1//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-function state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGBlocks.h"
16#include "CGCleanup.h"
17#include "CGCUDARuntime.h"
18#include "CGCXXABI.h"
19#include "CGDebugInfo.h"
20#include "CGOpenMPRuntime.h"
21#include "CodeGenModule.h"
22#include "CodeGenPGO.h"
23#include "TargetInfo.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/Decl.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/StmtCXX.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/CodeGen/CGFunctionInfo.h"
31#include "clang/Frontend/CodeGenOptions.h"
32#include "clang/Sema/SemaDiagnostic.h"
33#include "llvm/IR/DataLayout.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/IR/MDBuilder.h"
36#include "llvm/IR/Operator.h"
37using namespace clang;
38using namespace CodeGen;
39
40CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
41    : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
42      Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
43              CGBuilderInserterTy(this)),
44      CurFn(nullptr), ReturnValue(Address::invalid()),
45      CapturedStmtInfo(nullptr),
46      SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
47      CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
48      IsOutlinedSEHHelper(false),
49      BlockInfo(nullptr), BlockPointer(nullptr),
50      LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
51      NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
52      ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
53      DebugInfo(CGM.getModuleDebugInfo()),
54      DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
55      PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
56      CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
57      NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
58      CXXABIThisValue(nullptr), CXXThisValue(nullptr),
59      CXXStructorImplicitParamDecl(nullptr),
60      CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
61      CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
62      TerminateHandler(nullptr), TrapBB(nullptr) {
63  if (!suppressNewContext)
64    CGM.getCXXABI().getMangleContext().startNewFunction();
65
66  llvm::FastMathFlags FMF;
67  if (CGM.getLangOpts().FastMath)
68    FMF.setUnsafeAlgebra();
69  if (CGM.getLangOpts().FiniteMathOnly) {
70    FMF.setNoNaNs();
71    FMF.setNoInfs();
72  }
73  if (CGM.getCodeGenOpts().NoNaNsFPMath) {
74    FMF.setNoNaNs();
75  }
76  if (CGM.getCodeGenOpts().NoSignedZeros) {
77    FMF.setNoSignedZeros();
78  }
79  if (CGM.getCodeGenOpts().ReciprocalMath) {
80    FMF.setAllowReciprocal();
81  }
82  Builder.setFastMathFlags(FMF);
83}
84
85CodeGenFunction::~CodeGenFunction() {
86  assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
87
88  // If there are any unclaimed block infos, go ahead and destroy them
89  // now.  This can happen if IR-gen gets clever and skips evaluating
90  // something.
91  if (FirstBlockInfo)
92    destroyBlockInfos(FirstBlockInfo);
93
94  if (getLangOpts().OpenMP) {
95    CGM.getOpenMPRuntime().functionFinished(*this);
96  }
97}
98
99CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
100                                                     AlignmentSource *Source) {
101  return getNaturalTypeAlignment(T->getPointeeType(), Source,
102                                 /*forPointee*/ true);
103}
104
105CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
106                                                   AlignmentSource *Source,
107                                                   bool forPointeeType) {
108  // Honor alignment typedef attributes even on incomplete types.
109  // We also honor them straight for C++ class types, even as pointees;
110  // there's an expressivity gap here.
111  if (auto TT = T->getAs<TypedefType>()) {
112    if (auto Align = TT->getDecl()->getMaxAlignment()) {
113      if (Source) *Source = AlignmentSource::AttributedType;
114      return getContext().toCharUnitsFromBits(Align);
115    }
116  }
117
118  if (Source) *Source = AlignmentSource::Type;
119
120  CharUnits Alignment;
121  if (T->isIncompleteType()) {
122    Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
123  } else {
124    // For C++ class pointees, we don't know whether we're pointing at a
125    // base or a complete object, so we generally need to use the
126    // non-virtual alignment.
127    const CXXRecordDecl *RD;
128    if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
129      Alignment = CGM.getClassPointerAlignment(RD);
130    } else {
131      Alignment = getContext().getTypeAlignInChars(T);
132    }
133
134    // Cap to the global maximum type alignment unless the alignment
135    // was somehow explicit on the type.
136    if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
137      if (Alignment.getQuantity() > MaxAlign &&
138          !getContext().isAlignmentRequired(T))
139        Alignment = CharUnits::fromQuantity(MaxAlign);
140    }
141  }
142  return Alignment;
143}
144
145LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
146  AlignmentSource AlignSource;
147  CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource);
148  return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource,
149                          CGM.getTBAAInfo(T));
150}
151
152/// Given a value of type T* that may not be to a complete object,
153/// construct an l-value with the natural pointee alignment of T.
154LValue
155CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
156  AlignmentSource AlignSource;
157  CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true);
158  return MakeAddrLValue(Address(V, Align), T, AlignSource);
159}
160
161
162llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
163  return CGM.getTypes().ConvertTypeForMem(T);
164}
165
166llvm::Type *CodeGenFunction::ConvertType(QualType T) {
167  return CGM.getTypes().ConvertType(T);
168}
169
170TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
171  type = type.getCanonicalType();
172  while (true) {
173    switch (type->getTypeClass()) {
174#define TYPE(name, parent)
175#define ABSTRACT_TYPE(name, parent)
176#define NON_CANONICAL_TYPE(name, parent) case Type::name:
177#define DEPENDENT_TYPE(name, parent) case Type::name:
178#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
179#include "clang/AST/TypeNodes.def"
180      llvm_unreachable("non-canonical or dependent type in IR-generation");
181
182    case Type::Auto:
183      llvm_unreachable("undeduced auto type in IR-generation");
184
185    // Various scalar types.
186    case Type::Builtin:
187    case Type::Pointer:
188    case Type::BlockPointer:
189    case Type::LValueReference:
190    case Type::RValueReference:
191    case Type::MemberPointer:
192    case Type::Vector:
193    case Type::ExtVector:
194    case Type::FunctionProto:
195    case Type::FunctionNoProto:
196    case Type::Enum:
197    case Type::ObjCObjectPointer:
198    case Type::Pipe:
199      return TEK_Scalar;
200
201    // Complexes.
202    case Type::Complex:
203      return TEK_Complex;
204
205    // Arrays, records, and Objective-C objects.
206    case Type::ConstantArray:
207    case Type::IncompleteArray:
208    case Type::VariableArray:
209    case Type::Record:
210    case Type::ObjCObject:
211    case Type::ObjCInterface:
212      return TEK_Aggregate;
213
214    // We operate on atomic values according to their underlying type.
215    case Type::Atomic:
216      type = cast<AtomicType>(type)->getValueType();
217      continue;
218    }
219    llvm_unreachable("unknown type kind!");
220  }
221}
222
223llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
224  // For cleanliness, we try to avoid emitting the return block for
225  // simple cases.
226  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
227
228  if (CurBB) {
229    assert(!CurBB->getTerminator() && "Unexpected terminated block.");
230
231    // We have a valid insert point, reuse it if it is empty or there are no
232    // explicit jumps to the return block.
233    if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
234      ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
235      delete ReturnBlock.getBlock();
236    } else
237      EmitBlock(ReturnBlock.getBlock());
238    return llvm::DebugLoc();
239  }
240
241  // Otherwise, if the return block is the target of a single direct
242  // branch then we can just put the code in that block instead. This
243  // cleans up functions which started with a unified return block.
244  if (ReturnBlock.getBlock()->hasOneUse()) {
245    llvm::BranchInst *BI =
246      dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
247    if (BI && BI->isUnconditional() &&
248        BI->getSuccessor(0) == ReturnBlock.getBlock()) {
249      // Record/return the DebugLoc of the simple 'return' expression to be used
250      // later by the actual 'ret' instruction.
251      llvm::DebugLoc Loc = BI->getDebugLoc();
252      Builder.SetInsertPoint(BI->getParent());
253      BI->eraseFromParent();
254      delete ReturnBlock.getBlock();
255      return Loc;
256    }
257  }
258
259  // FIXME: We are at an unreachable point, there is no reason to emit the block
260  // unless it has uses. However, we still need a place to put the debug
261  // region.end for now.
