1//==- CoreEngine.h - Path-Sensitive Dataflow Engine ----------------*- C++ -*-//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines a generic engine for intraprocedural, path-sensitive,
11//  dataflow analysis via graph reachability.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_COREENGINE_H
16#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_COREENGINE_H
17
18#include "clang/AST/Expr.h"
19#include "clang/Analysis/AnalysisContext.h"
20#include "clang/StaticAnalyzer/Core/PathSensitive/BlockCounter.h"
21#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
22#include "clang/StaticAnalyzer/Core/PathSensitive/FunctionSummary.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/WorkList.h"
24#include <memory>
25
26namespace clang {
27
28class ProgramPointTag;
29
30namespace ento {
31
32class NodeBuilder;
33
34//===----------------------------------------------------------------------===//
35/// CoreEngine - Implements the core logic of the graph-reachability
36///   analysis. It traverses the CFG and generates the ExplodedGraph.
37///   Program "states" are treated as opaque void pointers.
38///   The template class CoreEngine (which subclasses CoreEngine)
39///   provides the matching component to the engine that knows the actual types
40///   for states.  Note that this engine only dispatches to transfer functions
41///   at the statement and block-level.  The analyses themselves must implement
42///   any transfer function logic and the sub-expression level (if any).
43class CoreEngine {
44  friend struct NodeBuilderContext;
45  friend class NodeBuilder;
46  friend class ExprEngine;
47  friend class CommonNodeBuilder;
48  friend class IndirectGotoNodeBuilder;
49  friend class SwitchNodeBuilder;
50  friend class EndOfFunctionNodeBuilder;
51public:
52  typedef std::vector<std::pair<BlockEdge, const ExplodedNode*> >
53            BlocksExhausted;
54
55  typedef std::vector<std::pair<const CFGBlock*, const ExplodedNode*> >
56            BlocksAborted;
57
58private:
59
60  SubEngine& SubEng;
61
62  /// G - The simulation graph.  Each node is a (location,state) pair.
63  mutable ExplodedGraph G;
64
65  /// WList - A set of queued nodes that need to be processed by the
66  ///  worklist algorithm.  It is up to the implementation of WList to decide
67  ///  the order that nodes are processed.
68  std::unique_ptr<WorkList> WList;
69
70  /// BCounterFactory - A factory object for created BlockCounter objects.
71  ///   These are used to record for key nodes in the ExplodedGraph the
72  ///   number of times different CFGBlocks have been visited along a path.
73  BlockCounter::Factory BCounterFactory;
74
75  /// The locations where we stopped doing work because we visited a location
76  ///  too many times.
77  BlocksExhausted blocksExhausted;
78
79  /// The locations where we stopped because the engine aborted analysis,
80  /// usually because it could not reason about something.
81  BlocksAborted blocksAborted;
82
83  /// The information about functions shared by the whole translation unit.
84  /// (This data is owned by AnalysisConsumer.)
85  FunctionSummariesTy *FunctionSummaries;
86
87  void generateNode(const ProgramPoint &Loc,
88                    ProgramStateRef State,
89                    ExplodedNode *Pred);
90
91  void HandleBlockEdge(const BlockEdge &E, ExplodedNode *Pred);
92  void HandleBlockEntrance(const BlockEntrance &E, ExplodedNode *Pred);
93  void HandleBlockExit(const CFGBlock *B, ExplodedNode *Pred);
94
95  void HandleCallEnter(const CallEnter &CE, ExplodedNode *Pred);
96
97  void HandlePostStmt(const CFGBlock *B, unsigned StmtIdx, ExplodedNode *Pred);
98
99  void HandleBranch(const Stmt *Cond, const Stmt *Term, const CFGBlock *B,
100                    ExplodedNode *Pred);
101  void HandleCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE,
102                                    const CFGBlock *B, ExplodedNode *Pred);
103
104  /// Handle conditional logic for running static initializers.
105  void HandleStaticInit(const DeclStmt *DS, const CFGBlock *B,
106                        ExplodedNode *Pred);
107
108private:
109  CoreEngine(const CoreEngine &) = delete;
110  void operator=(const CoreEngine &) = delete;
111
112  ExplodedNode *generateCallExitBeginNode(ExplodedNode *N);
113
114public:
115  /// Construct a CoreEngine object to analyze the provided CFG.
