1//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This is the code that handles AST -> LLVM type lowering. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenTypes.h" 15#include "CGCXXABI.h" 16#include "CGCall.h" 17#include "CGOpenCLRuntime.h" 18#include "CGRecordLayout.h" 19#include "TargetInfo.h" 20#include "clang/AST/ASTContext.h" 21#include "clang/AST/DeclCXX.h" 22#include "clang/AST/DeclObjC.h" 23#include "clang/AST/Expr.h" 24#include "clang/AST/RecordLayout.h" 25#include "clang/CodeGen/CGFunctionInfo.h" 26#include "llvm/IR/DataLayout.h" 27#include "llvm/IR/DerivedTypes.h" 28#include "llvm/IR/Module.h" 29using namespace clang; 30using namespace CodeGen; 31 32CodeGenTypes::CodeGenTypes(CodeGenModule &cgm) 33 : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()), 34 Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()), 35 TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) { 36 SkippedLayout = false; 37} 38 39CodeGenTypes::~CodeGenTypes() { 40 llvm::DeleteContainerSeconds(CGRecordLayouts); 41 42 for (llvm::FoldingSet<CGFunctionInfo>::iterator 43 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; ) 44 delete &*I++; 45} 46 47void CodeGenTypes::addRecordTypeName(const RecordDecl *RD, 48 llvm::StructType *Ty, 49 StringRef suffix) { 50 SmallString<256> TypeName; 51 llvm::raw_svector_ostream OS(TypeName); 52 OS << RD->getKindName() << '.'; 53 54 // Name the codegen type after the typedef name 55 // if there is no tag type name available 56 if (RD->getIdentifier()) { 57 // FIXME: We should not have to check for a null decl context here. 58 // Right now we do it because the implicit Obj-C decls don't have one. 59 if (RD->getDeclContext()) 60 RD->printQualifiedName(OS); 61 else 62 RD->printName(OS); 63 } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) { 64 // FIXME: We should not have to check for a null decl context here. 65 // Right now we do it because the implicit Obj-C decls don't have one. 66 if (TDD->getDeclContext()) 67 TDD->printQualifiedName(OS); 68 else 69 TDD->printName(OS); 70 } else 71 OS << "anon"; 72 73 if (!suffix.empty()) 74 OS << suffix; 75 76 Ty->setName(OS.str()); 77} 78 79/// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from 80/// ConvertType in that it is used to convert to the memory representation for 81/// a type. For example, the scalar representation for _Bool is i1, but the 82/// memory representation is usually i8 or i32, depending on the target. 83llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) { 84 llvm::Type *R = ConvertType(T); 85 86 // If this is a non-bool type, don't map it. 87 if (!R->isIntegerTy(1)) 88 return R; 89 90 // Otherwise, return an integer of the target-specified size. 91 return llvm::IntegerType::get(getLLVMContext(), 92 (unsigned)Context.getTypeSize(T)); 93} 94 95 96/// isRecordLayoutComplete - Return true if the specified type is already 97/// completely laid out. 98bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const { 99 llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I = 100 RecordDeclTypes.find(Ty); 101 return I != RecordDeclTypes.end() && !I->second->isOpaque(); 102} 103 104static bool 105isSafeToConvert(QualType T, CodeGenTypes &CGT, 106 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked); 107 108 109/// isSafeToConvert - Return true if it is safe to convert the specified record 110/// decl to IR and lay it out, false if doing so would cause us to get into a 111/// recursive compilation mess. 112static bool 113isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT, 114 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) { 115 // If we have already checked this type (maybe the same type is used by-value 116 // multiple times in multiple structure fields, don't check again. 