262
263  EmitBlock(ReturnBlock.getBlock());
264  return llvm::DebugLoc();
265}
266
267static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
268  if (!BB) return;
269  if (!BB->use_empty())
270    return CGF.CurFn->getBasicBlockList().push_back(BB);
271  delete BB;
272}
273
274void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
275  assert(BreakContinueStack.empty() &&
276         "mismatched push/pop in break/continue stack!");
277
278  bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
279    && NumSimpleReturnExprs == NumReturnExprs
280    && ReturnBlock.getBlock()->use_empty();
281  // Usually the return expression is evaluated before the cleanup
282  // code.  If the function contains only a simple return statement,
283  // such as a constant, the location before the cleanup code becomes
284  // the last useful breakpoint in the function, because the simple
285  // return expression will be evaluated after the cleanup code. To be
286  // safe, set the debug location for cleanup code to the location of
287  // the return statement.  Otherwise the cleanup code should be at the
288  // end of the function's lexical scope.
289  //
290  // If there are multiple branches to the return block, the branch
291  // instructions will get the location of the return statements and
292  // all will be fine.
293  if (CGDebugInfo *DI = getDebugInfo()) {
294    if (OnlySimpleReturnStmts)
295      DI->EmitLocation(Builder, LastStopPoint);
296    else
297      DI->EmitLocation(Builder, EndLoc);
298  }
299
300  // Pop any cleanups that might have been associated with the
301  // parameters.  Do this in whatever block we're currently in; it's
302  // important to do this before we enter the return block or return
303  // edges will be *really* confused.
304  bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
305  bool HasOnlyLifetimeMarkers =
306      HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
307  bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
308  if (HasCleanups) {
309    // Make sure the line table doesn't jump back into the body for
310    // the ret after it's been at EndLoc.
311    if (CGDebugInfo *DI = getDebugInfo())
312      if (OnlySimpleReturnStmts)
313        DI->EmitLocation(Builder, EndLoc);
314
315    PopCleanupBlocks(PrologueCleanupDepth);
316  }
317
318  // Emit function epilog (to return).
319  llvm::DebugLoc Loc = EmitReturnBlock();
320
321  if (ShouldInstrumentFunction())
322    EmitFunctionInstrumentation("__cyg_profile_func_exit");
323
324  // Emit debug descriptor for function end.
325  if (CGDebugInfo *DI = getDebugInfo())
326    DI->EmitFunctionEnd(Builder);
327
328  // Reset the debug location to that of the simple 'return' expression, if any
329  // rather than that of the end of the function's scope '}'.
330  ApplyDebugLocation AL(*this, Loc);
331  EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
332  EmitEndEHSpec(CurCodeDecl);
333
334  assert(EHStack.empty() &&
335         "did not remove all scopes from cleanup stack!");
336
337  // If someone did an indirect goto, emit the indirect goto block at the end of
338  // the function.
339  if (IndirectBranch) {
340    EmitBlock(IndirectBranch->getParent());
341    Builder.ClearInsertionPoint();
342  }
343
344  // If some of our locals escaped, insert a call to llvm.localescape in the
345  // entry block.
346  if (!EscapedLocals.empty()) {
347    // Invert the map from local to index into a simple vector. There should be
348    // no holes.
349    SmallVector<llvm::Value *, 4> EscapeArgs;
350    EscapeArgs.resize(EscapedLocals.size());
351    for (auto &Pair : EscapedLocals)
352      EscapeArgs[Pair.second] = Pair.first;
353    llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
354        &CGM.getModule(), llvm::Intrinsic::localescape);
355    CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
356  }
357
358  // Remove the AllocaInsertPt instruction, which is just a convenience for us.
359  llvm::Instruction *Ptr = AllocaInsertPt;
360  AllocaInsertPt = nullptr;
361  Ptr->eraseFromParent();
362
363  // If someone took the address of a label but never did an indirect goto, we
364  // made a zero entry PHI node, which is illegal, zap it now.
365  if (IndirectBranch) {
366    llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
367    if (PN->getNumIncomingValues() == 0) {
368      PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
369      PN->eraseFromParent();
370    }
371  }
372
373  EmitIfUsed(*this, EHResumeBlock);
374  EmitIfUsed(*this, TerminateLandingPad);
375  EmitIfUsed(*this, TerminateHandler);
376  EmitIfUsed(*this, UnreachableBlock);
377
378  if (CGM.getCodeGenOpts().EmitDeclMetadata)
379    EmitDeclMetadata();
380
381  for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
382           I = DeferredReplacements.begin(),
383           E = DeferredReplacements.end();
384       I != E; ++I) {
385    I->first->replaceAllUsesWith(I->second);
386    I->first->eraseFromParent();
387  }
388}
389
390/// ShouldInstrumentFunction - Return true if the current function should be
391/// instrumented with __cyg_profile_func_* calls
392bool CodeGenFunction::ShouldInstrumentFunction() {
393  if (!CGM.getCodeGenOpts().InstrumentFunctions)
394    return false;
395  if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
396    return false;
397  return true;
398}
399
400/// ShouldXRayInstrument - Return true if the current function should be
401/// instrumented with XRay nop sleds.
402bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
403  return CGM.getCodeGenOpts().XRayInstrumentFunctions;
404}
405
406/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
407/// instrumentation function with the current function and the call site, if
408/// function instrumentation is enabled.
409void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
410  auto NL = ApplyDebugLocation::CreateArtificial(*this);
411  // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
412  llvm::PointerType *PointerTy = Int8PtrTy;
413  llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
414  llvm::FunctionType *FunctionTy =
415    llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
416
417  llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
418  llvm::CallInst *CallSite = Builder.CreateCall(
419    CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
420    llvm::ConstantInt::get(Int32Ty, 0),
421    "callsite");
422
423  llvm::Value *args[] = {
424    llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
425    CallSite
426  };
427
428  EmitNounwindRuntimeCall(F, args);
429}
430
431void CodeGenFunction::EmitMCountInstrumentation() {
432  llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
433
434  llvm::Constant *MCountFn =
435    CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
436  EmitNounwindRuntimeCall(MCountFn);
437}
438
439// OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
440// information in the program executable. The argument information stored
441// includes the argument name, its type, the address and access qualifiers used.
442static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
443                                 CodeGenModule &CGM, llvm::LLVMContext &Context,
444                                 CGBuilderTy &Builder, ASTContext &ASTCtx) {
445  // Create MDNodes that represent the kernel arg metadata.
446  // Each MDNode is a list in the form of "key", N number of values which is
447  // the same number of values as their are kernel arguments.
448
449  const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
450
451  // MDNode for the kernel argument address space qualifiers.
452  SmallVector<llvm::Metadata *, 8> addressQuals;
453
454  // MDNode for the kernel argument access qualifiers (images only).
455  SmallVector<llvm::Metadata *, 8> accessQuals;
456
457  // MDNode for the kernel argument type names.
458  SmallVector<llvm::Metadata *, 8> argTypeNames;
459
460  // MDNode for the kernel argument base type names.
461  SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
462
463  // MDNode for the kernel argument type qualifiers.
464  SmallVector<llvm::Metadata *, 8> argTypeQuals;
465
466  // MDNode for the kernel argument names.
467  SmallVector<llvm::Metadata *, 8> argNames;
468
469  for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
470    const ParmVarDecl *parm = FD->getParamDecl(i);
471    QualType ty = parm->getType();
472    std::string typeQuals;
473
474    if (ty->isPointerType()) {
475      QualType pointeeTy = ty->getPointeeType();
476
477      // Get address qualifier.
478      addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
479          ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
480
481      // Get argument type name.
482      std::string typeName =
483          pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
484
485      // Turn "unsigned type" to "utype"
486      std::string::size_type pos = typeName.find("unsigned");
487      if (pointeeTy.isCanonical() && pos != std::string::npos)
488        typeName.erase(pos+1, 8);
489
490      argTypeNames.push_back(llvm::MDString::get(Context, typeName));
491
492      std::string baseTypeName =
493          pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
494              Policy) +
495          "*";
496
497      // Turn "unsigned type" to "utype"
498      pos = baseTypeName.find("unsigned");
499      if (pos != std::string::npos)
500        baseTypeName.erase(pos+1, 8);
501
502      argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
503
504      // Get argument type qualifiers:
505      if (ty.isRestrictQualified())
506        typeQuals = "restrict";
507      if (pointeeTy.isConstQualified() ||
508          (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
509        typeQuals += typeQuals.empty() ? "const" : " const";
510      if (pointeeTy.isVolatileQualified())
511        typeQuals += typeQuals.empty() ? "volatile" : " volatile";
512    } else {
513      uint32_t AddrSpc = 0;
514      bool isPipe = ty->isPipeType();
515      if (ty->isImageType() || isPipe)
516        AddrSpc =
517          CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
518
519      addressQuals.push_back(
520          llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
521
522      // Get argument type name.
