatile qualifiers.
3844  /// This includes attributes controlling things like nullability,
3845  /// address spaces, and ARC ownership.  The value of the object is still
3846  /// largely described by the modified type.
3847  ///
3848  /// In contrast, many type attributes "rewrite" their modified type to
3849  /// produce a fundamentally different type, not necessarily related in any
3850  /// formalizable way to the original type.  For example, calling convention
3851  /// and vector attributes are not simple type qualifiers.
3852  ///
3853  /// Type qualifiers are often, but not always, reflected in the canonical
3854  /// type.
3855  bool isQualifier() const;
3856
3857  bool isMSTypeSpec() const;
3858
3859  bool isCallingConv() const;
3860
3861  llvm::Optional<NullabilityKind> getImmediateNullability() const;
3862
3863  /// Retrieve the attribute kind corresponding to the given
3864  /// nullability kind.
3865  static Kind getNullabilityAttrKind(NullabilityKind kind) {
3866    switch (kind) {
3867    case NullabilityKind::NonNull:
3868      return attr_nonnull;
3869
3870    case NullabilityKind::Nullable:
3871      return attr_nullable;
3872
3873    case NullabilityKind::Unspecified:
3874      return attr_null_unspecified;
3875    }
3876    llvm_unreachable("Unknown nullability kind.");
3877  }
3878
3879  /// Strip off the top-level nullability annotation on the given
3880  /// type, if it's there.
3881  ///
3882  /// \param T The type to strip. If the type is exactly an
3883  /// AttributedType specifying nullability (without looking through
3884  /// type sugar), the nullability is returned and this type changed
3885  /// to the underlying modified type.
3886  ///
3887  /// \returns the top-level nullability, if present.
3888  static Optional<NullabilityKind> stripOuterNullability(QualType &T);
3889
3890  void Profile(llvm::FoldingSetNodeID &ID) {
3891    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
3892  }
3893
3894  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
3895                      QualType modified, QualType equivalent) {
3896    ID.AddInteger(attrKind);
3897    ID.AddPointer(modified.getAsOpaquePtr());
3898    ID.AddPointer(equivalent.getAsOpaquePtr());
3899  }
3900
3901  static bool classof(const Type *T) {
3902    return T->getTypeClass() == Attributed;
3903  }
3904};
3905
3906class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3907  // Helper data collector for canonical types.
3908  struct CanonicalTTPTInfo {
3909    unsigned Depth : 15;
3910    unsigned ParameterPack : 1;
3911    unsigned Index : 16;
3912  };
3913
3914  union {
3915    // Info for the canonical type.
3916    CanonicalTTPTInfo CanTTPTInfo;
3917    // Info for the non-canonical type.
3918    TemplateTypeParmDecl *TTPDecl;
3919  };
3920
3921  /// Build a non-canonical type.
3922  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
3923    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
3924           /*InstantiationDependent=*/true,
3925           /*VariablyModified=*/false,
3926           Canon->containsUnexpandedParameterPack()),
3927      TTPDecl(TTPDecl) { }
3928
3929  /// Build the canonical type.
3930  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
3931    : Type(TemplateTypeParm, QualType(this, 0),
3932           /*Dependent=*/true,
3933           /*InstantiationDependent=*/true,
3934           /*VariablyModified=*/false, PP) {
3935    CanTTPTInfo.Depth = D;
3936    CanTTPTInfo.Index = I;
3937    CanTTPTInfo.ParameterPack = PP;
3938  }
3939
3940  friend class ASTContext;  // ASTContext creates these
3941
3942  const CanonicalTTPTInfo& getCanTTPTInfo() const {
3943    QualType Can = getCanonicalTypeInternal();
3944    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
3945  }
3946
3947public:
3948  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
3949  unsigned getIndex() const { return getCanTTPTInfo().Index; }
3950  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
3951
3952  TemplateTypeParmDecl *getDecl() const {
3953    return isCanonicalUnqualified() ? nullptr : TTPDecl;
3954  }
3955
3956  IdentifierInfo *getIdentifier() const;
3957
3958  bool isSugared() const { return false; }
3959  QualType desugar() const { return QualType(this, 0); }
3960
3961  void Profile(llvm::FoldingSetNodeID &ID) {
3962    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
3963  }
3964
3965  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
3966                      unsigned Index, bool ParameterPack,
3967                      TemplateTypeParmDecl *TTPDecl) {
3968    ID.AddInteger(Depth);
3969    ID.AddInteger(Index);
3970    ID.AddBoolean(ParameterPack);
3971    ID.AddPointer(TTPDecl);
3972  }
3973
3974  static bool classof(const Type *T) {
3975    return T->getTypeClass() == TemplateTypeParm;
3976  }
3977};
3978
3979/// \brief Represents the result of substituting a type for a template
3980/// type parameter.
3981///
3982/// Within an instantiated template, all template type parameters have
3983/// been replaced with these.  They are used solely to record that a
3984/// type was originally written as a template type parameter;
3985/// therefore they are never canonical.
3986class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3987  // The original type parameter.
3988  const TemplateTypeParmType *Replaced;
3989
3990  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3991    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3992           Canon->isInstantiationDependentType(),
3993           Canon->isVariablyModifiedType(),
3994           Canon->containsUnexpandedParameterPack()),
3995      Replaced(Param) { }
3996
3997  friend class ASTContext;
3998
3999public:
4000  /// Gets the template parameter that was substituted for.
4001  const TemplateTypeParmType *getReplacedParameter() const {
4002    return Replaced;
4003  }
4004
4005  /// Gets the type that was substituted for the template
4006  /// parameter.
4007  QualType getReplacementType() const {
4008    return getCanonicalTypeInternal();
4009  }
4010
4011  bool isSugared() const { return true; }
4012  QualType desugar() const { return getReplacementType(); }
4013
4014  void Profile(llvm::FoldingSetNodeID &ID) {
4015    Profile(ID, getReplacedParameter(), getReplacementType());
4016  }
4017  static void Profile(llvm::FoldingSetNodeID &ID,
4018                      const TemplateTypeParmType *Replaced,
4019                      QualType Replacement) {
4020    ID.AddPointer(Replaced);
4021    ID.AddPointer(Replacement.getAsOpaquePtr());
4022  }
4023
4024  static bool classof(const Type *T) {
4025    return T->getTypeClass() == SubstTemplateTypeParm;
4026  }
4027};
4028
4029/// \brief Represents the result of substituting a set of types for a template
4030/// type parameter pack.
4031///
4032/// When a pack expansion in the source code contains multiple parameter packs
4033/// and those parameter packs correspond to different levels of template
4034/// parameter lists, this type node is used to represent a template type
4035/// parameter pack from an outer level, which has already had its argument pack
4036/// substituted but that still lives within a pack expansion that itself
4037/// could not be instantiated. When actually performing a substitution into
4038/// that pack expansion (e.g., when all template parameters have corresponding
4039/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4040/// at the current pack substitution index.
4041class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4042  /// \brief The original type parameter.
4043  const TemplateTypeParmType *Replaced;
4044
4045  /// \brief A pointer to the set of template arguments that this
4046  /// parameter pack is instantiated with.
4047  const TemplateArgument *Arguments;
4048
4049  /// \brief The number of template arguments in \c Arguments.
4050  unsigned NumArguments;
4051
4052  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4053                                QualType Canon,
4054                                const TemplateArgument &ArgPack);
4055
4056  friend class ASTContext;
4057
4058public:
4059  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4060
4061  /// Gets the template parameter that was substituted for.
4062  const TemplateTypeParmType *getReplacedParameter() const {
4063    return Replaced;
4064  }
4065
4066  bool isSugared() const { return false; }
4067  QualType desugar() const { return QualType(this, 0); }
4068
4069  TemplateArgument getArgumentPack() const;
4070
4071  void Profile(llvm::FoldingSetNodeID &ID);
4072  static void Profile(llvm::FoldingSetNodeID &ID,
4073                      const TemplateTypeParmType *Replaced,
4074                      const TemplateArgument &ArgPack);
4075
4076  static bool classof(const Type *T) {
4077    return T->getTypeClass() == SubstTemplateTypeParmPack;
4078  }
4079};
4080
4081/// \brief Represents a C++11 auto or C++14 decltype(auto) type.
4082///
4083/// These types are usually a placeholder for a deduced type. However, before
4084/// the initializer is attached, or if the initializer is type-dependent, there
4085/// is no deduced type and an auto type is canonical. In the latter case, it is
4086/// also a dependent type.