117 if (!AlreadyChecked.insert(RD).second) 118 return true; 119 120 const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr(); 121 122 // If this type is already laid out, converting it is a noop. 123 if (CGT.isRecordLayoutComplete(Key)) return true; 124 125 // If this type is currently being laid out, we can't recursively compile it. 126 if (CGT.isRecordBeingLaidOut(Key)) 127 return false; 128 129 // If this type would require laying out bases that are currently being laid 130 // out, don't do it. This includes virtual base classes which get laid out 131 // when a class is translated, even though they aren't embedded by-value into 132 // the class. 133 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 134 for (const auto &I : CRD->bases()) 135 if (!isSafeToConvert(I.getType()->getAs<RecordType>()->getDecl(), 136 CGT, AlreadyChecked)) 137 return false; 138 } 139 140 // If this type would require laying out members that are currently being laid 141 // out, don't do it. 142 for (const auto *I : RD->fields()) 143 if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked)) 144 return false; 145 146 // If there are no problems, lets do it. 147 return true; 148} 149 150/// isSafeToConvert - Return true if it is safe to convert this field type, 151/// which requires the structure elements contained by-value to all be 152/// recursively safe to convert. 153static bool 154isSafeToConvert(QualType T, CodeGenTypes &CGT, 155 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) { 156 // Strip off atomic type sugar. 157 if (const auto *AT = T->getAs<AtomicType>()) 158 T = AT->getValueType(); 159 160 // If this is a record, check it. 161 if (const auto *RT = T->getAs<RecordType>()) 162 return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked); 163 164 // If this is an array, check the elements, which are embedded inline. 165 if (const auto *AT = CGT.getContext().getAsArrayType(T)) 166 return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked); 167 168 // Otherwise, there is no concern about transforming this. We only care about 169 // things that are contained by-value in a structure that can have another 170 // structure as a member. 171 return true; 172} 173 174 175/// isSafeToConvert - Return true if it is safe to convert the specified record 176/// decl to IR and lay it out, false if doing so would cause us to get into a 177/// recursive compilation mess. 178static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) { 179 // If no structs are being laid out, we can certainly do this one. 180 if (CGT.noRecordsBeingLaidOut()) return true; 181 182 llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked; 183 return isSafeToConvert(RD, CGT, AlreadyChecked); 184} 185 186/// isFuncParamTypeConvertible - Return true if the specified type in a 187/// function parameter or result position can be converted to an IR type at this 188/// point. This boils down to being whether it is complete, as well as whether 189/// we've temporarily deferred expanding the type because we're in a recursive 190/// context. 191bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) { 192 // Some ABIs cannot have their member pointers represented in IR unless 193 // certain circumstances have been reached. 194 if (const auto *MPT = Ty->getAs<MemberPointerType>()) 195 return getCXXABI().isMemberPointerConvertible(MPT); 196 197 // If this isn't a tagged type, we can convert it! 198 const TagType *TT = Ty->getAs<TagType>(); 199 if (!TT) return true; 200 201 // Incomplete types cannot be converted. 202 if (TT->isIncompleteType()) 203 return false; 204 205 // If this is an enum, then it is always safe to convert. 206 const RecordType *RT = dyn_cast<RecordType>(TT); 207 if (!RT) return true; 208 209 // Otherwise, we have to be careful. If it is a struct that we're in the 210 // process of expanding, then we can't convert the function type. That's ok 211 // though because we must be in a pointer context under the struct, so we can 212 // just convert it to a dummy type. 213 // 214 // We decide this by checking whether ConvertRecordDeclType returns us an 215 // opaque type for a struct that we know is defined. 