523      std::string typeName;
524      if (isPipe)
525        typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
526                     .getAsString(Policy);
527      else
528        typeName = ty.getUnqualifiedType().getAsString(Policy);
529
530      // Turn "unsigned type" to "utype"
531      std::string::size_type pos = typeName.find("unsigned");
532      if (ty.isCanonical() && pos != std::string::npos)
533        typeName.erase(pos+1, 8);
534
535      argTypeNames.push_back(llvm::MDString::get(Context, typeName));
536
537      std::string baseTypeName;
538      if (isPipe)
539        baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
540                          ->getElementType().getCanonicalType()
541                          .getAsString(Policy);
542      else
543        baseTypeName =
544          ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
545
546      // Turn "unsigned type" to "utype"
547      pos = baseTypeName.find("unsigned");
548      if (pos != std::string::npos)
549        baseTypeName.erase(pos+1, 8);
550
551      argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
552
553      // Get argument type qualifiers:
554      if (ty.isConstQualified())
555        typeQuals = "const";
556      if (ty.isVolatileQualified())
557        typeQuals += typeQuals.empty() ? "volatile" : " volatile";
558      if (isPipe)
559        typeQuals = "pipe";
560    }
561
562    argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
563
564    // Get image and pipe access qualifier:
565    if (ty->isImageType()|| ty->isPipeType()) {
566      const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>();
567      if (A && A->isWriteOnly())
568        accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
569      else if (A && A->isReadWrite())
570        accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
571      else
572        accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
573    } else
574      accessQuals.push_back(llvm::MDString::get(Context, "none"));
575
576    // Get argument name.
577    argNames.push_back(llvm::MDString::get(Context, parm->getName()));
578  }
579
580  Fn->setMetadata("kernel_arg_addr_space",
581                  llvm::MDNode::get(Context, addressQuals));
582  Fn->setMetadata("kernel_arg_access_qual",
583                  llvm::MDNode::get(Context, accessQuals));
584  Fn->setMetadata("kernel_arg_type",
585                  llvm::MDNode::get(Context, argTypeNames));
586  Fn->setMetadata("kernel_arg_base_type",
587                  llvm::MDNode::get(Context, argBaseTypeNames));
588  Fn->setMetadata("kernel_arg_type_qual",
589                  llvm::MDNode::get(Context, argTypeQuals));
590  if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
591    Fn->setMetadata("kernel_arg_name",
592                    llvm::MDNode::get(Context, argNames));
593}
594
595void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
596                                               llvm::Function *Fn)
597{
598  if (!FD->hasAttr<OpenCLKernelAttr>())
599    return;
600
601  llvm::LLVMContext &Context = getLLVMContext();
602
603  GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
604
605  if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
606    QualType hintQTy = A->getTypeHint();
607    const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
608    bool isSignedInteger =
609        hintQTy->isSignedIntegerType() ||
610        (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
611    llvm::Metadata *attrMDArgs[] = {
612        llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
613            CGM.getTypes().ConvertType(A->getTypeHint()))),
614        llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
615            llvm::IntegerType::get(Context, 32),
616            llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
617    Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs));
618  }
619
620  if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
621    llvm::Metadata *attrMDArgs[] = {
622        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
623        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
624        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
625    Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs));
626  }
627
628  if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
629    llvm::Metadata *attrMDArgs[] = {
630        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
631        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
632        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
633    Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs));
634  }
635}
636
637/// Determine whether the function F ends with a return stmt.
638static bool endsWithReturn(const Decl* F) {
639  const Stmt *Body = nullptr;
640  if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
641    Body = FD->getBody();
642  else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
643    Body = OMD->getBody();
644
645  if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
646    auto LastStmt = CS->body_rbegin();
647    if (LastStmt != CS->body_rend())
648      return isa<ReturnStmt>(*LastStmt);
649  }
650  return false;
651}
652
653void CodeGenFunction::StartFunction(GlobalDecl GD,
654                                    QualType RetTy,
655                                    llvm::Function *Fn,
656                                    const CGFunctionInfo &FnInfo,
657                                    const FunctionArgList &Args,
658                                    SourceLocation Loc,
659                                    SourceLocation StartLoc) {
660  assert(!CurFn &&
661         "Do not use a CodeGenFunction object for more than one function");
662
663  const Decl *D = GD.getDecl();
664
665  DidCallStackSave = false;
666  CurCodeDecl = D;
667  if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
668    if (FD->usesSEHTry())
669      CurSEHParent = FD;
670  CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
671  FnRetTy = RetTy;
672  CurFn = Fn;
673  CurFnInfo = &FnInfo;
674  assert(CurFn->isDeclaration() && "Function already has body?");
675
676  if (CGM.isInSanitizerBlacklist(Fn, Loc))
677    SanOpts.clear();
678
679  if (D) {
680    // Apply the no_sanitize* attributes to SanOpts.
681    for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
682      SanOpts.Mask &= ~Attr->getMask();
683  }
684
685  // Apply sanitizer attributes to the function.
686  if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
687    Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
688  if (SanOpts.has(SanitizerKind::Thread))
689    Fn->addFnAttr(llvm::Attribute::SanitizeThread);
690  if (SanOpts.has(SanitizerKind::Memory))
691    Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
692  if (SanOpts.has(SanitizerKind::SafeStack))
693    Fn->addFnAttr(llvm::Attribute::SafeStack);
694
695  // Apply xray attributes to the function (as a string, for now)
696  if (D && ShouldXRayInstrumentFunction()) {
697    if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
698      if (XRayAttr->alwaysXRayInstrument())
699        Fn->addFnAttr("function-instrument", "xray-always");
700      if (XRayAttr->neverXRayInstrument())
701        Fn->addFnAttr("function-instrument", "xray-never");
702    } else {
703      Fn->addFnAttr(
704          "xray-instruction-threshold",
705          llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
706    }
707  }
708
709  // Pass inline keyword to optimizer if it appears explicitly on any
710  // declaration. Also, in the case of -fno-inline attach NoInline
711  // attribute to all functions that are not marked AlwaysInline, or
712  // to all functions that are not marked inline or implicitly inline
713  // in the case of -finline-hint-functions.
714  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
715    const CodeGenOptions& CodeGenOpts = CGM.getCodeGenOpts();
716    if (!CodeGenOpts.NoInline) {
717      for (auto RI : FD->redecls())
718        if (RI->isInlineSpecified()) {
719          Fn->addFnAttr(llvm::Attribute::InlineHint);
720          break;
721        }
722      if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyHintInlining &&
723          !FD->isInlined() && !Fn->hasFnAttribute(llvm::Attribute::InlineHint))
724        Fn->addFnAttr(llvm::Attribute::NoInline);
725    } else if (!FD->hasAttr<AlwaysInlineAttr>())
726      Fn->addFnAttr(llvm::Attribute::NoInline);
727    if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
728      CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
729  }
730
731  // Add no-jump-tables value.
732  Fn->addFnAttr("no-jump-tables",
733                llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
734
735  if (getLangOpts().OpenCL) {
736    // Add metadata for a kernel function.
737    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
738      EmitOpenCLKernelMetadata(FD, Fn);
739  }
740
741  // If we are checking function types, emit a function type signature as
742  // prologue data.
743  if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
744    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
745      if (llvm::Constant *PrologueSig =
746              CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
747        llvm::Constant *FTRTTIConst =
748            CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
749        llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
750        llvm::Constant *PrologueStructConst =
751            llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
752        Fn->setPrologueData(PrologueStructConst);
753      }
754    }
755  }
756
757  // If we're in C++ mode and the function name is "main", it is guaranteed
758  // to be norecurse by the standard (3.6.1.3 "The function main shall not be
759  // used within a program").