116  CoreEngine(SubEngine &subengine, FunctionSummariesTy *FS)
117      : SubEng(subengine), WList(WorkList::makeDFS()),
118        BCounterFactory(G.getAllocator()), FunctionSummaries(FS) {}
119
120  /// getGraph - Returns the exploded graph.
121  ExplodedGraph &getGraph() { return G; }
122
123  /// ExecuteWorkList - Run the worklist algorithm for a maximum number of
124  ///  steps.  Returns true if there is still simulation state on the worklist.
125  bool ExecuteWorkList(const LocationContext *L, unsigned Steps,
126                       ProgramStateRef InitState);
127  /// Returns true if there is still simulation state on the worklist.
128  bool ExecuteWorkListWithInitialState(const LocationContext *L,
129                                       unsigned Steps,
130                                       ProgramStateRef InitState,
131                                       ExplodedNodeSet &Dst);
132
133  /// Dispatch the work list item based on the given location information.
134  /// Use Pred parameter as the predecessor state.
135  void dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
136                        const WorkListUnit& WU);
137
138  // Functions for external checking of whether we have unfinished work
139  bool wasBlockAborted() const { return !blocksAborted.empty(); }
140  bool wasBlocksExhausted() const { return !blocksExhausted.empty(); }
141  bool hasWorkRemaining() const { return wasBlocksExhausted() ||
142                                         WList->hasWork() ||
143                                         wasBlockAborted(); }
144
145  /// Inform the CoreEngine that a basic block was aborted because
146  /// it could not be completely analyzed.
147  void addAbortedBlock(const ExplodedNode *node, const CFGBlock *block) {
148    blocksAborted.push_back(std::make_pair(block, node));
149  }
150
151  WorkList *getWorkList() const { return WList.get(); }
152
153  BlocksExhausted::const_iterator blocks_exhausted_begin() const {
154    return blocksExhausted.begin();
155  }
156  BlocksExhausted::const_iterator blocks_exhausted_end() const {
157    return blocksExhausted.end();
158  }
159  BlocksAborted::const_iterator blocks_aborted_begin() const {
160    return blocksAborted.begin();
161  }
162  BlocksAborted::const_iterator blocks_aborted_end() const {
163    return blocksAborted.end();
164  }
165
166  /// \brief Enqueue the given set of nodes onto the work list.
167  void enqueue(ExplodedNodeSet &Set);
168
169  /// \brief Enqueue nodes that were created as a result of processing
170  /// a statement onto the work list.
171  void enqueue(ExplodedNodeSet &Set, const CFGBlock *Block, unsigned Idx);
172
173  /// \brief enqueue the nodes corresponding to the end of function onto the
174  /// end of path / work list.
175  void enqueueEndOfFunction(ExplodedNodeSet &Set);
176
177  /// \brief Enqueue a single node created as a result of statement processing.
178  void enqueueStmtNode(ExplodedNode *N, const CFGBlock *Block, unsigned Idx);
179};
180
181// TODO: Turn into a calss.
182struct NodeBuilderContext {
183  const CoreEngine &Eng;
184  const CFGBlock *Block;
185  const LocationContext *LC;
186  NodeBuilderContext(const CoreEngine &E, const CFGBlock *B, ExplodedNode *N)
187    : Eng(E), Block(B), LC(N->getLocationContext()) { assert(B); }
188
189  /// \brief Return the CFGBlock associated with this builder.
190  const CFGBlock *getBlock() const { return Block; }
191
192  /// \brief Returns the number of times the current basic block has been
193  /// visited on the exploded graph path.
194  unsigned blockCount() const {
195    return Eng.WList->getBlockCounter().getNumVisited(
196                    LC->getCurrentStackFrame(),
197                    Block->getBlockID());
198  }
199};
200
201/// \class NodeBuilder
202/// \brief This is the simplest builder which generates nodes in the
203/// ExplodedGraph.
204///
205/// The main benefit of the builder is that it automatically tracks the
206/// frontier nodes (or destination set). This is the set of nodes which should
207/// be propagated to the next step / builder. They are the nodes which have been
208/// added to the builder (either as the input node set or as the newly
209/// constructed nodes) but did not have any outgoing transitions added.