4087class AutoType : public Type, public llvm::FoldingSetNode {
4088  AutoType(QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent)
4089    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
4090           /*Dependent=*/IsDependent, /*InstantiationDependent=*/IsDependent,
4091           /*VariablyModified=*/false,
4092           /*ContainsParameterPack=*/DeducedType.isNull()
4093               ? false : DeducedType->containsUnexpandedParameterPack()) {
4094    assert((DeducedType.isNull() || !IsDependent) &&
4095           "auto deduced to dependent type");
4096    AutoTypeBits.Keyword = (unsigned)Keyword;
4097  }
4098
4099  friend class ASTContext;  // ASTContext creates these
4100
4101public:
4102  bool isDecltypeAuto() const {
4103    return getKeyword() == AutoTypeKeyword::DecltypeAuto;
4104  }
4105  AutoTypeKeyword getKeyword() const {
4106    return (AutoTypeKeyword)AutoTypeBits.Keyword;
4107  }
4108
4109  bool isSugared() const { return !isCanonicalUnqualified(); }
4110  QualType desugar() const { return getCanonicalTypeInternal(); }
4111
4112  /// \brief Get the type deduced for this auto type, or null if it's either
4113  /// not been deduced or was deduced to a dependent type.
4114  QualType getDeducedType() const {
4115    return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
4116  }
4117  bool isDeduced() const {
4118    return !isCanonicalUnqualified() || isDependentType();
4119  }
4120
4121  void Profile(llvm::FoldingSetNodeID &ID) {
4122    Profile(ID, getDeducedType(), getKeyword(), isDependentType());
4123  }
4124
4125  static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
4126                      AutoTypeKeyword Keyword, bool IsDependent) {
4127    ID.AddPointer(Deduced.getAsOpaquePtr());
4128    ID.AddInteger((unsigned)Keyword);
4129    ID.AddBoolean(IsDependent);
4130  }
4131
4132  static bool classof(const Type *T) {
4133    return T->getTypeClass() == Auto;
4134  }
4135};
4136
4137/// \brief Represents a type template specialization; the template
4138/// must be a class template, a type alias template, or a template
4139/// template parameter.  A template which cannot be resolved to one of
4140/// these, e.g. because it is written with a dependent scope
4141/// specifier, is instead represented as a
4142/// @c DependentTemplateSpecializationType.
4143///
4144/// A non-dependent template specialization type is always "sugar",
4145/// typically for a \c RecordType.  For example, a class template
4146/// specialization type of \c vector<int> will refer to a tag type for
4147/// the instantiation \c std::vector<int, std::allocator<int>>
4148///
4149/// Template specializations are dependent if either the template or
4150/// any of the template arguments are dependent, in which case the
4151/// type may also be canonical.
4152///
4153/// Instances of this type are allocated with a trailing array of
4154/// TemplateArguments, followed by a QualType representing the
4155/// non-canonical aliased type when the template is a type alias
4156/// template.
4157class LLVM_ALIGNAS(/*alignof(uint64_t)*/ 8) TemplateSpecializationType
4158    : public Type,
4159      public llvm::FoldingSetNode {
4160  /// The name of the template being specialized.  This is
4161  /// either a TemplateName::Template (in which case it is a
4162  /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
4163  /// TypeAliasTemplateDecl*), a
4164  /// TemplateName::SubstTemplateTemplateParmPack, or a
4165  /// TemplateName::SubstTemplateTemplateParm (in which case the
4166  /// replacement must, recursively, be one of these).
4167  TemplateName Template;
4168
4169  /// The number of template arguments named in this class template
4170  /// specialization.
4171  unsigned NumArgs : 31;
4172
4173  /// Whether this template specialization type is a substituted type alias.
4174  unsigned TypeAlias : 1;
4175
4176  TemplateSpecializationType(TemplateName T,
4177                             ArrayRef<TemplateArgument> Args,
4178                             QualType Canon,
4179                             QualType Aliased);
4180
4181  friend class ASTContext;  // ASTContext creates these
4182
4183public:
4184  /// Determine whether any of the given template arguments are dependent.
4185  static bool anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
4186                                            bool &InstantiationDependent);
4187
4188  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
4189                                            bool &InstantiationDependent);
4190
4191  /// \brief Print a template argument list, including the '<' and '>'
4192  /// enclosing the template arguments.
4193  static void PrintTemplateArgumentList(raw_ostream &OS,
4194                                        ArrayRef<TemplateArgument> Args,
4195                                        const PrintingPolicy &Policy,
4196                                        bool SkipBrackets = false);
4197
4198  static void PrintTemplateArgumentList(raw_ostream &OS,
4199                                        ArrayRef<TemplateArgumentLoc> Args,
4200                                        const PrintingPolicy &Policy);
4201
4202  static void PrintTemplateArgumentList(raw_ostream &OS,
4203                                        const TemplateArgumentListInfo &,
4204                                        const PrintingPolicy &Policy);
4205
4206  /// True if this template specialization type matches a current
4207  /// instantiation in the context in which it is found.
4208  bool isCurrentInstantiation() const {
4209    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
4210  }
4211
4212  /// \brief Determine if this template specialization type is for a type alias
4213  /// template that has been substituted.
4214  ///
4215  /// Nearly every template specialization type whose template is an alias
4216  /// template will be substituted. However, this is not the case when
4217  /// the specialization contains a pack expansion but the template alias
4218  /// does not have a corresponding parameter pack, e.g.,
4219  ///
4220  /// \code
4221  /// template<typename T, typename U, typename V> struct S;
4222  /// template<typename T, typename U> using A = S<T, int, U>;
4223  /// template<typename... Ts> struct X {
4224  ///   typedef A<Ts...> type; // not a type alias
4225  /// };
4226  /// \endcode
4227  bool isTypeAlias() const { return TypeAlias; }
4228
4229  /// Get the aliased type, if this is a specialization of a type alias
4230  /// template.
4231  QualType getAliasedType() const {
4232    assert(isTypeAlias() && "not a type alias template specialization");
4233    return *reinterpret_cast<const QualType*>(end());
4234  }
4235
4236  typedef const TemplateArgument * iterator;
4237
4238  iterator begin() const { return getArgs(); }
4239  iterator end() const; // defined inline in TemplateBase.h
4240
4241  /// Retrieve the name of the template that we are specializing.
4242  TemplateName getTemplateName() const { return Template; }
4243
4244  /// Retrieve the template arguments.
4245  const TemplateArgument *getArgs() const {
4246    return reinterpret_cast<const TemplateArgument *>(this + 1);
4247  }
4248
4249  /// Retrieve the number of template arguments.
4250  unsigned getNumArgs() const { return NumArgs; }
4251
4252  /// Retrieve a specific template argument as a type.
4253  /// \pre \c isArgType(Arg)
4254  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4255
4256  ArrayRef<TemplateArgument> template_arguments() const {
4257    return {getArgs(), NumArgs};
4258  }
4259
4260  bool isSugared() const {
4261    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
4262  }
4263  QualType desugar() const { return getCanonicalTypeInternal(); }
4264
4265  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
4266    Profile(ID, Template, template_arguments(), Ctx);
4267    if (isTypeAlias())
4268      getAliasedType().Profile(ID);
4269  }
4270
4271  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
4272                      ArrayRef<TemplateArgument> Args,
4273                      const ASTContext &Context);
4274
4275  static bool classof(const Type *T) {
4276    return T->getTypeClass() == TemplateSpecialization;
4277  }
4278};
4279
4280/// The injected class name of a C++ class template or class
4281/// template partial specialization.  Used to record that a type was
4282/// spelled with a bare identifier rather than as a template-id; the
4283/// equivalent for non-templated classes is just RecordType.
4284///
4285/// Injected class name types are always dependent.  Template
4286/// instantiation turns these into RecordTypes.
4287///
4288/// Injected class name types are always canonical.  This works
4289/// because it is impossible to compare an injected class name type
4290/// with the corresponding non-injected template type, for the same
4291/// reason that it is impossible to directly compare template
4292/// parameters from different dependent contexts: injected class name
4293/// types can only occur within the scope of a particular templated
4294/// declaration, and within that scope every template specialization
4295/// will canonicalize to the injected class name (when appropriate
4296/// according to the rules of the language).
4297class InjectedClassNameType : public Type {
4298  CXXRecordDecl *Decl;
4299
4300  /// The template specialization which this type represents.
4301  /// For example, in
4302  ///   template <class T> class A { ... };
4303  /// this is A<T>, whereas in
4304  ///   template <class X, class Y> class A<B<X,Y> > { ... };
4305  /// this is A<B<X,Y> >.
4306  ///
4307  /// It is always unqualified, always a template specialization type,
4308  /// and always dependent.
4309  QualType InjectedType;
4310
4311  friend class ASTContext; // ASTContext creates these.
4312  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
4313                          // currently suitable for AST reading, too much
4314                          // interdependencies.
4315  friend class ASTNodeImporter;
4316
4317  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
4318    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
4319           /*InstantiationDependent=*/true,
4320           /*VariablyModified=*/false,
4321           /*ContainsUnexpandedParameterPack=*/false),
4322      Decl(D), InjectedType(TST) {
4323    assert(isa<TemplateSpecializationType>(TST));
4324    assert(!TST.hasQualifiers());
4325    assert(TST->isDependentType());
4326  }
4327
4328public:
4329  QualType getInjectedSpecializationType() const { return InjectedType; }
4330  const TemplateSpecializationType *getInjectedTST() const {
4331    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
4332  }
4333
4334  CXXRecordDecl *getDecl() const;
4335
4336  bool isSugared() const { return false; }
4337  QualType desugar() const { return QualType(this, 0); }
4338
4339  static bool classof(const Type *T) {
4340    return T->getTypeClass() == InjectedClassName;
4341  }
4342};
4343
4344/// \brief The kind of a tag type.