760  if (getLangOpts().CPlusPlus)
761    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
762      if (FD->isMain())
763        Fn->addFnAttr(llvm::Attribute::NoRecurse);
764
765  llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
766
767  // Create a marker to make it easy to insert allocas into the entryblock
768  // later.  Don't create this with the builder, because we don't want it
769  // folded.
770  llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
771  AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
772
773  ReturnBlock = getJumpDestInCurrentScope("return");
774
775  Builder.SetInsertPoint(EntryBB);
776
777  // Emit subprogram debug descriptor.
778  if (CGDebugInfo *DI = getDebugInfo()) {
779    // Reconstruct the type from the argument list so that implicit parameters,
780    // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
781    // convention.
782    CallingConv CC = CallingConv::CC_C;
783    if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
784      if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
785        CC = SrcFnTy->getCallConv();
786    SmallVector<QualType, 16> ArgTypes;
787    for (const VarDecl *VD : Args)
788      ArgTypes.push_back(VD->getType());
789    QualType FnType = getContext().getFunctionType(
790        RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
791    DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
792  }
793
794  if (ShouldInstrumentFunction())
795    EmitFunctionInstrumentation("__cyg_profile_func_enter");
796
797  if (CGM.getCodeGenOpts().InstrumentForProfiling)
798    EmitMCountInstrumentation();
799
800  if (RetTy->isVoidType()) {
801    // Void type; nothing to return.
802    ReturnValue = Address::invalid();
803
804    // Count the implicit return.
805    if (!endsWithReturn(D))
806      ++NumReturnExprs;
807  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
808             !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
809    // Indirect aggregate return; emit returned value directly into sret slot.
810    // This reduces code size, and affects correctness in C++.
811    auto AI = CurFn->arg_begin();
812    if (CurFnInfo->getReturnInfo().isSRetAfterThis())
813      ++AI;
814    ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
815  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
816             !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
817    // Load the sret pointer from the argument struct and return into that.
818    unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
819    llvm::Function::arg_iterator EI = CurFn->arg_end();
820    --EI;
821    llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
822    Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
823    ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
824  } else {
825    ReturnValue = CreateIRTemp(RetTy, "retval");
826
827    // Tell the epilog emitter to autorelease the result.  We do this
828    // now so that various specialized functions can suppress it
829    // during their IR-generation.
830    if (getLangOpts().ObjCAutoRefCount &&
831        !CurFnInfo->isReturnsRetained() &&
832        RetTy->isObjCRetainableType())
833      AutoreleaseResult = true;
834  }
835
836  EmitStartEHSpec(CurCodeDecl);
837
838  PrologueCleanupDepth = EHStack.stable_begin();
839  EmitFunctionProlog(*CurFnInfo, CurFn, Args);
840
841  if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
842    CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
843    const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
844    if (MD->getParent()->isLambda() &&
845        MD->getOverloadedOperator() == OO_Call) {
846      // We're in a lambda; figure out the captures.
847      MD->getParent()->getCaptureFields(LambdaCaptureFields,
848                                        LambdaThisCaptureField);
849      if (LambdaThisCaptureField) {
850        // If the lambda captures the object referred to by '*this' - either by
851        // value or by reference, make sure CXXThisValue points to the correct
852        // object.
853
854        // Get the lvalue for the field (which is a copy of the enclosing object
855        // or contains the address of the enclosing object).
856        LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
857        if (!LambdaThisCaptureField->getType()->isPointerType()) {
858          // If the enclosing object was captured by value, just use its address.
859          CXXThisValue = ThisFieldLValue.getAddress().getPointer();
860        } else {
861          // Load the lvalue pointed to by the field, since '*this' was captured
862          // by reference.
863          CXXThisValue =
864              EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
865        }
866      }
867      for (auto *FD : MD->getParent()->fields()) {
868        if (FD->hasCapturedVLAType()) {
869          auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
870                                           SourceLocation()).getScalarVal();
871          auto VAT = FD->getCapturedVLAType();
872          VLASizeMap[VAT->getSizeExpr()] = ExprArg;
873        }
874      }
875    } else {
876      // Not in a lambda; just use 'this' from the method.
877      // FIXME: Should we generate a new load for each use of 'this'?  The
878      // fast register allocator would be happier...
879      CXXThisValue = CXXABIThisValue;
880    }
881  }
882
883  // If any of the arguments have a variably modified type, make sure to
884  // emit the type size.
885  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
886       i != e; ++i) {
887    const VarDecl *VD = *i;
888
889    // Dig out the type as written from ParmVarDecls; it's unclear whether
890    // the standard (C99 6.9.1p10) requires this, but we're following the
891    // precedent set by gcc.
892    QualType Ty;
893    if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
894      Ty = PVD->getOriginalType();
895    else
896      Ty = VD->getType();
897
898    if (Ty->isVariablyModifiedType())
899      EmitVariablyModifiedType(Ty);
900  }
901  // Emit a location at the end of the prologue.
902  if (CGDebugInfo *DI = getDebugInfo())
903    DI->EmitLocation(Builder, StartLoc);
904}
905
906void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
907                                       const Stmt *Body) {
908  incrementProfileCounter(Body);
909  if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
910    EmitCompoundStmtWithoutScope(*S);
911  else
912    EmitStmt(Body);
913}
914
915/// When instrumenting to collect profile data, the counts for some blocks
916/// such as switch cases need to not include the fall-through counts, so
917/// emit a branch around the instrumentation code. When not instrumenting,
918/// this just calls EmitBlock().
919void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
920                                               const Stmt *S) {
921  llvm::BasicBlock *SkipCountBB = nullptr;
922  if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
923    // When instrumenting for profiling, the fallthrough to certain
924    // statements needs to skip over the instrumentation code so that we
925    // get an accurate count.
926    SkipCountBB = createBasicBlock("skipcount");
927    EmitBranch(SkipCountBB);
928  }
929  EmitBlock(BB);
930  uint64_t CurrentCount = getCurrentProfileCount();
931  incrementProfileCounter(S);
932  setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
933  if (SkipCountBB)
934    EmitBlock(SkipCountBB);
935}
936
937/// Tries to mark the given function nounwind based on the
938/// non-existence of any throwing calls within it.  We believe this is
939/// lightweight enough to do at -O0.
940static void TryMarkNoThrow(llvm::Function *F) {
941  // LLVM treats 'nounwind' on a function as part of the type, so we
942  // can't do this on functions that can be overwritten.
943  if (F->isInterposable()) return;
944
945  for (llvm::BasicBlock &BB : *F)
946    for (llvm::Instruction &I : BB)
947      if (I.mayThrow())
948        return;
949
950  F->setDoesNotThrow();
951}
952
953QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
954                                               FunctionArgList &Args) {
955  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
956  QualType ResTy = FD->getReturnType();
957
958  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
959  if (MD && MD->isInstance()) {
960    if (CGM.getCXXABI().HasThisReturn(GD))
961      ResTy = MD->getThisType(getContext());
962    else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
963      ResTy = CGM.getContext().VoidPtrTy;
964    CGM.getCXXABI().buildThisParam(*this, Args);
965  }
966
967  // The base version of an inheriting constructor whose constructed base is a
968  // virtual base is not passed any arguments (because it doesn't actually call
969  // the inherited constructor).
970  bool PassedParams = true;
971  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
972    if (auto Inherited = CD->getInheritedConstructor())
973      PassedParams =
974          getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
975
976  if (PassedParams) {
977    for (auto *Param : FD->parameters()) {
978      Args.push_back(Param);
979      if (!Param->hasAttr<PassObjectSizeAttr>())
980        continue;
981
982      IdentifierInfo *NoID = nullptr;
983      auto *Implicit = ImplicitParamDecl::Create(
984          getContext(), Param->getDeclContext(), Param->getLocation(), NoID,
985          getContext().getSizeType());
986      SizeArguments[Param] = Implicit;
987      Args.push_back(Implicit);
988    }
989  }
990
991  if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
992    CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
993
994  return ResTy;
995}
996
997void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
998                                   const CGFunctionInfo &FnInfo) {
999  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1000  CurGD = GD;
1001
1002  FunctionArgList Args;
1003  QualType ResTy = BuildFunctionArgList(GD, Args);
1004
1005  // Check if we should generate debug info for this function.
