1//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a basic region store model. In this model, we do have field
11// sensitivity. But we assume nothing about the heap shape. So recursive data
12// structures are largely ignored. Basically we do 1-limiting analysis.
13// Parameter pointers are assumed with no aliasing. Pointee objects of
14// parameters are created lazily.
15//
16//===----------------------------------------------------------------------===//
17
18#include "clang/AST/Attr.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/Analysis/Analyses/LiveVariables.h"
21#include "clang/Analysis/AnalysisContext.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
28#include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
29#include "llvm/ADT/ImmutableList.h"
30#include "llvm/ADT/ImmutableMap.h"
31#include "llvm/ADT/Optional.h"
32#include "llvm/Support/raw_ostream.h"
33#include <utility>
34
35using namespace clang;
36using namespace ento;
37
38//===----------------------------------------------------------------------===//
39// Representation of binding keys.
40//===----------------------------------------------------------------------===//
41
42namespace {
43class BindingKey {
44public:
45  enum Kind { Default = 0x0, Direct = 0x1 };
46private:
47  enum { Symbolic = 0x2 };
48
49  llvm::PointerIntPair<const MemRegion *, 2> P;
50  uint64_t Data;
51
52  /// Create a key for a binding to region \p r, which has a symbolic offset
53  /// from region \p Base.
54  explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
55    : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
56    assert(r && Base && "Must have known regions.");
57    assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
58  }
59
60  /// Create a key for a binding at \p offset from base region \p r.
61  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
62    : P(r, k), Data(offset) {
63    assert(r && "Must have known regions.");
64    assert(getOffset() == offset && "Failed to store offset");
65    assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
66  }
67public:
68
69  bool isDirect() const { return P.getInt() & Direct; }
70  bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
71
72  const MemRegion *getRegion() const { return P.getPointer(); }
73  uint64_t getOffset() const {
74    assert(!hasSymbolicOffset());
75    return Data;
76  }
77
78  const SubRegion *getConcreteOffsetRegion() const {
79    assert(hasSymbolicOffset());
80    return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
81  }
82
83  const MemRegion *getBaseRegion() const {
84    if (hasSymbolicOffset())
85      return getConcreteOffsetRegion()->getBaseRegion();
86    return getRegion()->getBaseRegion();
87  }
88
89  void Profile(llvm::FoldingSetNodeID& ID) const {
90    ID.AddPointer(P.getOpaqueValue());
91    ID.AddInteger(Data);
92  }
93
94  static BindingKey Make(const MemRegion *R, Kind k);
95
96  bool operator<(const BindingKey &X) const {
97    if (P.getOpaqueValue() < X.P.getOpaqueValue())
98      return true;
99    if (P.getOpaqueValue() > X.P.getOpaqueValue())
100      return false;
101    return Data < X.Data;
102  }
103
104  bool operator==(const BindingKey &X) const {
105    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
106           Data == X.Data;
107  }
108
109  void dump() const;
110};
111} // end anonymous namespace
112
113BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
114  const RegionOffset &RO = R->getAsOffset();
115  if (RO.hasSymbolicOffset())
116    return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
117
118  return BindingKey(RO.getRegion(), RO.getOffset(), k);
119}
120
121namespace llvm {
122  static inline
123  raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
124    os << '(' << K.getRegion();
125    if (!K.hasSymbolicOffset())
126      os << ',' << K.getOffset();
127    os << ',' << (K.isDirect() ? "direct" : "default")
128       << ')';
129    return os;
130  }
131
132  template <typename T> struct isPodLike;
133  template <> struct isPodLike<BindingKey> {
134    static const bool value = true;
135  };
136} // end llvm namespace
137
138LLVM_DUMP_METHOD void BindingKey::dump() const { llvm::errs() << *this; }
139
140//===----------------------------------------------------------------------===//
141// Actual Store type.
142//===----------------------------------------------------------------------===//
143
144typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
145typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
146typedef std::pair<BindingKey, SVal> BindingPair;
147
148typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
149        RegionBindings;
150
151namespace {
152class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
153                                 ClusterBindings> {
154  ClusterBindings::Factory *CBFactory;
155
156public:
157  typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
158          ParentTy;
159
160  RegionBindingsRef(ClusterBindings::Factory &CBFactory,
161                    const RegionBindings::TreeTy *T,
162                    RegionBindings::TreeTy::Factory *F)
163      : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
164        CBFactory(&CBFactory) {}
165
166  RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
167      : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
168        CBFactory(&CBFactory) {}
169
170  RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
171    return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
172                             *CBFactory);
173  }
174
175  RegionBindingsRef remove(key_type_ref K) const {
176    return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
177                             *CBFactory);
178  }
179
180  RegionBindingsRef addBinding(BindingKey K, SVal V) const;
181
182  RegionBindingsRef addBinding(const MemRegion *R,
183                               BindingKey::Kind k, SVal V) const;
184
185  const SVal *lookup(BindingKey K) const;
186  const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
187  using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
188
189  RegionBindingsRef removeBinding(BindingKey K);
190
191  RegionBindingsRef removeBinding(const MemRegion *R,
192                                  BindingKey::Kind k);
193
194  RegionBindingsRef removeBinding(const MemRegion *R) {
195    return removeBinding(R, BindingKey::Direct).