210class NodeBuilder {
211  virtual void anchor();
212protected:
213  const NodeBuilderContext &C;
214
215  /// Specifies if the builder results have been finalized. For example, if it
216  /// is set to false, autotransitions are yet to be generated.
217  bool Finalized;
218  bool HasGeneratedNodes;
219  /// \brief The frontier set - a set of nodes which need to be propagated after
220  /// the builder dies.
221  ExplodedNodeSet &Frontier;
222
223  /// Checkes if the results are ready.
224  virtual bool checkResults() {
225    if (!Finalized)
226      return false;
227    return true;
228  }
229
230  bool hasNoSinksInFrontier() {
231    for (iterator I = Frontier.begin(), E = Frontier.end(); I != E; ++I) {
232      if ((*I)->isSink())
233        return false;
234    }
235    return true;
236  }
237
238  /// Allow subclasses to finalize results before result_begin() is executed.
239  virtual void finalizeResults() {}
240
241  ExplodedNode *generateNodeImpl(const ProgramPoint &PP,
242                                 ProgramStateRef State,
243                                 ExplodedNode *Pred,
244                                 bool MarkAsSink = false);
245
246public:
247  NodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
248              const NodeBuilderContext &Ctx, bool F = true)
249    : C(Ctx), Finalized(F), HasGeneratedNodes(false), Frontier(DstSet) {
250    Frontier.Add(SrcNode);
251  }
252
253  NodeBuilder(const ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
254              const NodeBuilderContext &Ctx, bool F = true)
255    : C(Ctx), Finalized(F), HasGeneratedNodes(false), Frontier(DstSet) {
256    Frontier.insert(SrcSet);
257    assert(hasNoSinksInFrontier());
258  }
259
260  virtual ~NodeBuilder() {}
261
262  /// \brief Generates a node in the ExplodedGraph.
263  ExplodedNode *generateNode(const ProgramPoint &PP,
264                             ProgramStateRef State,
265                             ExplodedNode *Pred) {
266    return generateNodeImpl(PP, State, Pred, false);
267  }
268
269  /// \brief Generates a sink in the ExplodedGraph.
270  ///
271  /// When a node is marked as sink, the exploration from the node is stopped -
272  /// the node becomes the last node on the path and certain kinds of bugs are
273  /// suppressed.
274  ExplodedNode *generateSink(const ProgramPoint &PP,
275                             ProgramStateRef State,
276                             ExplodedNode *Pred) {
277    return generateNodeImpl(PP, State, Pred, true);
278  }
279
280  const ExplodedNodeSet &getResults() {
281    finalizeResults();
282    assert(checkResults());
283    return Frontier;
284  }
285
286  typedef ExplodedNodeSet::iterator iterator;
287  /// \brief Iterators through the results frontier.
288  inline iterator begin() {
289    finalizeResults();
290    assert(checkResults());
291    return Frontier.begin();
292  }
293  inline iterator end() {
294    finalizeResults();
295    return Frontier.end();
296  }
297
298  const NodeBuilderContext &getContext() { return C; }
299  bool hasGeneratedNodes() { return HasGeneratedNodes; }
300
301  void takeNodes(const ExplodedNodeSet &S) {
302    for (ExplodedNodeSet::iterator I = S.begin(), E = S.end(); I != E; ++I )
303      Frontier.erase(*I);
304  }
305  void takeNodes(ExplodedNode *N) { Frontier.erase(N); }
306  void addNodes(const ExplodedNodeSet &S) { Frontier.insert(S); }
307  void addNodes(ExplodedNode *N) { Frontier.Add(N); }
308};
309
310/// \class NodeBuilderWithSinks
311/// \brief This node builder keeps track of the generated sink nodes.