4345enum TagTypeKind {
4346  /// \brief The "struct" keyword.
4347  TTK_Struct,
4348  /// \brief The "__interface" keyword.
4349  TTK_Interface,
4350  /// \brief The "union" keyword.
4351  TTK_Union,
4352  /// \brief The "class" keyword.
4353  TTK_Class,
4354  /// \brief The "enum" keyword.
4355  TTK_Enum
4356};
4357
4358/// \brief The elaboration keyword that precedes a qualified type name or
4359/// introduces an elaborated-type-specifier.
4360enum ElaboratedTypeKeyword {
4361  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
4362  ETK_Struct,
4363  /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
4364  ETK_Interface,
4365  /// \brief The "union" keyword introduces the elaborated-type-specifier.
4366  ETK_Union,
4367  /// \brief The "class" keyword introduces the elaborated-type-specifier.
4368  ETK_Class,
4369  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
4370  ETK_Enum,
4371  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
4372  /// \c typename T::type.
4373  ETK_Typename,
4374  /// \brief No keyword precedes the qualified type name.
4375  ETK_None
4376};
4377
4378/// A helper class for Type nodes having an ElaboratedTypeKeyword.
4379/// The keyword in stored in the free bits of the base class.
4380/// Also provides a few static helpers for converting and printing
4381/// elaborated type keyword and tag type kind enumerations.
4382class TypeWithKeyword : public Type {
4383protected:
4384  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
4385                  QualType Canonical, bool Dependent,
4386                  bool InstantiationDependent, bool VariablyModified,
4387                  bool ContainsUnexpandedParameterPack)
4388  : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
4389         ContainsUnexpandedParameterPack) {
4390    TypeWithKeywordBits.Keyword = Keyword;
4391  }
4392
4393public:
4394  ElaboratedTypeKeyword getKeyword() const {
4395    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
4396  }
4397
4398  /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
4399  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
4400
4401  /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
4402  /// It is an error to provide a type specifier which *isn't* a tag kind here.
4403  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
4404
4405  /// Converts a TagTypeKind into an elaborated type keyword.
4406  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
4407
4408  /// Converts an elaborated type keyword into a TagTypeKind.
4409  /// It is an error to provide an elaborated type keyword
4410  /// which *isn't* a tag kind here.
4411  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
4412
4413  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
4414
4415  static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
4416
4417  static StringRef getTagTypeKindName(TagTypeKind Kind) {
4418    return getKeywordName(getKeywordForTagTypeKind(Kind));
4419  }
4420
4421  class CannotCastToThisType {};
4422  static CannotCastToThisType classof(const Type *);
4423};
4424
4425/// \brief Represents a type that was referred to using an elaborated type
4426/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
4427/// or both.
4428///
4429/// This type is used to keep track of a type name as written in the
4430/// source code, including tag keywords and any nested-name-specifiers.
4431/// The type itself is always "sugar", used to express what was written
4432/// in the source code but containing no additional semantic information.
4433class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
4434
4435  /// The nested name specifier containing the qualifier.
4436  NestedNameSpecifier *NNS;
4437
4438  /// The type that this qualified name refers to.
4439  QualType NamedType;
4440
4441  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
4442                 QualType NamedType, QualType CanonType)
4443    : TypeWithKeyword(Keyword, Elaborated, CanonType,
4444                      NamedType->isDependentType(),
4445                      NamedType->isInstantiationDependentType(),
4446                      NamedType->isVariablyModifiedType(),
4447                      NamedType->containsUnexpandedParameterPack()),
4448      NNS(NNS), NamedType(NamedType) {
4449    assert(!(Keyword == ETK_None && NNS == nullptr) &&
4450           "ElaboratedType cannot have elaborated type keyword "
4451           "and name qualifier both null.");
4452  }
4453
4454  friend class ASTContext;  // ASTContext creates these
4455
4456public:
4457  ~ElaboratedType();
4458
4459  /// Retrieve the qualification on this type.
4460  NestedNameSpecifier *getQualifier() const { return NNS; }
4461
4462  /// Retrieve the type named by the qualified-id.
4463  QualType getNamedType() const { return NamedType; }
4464
4465  /// Remove a single level of sugar.
4466  QualType desugar() const { return getNamedType(); }
4467
4468  /// Returns whether this type directly provides sugar.
4469  bool isSugared() const { return true; }
4470
4471  void Profile(llvm::FoldingSetNodeID &ID) {
4472    Profile(ID, getKeyword(), NNS, NamedType);
4473  }
4474
4475  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
4476                      NestedNameSpecifier *NNS, QualType NamedType) {
4477    ID.AddInteger(Keyword);
4478    ID.AddPointer(NNS);
4479    NamedType.Profile(ID);
4480  }
4481
4482  static bool classof(const Type *T) {
4483    return T->getTypeClass() == Elaborated;
4484  }
4485};
4486
4487/// \brief Represents a qualified type name for which the type name is
4488/// dependent.
4489///
4490/// DependentNameType represents a class of dependent types that involve a
4491/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
4492/// name of a type. The DependentNameType may start with a "typename" (for a
4493/// typename-specifier), "class", "struct", "union", or "enum" (for a
4494/// dependent elaborated-type-specifier), or nothing (in contexts where we
4495/// know that we must be referring to a type, e.g., in a base class specifier).
4496/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
4497/// mode, this type is used with non-dependent names to delay name lookup until
4498/// instantiation.
4499class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
4500
4501  /// \brief The nested name specifier containing the qualifier.
4502  NestedNameSpecifier *NNS;
4503
4504  /// \brief The type that this typename specifier refers to.
4505  const IdentifierInfo *Name;
4506
4507  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
4508                    const IdentifierInfo *Name, QualType CanonType)
4509    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
4510                      /*InstantiationDependent=*/true,
4511                      /*VariablyModified=*/false,
4512                      NNS->containsUnexpandedParameterPack()),
4513      NNS(NNS), Name(Name) {}
4514
4515  friend class ASTContext;  // ASTContext creates these
4516
4517public:
4518  /// Retrieve the qualification on this type.
4519  NestedNameSpecifier *getQualifier() const { return NNS; }
4520
4521  /// Retrieve the type named by the typename specifier as an identifier.
4522  ///
4523  /// This routine will return a non-NULL identifier pointer when the
4524  /// form of the original typename was terminated by an identifier,
4525  /// e.g., "typename T::type".
4526  const IdentifierInfo *getIdentifier() const {
4527    return Name;
4528  }
4529
4530  bool isSugared() const { return false; }
4531  QualType desugar() const { return QualType(this, 0); }
4532
4533  void Profile(llvm::FoldingSetNodeID &ID) {
4534    Profile(ID, getKeyword(), NNS, Name);
4535  }
4536
4537  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
4538                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
4539    ID.AddInteger(Keyword);
4540    ID.AddPointer(NNS);
4541    ID.AddPointer(Name);
4542  }
4543
4544  static bool classof(const Type *T) {
4545    return T->getTypeClass() == DependentName;
4546  }
4547};
4548
4549/// Represents a template specialization type whose template cannot be
4550/// resolved, e.g.
4551///   A<T>::template B<T>
4552class LLVM_ALIGNAS(/*alignof(uint64_t)*/ 8) DependentTemplateSpecializationType
4553    : public TypeWithKeyword,
4554      public llvm::FoldingSetNode {
4555
4556  /// The nested name specifier containing the qualifier.
4557  NestedNameSpecifier *NNS;
4558
4559  /// The identifier of the template.
4560  const IdentifierInfo *Name;
4561
4562  /// \brief The number of template arguments named in this class template
4563  /// specialization.
4564  unsigned NumArgs;
4565
4566  const TemplateArgument *getArgBuffer() const {
4567    return reinterpret_cast<const TemplateArgument*>(this+1);
4568  }
4569  TemplateArgument *getArgBuffer() {
4570    return reinterpret_cast<TemplateArgument*>(this+1);
4571  }
4572
4573  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
4574                                      NestedNameSpecifier *NNS,
4575                                      const IdentifierInfo *Name,
4576                                      ArrayRef<TemplateArgument> Args,
4577                                      QualType Canon);
4578
4579  friend class ASTContext;  // ASTContext creates these
4580
4581public:
4582  NestedNameSpecifier *getQualifier() const { return NNS; }
4583  const IdentifierInfo *getIdentifier() const { return Name; }
4584
4585  /// \brief Retrieve the template arguments.
4586  const TemplateArgument *getArgs() const {
4587    return getArgBuffer();
4588  }
4589
4590  /// \brief Retrieve the number of template arguments.