1006  if (FD->hasAttr<NoDebugAttr>())
1007    DebugInfo = nullptr; // disable debug info indefinitely for this function
1008
1009  SourceRange BodyRange;
1010  if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
1011  CurEHLocation = BodyRange.getEnd();
1012
1013  // Use the location of the start of the function to determine where
1014  // the function definition is located. By default use the location
1015  // of the declaration as the location for the subprogram. A function
1016  // may lack a declaration in the source code if it is created by code
1017  // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1018  SourceLocation Loc = FD->getLocation();
1019
1020  // If this is a function specialization then use the pattern body
1021  // as the location for the function.
1022  if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1023    if (SpecDecl->hasBody(SpecDecl))
1024      Loc = SpecDecl->getLocation();
1025
1026  // Emit the standard function prologue.
1027  StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1028
1029  // Generate the body of the function.
1030  PGO.assignRegionCounters(GD, CurFn);
1031  if (isa<CXXDestructorDecl>(FD))
1032    EmitDestructorBody(Args);
1033  else if (isa<CXXConstructorDecl>(FD))
1034    EmitConstructorBody(Args);
1035  else if (getLangOpts().CUDA &&
1036           !getLangOpts().CUDAIsDevice &&
1037           FD->hasAttr<CUDAGlobalAttr>())
1038    CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1039  else if (isa<CXXConversionDecl>(FD) &&
1040           cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
1041    // The lambda conversion to block pointer is special; the semantics can't be
1042    // expressed in the AST, so IRGen needs to special-case it.
1043    EmitLambdaToBlockPointerBody(Args);
1044  } else if (isa<CXXMethodDecl>(FD) &&
1045             cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1046    // The lambda static invoker function is special, because it forwards or
1047    // clones the body of the function call operator (but is actually static).
1048    EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
1049  } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1050             (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1051              cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1052    // Implicit copy-assignment gets the same special treatment as implicit
1053    // copy-constructors.
1054    emitImplicitAssignmentOperatorBody(Args);
1055  } else if (Stmt *Body = FD->getBody()) {
1056    EmitFunctionBody(Args, Body);
1057  } else
1058    llvm_unreachable("no definition for emitted function");
1059
1060  // C++11 [stmt.return]p2:
1061  //   Flowing off the end of a function [...] results in undefined behavior in
1062  //   a value-returning function.
1063  // C11 6.9.1p12:
1064  //   If the '}' that terminates a function is reached, and the value of the
1065  //   function call is used by the caller, the behavior is undefined.
1066  if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1067      !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1068    if (SanOpts.has(SanitizerKind::Return)) {
1069      SanitizerScope SanScope(this);
1070      llvm::Value *IsFalse = Builder.getFalse();
1071      EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1072                "missing_return", EmitCheckSourceLocation(FD->getLocation()),
1073                None);
1074    } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1075      EmitTrapCall(llvm::Intrinsic::trap);
1076    }
1077    Builder.CreateUnreachable();
1078    Builder.ClearInsertionPoint();
1079  }
1080
1081  // Emit the standard function epilogue.
1082  FinishFunction(BodyRange.getEnd());
1083
1084  // If we haven't marked the function nothrow through other means, do
1085  // a quick pass now to see if we can.
1086  if (!CurFn->doesNotThrow())
1087    TryMarkNoThrow(CurFn);
1088}
1089
1090/// ContainsLabel - Return true if the statement contains a label in it.  If
1091/// this statement is not executed normally, it not containing a label means
1092/// that we can just remove the code.
1093bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1094  // Null statement, not a label!
1095  if (!S) return false;
1096
1097  // If this is a label, we have to emit the code, consider something like:
1098  // if (0) {  ...  foo:  bar(); }  goto foo;
1099  //
1100  // TODO: If anyone cared, we could track __label__'s, since we know that you
1101  // can't jump to one from outside their declared region.
1102  if (isa<LabelStmt>(S))
1103    return true;
1104
1105  // If this is a case/default statement, and we haven't seen a switch, we have
1106  // to emit the code.
1107  if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1108    return true;
1109
1110  // If this is a switch statement, we want to ignore cases below it.
1111  if (isa<SwitchStmt>(S))
1112    IgnoreCaseStmts = true;
1113
1114  // Scan subexpressions for verboten labels.
1115  for (const Stmt *SubStmt : S->children())
1116    if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1117      return true;
1118
1119  return false;
1120}
1121
1122/// containsBreak - Return true if the statement contains a break out of it.
1123/// If the statement (recursively) contains a switch or loop with a break
1124/// inside of it, this is fine.
1125bool CodeGenFunction::containsBreak(const Stmt *S) {
1126  // Null statement, not a label!
1127  if (!S) return false;
1128
1129  // If this is a switch or loop that defines its own break scope, then we can
1130  // include it and anything inside of it.
1131  if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1132      isa<ForStmt>(S))
1133    return false;
1134
1135  if (isa<BreakStmt>(S))
1136    return true;
1137
1138  // Scan subexpressions for verboten breaks.
1139  for (const Stmt *SubStmt : S->children())
1140    if (containsBreak(SubStmt))
1141      return true;
1142
1143  return false;
1144}
1145
1146
1147/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1148/// to a constant, or if it does but contains a label, return false.  If it
1149/// constant folds return true and set the boolean result in Result.
1150bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1151                                                   bool &ResultBool,
1152                                                   bool AllowLabels) {
1153  llvm::APSInt ResultInt;
1154  if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1155    return false;
1156
1157  ResultBool = ResultInt.getBoolValue();
1158  return true;
1159}
1160
1161/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1162/// to a constant, or if it does but contains a label, return false.  If it
1163/// constant folds return true and set the folded value.
1164bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1165                                                   llvm::APSInt &ResultInt,
1166                                                   bool AllowLabels) {
1167  // FIXME: Rename and handle conversion of other evaluatable things
1168  // to bool.
1169  llvm::APSInt Int;
1170  if (!Cond->EvaluateAsInt(Int, getContext()))
1171    return false;  // Not foldable, not integer or not fully evaluatable.
1172
1173  if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1174    return false;  // Contains a label.
1175
1176  ResultInt = Int;
1177  return true;
1178}
1179
1180
1181
1182/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1183/// statement) to the specified blocks.  Based on the condition, this might try
1184/// to simplify the codegen of the conditional based on the branch.
1185///
1186void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1187                                           llvm::BasicBlock *TrueBlock,
1188                                           llvm::BasicBlock *FalseBlock,
1189                                           uint64_t TrueCount) {
1190  Cond = Cond->IgnoreParens();
1191
1192  if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1193
1194    // Handle X && Y in a condition.
1195    if (CondBOp->getOpcode() == BO_LAnd) {
1196      // If we have "1 && X", simplify the code.  "0 && X" would have constant
1197      // folded if the case was simple enough.
1198      bool ConstantBool = false;
1199      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1200          ConstantBool) {
1201        // br(1 && X) -> br(X).
1202        incrementProfileCounter(CondBOp);
1203        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1204                                    TrueCount);
1205      }
1206
1207      // If we have "X && 1", simplify the code to use an uncond branch.
1208      // "X && 0" would have been constant folded to 0.
1209      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1210          ConstantBool) {
1211        // br(X && 1) -> br(X).
1212        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1213                                    TrueCount);
1214      }
1215
1216      // Emit the LHS as a conditional.  If the LHS conditional is false, we
1217      // want to jump to the FalseBlock.
1218      llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1219      // The counter tells us how often we evaluate RHS, and all of TrueCount
1220      // can be propagated to that branch.
1221      uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1222
1223      ConditionalEvaluation eval(*this);
1224      {
1225        ApplyDebugLocation DL(*this, Cond);
1226        EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1227        EmitBlock(LHSTrue);
1228      }
1229
1230      incrementProfileCounter(CondBOp);
1231      setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1232
1233      // Any temporaries created here are conditional.
1234      eval.begin(*this);
1235      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1236      eval.end(*this);
1237
1238      return;
1239    }
1240
1241    if (CondBOp->getOpcode() == BO_LOr) {
1242      // If we have "0 || X", simplify the code.  "1 || X" would have constant
1243      // folded if the case was simple enough.
1244      bool ConstantBool = false;
1245      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1246          !ConstantBool) {
1247        // br(0 || X) -> br(X).