312class NodeBuilderWithSinks: public NodeBuilder {
313  void anchor() override;
314protected:
315  SmallVector<ExplodedNode*, 2> sinksGenerated;
316  ProgramPoint &Location;
317
318public:
319  NodeBuilderWithSinks(ExplodedNode *Pred, ExplodedNodeSet &DstSet,
320                       const NodeBuilderContext &Ctx, ProgramPoint &L)
321    : NodeBuilder(Pred, DstSet, Ctx), Location(L) {}
322
323  ExplodedNode *generateNode(ProgramStateRef State,
324                             ExplodedNode *Pred,
325                             const ProgramPointTag *Tag = nullptr) {
326    const ProgramPoint &LocalLoc = (Tag ? Location.withTag(Tag) : Location);
327    return NodeBuilder::generateNode(LocalLoc, State, Pred);
328  }
329
330  ExplodedNode *generateSink(ProgramStateRef State, ExplodedNode *Pred,
331                             const ProgramPointTag *Tag = nullptr) {
332    const ProgramPoint &LocalLoc = (Tag ? Location.withTag(Tag) : Location);
333    ExplodedNode *N = NodeBuilder::generateSink(LocalLoc, State, Pred);
334    if (N && N->isSink())
335      sinksGenerated.push_back(N);
336    return N;
337  }
338
339  const SmallVectorImpl<ExplodedNode*> &getSinks() const {
340    return sinksGenerated;
341  }
342};
343
344/// \class StmtNodeBuilder
345/// \brief This builder class is useful for generating nodes that resulted from
346/// visiting a statement. The main difference from its parent NodeBuilder is
347/// that it creates a statement specific ProgramPoint.
348class StmtNodeBuilder: public NodeBuilder {
349  NodeBuilder *EnclosingBldr;
350public:
351
352  /// \brief Constructs a StmtNodeBuilder. If the builder is going to process
353  /// nodes currently owned by another builder(with larger scope), use
354  /// Enclosing builder to transfer ownership.
355  StmtNodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
356                  const NodeBuilderContext &Ctx,
357                  NodeBuilder *Enclosing = nullptr)
358    : NodeBuilder(SrcNode, DstSet, Ctx), EnclosingBldr(Enclosing) {
359    if (EnclosingBldr)
360      EnclosingBldr->takeNodes(SrcNode);
361  }
362
363  StmtNodeBuilder(ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
364                  const NodeBuilderContext &Ctx,
365                  NodeBuilder *Enclosing = nullptr)
366    : NodeBuilder(SrcSet, DstSet, Ctx), EnclosingBldr(Enclosing) {
367    if (EnclosingBldr)
368      for (ExplodedNodeSet::iterator I = SrcSet.begin(),
369                                     E = SrcSet.end(); I != E; ++I )
370        EnclosingBldr->takeNodes(*I);
371  }
372
373  ~StmtNodeBuilder() override;
374
375  using NodeBuilder::generateNode;
376  using NodeBuilder::generateSink;
377
378  ExplodedNode *generateNode(const Stmt *S,
379                             ExplodedNode *Pred,
380                             ProgramStateRef St,
381                             const ProgramPointTag *tag = nullptr,
382                             ProgramPoint::Kind K = ProgramPoint::PostStmtKind){
383    const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
384                                  Pred->getLocationContext(), tag);
385    return NodeBuilder::generateNode(L, St, Pred);
386  }
387
388  ExplodedNode *generateSink(const Stmt *S,
389                             ExplodedNode *Pred,
390                             ProgramStateRef St,
391                             const ProgramPointTag *tag = nullptr,
392                             ProgramPoint::Kind K = ProgramPoint::PostStmtKind){
393    const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
394                                  Pred->getLocationContext(), tag);
395    return NodeBuilder::generateSink(L, St, Pred);
396  }
397};
398
399/// \brief BranchNodeBuilder is responsible for constructing the nodes
400/// corresponding to the two branches of the if statement - true and false.
401class BranchNodeBuilder: public NodeBuilder {
402  void anchor() override;
403  const CFGBlock *DstT;
404  const CFGBlock *DstF;
405
406  bool InFeasibleTrue;
407  bool InFeasibleFalse;
408
409public:
410  BranchNodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
411                    const NodeBuilderContext &C,
412                    const CFGBlock *dstT, const CFGBlock *dstF)
413  : NodeBuilder(SrcNode, DstSet, C), DstT(dstT), DstF(dstF),
414    InFeasibleTrue(!DstT), InFeasibleFalse(!DstF) {
415    // The branch node builder does not generate autotransitions.
416    // If there are no successors it means that both branches are infeasible.