4591  unsigned getNumArgs() const { return NumArgs; }
4592
4593  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4594
4595  ArrayRef<TemplateArgument> template_arguments() const {
4596    return {getArgs(), NumArgs};
4597  }
4598
4599  typedef const TemplateArgument * iterator;
4600  iterator begin() const { return getArgs(); }
4601  iterator end() const; // inline in TemplateBase.h
4602
4603  bool isSugared() const { return false; }
4604  QualType desugar() const { return QualType(this, 0); }
4605
4606  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
4607    Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), NumArgs});
4608  }
4609
4610  static void Profile(llvm::FoldingSetNodeID &ID,
4611                      const ASTContext &Context,
4612                      ElaboratedTypeKeyword Keyword,
4613                      NestedNameSpecifier *Qualifier,
4614                      const IdentifierInfo *Name,
4615                      ArrayRef<TemplateArgument> Args);
4616
4617  static bool classof(const Type *T) {
4618    return T->getTypeClass() == DependentTemplateSpecialization;
4619  }
4620};
4621
4622/// \brief Represents a pack expansion of types.
4623///
4624/// Pack expansions are part of C++11 variadic templates. A pack
4625/// expansion contains a pattern, which itself contains one or more
4626/// "unexpanded" parameter packs. When instantiated, a pack expansion
4627/// produces a series of types, each instantiated from the pattern of
4628/// the expansion, where the Ith instantiation of the pattern uses the
4629/// Ith arguments bound to each of the unexpanded parameter packs. The
4630/// pack expansion is considered to "expand" these unexpanded
4631/// parameter packs.
4632///
4633/// \code
4634/// template<typename ...Types> struct tuple;
4635///
4636/// template<typename ...Types>
4637/// struct tuple_of_references {
4638///   typedef tuple<Types&...> type;
4639/// };
4640/// \endcode
4641///
4642/// Here, the pack expansion \c Types&... is represented via a
4643/// PackExpansionType whose pattern is Types&.
4644class PackExpansionType : public Type, public llvm::FoldingSetNode {
4645  /// \brief The pattern of the pack expansion.
4646  QualType Pattern;
4647
4648  /// \brief The number of expansions that this pack expansion will
4649  /// generate when substituted (+1), or indicates that
4650  ///
4651  /// This field will only have a non-zero value when some of the parameter
4652  /// packs that occur within the pattern have been substituted but others have
4653  /// not.
4654  unsigned NumExpansions;
4655
4656  PackExpansionType(QualType Pattern, QualType Canon,
4657                    Optional<unsigned> NumExpansions)
4658    : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
4659           /*InstantiationDependent=*/true,
4660           /*VariablyModified=*/Pattern->isVariablyModifiedType(),
4661           /*ContainsUnexpandedParameterPack=*/false),
4662      Pattern(Pattern),
4663      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
4664
4665  friend class ASTContext;  // ASTContext creates these
4666
4667public:
4668  /// \brief Retrieve the pattern of this pack expansion, which is the
4669  /// type that will be repeatedly instantiated when instantiating the
4670  /// pack expansion itself.
4671  QualType getPattern() const { return Pattern; }
4672
4673  /// \brief Retrieve the number of expansions that this pack expansion will
4674  /// generate, if known.
4675  Optional<unsigned> getNumExpansions() const {
4676    if (NumExpansions)
4677      return NumExpansions - 1;
4678
4679    return None;
4680  }
4681
4682  bool isSugared() const { return !Pattern->isDependentType(); }
4683  QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
4684
4685  void Profile(llvm::FoldingSetNodeID &ID) {
4686    Profile(ID, getPattern(), getNumExpansions());
4687  }
4688
4689  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
4690                      Optional<unsigned> NumExpansions) {
4691    ID.AddPointer(Pattern.getAsOpaquePtr());
4692    ID.AddBoolean(NumExpansions.hasValue());
4693    if (NumExpansions)
4694      ID.AddInteger(*NumExpansions);
4695  }
4696
4697  static bool classof(const Type *T) {
4698    return T->getTypeClass() == PackExpansion;
4699  }
4700};
4701
4702/// Represents a class type in Objective C.
4703///
4704/// Every Objective C type is a combination of a base type, a set of
4705/// type arguments (optional, for parameterized classes) and a list of
4706/// protocols.
4707///
4708/// Given the following declarations:
4709/// \code
4710///   \@class C<T>;
4711///   \@protocol P;
4712/// \endcode
4713///
4714/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
4715/// with base C and no protocols.
4716///
4717/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
4718/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
4719/// protocol list.
4720/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
4721/// and protocol list [P].
4722///
4723/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
4724/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
4725/// and no protocols.
4726///
4727/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
4728/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
4729/// this should get its own sugar class to better represent the source.
4730class ObjCObjectType : public Type {
4731  // ObjCObjectType.NumTypeArgs - the number of type arguments stored
4732  // after the ObjCObjectPointerType node.
4733  // ObjCObjectType.NumProtocols - the number of protocols stored
4734  // after the type arguments of ObjCObjectPointerType node.
4735  //
4736  // These protocols are those written directly on the type.  If
4737  // protocol qualifiers ever become additive, the iterators will need
4738  // to get kindof complicated.
4739  //
4740  // In the canonical object type, these are sorted alphabetically
4741  // and uniqued.
4742
4743  /// Either a BuiltinType or an InterfaceType or sugar for either.
4744  QualType BaseType;
4745
4746  /// Cached superclass type.
4747  mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
4748    CachedSuperClassType;
4749
4750  ObjCProtocolDecl * const *getProtocolStorage() const {
4751    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
4752  }
4753
4754  QualType *getTypeArgStorage();
4755  const QualType *getTypeArgStorage() const {
4756    return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
4757  }
4758
4759  ObjCProtocolDecl **getProtocolStorage();
4760
4761protected:
4762  ObjCObjectType(QualType Canonical, QualType Base,
4763                 ArrayRef<QualType> typeArgs,
4764                 ArrayRef<ObjCProtocolDecl *> protocols,
4765                 bool isKindOf);
4766
4767  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
4768  ObjCObjectType(enum Nonce_ObjCInterface)
4769        : Type(ObjCInterface, QualType(), false, false, false, false),
4770      BaseType(QualType(this_(), 0)) {
4771    ObjCObjectTypeBits.NumProtocols = 0;
4772    ObjCObjectTypeBits.NumTypeArgs = 0;
4773    ObjCObjectTypeBits.IsKindOf = 0;
4774  }
4775
4776  void computeSuperClassTypeSlow() const;
4777
4778public:
4779  /// Gets the base type of this object type.  This is always (possibly
4780  /// sugar for) one of:
4781  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
4782  ///    user, which is a typedef for an ObjCObjectPointerType)
4783  ///  - the 'Class' builtin type (same caveat)
4784  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
4785  QualType getBaseType() const { return BaseType; }
4786
4787  bool isObjCId() const {
4788    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
4789  }
4790  bool isObjCClass() const {
4791    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
4792  }
4793  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
4794  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
4795  bool isObjCUnqualifiedIdOrClass() const {
4796    if (!qual_empty()) return false;
4797    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
4798      return T->getKind() == BuiltinType::ObjCId ||
4799             T->getKind() == BuiltinType::ObjCClass;
4800    return false;
4801  }
4802  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
4803  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
4804
4805  /// Gets the interface declaration for this object type, if the base type
4806  /// really is an interface.
4807  ObjCInterfaceDecl *getInterface() const;
4808
4809  /// Determine whether this object type is "specialized", meaning
4810  /// that it has type arguments.
4811  bool isSpecialized() const;
4812
4813  /// Determine whether this object type was written with type arguments.
4814  bool isSpecializedAsWritten() const {
4815    return ObjCObjectTypeBits.NumTypeArgs > 0;
4816  }
4817
4818  /// Determine whether this object type is "unspecialized", meaning
4819  /// that it has no type arguments.
4820  bool isUnspecialized() const { return !isSpecialized(); }
4821
4822  /// Determine whether this object type is "unspecialized" as
4823  /// written, meaning that it has no type arguments.
4824  bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
4825
4826  /// Retrieve the type arguments of this object type (semantically).
4827  ArrayRef<QualType> getTypeArgs() const;
4828
4829  /// Retrieve the type arguments of this object type as they were
4830  /// written.
4831  ArrayRef<QualType> getTypeArgsAsWritten() const {
4832    return llvm::makeArrayRef(getTypeArgStorage(),
4833                              ObjCObjectTypeBits.NumTypeArgs);
4834  }
4835
4836  typedef ObjCProtocolDecl * const *qual_iterator;
4837  typedef llvm::iterator_range<qual_iterator> qual_range;
4838
4839  qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
4840  qual_iterator qual_begin() const { return getProtocolStorage(); }
4841  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
4842
4843  bool qual_empty() const { return getNumProtocols() == 0; }
4844
4845  /// Return the number of qualifying protocols in this interface type,
4846  /// or 0 if there are none.
4847  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
4848
4849  /// Fetch a protocol by index.
4850  ObjCProtocolDecl *getProtocol(unsigned I) const {
4851    assert(I < getNumProtocols() && "Out-of-range protocol access");
4852    return qual_begin()[I];
4853  }
4854
4855  /// Retrieve all of the protocol qualifiers.
4856  ArrayRef<ObjCProtocolDecl *> getProtocols() const {
4857    return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
4858  }
4859
4860  /// Whether this is a "__kindof" type as written.