1248        incrementProfileCounter(CondBOp);
1249        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1250                                    TrueCount);
1251      }
1252
1253      // If we have "X || 0", simplify the code to use an uncond branch.
1254      // "X || 1" would have been constant folded to 1.
1255      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1256          !ConstantBool) {
1257        // br(X || 0) -> br(X).
1258        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1259                                    TrueCount);
1260      }
1261
1262      // Emit the LHS as a conditional.  If the LHS conditional is true, we
1263      // want to jump to the TrueBlock.
1264      llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1265      // We have the count for entry to the RHS and for the whole expression
1266      // being true, so we can divy up True count between the short circuit and
1267      // the RHS.
1268      uint64_t LHSCount =
1269          getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1270      uint64_t RHSCount = TrueCount - LHSCount;
1271
1272      ConditionalEvaluation eval(*this);
1273      {
1274        ApplyDebugLocation DL(*this, Cond);
1275        EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1276        EmitBlock(LHSFalse);
1277      }
1278
1279      incrementProfileCounter(CondBOp);
1280      setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1281
1282      // Any temporaries created here are conditional.
1283      eval.begin(*this);
1284      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1285
1286      eval.end(*this);
1287
1288      return;
1289    }
1290  }
1291
1292  if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1293    // br(!x, t, f) -> br(x, f, t)
1294    if (CondUOp->getOpcode() == UO_LNot) {
1295      // Negate the count.
1296      uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1297      // Negate the condition and swap the destination blocks.
1298      return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1299                                  FalseCount);
1300    }
1301  }
1302
1303  if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1304    // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1305    llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1306    llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1307
1308    ConditionalEvaluation cond(*this);
1309    EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1310                         getProfileCount(CondOp));
1311
1312    // When computing PGO branch weights, we only know the overall count for
1313    // the true block. This code is essentially doing tail duplication of the
1314    // naive code-gen, introducing new edges for which counts are not
1315    // available. Divide the counts proportionally between the LHS and RHS of
1316    // the conditional operator.
1317    uint64_t LHSScaledTrueCount = 0;
1318    if (TrueCount) {
1319      double LHSRatio =
1320          getProfileCount(CondOp) / (double)getCurrentProfileCount();
1321      LHSScaledTrueCount = TrueCount * LHSRatio;
1322    }
1323
1324    cond.begin(*this);
1325    EmitBlock(LHSBlock);
1326    incrementProfileCounter(CondOp);
1327    {
1328      ApplyDebugLocation DL(*this, Cond);
1329      EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1330                           LHSScaledTrueCount);
1331    }
1332    cond.end(*this);
1333
1334    cond.begin(*this);
1335    EmitBlock(RHSBlock);
1336    EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1337                         TrueCount - LHSScaledTrueCount);
1338    cond.end(*this);
1339
1340    return;
1341  }
1342
1343  if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1344    // Conditional operator handling can give us a throw expression as a
1345    // condition for a case like:
1346    //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1347    // Fold this to:
1348    //   br(c, throw x, br(y, t, f))
1349    EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1350    return;
1351  }
1352
1353  // If the branch has a condition wrapped by __builtin_unpredictable,
1354  // create metadata that specifies that the branch is unpredictable.
1355  // Don't bother if not optimizing because that metadata would not be used.
1356  llvm::MDNode *Unpredictable = nullptr;
1357  auto *Call = dyn_cast<CallExpr>(Cond);
1358  if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1359    auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1360    if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1361      llvm::MDBuilder MDHelper(getLLVMContext());
1362      Unpredictable = MDHelper.createUnpredictable();
1363    }
1364  }
1365
1366  // Create branch weights based on the number of times we get here and the
1367  // number of times the condition should be true.
1368  uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1369  llvm::MDNode *Weights =
1370      createProfileWeights(TrueCount, CurrentCount - TrueCount);
1371
1372  // Emit the code with the fully general case.
1373  llvm::Value *CondV;
1374  {
1375    ApplyDebugLocation DL(*this, Cond);
1376    CondV = EvaluateExprAsBool(Cond);
1377  }
1378  Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1379}
1380
1381/// ErrorUnsupported - Print out an error that codegen doesn't support the
1382/// specified stmt yet.
1383void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1384  CGM.ErrorUnsupported(S, Type);
1385}
1386
1387/// emitNonZeroVLAInit - Emit the "zero" initialization of a
1388/// variable-length array whose elements have a non-zero bit-pattern.
1389///
1390/// \param baseType the inner-most element type of the array
1391/// \param src - a char* pointing to the bit-pattern for a single
1392/// base element of the array
1393/// \param sizeInChars - the total size of the VLA, in chars
1394static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1395                               Address dest, Address src,
1396                               llvm::Value *sizeInChars) {
1397  CGBuilderTy &Builder = CGF.Builder;
1398
1399  CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1400  llvm::Value *baseSizeInChars
1401    = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1402
1403  Address begin =
1404    Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1405  llvm::Value *end =
1406    Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1407
1408  llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1409  llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1410  llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1411
1412  // Make a loop over the VLA.  C99 guarantees that the VLA element
1413  // count must be nonzero.
1414  CGF.EmitBlock(loopBB);
1415
1416  llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1417  cur->addIncoming(begin.getPointer(), originBB);
1418
1419  CharUnits curAlign =
1420    dest.getAlignment().alignmentOfArrayElement(baseSize);
1421
1422  // memcpy the individual element bit-pattern.
1423  Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1424                       /*volatile*/ false);
1425
1426  // Go to the next element.
1427  llvm::Value *next =
1428    Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1429
1430  // Leave if that's the end of the VLA.
1431  llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1432  Builder.CreateCondBr(done, contBB, loopBB);
1433  cur->addIncoming(next, loopBB);
1434
1435  CGF.EmitBlock(contBB);
1436}
1437
1438void
1439CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1440  // Ignore empty classes in C++.
1441  if (getLangOpts().CPlusPlus) {
1442    if (const RecordType *RT = Ty->getAs<RecordType>()) {
1443      if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1444        return;
1445    }
1446  }
1447
1448  // Cast the dest ptr to the appropriate i8 pointer type.
1449  if (DestPtr.getElementType() != Int8Ty)
1450    DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1451
1452  // Get size and alignment info for this aggregate.
1453  CharUnits size = getContext().getTypeSizeInChars(Ty);
1454
1455  llvm::Value *SizeVal;
1456  const VariableArrayType *vla;
1457
1458  // Don't bother emitting a zero-byte memset.
1459  if (size.isZero()) {
1460    // But note that getTypeInfo returns 0 for a VLA.
1461    if (const VariableArrayType *vlaType =
1462          dyn_cast_or_null<VariableArrayType>(
1463                                          getContext().getAsArrayType(Ty))) {
1464      QualType eltType;
1465      llvm::Value *numElts;
1466      std::tie(numElts, eltType) = getVLASize(vlaType);
1467
1468      SizeVal = numElts;
1469      CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1470      if (!eltSize.isOne())
1471        SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1472      vla = vlaType;
1473    } else {
1474      return;
1475    }
1476  } else {
1477    SizeVal = CGM.getSize(size);
1478    vla = nullptr;
1479  }
1480
1481  // If the type contains a pointer to data member we can't memset it to zero.
1482  // Instead, create a null constant and copy it to the destination.
1483  // TODO: there are other patterns besides zero that we can usefully memset,
1484  // like -1, which happens to be the pattern used by member-pointers.
1485  if (!CGM.getTypes().isZeroInitializable(Ty)) {
1486    // For a VLA, emit a single element, then splat that over the VLA.
1487    if (vla) Ty = getContext().getBaseElementType(vla);
1488
1489    llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1490
1491    llvm::GlobalVariable *NullVariable =
1492      new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1493                               /*isConstant=*/true,
1494                               llvm::GlobalVariable::PrivateLinkage,
1495                               NullConstant, Twine());
1496    CharUnits NullAlign = DestPtr.getAlignment();
1497    NullVariable->setAlignment(NullAlign.getQuantity());
1498    Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1499                   NullAlign);
1500
1501    if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1502
1503    // Get and call the appropriate llvm.memcpy overload.