417    takeNodes(SrcNode);
418  }
419
420  BranchNodeBuilder(const ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
421                    const NodeBuilderContext &C,
422                    const CFGBlock *dstT, const CFGBlock *dstF)
423  : NodeBuilder(SrcSet, DstSet, C), DstT(dstT), DstF(dstF),
424    InFeasibleTrue(!DstT), InFeasibleFalse(!DstF) {
425    takeNodes(SrcSet);
426  }
427
428  ExplodedNode *generateNode(ProgramStateRef State, bool branch,
429                             ExplodedNode *Pred);
430
431  const CFGBlock *getTargetBlock(bool branch) const {
432    return branch ? DstT : DstF;
433  }
434
435  void markInfeasible(bool branch) {
436    if (branch)
437      InFeasibleTrue = true;
438    else
439      InFeasibleFalse = true;
440  }
441
442  bool isFeasible(bool branch) {
443    return branch ? !InFeasibleTrue : !InFeasibleFalse;
444  }
445};
446
447class IndirectGotoNodeBuilder {
448  CoreEngine& Eng;
449  const CFGBlock *Src;
450  const CFGBlock &DispatchBlock;
451  const Expr *E;
452  ExplodedNode *Pred;
453
454public:
455  IndirectGotoNodeBuilder(ExplodedNode *pred, const CFGBlock *src,
456                    const Expr *e, const CFGBlock *dispatch, CoreEngine* eng)
457    : Eng(*eng), Src(src), DispatchBlock(*dispatch), E(e), Pred(pred) {}
458
459  class iterator {
460    CFGBlock::const_succ_iterator I;
461
462    friend class IndirectGotoNodeBuilder;
463    iterator(CFGBlock::const_succ_iterator i) : I(i) {}
464  public:
465
466    iterator &operator++() { ++I; return *this; }
467    bool operator!=(const iterator &X) const { return I != X.I; }
468
469    const LabelDecl *getLabel() const {
470      return cast<LabelStmt>((*I)->getLabel())->getDecl();
471    }
472
473    const CFGBlock *getBlock() const {
474      return *I;
475    }
476  };
477
478  iterator begin() { return iterator(DispatchBlock.succ_begin()); }
479  iterator end() { return iterator(DispatchBlock.succ_end()); }
480
481  ExplodedNode *generateNode(const iterator &I,
482                             ProgramStateRef State,
483                             bool isSink = false);
484
485  const Expr *getTarget() const { return E; }
486
487  ProgramStateRef getState() const { return Pred->State; }
488
489  const LocationContext *getLocationContext() const {
490    return Pred->getLocationContext();
491  }
492};
493
494class SwitchNodeBuilder {
495  CoreEngine& Eng;
496  const CFGBlock *Src;
497  const Expr *Condition;
498  ExplodedNode *Pred;
499
500public:
501  SwitchNodeBuilder(ExplodedNode *pred, const CFGBlock *src,
502                    const Expr *condition, CoreEngine* eng)
503  : Eng(*eng), Src(src), Condition(condition), Pred(pred) {}
504
505  class iterator {
506    CFGBlock::const_succ_reverse_iterator I;
507
508    friend class SwitchNodeBuilder;
509    iterator(CFGBlock::const_succ_reverse_iterator i) : I(i) {}
510
511  public:
512    iterator &operator++() { ++I; return *this; }
513    bool operator!=(const iterator &X) const { return I != X.I; }
514    bool operator==(const iterator &X) const { return I == X.I; }
515
516    const CaseStmt *getCase() const {
517      return cast<CaseStmt>((*I)->getLabel());
518    }
519
520    const CFGBlock *getBlock() const {
521      return *I;
522    }
523  };
524
525  iterator begin() { return iterator(Src->succ_rbegin()+1); }
526  iterator end() { return iterator(Src->succ_rend()); }
527
528  const SwitchStmt *getSwitch() const {
529    return cast<SwitchStmt>(Src->getTerminator());
530  }
531
532  ExplodedNode *generateCaseStmtNode(const iterator &I,
533                                     ProgramStateRef State);
534
535  ExplodedNode *generateDefaultCaseNode(ProgramStateRef State,
536                                        bool isSink = false);
537
538  const Expr *getCondition() const { return Condition; }
539
540  ProgramStateRef getState() const { return Pred->State; }
541
542  const LocationContext *getLocationContext() const {
543    return Pred->getLocationContext();
544  }
545};
546
547} // end ento namespace
548} // end clang namespace
549
550#endif
551