196           removeBinding(R, BindingKey::Default);
197  }
198
199  Optional<SVal> getDirectBinding(const MemRegion *R) const;
200
201  /// getDefaultBinding - Returns an SVal* representing an optional default
202  ///  binding associated with a region and its subregions.
203  Optional<SVal> getDefaultBinding(const MemRegion *R) const;
204
205  /// Return the internal tree as a Store.
206  Store asStore() const {
207    return asImmutableMap().getRootWithoutRetain();
208  }
209
210  void dump(raw_ostream &OS, const char *nl) const {
211   for (iterator I = begin(), E = end(); I != E; ++I) {
212     const ClusterBindings &Cluster = I.getData();
213     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
214          CI != CE; ++CI) {
215       OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
216     }
217     OS << nl;
218   }
219  }
220
221  LLVM_DUMP_METHOD void dump() const { dump(llvm::errs(), "\n"); }
222};
223} // end anonymous namespace
224
225typedef const RegionBindingsRef& RegionBindingsConstRef;
226
227Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
228  return Optional<SVal>::create(lookup(R, BindingKey::Direct));
229}
230
231Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
232  if (R->isBoundable())
233    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
234      if (TR->getValueType()->isUnionType())
235        return UnknownVal();
236
237  return Optional<SVal>::create(lookup(R, BindingKey::Default));
238}
239
240RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
241  const MemRegion *Base = K.getBaseRegion();
242
243  const ClusterBindings *ExistingCluster = lookup(Base);
244  ClusterBindings Cluster =
245      (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
246
247  ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
248  return add(Base, NewCluster);
249}
250
251
252RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
253                                                BindingKey::Kind k,
254                                                SVal V) const {
255  return addBinding(BindingKey::Make(R, k), V);
256}
257
258const SVal *RegionBindingsRef::lookup(BindingKey K) const {
259  const ClusterBindings *Cluster = lookup(K.getBaseRegion());
260  if (!Cluster)
261    return nullptr;
262  return Cluster->lookup(K);
263}
264
265const SVal *RegionBindingsRef::lookup(const MemRegion *R,
266                                      BindingKey::Kind k) const {
267  return lookup(BindingKey::Make(R, k));
268}
269
270RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
271  const MemRegion *Base = K.getBaseRegion();
272  const ClusterBindings *Cluster = lookup(Base);
273  if (!Cluster)
274    return *this;
275
276  ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
277  if (NewCluster.isEmpty())
278    return remove(Base);
279  return add(Base, NewCluster);
280}
281
282RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
283                                                BindingKey::Kind k){
284  return removeBinding(BindingKey::Make(R, k));
285}
286
287//===----------------------------------------------------------------------===//
288// Fine-grained control of RegionStoreManager.
289//===----------------------------------------------------------------------===//
290
291namespace {
292struct minimal_features_tag {};
293struct maximal_features_tag {};
294
295class RegionStoreFeatures {
296  bool SupportsFields;
297public:
298  RegionStoreFeatures(minimal_features_tag) :
299    SupportsFields(false) {}
300
301  RegionStoreFeatures(maximal_features_tag) :
302    SupportsFields(true) {}
303
304  void enableFields(bool t) { SupportsFields = t; }
305
306  bool supportsFields() const { return SupportsFields; }
307};
308}
309
310//===----------------------------------------------------------------------===//
311// Main RegionStore logic.
312//===----------------------------------------------------------------------===//
313
314namespace {
315class invalidateRegionsWorker;
316
317class RegionStoreManager : public StoreManager {
318public:
319  const RegionStoreFeatures Features;
320
321  RegionBindings::Factory RBFactory;
322  mutable ClusterBindings::Factory CBFactory;
323
324  typedef std::vector<SVal> SValListTy;
325private:
326  typedef llvm::DenseMap<const LazyCompoundValData *,
327                         SValListTy> LazyBindingsMapTy;
328  LazyBindingsMapTy LazyBindingsMap;
329
330  /// The largest number of fields a struct can have and still be
331  /// considered "small".