216 return isSafeToConvert(RT->getDecl(), *this); 217} 218 219 220/// Code to verify a given function type is complete, i.e. the return type 221/// and all of the parameter types are complete. Also check to see if we are in 222/// a RS_StructPointer context, and if so whether any struct types have been 223/// pended. If so, we don't want to ask the ABI lowering code to handle a type 224/// that cannot be converted to an IR type. 225bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) { 226 if (!isFuncParamTypeConvertible(FT->getReturnType())) 227 return false; 228 229 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 230 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) 231 if (!isFuncParamTypeConvertible(FPT->getParamType(i))) 232 return false; 233 234 return true; 235} 236 237/// UpdateCompletedType - When we find the full definition for a TagDecl, 238/// replace the 'opaque' type we previously made for it if applicable. 239void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) { 240 // If this is an enum being completed, then we flush all non-struct types from 241 // the cache. This allows function types and other things that may be derived 242 // from the enum to be recomputed. 243 if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) { 244 // Only flush the cache if we've actually already converted this type. 245 if (TypeCache.count(ED->getTypeForDecl())) { 246 // Okay, we formed some types based on this. We speculated that the enum 247 // would be lowered to i32, so we only need to flush the cache if this 248 // didn't happen. 249 if (!ConvertType(ED->getIntegerType())->isIntegerTy(32)) 250 TypeCache.clear(); 251 } 252 // If necessary, provide the full definition of a type only used with a 253 // declaration so far. 254 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 255 DI->completeType(ED); 256 return; 257 } 258 259 // If we completed a RecordDecl that we previously used and converted to an 260 // anonymous type, then go ahead and complete it now. 261 const RecordDecl *RD = cast<RecordDecl>(TD); 262 if (RD->isDependentType()) return; 263 264 // Only complete it if we converted it already. If we haven't converted it 265 // yet, we'll just do it lazily. 266 if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr())) 267 ConvertRecordDeclType(RD); 268 269 // If necessary, provide the full definition of a type only used with a 270 // declaration so far. 271 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 272 DI->completeType(RD); 273} 274 275void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 276 QualType T = Context.getRecordType(RD); 277 T = Context.getCanonicalType(T); 278 279 const Type *Ty = T.getTypePtr(); 280 if (RecordsWithOpaqueMemberPointers.count(Ty)) { 281 TypeCache.clear(); 282 RecordsWithOpaqueMemberPointers.clear(); 283 } 284} 285 286static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext, 287 const llvm::fltSemantics &format, 288 bool UseNativeHalf = false) { 289 if (&format == &llvm::APFloat::IEEEhalf) { 290 if (UseNativeHalf) 291 return llvm::Type::getHalfTy(VMContext); 292 else 293 return llvm::Type::getInt16Ty(VMContext); 294 } 295 if (&format == &llvm::APFloat::IEEEsingle) 296 return llvm::Type::getFloatTy(VMContext); 297 if (&format == &llvm::APFloat::IEEEdouble) 298 return llvm::Type::getDoubleTy(VMContext); 299 if (&format == &llvm::APFloat::IEEEquad) 300 return llvm::Type::getFP128Ty(VMContext); 301 if (&format == &llvm::APFloat::PPCDoubleDouble) 302 return llvm::Type::getPPC_FP128Ty(VMContext); 303 if (&format == &llvm::APFloat::x87DoubleExtended) 304 return llvm::Type::getX86_FP80Ty(VMContext); 305 llvm_unreachable("Unknown float format!"); 306} 307 308llvm::Type *CodeGenTypes::ConvertFunctionType(QualType QFT, 309 const FunctionDecl *FD) { 310 assert(QFT.isCanonical()); 311 const Type *Ty = QFT.getTypePtr(); 312 const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr()); 313 // First, check whether we can build the full function type. If the 314 // function type depends on an incomplete type (e.g. a struct or enum), we 315 // cannot lower the function type. 316 if (!isFuncTypeConvertible(FT)) { 317 // This function's type depends on an incomplete tag type. 318 319 // Force conversion of all the relevant record types, to make sure 320 // we re-convert the FunctionType when appropriate. 