1504    Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1505    return;
1506  }
1507
1508  // Otherwise, just memset the whole thing to zero.  This is legal
1509  // because in LLVM, all default initializers (other than the ones we just
1510  // handled above) are guaranteed to have a bit pattern of all zeros.
1511  Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1512}
1513
1514llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1515  // Make sure that there is a block for the indirect goto.
1516  if (!IndirectBranch)
1517    GetIndirectGotoBlock();
1518
1519  llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1520
1521  // Make sure the indirect branch includes all of the address-taken blocks.
1522  IndirectBranch->addDestination(BB);
1523  return llvm::BlockAddress::get(CurFn, BB);
1524}
1525
1526llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1527  // If we already made the indirect branch for indirect goto, return its block.
1528  if (IndirectBranch) return IndirectBranch->getParent();
1529
1530  CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1531
1532  // Create the PHI node that indirect gotos will add entries to.
1533  llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1534                                              "indirect.goto.dest");
1535
1536  // Create the indirect branch instruction.
1537  IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1538  return IndirectBranch->getParent();
1539}
1540
1541/// Computes the length of an array in elements, as well as the base
1542/// element type and a properly-typed first element pointer.
1543llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1544                                              QualType &baseType,
1545                                              Address &addr) {
1546  const ArrayType *arrayType = origArrayType;
1547
1548  // If it's a VLA, we have to load the stored size.  Note that
1549  // this is the size of the VLA in bytes, not its size in elements.
1550  llvm::Value *numVLAElements = nullptr;
1551  if (isa<VariableArrayType>(arrayType)) {
1552    numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1553
1554    // Walk into all VLAs.  This doesn't require changes to addr,
1555    // which has type T* where T is the first non-VLA element type.
1556    do {
1557      QualType elementType = arrayType->getElementType();
1558      arrayType = getContext().getAsArrayType(elementType);
1559
1560      // If we only have VLA components, 'addr' requires no adjustment.
1561      if (!arrayType) {
1562        baseType = elementType;
1563        return numVLAElements;
1564      }
1565    } while (isa<VariableArrayType>(arrayType));
1566
1567    // We get out here only if we find a constant array type
1568    // inside the VLA.
1569  }
1570
1571  // We have some number of constant-length arrays, so addr should
1572  // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1573  // down to the first element of addr.
1574  SmallVector<llvm::Value*, 8> gepIndices;
1575
1576  // GEP down to the array type.
1577  llvm::ConstantInt *zero = Builder.getInt32(0);
1578  gepIndices.push_back(zero);
1579
1580  uint64_t countFromCLAs = 1;
1581  QualType eltType;
1582
1583  llvm::ArrayType *llvmArrayType =
1584    dyn_cast<llvm::ArrayType>(addr.getElementType());
1585  while (llvmArrayType) {
1586    assert(isa<ConstantArrayType>(arrayType));
1587    assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1588             == llvmArrayType->getNumElements());
1589
1590    gepIndices.push_back(zero);
1591    countFromCLAs *= llvmArrayType->getNumElements();
1592    eltType = arrayType->getElementType();
1593
1594    llvmArrayType =
1595      dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1596    arrayType = getContext().getAsArrayType(arrayType->getElementType());
1597    assert((!llvmArrayType || arrayType) &&
1598           "LLVM and Clang types are out-of-synch");
1599  }
1600
1601  if (arrayType) {
1602    // From this point onwards, the Clang array type has been emitted
1603    // as some other type (probably a packed struct). Compute the array
1604    // size, and just emit the 'begin' expression as a bitcast.
1605    while (arrayType) {
1606      countFromCLAs *=
1607          cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1608      eltType = arrayType->getElementType();
1609      arrayType = getContext().getAsArrayType(eltType);
1610    }
1611
1612    llvm::Type *baseType = ConvertType(eltType);
1613    addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1614  } else {
1615    // Create the actual GEP.
1616    addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1617                                             gepIndices, "array.begin"),
1618                   addr.getAlignment());
1619  }
1620
1621  baseType = eltType;
1622
1623  llvm::Value *numElements
1624    = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1625
1626  // If we had any VLA dimensions, factor them in.
1627  if (numVLAElements)
1628    numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1629
1630  return numElements;
1631}
1632
1633std::pair<llvm::Value*, QualType>
1634CodeGenFunction::getVLASize(QualType type) {
1635  const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1636  assert(vla && "type was not a variable array type!");
1637  return getVLASize(vla);
1638}
1639
1640std::pair<llvm::Value*, QualType>
1641CodeGenFunction::getVLASize(const VariableArrayType *type) {
1642  // The number of elements so far; always size_t.
1643  llvm::Value *numElements = nullptr;
1644
1645  QualType elementType;
1646  do {
1647    elementType = type->getElementType();
1648    llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1649    assert(vlaSize && "no size for VLA!");
1650    assert(vlaSize->getType() == SizeTy);
1651
1652    if (!numElements) {
1653      numElements = vlaSize;
1654    } else {
1655      // It's undefined behavior if this wraps around, so mark it that way.
1656      // FIXME: Teach -fsanitize=undefined to trap this.
1657      numElements = Builder.CreateNUWMul(numElements, vlaSize);
1658    }
1659  } while ((type = getContext().getAsVariableArrayType(elementType)));
1660
1661  return std::pair<llvm::Value*,QualType>(numElements, elementType);
1662}
1663
1664void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1665  assert(type->isVariablyModifiedType() &&
1666         "Must pass variably modified type to EmitVLASizes!");
1667
1668  EnsureInsertPoint();
1669
1670  // We're going to walk down into the type and look for VLA
1671  // expressions.
1672  do {
1673    assert(type->isVariablyModifiedType());
1674
1675    const Type *ty = type.getTypePtr();
1676    switch (ty->getTypeClass()) {
1677
1678#define TYPE(Class, Base)
1679#define ABSTRACT_TYPE(Class, Base)
1680#define NON_CANONICAL_TYPE(Class, Base)
1681#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1682#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1683#include "clang/AST/TypeNodes.def"
1684      llvm_unreachable("unexpected dependent type!");
1685
1686    // These types are never variably-modified.
1687    case Type::Builtin:
1688    case Type::Complex:
1689    case Type::Vector:
1690    case Type::ExtVector:
1691    case Type::Record:
1692    case Type::Enum:
1693    case Type::Elaborated:
1694    case Type::TemplateSpecialization:
1695    case Type::ObjCObject:
1696    case Type::ObjCInterface:
1697    case Type::ObjCObjectPointer:
1698      llvm_unreachable("type class is never variably-modified!");
1699
1700    case Type::Adjusted:
1701      type = cast<AdjustedType>(ty)->getAdjustedType();
1702      break;
1703
1704    case Type::Decayed:
1705      type = cast<DecayedType>(ty)->getPointeeType();
1706      break;
1707
1708    case Type::Pointer:
1709      type = cast<PointerType>(ty)->getPointeeType();
1710      break;
1711
1712    case Type::BlockPointer:
1713      type = cast<BlockPointerType>(ty)->getPointeeType();
1714      break;
1715
1716    case Type::LValueReference:
1717    case Type::RValueReference:
1718      type = cast<ReferenceType>(ty)->getPointeeType();
1719      break;
1720
1721    case Type::MemberPointer:
1722      type = cast<MemberPointerType>(ty)->getPointeeType();
1723      break;
1724
1725    case Type::ConstantArray:
1726    case Type::IncompleteArray:
1727      // Losing element qualification here is fine.
1728      type = cast<ArrayType>(ty)->getElementType();
1729      break;
1730
1731    case Type::VariableArray: {
1732      // Losing element qualification here is fine.
1733      const VariableArrayType *vat = cast<VariableArrayType>(ty);
1734
1735      // Unknown size indication requires no size computation.
1736      // Otherwise, evaluate and record it.
1737      if (const Expr *size = vat->getSizeExpr()) {
1738        // It's possible that we might have emitted this already,
1739        // e.g. with a typedef and a pointer to it.
1740        llvm::Value *&entry = VLASizeMap[size];
1741        if (!entry) {
1742          llvm::Value *Size = EmitScalarExpr(size);
1743
1744          // C11 6.7.6.2p5:
1745          //   If the size is an expression that is not an integer constant
1746          //   expression [...] each time it is evaluated it shall have a value
1747          //   greater than zero.