4861  bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
4862
4863  /// Whether this ia a "__kindof" type (semantically).
4864  bool isKindOfType() const;
4865
4866  /// Retrieve the type of the superclass of this object type.
4867  ///
4868  /// This operation substitutes any type arguments into the
4869  /// superclass of the current class type, potentially producing a
4870  /// specialization of the superclass type. Produces a null type if
4871  /// there is no superclass.
4872  QualType getSuperClassType() const {
4873    if (!CachedSuperClassType.getInt())
4874      computeSuperClassTypeSlow();
4875
4876    assert(CachedSuperClassType.getInt() && "Superclass not set?");
4877    return QualType(CachedSuperClassType.getPointer(), 0);
4878  }
4879
4880  /// Strip off the Objective-C "kindof" type and (with it) any
4881  /// protocol qualifiers.
4882  QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
4883
4884  bool isSugared() const { return false; }
4885  QualType desugar() const { return QualType(this, 0); }
4886
4887  static bool classof(const Type *T) {
4888    return T->getTypeClass() == ObjCObject ||
4889           T->getTypeClass() == ObjCInterface;
4890  }
4891};
4892
4893/// A class providing a concrete implementation
4894/// of ObjCObjectType, so as to not increase the footprint of
4895/// ObjCInterfaceType.  Code outside of ASTContext and the core type
4896/// system should not reference this type.
4897class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
4898  friend class ASTContext;
4899
4900  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
4901  // will need to be modified.
4902
4903  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
4904                     ArrayRef<QualType> typeArgs,
4905                     ArrayRef<ObjCProtocolDecl *> protocols,
4906                     bool isKindOf)
4907    : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
4908
4909public:
4910  void Profile(llvm::FoldingSetNodeID &ID);
4911  static void Profile(llvm::FoldingSetNodeID &ID,
4912                      QualType Base,
4913                      ArrayRef<QualType> typeArgs,
4914                      ArrayRef<ObjCProtocolDecl *> protocols,
4915                      bool isKindOf);
4916};
4917
4918inline QualType *ObjCObjectType::getTypeArgStorage() {
4919  return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
4920}
4921
4922inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
4923    return reinterpret_cast<ObjCProtocolDecl**>(
4924             getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
4925}
4926
4927/// Interfaces are the core concept in Objective-C for object oriented design.
4928/// They basically correspond to C++ classes.  There are two kinds of interface
4929/// types: normal interfaces like `NSString`, and qualified interfaces, which
4930/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
4931///
4932/// ObjCInterfaceType guarantees the following properties when considered
4933/// as a subtype of its superclass, ObjCObjectType:
4934///   - There are no protocol qualifiers.  To reinforce this, code which
4935///     tries to invoke the protocol methods via an ObjCInterfaceType will
4936///     fail to compile.
4937///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
4938///     T->getBaseType() == QualType(T, 0).
4939class ObjCInterfaceType : public ObjCObjectType {
4940  mutable ObjCInterfaceDecl *Decl;
4941
4942  ObjCInterfaceType(const ObjCInterfaceDecl *D)
4943    : ObjCObjectType(Nonce_ObjCInterface),
4944      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
4945  friend class ASTContext;  // ASTContext creates these.
4946  friend class ASTReader;
4947  friend class ObjCInterfaceDecl;
4948
4949public:
4950  /// Get the declaration of this interface.
4951  ObjCInterfaceDecl *getDecl() const { return Decl; }
4952
4953  bool isSugared() const { return false; }
4954  QualType desugar() const { return QualType(this, 0); }
4955
4956  static bool classof(const Type *T) {
4957    return T->getTypeClass() == ObjCInterface;
4958  }
4959
4960  // Nonsense to "hide" certain members of ObjCObjectType within this
4961  // class.  People asking for protocols on an ObjCInterfaceType are
4962  // not going to get what they want: ObjCInterfaceTypes are
4963  // guaranteed to have no protocols.
4964  enum {
4965    qual_iterator,
4966    qual_begin,
4967    qual_end,
4968    getNumProtocols,
4969    getProtocol
4970  };
4971};
4972
4973inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
4974  QualType baseType = getBaseType();
4975  while (const ObjCObjectType *ObjT = baseType->getAs<ObjCObjectType>()) {
4976    if (const ObjCInterfaceType *T = dyn_cast<ObjCInterfaceType>(ObjT))
4977      return T->getDecl();
4978
4979    baseType = ObjT->getBaseType();
4980  }
4981
4982  return nullptr;
4983}
4984
4985/// Represents a pointer to an Objective C object.
4986///
4987/// These are constructed from pointer declarators when the pointee type is
4988/// an ObjCObjectType (or sugar for one).  In addition, the 'id' and 'Class'
4989/// types are typedefs for these, and the protocol-qualified types 'id<P>'
4990/// and 'Class<P>' are translated into these.
4991///
4992/// Pointers to pointers to Objective C objects are still PointerTypes;
4993/// only the first level of pointer gets it own type implementation.
4994class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
4995  QualType PointeeType;
4996
4997  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
4998    : Type(ObjCObjectPointer, Canonical,
4999           Pointee->isDependentType(),
5000           Pointee->isInstantiationDependentType(),
5001           Pointee->isVariablyModifiedType(),
5002           Pointee->containsUnexpandedParameterPack()),
5003      PointeeType(Pointee) {}
5004  friend class ASTContext;  // ASTContext creates these.
5005
5006public:
5007  /// Gets the type pointed to by this ObjC pointer.
5008  /// The result will always be an ObjCObjectType or sugar thereof.
5009  QualType getPointeeType() const { return PointeeType; }
5010
5011  /// Gets the type pointed to by this ObjC pointer.  Always returns non-null.
5012  ///
5013  /// This method is equivalent to getPointeeType() except that
5014  /// it discards any typedefs (or other sugar) between this
5015  /// type and the "outermost" object type.  So for:
5016  /// \code
5017  ///   \@class A; \@protocol P; \@protocol Q;
5018  ///   typedef A<P> AP;
5019  ///   typedef A A1;
5020  ///   typedef A1<P> A1P;
5021  ///   typedef A1P<Q> A1PQ;
5022  /// \endcode
5023  /// For 'A*', getObjectType() will return 'A'.
5024  /// For 'A<P>*', getObjectType() will return 'A<P>'.
5025  /// For 'AP*', getObjectType() will return 'A<P>'.
5026  /// For 'A1*', getObjectType() will return 'A'.
5027  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
5028  /// For 'A1P*', getObjectType() will return 'A1<P>'.
5029  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
5030  ///   adding protocols to a protocol-qualified base discards the
5031  ///   old qualifiers (for now).  But if it didn't, getObjectType()
5032  ///   would return 'A1P<Q>' (and we'd have to make iterating over
5033  ///   qualifiers more complicated).
5034  const ObjCObjectType *getObjectType() const {
5035    return PointeeType->castAs<ObjCObjectType>();
5036  }
5037
5038  /// If this pointer points to an Objective C
5039  /// \@interface type, gets the type for that interface.  Any protocol
5040  /// qualifiers on the interface are ignored.
5041  ///
5042  /// \return null if the base type for this pointer is 'id' or 'Class'
5043  const ObjCInterfaceType *getInterfaceType() const;
5044
5045  /// If this pointer points to an Objective \@interface
5046  /// type, gets the declaration for that interface.
5047  ///
5048  /// \return null if the base type for this pointer is 'id' or 'Class'
5049  ObjCInterfaceDecl *getInterfaceDecl() const {
5050    return getObjectType()->getInterface();
5051  }
5052
5053  /// True if this is equivalent to the 'id' type, i.e. if
5054  /// its object type is the primitive 'id' type with no protocols.
5055  bool isObjCIdType() const {
5056    return getObjectType()->isObjCUnqualifiedId();
5057  }
5058
5059  /// True if this is equivalent to the 'Class' type,
5060  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
5061  bool isObjCClassType() const {
5062    return getObjectType()->isObjCUnqualifiedClass();
5063  }
5064
5065  /// True if this is equivalent to the 'id' or 'Class' type,
5066  bool isObjCIdOrClassType() const {
5067    return getObjectType()->isObjCUnqualifiedIdOrClass();
5068  }
5069
5070  /// True if this is equivalent to 'id<P>' for some non-empty set of
5071  /// protocols.
5072  bool isObjCQualifiedIdType() const {
5073    return getObjectType()->isObjCQualifiedId();
5074  }
5075
5076  /// True if this is equivalent to 'Class<P>' for some non-empty set of
5077  /// protocols.
5078  bool isObjCQualifiedClassType() const {
5079    return getObjectType()->isObjCQualifiedClass();
5080  }
5081
5082  /// Whether this is a "__kindof" type.
5083  bool isKindOfType() const { return getObjectType()->isKindOfType(); }
5084
5085  /// Whether this type is specialized, meaning that it has type arguments.
5086  bool isSpecialized() const { return getObjectType()->isSpecialized(); }
5087
5088  /// Whether this type is specialized, meaning that it has type arguments.