321 if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>()) 322 ConvertRecordDeclType(RT->getDecl()); 323 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 324 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) 325 if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>()) 326 ConvertRecordDeclType(RT->getDecl()); 327 328 SkippedLayout = true; 329 330 // Return a placeholder type. 331 return llvm::StructType::get(getLLVMContext()); 332 } 333 334 // While we're converting the parameter types for a function, we don't want 335 // to recursively convert any pointed-to structs. Converting directly-used 336 // structs is ok though. 337 if (!RecordsBeingLaidOut.insert(Ty).second) { 338 SkippedLayout = true; 339 return llvm::StructType::get(getLLVMContext()); 340 } 341 342 // The function type can be built; call the appropriate routines to 343 // build it. 344 const CGFunctionInfo *FI; 345 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) { 346 FI = &arrangeFreeFunctionType( 347 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)), FD); 348 } else { 349 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT); 350 FI = &arrangeFreeFunctionType( 351 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0))); 352 } 353 354 llvm::Type *ResultType = nullptr; 355 // If there is something higher level prodding our CGFunctionInfo, then 356 // don't recurse into it again. 357 if (FunctionsBeingProcessed.count(FI)) { 358 359 ResultType = llvm::StructType::get(getLLVMContext()); 360 SkippedLayout = true; 361 } else { 362 363 // Otherwise, we're good to go, go ahead and convert it. 364 ResultType = GetFunctionType(*FI); 365 } 366 367 RecordsBeingLaidOut.erase(Ty); 368 369 if (SkippedLayout) 370 TypeCache.clear(); 371 372 if (RecordsBeingLaidOut.empty()) 373 while (!DeferredRecords.empty()) 374 ConvertRecordDeclType(DeferredRecords.pop_back_val()); 375 return ResultType; 376} 377 378/// ConvertType - Convert the specified type to its LLVM form. 379llvm::Type *CodeGenTypes::ConvertType(QualType T) { 380 T = Context.getCanonicalType(T); 381 382 const Type *Ty = T.getTypePtr(); 383 384 // RecordTypes are cached and processed specially. 385 if (const RecordType *RT = dyn_cast<RecordType>(Ty)) 386 return ConvertRecordDeclType(RT->getDecl()); 387 388 // See if type is already cached. 389 llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty); 390 // If type is found in map then use it. Otherwise, convert type T. 391 if (TCI != TypeCache.end()) 392 return TCI->second; 393 394 // If we don't have it in the cache, convert it now. 395 llvm::Type *ResultType = nullptr; 396 switch (Ty->getTypeClass()) { 397 case Type::Record: // Handled above. 398#define TYPE(Class, Base) 399#define ABSTRACT_TYPE(Class, Base) 400#define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 401#define DEPENDENT_TYPE(Class, Base) case Type::Class: 402#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 403#include "clang/AST/TypeNodes.def" 404 llvm_unreachable("Non-canonical or dependent types aren't possible."); 405 406 case Type::Builtin: { 407 switch (cast<BuiltinType>(Ty)->getKind()) { 408 case BuiltinType::Void: 409 case BuiltinType::ObjCId: 410 case BuiltinType::ObjCClass: 411 case BuiltinType::ObjCSel: 412 // LLVM void type can only be used as the result of a function call. Just 413 // map to the same as char. 414 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 415 break; 416 417 case BuiltinType::Bool: 418 // Note that we always return bool as i1 for use as a scalar type. 419 ResultType = llvm::Type::getInt1Ty(getLLVMContext()); 