1748          if (SanOpts.has(SanitizerKind::VLABound) &&
1749              size->getType()->isSignedIntegerType()) {
1750            SanitizerScope SanScope(this);
1751            llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1752            llvm::Constant *StaticArgs[] = {
1753              EmitCheckSourceLocation(size->getLocStart()),
1754              EmitCheckTypeDescriptor(size->getType())
1755            };
1756            EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1757                                     SanitizerKind::VLABound),
1758                      "vla_bound_not_positive", StaticArgs, Size);
1759          }
1760
1761          // Always zexting here would be wrong if it weren't
1762          // undefined behavior to have a negative bound.
1763          entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1764        }
1765      }
1766      type = vat->getElementType();
1767      break;
1768    }
1769
1770    case Type::FunctionProto:
1771    case Type::FunctionNoProto:
1772      type = cast<FunctionType>(ty)->getReturnType();
1773      break;
1774
1775    case Type::Paren:
1776    case Type::TypeOf:
1777    case Type::UnaryTransform:
1778    case Type::Attributed:
1779    case Type::SubstTemplateTypeParm:
1780    case Type::PackExpansion:
1781      // Keep walking after single level desugaring.
1782      type = type.getSingleStepDesugaredType(getContext());
1783      break;
1784
1785    case Type::Typedef:
1786    case Type::Decltype:
1787    case Type::Auto:
1788      // Stop walking: nothing to do.
1789      return;
1790
1791    case Type::TypeOfExpr:
1792      // Stop walking: emit typeof expression.
1793      EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1794      return;
1795
1796    case Type::Atomic:
1797      type = cast<AtomicType>(ty)->getValueType();
1798      break;
1799
1800    case Type::Pipe:
1801      type = cast<PipeType>(ty)->getElementType();
1802      break;
1803    }
1804  } while (type->isVariablyModifiedType());
1805}
1806
1807Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1808  if (getContext().getBuiltinVaListType()->isArrayType())
1809    return EmitPointerWithAlignment(E);
1810  return EmitLValue(E).getAddress();
1811}
1812
1813Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1814  return EmitLValue(E).getAddress();
1815}
1816
1817void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1818                                              llvm::Constant *Init) {
1819  assert (Init && "Invalid DeclRefExpr initializer!");
1820  if (CGDebugInfo *Dbg = getDebugInfo())
1821    if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
1822      Dbg->EmitGlobalVariable(E->getDecl(), Init);
1823}
1824
1825CodeGenFunction::PeepholeProtection
1826CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1827  // At the moment, the only aggressive peephole we do in IR gen
1828  // is trunc(zext) folding, but if we add more, we can easily
1829  // extend this protection.
1830
1831  if (!rvalue.isScalar()) return PeepholeProtection();
1832  llvm::Value *value = rvalue.getScalarVal();
1833  if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1834
1835  // Just make an extra bitcast.
1836  assert(HaveInsertPoint());
1837  llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1838                                                  Builder.GetInsertBlock());
1839
1840  PeepholeProtection protection;
1841  protection.Inst = inst;
1842  return protection;
1843}
1844
1845void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1846  if (!protection.Inst) return;
1847
1848  // In theory, we could try to duplicate the peepholes now, but whatever.
1849  protection.Inst->eraseFromParent();
1850}
1851
1852llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1853                                                 llvm::Value *AnnotatedVal,
1854                                                 StringRef AnnotationStr,
1855                                                 SourceLocation Location) {
1856  llvm::Value *Args[4] = {
1857    AnnotatedVal,
1858    Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1859    Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1860    CGM.EmitAnnotationLineNo(Location)
1861  };
1862  return Builder.CreateCall(AnnotationFn, Args);
1863}
1864
1865void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1866  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1867  // FIXME We create a new bitcast for every annotation because that's what
1868  // llvm-gcc was doing.
1869  for (const auto *I : D->specific_attrs<AnnotateAttr>())
1870    EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1871                       Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1872                       I->getAnnotation(), D->getLocation());
1873}
1874
1875Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1876                                              Address Addr) {
1877  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1878  llvm::Value *V = Addr.getPointer();
1879  llvm::Type *VTy = V->getType();
1880  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1881                                    CGM.Int8PtrTy);
1882
1883  for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1884    // FIXME Always emit the cast inst so we can differentiate between
1885    // annotation on the first field of a struct and annotation on the struct
1886    // itself.
1887    if (VTy != CGM.Int8PtrTy)
1888      V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1889    V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1890    V = Builder.CreateBitCast(V, VTy);
1891  }
1892
1893  return Address(V, Addr.getAlignment());
1894}
1895
1896CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1897
1898CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1899    : CGF(CGF) {
1900  assert(!CGF->IsSanitizerScope);
1901  CGF->IsSanitizerScope = true;
1902}
1903
1904CodeGenFunction::SanitizerScope::~SanitizerScope() {
1905  CGF->IsSanitizerScope = false;
1906}
1907
1908void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1909                                   const llvm::Twine &Name,
1910                                   llvm::BasicBlock *BB,
1911                                   llvm::BasicBlock::iterator InsertPt) const {
1912  LoopStack.InsertHelper(I);
1913  if (IsSanitizerScope)
1914    CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1915}
1916
1917void CGBuilderInserter::InsertHelper(
1918    llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1919    llvm::BasicBlock::iterator InsertPt) const {
1920  llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
1921  if (CGF)
1922    CGF->InsertHelper(I, Name, BB, InsertPt);
1923}
1924
1925static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
1926                                CodeGenModule &CGM, const FunctionDecl *FD,
1927                                std::string &FirstMissing) {
1928  // If there aren't any required features listed then go ahead and return.
1929  if (ReqFeatures.empty())
1930    return false;
1931
1932  // Now build up the set of caller features and verify that all the required
1933  // features are there.
1934  llvm::StringMap<bool> CallerFeatureMap;
1935  CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
1936
1937  // If we have at least one of the features in the feature list return
1938  // true, otherwise return false.
1939  return std::all_of(
1940      ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
1941        SmallVector<StringRef, 1> OrFeatures;
1942        Feature.split(OrFeatures, "|");
1943        return std::any_of(OrFeatures.begin(), OrFeatures.end(),
1944                           [&](StringRef Feature) {
1945                             if (!CallerFeatureMap.lookup(Feature)) {
1946                               FirstMissing = Feature.str();
1947                               return false;
1948                             }
1949                             return true;
1950                           });
1951      });
1952}
1953
1954// Emits an error if we don't have a valid set of target features for the
1955// called function.
1956void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
1957                                          const FunctionDecl *TargetDecl) {
1958  // Early exit if this is an indirect call.
1959  if (!TargetDecl)
1960    return;
1961
1962  // Get the current enclosing function if it exists. If it doesn't
1963  // we can't check the target features anyhow.
1964  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
1965  if (!FD)
1966    return;
1967
1968  // Grab the required features for the call. For a builtin this is listed in
1969  // the td file with the default cpu, for an always_inline function this is any
1970  // listed cpu and any listed features.
1971  unsigned BuiltinID = TargetDecl->getBuiltinID();
1972  std::string MissingFeature;
1973  if (BuiltinID) {
1974    SmallVector<StringRef, 1> ReqFeatures;
1975    const char *FeatureList =
1976        CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
1977    // Return if the builtin doesn't have any required features.
1978    if (!FeatureList || StringRef(FeatureList) == "")
1979      return;
1980    StringRef(FeatureList).split(ReqFeatures, ",");
1981    if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
1982      CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
1983          << TargetDecl->getDeclName()
1984          << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
1985
1986  } else if (TargetDecl->hasAttr<TargetAttr>()) {
1987    // Get the required features for the callee.
1988    SmallVector<StringRef, 1> ReqFeatures;
1989    llvm::StringMap<bool> CalleeFeatureMap;
1990    CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
1991    for (const auto &F : CalleeFeatureMap) {
1992      // Only positive features are "required".
1993      if (F.getValue())
1994        ReqFeatures.push_back(F.getKey());
1995    }
1996    if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
1997      CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
1998          << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
1999  }
2000}
2001
2002void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2003  if (!CGM.getCodeGenOpts().SanitizeStats)
2004    return;
2005
2006  llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2007  IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2008  CGM.getSanStats().create(IRB, SSK);
2009}
2010