5089  bool isSpecializedAsWritten() const {
5090    return getObjectType()->isSpecializedAsWritten();
5091  }
5092
5093  /// Whether this type is unspecialized, meaning that is has no type arguments.
5094  bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
5095
5096  /// Determine whether this object type is "unspecialized" as
5097  /// written, meaning that it has no type arguments.
5098  bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5099
5100  /// Retrieve the type arguments for this type.
5101  ArrayRef<QualType> getTypeArgs() const {
5102    return getObjectType()->getTypeArgs();
5103  }
5104
5105  /// Retrieve the type arguments for this type.
5106  ArrayRef<QualType> getTypeArgsAsWritten() const {
5107    return getObjectType()->getTypeArgsAsWritten();
5108  }
5109
5110  /// An iterator over the qualifiers on the object type.  Provided
5111  /// for convenience.  This will always iterate over the full set of
5112  /// protocols on a type, not just those provided directly.
5113  typedef ObjCObjectType::qual_iterator qual_iterator;
5114  typedef llvm::iterator_range<qual_iterator> qual_range;
5115
5116  qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5117  qual_iterator qual_begin() const {
5118    return getObjectType()->qual_begin();
5119  }
5120  qual_iterator qual_end() const {
5121    return getObjectType()->qual_end();
5122  }
5123  bool qual_empty() const { return getObjectType()->qual_empty(); }
5124
5125  /// Return the number of qualifying protocols on the object type.
5126  unsigned getNumProtocols() const {
5127    return getObjectType()->getNumProtocols();
5128  }
5129
5130  /// Retrieve a qualifying protocol by index on the object type.
5131  ObjCProtocolDecl *getProtocol(unsigned I) const {
5132    return getObjectType()->getProtocol(I);
5133  }
5134
5135  bool isSugared() const { return false; }
5136  QualType desugar() const { return QualType(this, 0); }
5137
5138  /// Retrieve the type of the superclass of this object pointer type.
5139  ///
5140  /// This operation substitutes any type arguments into the
5141  /// superclass of the current class type, potentially producing a
5142  /// pointer to a specialization of the superclass type. Produces a
5143  /// null type if there is no superclass.
5144  QualType getSuperClassType() const;
5145
5146  /// Strip off the Objective-C "kindof" type and (with it) any
5147  /// protocol qualifiers.
5148  const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
5149                                 const ASTContext &ctx) const;
5150
5151  void Profile(llvm::FoldingSetNodeID &ID) {
5152    Profile(ID, getPointeeType());
5153  }
5154  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
5155    ID.AddPointer(T.getAsOpaquePtr());
5156  }
5157  static bool classof(const Type *T) {
5158    return T->getTypeClass() == ObjCObjectPointer;
5159  }
5160};
5161
5162class AtomicType : public Type, public llvm::FoldingSetNode {
5163  QualType ValueType;
5164
5165  AtomicType(QualType ValTy, QualType Canonical)
5166    : Type(Atomic, Canonical, ValTy->isDependentType(),
5167           ValTy->isInstantiationDependentType(),
5168           ValTy->isVariablyModifiedType(),
5169           ValTy->containsUnexpandedParameterPack()),
5170      ValueType(ValTy) {}
5171  friend class ASTContext;  // ASTContext creates these.
5172
5173  public:
5174  /// Gets the type contained by this atomic type, i.e.
5175  /// the type returned by performing an atomic load of this atomic type.
5176  QualType getValueType() const { return ValueType; }
5177
5178  bool isSugared() const { return false; }
5179  QualType desugar() const { return QualType(this, 0); }
5180
5181  void Profile(llvm::FoldingSetNodeID &ID) {
5182    Profile(ID, getValueType());
5183  }
5184  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
5185    ID.AddPointer(T.getAsOpaquePtr());
5186  }
5187  static bool classof(const Type *T) {
5188    return T->getTypeClass() == Atomic;
5189  }
5190};
5191
5192/// PipeType - OpenCL20.
5193class PipeType : public Type, public llvm::FoldingSetNode {
5194  QualType ElementType;
5195
5196  PipeType(QualType elemType, QualType CanonicalPtr) :
5197    Type(Pipe, CanonicalPtr, elemType->isDependentType(),
5198         elemType->isInstantiationDependentType(),
5199         elemType->isVariablyModifiedType(),
5200         elemType->containsUnexpandedParameterPack()),
5201    ElementType(elemType) {}
5202  friend class ASTContext;  // ASTContext creates these.
5203
5204public:
5205
5206  QualType getElementType() const { return ElementType; }
5207
5208  bool isSugared() const { return false; }
5209
5210  QualType desugar() const { return QualType(this, 0); }
5211
5212  void Profile(llvm::FoldingSetNodeID &ID) {
5213    Profile(ID, getElementType());
5214  }
5215
5216  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
5217    ID.AddPointer(T.getAsOpaquePtr());
5218  }
5219
5220
5221  static bool classof(const Type *T) {
5222    return T->getTypeClass() == Pipe;
5223  }
5224
5225};
5226
5227/// A qualifier set is used to build a set of qualifiers.
5228class QualifierCollector : public Qualifiers {
5229public:
5230  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
5231
5232  /// Collect any qualifiers on the given type and return an
5233  /// unqualified type.  The qualifiers are assumed to be consistent
5234  /// with those already in the type.
5235  const Type *strip(QualType type) {
5236    addFastQualifiers(type.getLocalFastQualifiers());
5237    if (!type.hasLocalNonFastQualifiers())
5238      return type.getTypePtrUnsafe();
5239
5240    const ExtQuals *extQuals = type.getExtQualsUnsafe();
5241    addConsistentQualifiers(extQuals->getQualifiers());
5242    return extQuals->getBaseType();
5243  }
5244
5245  /// Apply the collected qualifiers to the given type.
5246  QualType apply(const ASTContext &Context, QualType QT) const;
5247
5248  /// Apply the collected qualifiers to the given type.
5249  QualType apply(const ASTContext &Context, const Type* T) const;
5250};
5251
5252
5253// Inline function definitions.
5254
5255inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
5256  SplitQualType desugar =
5257    Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
5258  desugar.Quals.addConsistentQualifiers(Quals);
5259  return desugar;
5260}
5261
5262inline const Type *QualType::getTypePtr() const {
5263  return getCommonPtr()->BaseType;
5264}
5265
5266inline const Type *QualType::getTypePtrOrNull() const {
5267  return (isNull() ? nullptr : getCommonPtr()->BaseType);
5268}
5269
5270inline SplitQualType QualType::split() const {
5271  if (!hasLocalNonFastQualifiers())
5272    return SplitQualType(getTypePtrUnsafe(),
5273                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
5274
5275  const ExtQuals *eq = getExtQualsUnsafe();
5276  Qualifiers qs = eq->getQualifiers();
5277  qs.addFastQualifiers(getLocalFastQualifiers());
5278  return SplitQualType(eq->getBaseType(), qs);
5279}
5280
5281inline Qualifiers QualType::getLocalQualifiers() const {
5282  Qualifiers Quals;
5283  if (hasLocalNonFastQualifiers())
5284    Quals = getExtQualsUnsafe()->getQualifiers();
5285  Quals.addFastQualifiers(getLocalFastQualifiers());
5286  return Quals;
5287}
5288
5289inline Qualifiers QualType::getQualifiers() const {
5290  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
5291  quals.addFastQualifiers(getLocalFastQualifiers());
5292  return quals;
5293}
5294
5295inline unsigned QualType::getCVRQualifiers() const {
5296  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
5297  cvr |= getLocalCVRQualifiers();
5298  return cvr;
5299}
5300
5301inline QualType QualType::getCanonicalType() const {
5302  QualType canon = getCommonPtr()->CanonicalType;
5303  return canon.withFastQualifiers(getLocalFastQualifiers());
5304}
5305
5306inline bool QualType::isCanonical() const {
5307  return getTypePtr()->isCanonicalUnqualified();
5308}
5309
5310inline bool QualType::isCanonicalAsParam() const {
5311  if (!isCanonical()) return false;
5312  if (hasLocalQualifiers()) return false;
5313
5314  const Type *T = getTypePtr();
5315  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
5316    return false;
5317
5318  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
5319}
5320
5321inline bool QualType::isConstQualified() const {
5322  return isLocalConstQualified() ||
5323         getCommonPtr()->CanonicalType.isLocalConstQualified();
5324}
5325
5326inline bool QualType::isRestrictQualified() const {
5327  return isLocalRestrictQualified() ||
5328         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
5329}
5330
5331
5332inline bool QualType::isVolatileQualified() const {
5333  return isLocalVolatileQualified() ||
5334         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
5335}
5336
5337inline bool QualType::hasQualifiers() const {
5338  return hasLocalQualifiers() ||
5339         getCommonPtr()->CanonicalType.hasLocalQualifiers();
5340}
5341
5342inline QualType QualType::getUnqualifiedType() const {
5343  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
5344    return QualType(getTypePtr(), 0);
5345
5346  return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
5347}
5348
5349inline SplitQualType QualType::getSplitUnqualifiedType() const {
5350  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
5351    return split();
5352
5353  return getSplitUnqualifiedTypeImpl(*this);
5354}
5355
5356inline void QualType::removeLocalConst() {
5357  removeLocalFastQualifiers(Qualifiers::Const);
5358}
5359
5360inline void QualType::removeLocalRestrict() {
5361  removeLocalFastQualifiers(Qualifiers::Restrict);
5362}
5363
5364inline void QualType::removeLocalVolatile() {
5365  removeLocalFastQualifiers(Qualifiers::Volatile);
5366}
5367
5368inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
5369  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
5370  static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
5371                "Fast bits differ from CVR bits!");
5372
5373  // Fast path: we don't need to touch the slow qualifiers.