420 break; 421 422 case BuiltinType::Char_S: 423 case BuiltinType::Char_U: 424 case BuiltinType::SChar: 425 case BuiltinType::UChar: 426 case BuiltinType::Short: 427 case BuiltinType::UShort: 428 case BuiltinType::Int: 429 case BuiltinType::UInt: 430 case BuiltinType::Long: 431 case BuiltinType::ULong: 432 case BuiltinType::LongLong: 433 case BuiltinType::ULongLong: 434 case BuiltinType::WChar_S: 435 case BuiltinType::WChar_U: 436 case BuiltinType::Char16: 437 case BuiltinType::Char32: 438 ResultType = llvm::IntegerType::get(getLLVMContext(), 439 static_cast<unsigned>(Context.getTypeSize(T))); 440 break; 441 442 case BuiltinType::Half: 443 // Half FP can either be storage-only (lowered to i16) or native. 444 ResultType = 445 getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T), 446 Context.getLangOpts().NativeHalfType || 447 Context.getLangOpts().HalfArgsAndReturns); 448 break; 449 case BuiltinType::Float: 450 case BuiltinType::Double: 451 case BuiltinType::LongDouble: 452 case BuiltinType::Float128: 453 ResultType = getTypeForFormat(getLLVMContext(), 454 Context.getFloatTypeSemantics(T), 455 /* UseNativeHalf = */ false); 456 break; 457 458 case BuiltinType::NullPtr: 459 // Model std::nullptr_t as i8* 460 ResultType = llvm::Type::getInt8PtrTy(getLLVMContext()); 461 break; 462 463 case BuiltinType::UInt128: 464 case BuiltinType::Int128: 465 ResultType = llvm::IntegerType::get(getLLVMContext(), 128); 466 break; 467 468#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 469 case BuiltinType::Id: 470#include "clang/Basic/OpenCLImageTypes.def" 471 case BuiltinType::OCLSampler: 472 case BuiltinType::OCLEvent: 473 case BuiltinType::OCLClkEvent: 474 case BuiltinType::OCLQueue: 475 case BuiltinType::OCLNDRange: 476 case BuiltinType::OCLReserveID: 477 ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty); 478 break; 479 480 case BuiltinType::Dependent: 481#define BUILTIN_TYPE(Id, SingletonId) 482#define PLACEHOLDER_TYPE(Id, SingletonId) \ 483 case BuiltinType::Id: 484#include "clang/AST/BuiltinTypes.def" 485 llvm_unreachable("Unexpected placeholder builtin type!"); 486 } 487 break; 488 } 489 case Type::Auto: 490 llvm_unreachable("Unexpected undeduced auto type!"); 491 case Type::Complex: { 492 llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType()); 493 ResultType = llvm::StructType::get(EltTy, EltTy, nullptr); 494 break; 495 } 496 case Type::LValueReference: 497 case Type::RValueReference: { 498 const ReferenceType *RTy = cast<ReferenceType>(Ty); 499 QualType ETy = RTy->getPointeeType(); 500 llvm::Type *PointeeType = ConvertTypeForMem(ETy); 501 unsigned AS = Context.getTargetAddressSpace(ETy); 502 ResultType = llvm::PointerType::get(PointeeType, AS); 503 break; 504 } 505 case Type::Pointer: { 506 const PointerType *PTy = cast<PointerType>(Ty); 507 QualType ETy = PTy->getPointeeType(); 508 llvm::Type *PointeeType = ConvertTypeForMem(ETy); 509 if (PointeeType->isVoidTy()) 510 PointeeType = llvm::Type::getInt8Ty(getLLVMContext()); 511 unsigned AS = Context.getTargetAddressSpace(ETy); 512 ResultType = llvm::PointerType::get(PointeeType, AS); 513 break; 514 } 515 516 case Type::VariableArray: { 517 const VariableArrayType *A = cast<VariableArrayType>(Ty); 518 assert(A->getIndexTypeCVRQualifiers() == 0 && 519 "FIXME: We only handle trivial array types so far!"); 520 // VLAs resolve to the innermost element type; this matches 521 // the return of alloca, and there isn't any obviously better choice. 522 ResultType = ConvertTypeForMem(A->getElementType()); 523 break; 524 } 525 case Type::IncompleteArray: { 526 const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty); 527 assert(A->getIndexTypeCVRQualifiers() == 0 && 528 "FIXME: We only handle trivial array types so far!"); 529 // int X[] -> [0 x int], unless the element type is not sized. If it is 530 // unsized (e.g. an incomplete struct) just use [0 x i8]. 531 ResultType = ConvertTypeForMem(A->getElementType()); 532 if (!ResultType->isSized()) { 533 SkippedLayout = true; 534 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 535 } 536 ResultType = llvm::ArrayType::get(ResultType, 0); 537 break; 538 } 539 case Type::ConstantArray: { 540 const ConstantArrayType *A = cast<ConstantArrayType>(Ty); 541 llvm::Type *EltTy = ConvertTypeForMem(A->getElementType()); 542 543 // Lower arrays of undefined struct type to arrays of i8 just to have a 544 // concrete type. 545 if (!EltTy->isSized()) { 546 SkippedLayout = true; 547 EltTy = llvm::Type::getInt8Ty(getLLVMContext()); 548 } 549 550 ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue()); 551 break; 552 } 553 case Type::ExtVector: 554 case Type::Vector: { 555 const VectorType *VT = cast<VectorType>(Ty); 556 ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()), 557 VT->getNumElements()); 558 break; 559 } 560 case Type::FunctionNoProto: 561 case Type::FunctionProto: 562 ResultType = ConvertFunctionType(T); 563 break; 564 case Type::ObjCObject: 565 ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType()); 566 break; 567 568 case Type::ObjCInterface: { 569 // Objective-C interfaces are always opaque (outside of the 570 // runtime, which can do whatever it likes); we never refine 571 // these. 572 llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)]; 573 if (!T) 574 T = llvm::StructType::create(getLLVMContext()); 575 ResultType = T; 576 break; 577 } 578 579 case Type::ObjCObjectPointer: { 580 // Protocol qualifications do not influence the LLVM type, we just return a 581 // pointer to the underlying interface type. We don't need to worry about 582 // recursive conversion. 583 llvm::Type *T = 584 ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType()); 585 ResultType = T->getPointerTo(); 586 break; 587 } 588 589 case Type::Enum: { 590 const EnumDecl *ED = cast<EnumType>(Ty)->getDecl(); 591 if (ED->isCompleteDefinition() || ED->isFixed()) 592 return ConvertType(ED->getIntegerType()); 593 // Return a placeholder 'i32' type. This can be changed later when the 594 // type is defined (see UpdateCompletedType), but is likely to be the 595 // "right" answer. 596 ResultType = llvm::Type::getInt32Ty(getLLVMContext()); 597 break; 598 } 599 600 case Type::BlockPointer: { 601 const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType(); 602 llvm::Type *PointeeType = ConvertTypeForMem(FTy); 603 unsigned AS = Context.getTargetAddressSpace(FTy); 604 ResultType = llvm::PointerType::get(PointeeType, AS); 605 break; 606 } 607 608 case Type::MemberPointer: { 609 auto *MPTy = cast<MemberPointerType>(Ty); 610 if (!getCXXABI().isMemberPointerConvertible(MPTy)) { 611 RecordsWithOpaqueMemberPointers.insert(MPTy->getClass()); 612 ResultType = llvm::StructType::create(getLLVMContext()); 613 } else { 614 ResultType = getCXXABI().ConvertMemberPointerType(MPTy); 615 } 616 break; 617 } 618 619 case Type::Atomic: { 620 QualType valueType = cast<AtomicType>(Ty)->getValueType(); 621 ResultType = ConvertTypeForMem(valueType); 622 623 // Pad out to the inflated size if necessary. 624 uint64_t valueSize = Context.getTypeSize(valueType); 625 uint64_t atomicSize = Context.getTypeSize(Ty); 626 if (valueSize != atomicSize) { 627 assert(valueSize < atomicSize); 628 llvm::Type *elts[] = { 629 ResultType, 630 llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8) 631 }; 632 ResultType = llvm::StructType::get(getLLVMContext(), 633 llvm::makeArrayRef(elts)); 634 } 635 break; 636 } 637 case Type::Pipe: { 638 ResultType = CGM.getOpenCLRuntime().getPipeType(); 639 break; 640 } 641 } 642 643 assert(ResultType && "Didn't convert a type?"); 644 645 TypeCache[Ty] = ResultType; 646 return ResultType; 647} 648 649bool CodeGenModule::isPaddedAtomicType(QualType type) { 650 return isPaddedAtomicType(type->castAs<AtomicType>()); 651} 652 653bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) { 654 return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType()); 655} 656 657/// ConvertRecordDeclType - Lay out a tagged decl type like struct or union. 658llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) { 659 // TagDecl's are not necessarily unique, instead use the (clang) 660 // type connected to the decl. 661 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 662 663 llvm::StructType *&Entry = RecordDeclTypes[Key]; 664 665 // If we don't have a StructType at all yet, create the forward declaration. 666 if (!Entry) { 667 Entry = llvm::StructType::create(getLLVMContext()); 668 addRecordTypeName(RD, Entry, ""); 669 } 670 llvm::StructType *Ty = Entry; 671 672 // If this is still a forward declaration, or the LLVM type is already 673 // complete, there's nothing more to do. 674 RD = RD->getDefinition(); 675 if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque()) 676 return Ty; 677 678 // If converting this type would cause us to infinitely loop, don't do it! 679 if (!isSafeToConvert(RD, *this)) { 680 DeferredRecords.push_back(RD); 681 return Ty; 682 } 683 684 // Okay, this is a definition of a type. Compile the implementation now. 685 bool InsertResult = RecordsBeingLaidOut.insert(Key).second; 686 (void)InsertResult; 687 assert(InsertResult && "Recursively compiling a struct?"); 688 689 // Force conversion of non-virtual base classes recursively. 690 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 691 for (const auto &I : CRD->bases()) { 692 if (I.isVirtual()) continue; 693 694 ConvertRecordDeclType(I.getType()->getAs<RecordType>()->getDecl()); 695 } 696 } 697 698 // Layout fields. 699 CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty); 700 CGRecordLayouts[Key] = Layout; 701 702 // We're done laying out this struct. 703 bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult; 704 assert(EraseResult && "struct not in RecordsBeingLaidOut set?"); 705 706 // If this struct blocked a FunctionType conversion, then recompute whatever 707 // was derived from that. 708 // FIXME: This is hugely overconservative. 709 if (SkippedLayout) 710 TypeCache.clear(); 711 712 // If we're done converting the outer-most record, then convert any deferred 713 // structs as well. 714 if (RecordsBeingLaidOut.empty()) 715 while (!DeferredRecords.empty()) 716 ConvertRecordDeclType(DeferredRecords.pop_back_val()); 717 718 return Ty; 719} 720 721/// getCGRecordLayout - Return record layout info for the given record decl. 722const CGRecordLayout & 723CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) { 724 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 725 726 const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key); 727 if (!Layout) { 728 // Compute the type information. 729 ConvertRecordDeclType(RD); 730 731 // Now try again. 732 Layout = CGRecordLayouts.lookup(Key); 733 } 734 735 assert(Layout && "Unable to find record layout information for type"); 736 return *Layout; 737} 738 739bool CodeGenTypes::isZeroInitializable(QualType T) { 740 // No need to check for member pointers when not compiling C++. 741 if (!Context.getLangOpts().CPlusPlus) 742 return true; 743 744 if (const auto *AT = Context.getAsArrayType(T)) { 745 if (isa<IncompleteArrayType>(AT)) 746 return true; 747 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 748 if (Context.getConstantArrayElementCount(CAT) == 0) 749 return true; 750 T = Context.getBaseElementType(T); 751 } 752 753 // Records are non-zero-initializable if they contain any 754 // non-zero-initializable subobjects. 755 if (const RecordType *RT = T->getAs<RecordType>()) { 756 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 757 return isZeroInitializable(RD); 758 } 759 760 // We have to ask the ABI about member pointers. 761 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) 762 return getCXXABI().isZeroInitializable(MPT); 763 764 // Everything else is okay. 765 return true; 766} 767 768bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) { 769 return getCGRecordLayout(RD).isZeroInitializable(); 770} 771