5374  removeLocalFastQualifiers(Mask);
5375}
5376
5377/// Return the address space of this type.
5378inline unsigned QualType::getAddressSpace() const {
5379  return getQualifiers().getAddressSpace();
5380}
5381
5382/// Return the gc attribute of this type.
5383inline Qualifiers::GC QualType::getObjCGCAttr() const {
5384  return getQualifiers().getObjCGCAttr();
5385}
5386
5387inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
5388  if (const PointerType *PT = t.getAs<PointerType>()) {
5389    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
5390      return FT->getExtInfo();
5391  } else if (const FunctionType *FT = t.getAs<FunctionType>())
5392    return FT->getExtInfo();
5393
5394  return FunctionType::ExtInfo();
5395}
5396
5397inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
5398  return getFunctionExtInfo(*t);
5399}
5400
5401/// Determine whether this type is more
5402/// qualified than the Other type. For example, "const volatile int"
5403/// is more qualified than "const int", "volatile int", and
5404/// "int". However, it is not more qualified than "const volatile
5405/// int".
5406inline bool QualType::isMoreQualifiedThan(QualType other) const {
5407  Qualifiers MyQuals = getQualifiers();
5408  Qualifiers OtherQuals = other.getQualifiers();
5409  return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
5410}
5411
5412/// Determine whether this type is at last
5413/// as qualified as the Other type. For example, "const volatile
5414/// int" is at least as qualified as "const int", "volatile int",
5415/// "int", and "const volatile int".
5416inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
5417  Qualifiers OtherQuals = other.getQualifiers();
5418
5419  // Ignore __unaligned qualifier if this type is a void.
5420  if (getUnqualifiedType()->isVoidType())
5421    OtherQuals.removeUnaligned();
5422
5423  return getQualifiers().compatiblyIncludes(OtherQuals);
5424}
5425
5426/// If Type is a reference type (e.g., const
5427/// int&), returns the type that the reference refers to ("const
5428/// int"). Otherwise, returns the type itself. This routine is used
5429/// throughout Sema to implement C++ 5p6:
5430///
5431///   If an expression initially has the type "reference to T" (8.3.2,
5432///   8.5.3), the type is adjusted to "T" prior to any further
5433///   analysis, the expression designates the object or function
5434///   denoted by the reference, and the expression is an lvalue.
5435inline QualType QualType::getNonReferenceType() const {
5436  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
5437    return RefType->getPointeeType();
5438  else
5439    return *this;
5440}
5441
5442inline bool QualType::isCForbiddenLValueType() const {
5443  return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
5444          getTypePtr()->isFunctionType());
5445}
5446
5447/// Tests whether the type is categorized as a fundamental type.
5448///
5449/// \returns True for types specified in C++0x [basic.fundamental].
5450inline bool Type::isFundamentalType() const {
5451  return isVoidType() ||
5452         // FIXME: It's really annoying that we don't have an
5453         // 'isArithmeticType()' which agrees with the standard definition.
5454         (isArithmeticType() && !isEnumeralType());
5455}
5456
5457/// Tests whether the type is categorized as a compound type.
5458///
5459/// \returns True for types specified in C++0x [basic.compound].
5460inline bool Type::isCompoundType() const {
5461  // C++0x [basic.compound]p1:
5462  //   Compound types can be constructed in the following ways:
5463  //    -- arrays of objects of a given type [...];
5464  return isArrayType() ||
5465  //    -- functions, which have parameters of given types [...];
5466         isFunctionType() ||
5467  //    -- pointers to void or objects or functions [...];
5468         isPointerType() ||
5469  //    -- references to objects or functions of a given type. [...]
5470         isReferenceType() ||
5471  //    -- classes containing a sequence of objects of various types, [...];
5472         isRecordType() ||
5473  //    -- unions, which are classes capable of containing objects of different
5474  //               types at different times;
5475         isUnionType() ||
5476  //    -- enumerations, which comprise a set of named constant values. [...];
5477         isEnumeralType() ||
5478  //    -- pointers to non-static class members, [...].
5479         isMemberPointerType();
5480}
5481
5482inline bool Type::isFunctionType() const {
5483  return isa<FunctionType>(CanonicalType);
5484}
5485inline bool Type::isPointerType() const {
5486  return isa<PointerType>(CanonicalType);
5487}
5488inline bool Type::isAnyPointerType() const {
5489  return isPointerType() || isObjCObjectPointerType();
5490}
5491inline bool Type::isBlockPointerType() const {
5492  return isa<BlockPointerType>(CanonicalType);
5493}
5494inline bool Type::isReferenceType() const {
5495  return isa<ReferenceType>(CanonicalType);
5496}
5497inline bool Type::isLValueReferenceType() const {
5498  return isa<LValueReferenceType>(CanonicalType);
5499}
5500inline bool Type::isRValueReferenceType() const {
5501  return isa<RValueReferenceType>(CanonicalType);
5502}
5503inline bool Type::isFunctionPointerType() const {
5504  if (const PointerType *T = getAs<PointerType>())
5505    return T->getPointeeType()->isFunctionType();
5506  else
5507    return false;
5508}
5509inline bool Type::isMemberPointerType() const {
5510  return isa<MemberPointerType>(CanonicalType);
5511}
5512inline bool Type::isMemberFunctionPointerType() const {
5513  if (const MemberPointerType* T = getAs<MemberPointerType>())
5514    return T->isMemberFunctionPointer();
5515  else
5516    return false;
5517}
5518inline bool Type::isMemberDataPointerType() const {
5519  if (const MemberPointerType* T = getAs<MemberPointerType>())
5520    return T->isMemberDataPointer();
5521  else
5522    return false;
5523}
5524inline bool Type::isArrayType() const {
5525  return isa<ArrayType>(CanonicalType);
5526}
5527inline bool Type::isConstantArrayType() const {
5528  return isa<ConstantArrayType>(CanonicalType);
5529}
5530inline bool Type::isIncompleteArrayType() const {
5531  return isa<IncompleteArrayType>(CanonicalType);
5532}
5533inline bool Type::isVariableArrayType() const {
5534  return isa<VariableArrayType>(CanonicalType);
5535}
5536inline bool Type::isDependentSizedArrayType() const {
5537  return isa<DependentSizedArrayType>(CanonicalType);
5538}
5539inline bool Type::isBuiltinType() const {
5540  return isa<BuiltinType>(CanonicalType);
5541}
5542inline bool Type::isRecordType() const {
5543  return isa<RecordType>(CanonicalType);
5544}
5545inline bool Type::isEnumeralType() const {
5546  return isa<EnumType>(CanonicalType);
5547}
5548inline bool Type::isAnyComplexType() const {
5549  return isa<ComplexType>(CanonicalType);
5550}
5551inline bool Type::isVectorType() const {
5552  return isa<VectorType>(CanonicalType);
5553}
5554inline bool Type::isExtVectorType() const {
5555  return isa<ExtVectorType>(CanonicalType);
5556}
5557inline bool Type::isObjCObjectPointerType() const {
5558  return isa<ObjCObjectPointerType>(CanonicalType);
5559}
5560inline bool Type::isObjCObjectType() const {
5561  return isa<ObjCObjectType>(CanonicalType);
5562}
5563inline bool Type::isObjCObjectOrInterfaceType() const {
5564  return isa<ObjCInterfaceType>(CanonicalType) ||
5565    isa<ObjCObjectType>(CanonicalType);
5566}
5567inline bool Type::isAtomicType() const {
5568  return isa<AtomicType>(CanonicalType);
5569}
5570
5571inline bool Type::isObjCQualifiedIdType() const {
5572  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
5573    return OPT->isObjCQualifiedIdType();
5574  return false;
5575}
5576inline bool Type::isObjCQualifiedClassType() const {
5577  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
5578    return OPT->isObjCQualifiedClassType();
5579  return false;
5580}
5581inline bool Type::isObjCIdType() const {
5582  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
5583    return OPT->isObjCIdType();
5584  return false;
5585}
5586inline bool Type::isObjCClassType() const {
5587  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
5588    return OPT->isObjCClassType();
5589  return false;
5590}
5591inline bool Type::isObjCSelType() const {
5592  if (const PointerType *OPT = getAs<PointerType>())
5593    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
5594  return false;
5595}
5596inline bool Type::isObjCBuiltinType() const {
5597  return isObjCIdType() || isObjCClassType() || isObjCSelType();
5598}
5599
5600#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
5601  inline bool Type::is##Id##Type() const { \
5602    return isSpecificBuiltinType(BuiltinType::Id); \
5603  }
5604#include "clang/Basic/OpenCLImageTypes.def"
5605
5606inline bool Type::isSamplerT() const {
5607  return isSpecificBuiltinType(BuiltinType::OCLSampler);
5608}
5609
5610inline bool Type::isEventT() const {
5611  return isSpecificBuiltinType(BuiltinType::OCLEvent);
5612}
5613
5614inline bool Type::isClkEventT() const {
5615  return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
5616}
5617
5618inline bool Type::isQueueT() const {
5619  return isSpecificBuiltinType(BuiltinType::OCLQueue);
5620}
5621
5622inline bool Type::isNDRangeT() const {
5623  return isSpecificBuiltinType(BuiltinType::OCLNDRange);
5624}
5625
5626inline bool Type::isReserveIDT() const {
5627  return isSpecificBuiltinType(BuiltinType::OCLReserveID);
5628}
5629
5630inline bool Type::isImageType() const {
5631#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
5632  return
5633#include "clang/Basic/OpenCLImageTypes.def"
5634      0; // end boolean or operation
5635}
5636
5637inline bool Type::isPipeType() const {
5638  return isa<PipeType>(CanonicalType);
5639}
5640
5641inline bool Type::isOpenCLSpecificType() const {
5642  return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
5643         isQueueT() || isNDRangeT() || isReserveIDT() || isPipeType();
5644}
5645
5646inline bool Type::isTemplateTypeParmType() const {
5647  return isa<TemplateTypeParmType>(CanonicalType);
5648}
5649
5650inline bool Type::isSpecificBuiltinType(unsigned K) const {
5651  if (const BuiltinType *BT = getAs<BuiltinType>())
5652    if (BT->getKind() == (BuiltinType::Kind) K)
5653      return true;
5654  return false;
5655}
5656
5657inline bool Type::isPlaceholderType() const {
5658  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5659    return BT->isPlaceholderType();
5660  return false;
5661}
5662
5663inline const BuiltinType *Type::getAsPlaceholderType() const {
5664  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5665    if (BT->isPlaceholderType())
5666      return BT;
5667  return nullptr;
5668}
5669
5670inline bool Type::isSpecificPlaceholderType(unsigned K) const {
5671  assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
5672  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5673    return (BT->getKind() == (BuiltinType::Kind) K);
5674  return false;
5675}
5676
5677inline bool Type::isNonOverloadPlaceholderType() const {
5678  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5679    return BT->isNonOverloadPlaceholderType();
5680  return false;
5681}
5682
5683inline bool Type::isVoidType() const {
5684  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5685    return BT->getKind() == BuiltinType::Void;
5686  return false;
5687}
5688
5689inline bool Type::isHalfType() const {
5690  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5691    return BT->getKind() == BuiltinType::Half;
5692  // FIXME: Should we allow complex __fp16? Probably not.
5693  return false;
5694}
5695
5696inline bool Type::isNullPtrType() const {
5697  if (const BuiltinType *BT = getAs<BuiltinType>())
5698    return BT->getKind() == BuiltinType::NullPtr;
5699  return false;
5700}
5701
5702extern bool IsEnumDeclComplete(EnumDecl *);
5703extern bool IsEnumDeclScoped(EnumDecl *);
5704
5705inline bool Type::isIntegerType() const {
5706  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5707    return BT->getKind() >= BuiltinType::Bool &&
5708           BT->getKind() <= BuiltinType::Int128;
5709  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
5710    // Incomplete enum types are not treated as integer types.
5711    // FIXME: In C++, enum types are never integer types.
5712    return IsEnumDeclComplete(ET->getDecl()) &&
5713      !IsEnumDeclScoped(ET->getDecl());
5714  }
5715  return false;
5716}
5717
5718inline bool Type::isScalarType() const {
5719  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5720    return BT->getKind() > BuiltinType::Void &&
5721           BT->getKind() <= BuiltinType::NullPtr;
5722  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5723    // Enums are scalar types, but only if they are defined.  Incomplete enums
5724    // are not treated as scalar types.
5725    return IsEnumDeclComplete(ET->getDecl());
5726  return isa<PointerType>(CanonicalType) ||
5727         isa<BlockPointerType>(CanonicalType) ||
5728         isa<MemberPointerType>(CanonicalType) ||
5729         isa<ComplexType>(CanonicalType) ||
5730         isa<ObjCObjectPointerType>(CanonicalType);
5731}
5732
5733inline bool Type::isIntegralOrEnumerationType() const {
5734  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5735    return BT->getKind() >= BuiltinType::Bool &&
5736           BT->getKind() <= BuiltinType::Int128;
5737
5738  // Check for a complete enum type; incomplete enum types are not properly an
5739  // enumeration type in the sense required here.
5740  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5741    return IsEnumDeclComplete(ET->getDecl());
5742
5743  return false;
5744}
5745
5746inline bool Type::isBooleanType() const {
5747  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5748    return BT->getKind() == BuiltinType::Bool;
5749  return false;
5750}
5751
5752inline bool Type::isUndeducedType() const {
5753  const AutoType *AT = getContainedAutoType();
5754  return AT && !AT->isDeduced();
5755}
5756
5757/// \brief Determines whether this is a type for which one can define
5758/// an overloaded operator.
5759inline bool Type::isOverloadableType() const {
5760  return isDependentType() || isRecordType() || isEnumeralType();
5761}
5762
5763/// \brief Determines whether this type can decay to a pointer type.
5764inline bool Type::canDecayToPointerType() const {
5765  return isFunctionType() || isArrayType();
5766}
5767
5768inline bool Type::hasPointerRepresentation() const {
5769  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
5770          isObjCObjectPointerType() || isNullPtrType());
5771}
5772
5773inline bool Type::hasObjCPointerRepresentation() const {
5774  return isObjCObjectPointerType();
5775}
5776
5777inline const Type *Type::getBaseElementTypeUnsafe() const {
5778  const Type *type = this;
5779  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
5780    type = arrayType->getElementType().getTypePtr();
5781  return type;
5782}
5783
5784inline const Type *Type::getPointeeOrArrayElementType() const {
5785  const Type *type = this;
5786  if (type->isAnyPointerType())
5787    return type->getPointeeType().getTypePtr();
5788  else if (type->isArrayType())
5789    return type->getBaseElementTypeUnsafe();
5790  return type;
5791}
5792
5793/// Insertion operator for diagnostics.  This allows sending QualType's into a
5794/// diagnostic with <<.
5795inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
5796                                           QualType T) {
5797  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5798                  DiagnosticsEngine::ak_qualtype);
5799  return DB;
5800}
5801
5802/// Insertion operator for partial diagnostics.  This allows sending QualType's
5803/// into a diagnostic with <<.
5804inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
5805                                           QualType T) {
5806  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5807                  DiagnosticsEngine::ak_qualtype);
5808  return PD;
5809}
5810
5811// Helper class template that is used by Type::getAs to ensure that one does
5812// not try to look through a qualified type to get to an array type.
5813template <typename T, bool isArrayType = (std::is_same<T, ArrayType>::value ||
5814                                          std::is_base_of<ArrayType, T>::value)>
5815struct ArrayType_cannot_be_used_with_getAs {};
5816
5817template<typename T>
5818struct ArrayType_cannot_be_used_with_getAs<T, true>;
5819
5820// Member-template getAs<specific type>'.
5821template <typename T> const T *Type::getAs() const {
5822  ArrayType_cannot_be_used_with_getAs<T> at;
5823  (void)at;
5824
5825  // If this is directly a T type, return it.
5826  if (const T *Ty = dyn_cast<T>(this))
5827    return Ty;
5828
5829  // If the canonical form of this type isn't the right kind, reject it.
5830  if (!isa<T>(CanonicalType))
5831    return nullptr;
5832
5833  // If this is a typedef for the type, strip the typedef off without
5834  // losing all typedef information.
5835  return cast<T>(getUnqualifiedDesugaredType());
5836}
5837
5838inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
5839  // If this is directly an array type, return it.
5840  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
5841    return arr;
5842
5843  // If the canonical form of this type isn't the right kind, reject it.
5844  if (!isa<ArrayType>(CanonicalType))
5845    return nullptr;
5846
5847  // If this is a typedef for the type, strip the typedef off without
5848  // losing all typedef information.
5849  return cast<ArrayType>(getUnqualifiedDesugaredType());
5850}
5851
5852template <typename T> const T *Type::castAs() const {
5853  ArrayType_cannot_be_used_with_getAs<T> at;
5854  (void) at;
5855
5856  if (const T *ty = dyn_cast<T>(this)) return ty;
5857  assert(isa<T>(CanonicalType));
5858  return cast<T>(getUnqualifiedDesugaredType());
5859}
5860
5861inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
5862  assert(isa<ArrayType>(CanonicalType));
5863  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
5864  return cast<ArrayType>(getUnqualifiedDesugaredType());
5865}
5866
5867}  // end namespace clang
5868
5869#endif
5870