332  ///
333  /// This is currently used to decide whether or not it is worth "forcing" a
334  /// LazyCompoundVal on bind.
335  ///
336  /// This is controlled by 'region-store-small-struct-limit' option.
337  /// To disable all small-struct-dependent behavior, set the option to "0".
338  unsigned SmallStructLimit;
339
340  /// \brief A helper used to populate the work list with the given set of
341  /// regions.
342  void populateWorkList(invalidateRegionsWorker &W,
343                        ArrayRef<SVal> Values,
344                        InvalidatedRegions *TopLevelRegions);
345
346public:
347  RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
348    : StoreManager(mgr), Features(f),
349      RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
350      SmallStructLimit(0) {
351    if (SubEngine *Eng = StateMgr.getOwningEngine()) {
352      AnalyzerOptions &Options = Eng->getAnalysisManager().options;
353      SmallStructLimit =
354        Options.getOptionAsInteger("region-store-small-struct-limit", 2);
355    }
356  }
357
358
359  /// setImplicitDefaultValue - Set the default binding for the provided
360  ///  MemRegion to the value implicitly defined for compound literals when
361  ///  the value is not specified.
362  RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
363                                            const MemRegion *R, QualType T);
364
365  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
366  ///  type.  'Array' represents the lvalue of the array being decayed
367  ///  to a pointer, and the returned SVal represents the decayed
368  ///  version of that lvalue (i.e., a pointer to the first element of
369  ///  the array).  This is called by ExprEngine when evaluating
370  ///  casts from arrays to pointers.
371  SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
372
373  StoreRef getInitialStore(const LocationContext *InitLoc) override {
374    return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
375  }
376
377  //===-------------------------------------------------------------------===//
378  // Binding values to regions.
379  //===-------------------------------------------------------------------===//
380  RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
381                                           const Expr *Ex,
382                                           unsigned Count,
383                                           const LocationContext *LCtx,
384                                           RegionBindingsRef B,
385                                           InvalidatedRegions *Invalidated);
386
387  StoreRef invalidateRegions(Store store,
388                             ArrayRef<SVal> Values,
389                             const Expr *E, unsigned Count,
390                             const LocationContext *LCtx,
391                             const CallEvent *Call,
392                             InvalidatedSymbols &IS,
393                             RegionAndSymbolInvalidationTraits &ITraits,
394                             InvalidatedRegions *Invalidated,
395                             InvalidatedRegions *InvalidatedTopLevel) override;
396
397  bool scanReachableSymbols(Store S, const MemRegion *R,
398                            ScanReachableSymbols &Callbacks) override;
399
400  RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
401                                            const SubRegion *R);
402
403public: // Part of public interface to class.
404
405  StoreRef Bind(Store store, Loc LV, SVal V) override {
406    return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
407  }
408
409  RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
410
411  // BindDefault is only used to initialize a region with a default value.
412  StoreRef BindDefault(Store store, const MemRegion *R, SVal V) override {
413    RegionBindingsRef B = getRegionBindings(store);
414    assert(!B.lookup(R, BindingKey::Direct));
415
416    BindingKey Key = BindingKey::Make(R, BindingKey::Default);
417    if (B.lookup(Key)) {
418      const SubRegion *SR = cast<SubRegion>(R);
419      assert(SR->getAsOffset().getOffset() ==
420             SR->getSuperRegion()->getAsOffset().getOffset() &&
421             "A default value must come from a super-region");
422      B = removeSubRegionBindings(B, SR);
423    } else {
424      B = B.addBinding(Key, V);
425    }
426
427    return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
428  }
429
430  /// Attempt to extract the fields of \p LCV and bind them to the struct region
431  /// \p R.
432  ///
433  /// This path is used when it seems advantageous to "force" loading the values
434  /// within a LazyCompoundVal to bind memberwise to the struct region, rather
435  /// than using a Default binding at the base of the entire region. This is a
436  /// heuristic attempting to avoid building long chains of LazyCompoundVals.
437  ///
438  /// \returns The updated store bindings, or \c None if binding non-lazily
439  ///          would be too expensive.
440  Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
441                                                 const TypedValueRegion *R,
442                                                 const RecordDecl *RD,
443                                                 nonloc::LazyCompoundVal LCV);
444
445  /// BindStruct - Bind a compound value to a structure.
446  RegionBindingsRef bindStruct(RegionBindingsConstRef B,
447                               const TypedValueRegion* R, SVal V);
448
449  /// BindVector - Bind a compound value to a vector.
450  RegionBindingsRef bindVector(RegionBindingsConstRef B,
451                               const TypedValueRegion* R, SVal V);
452
453  RegionBindingsRef bindArray(RegionBindingsConstRef B,
454                              const TypedValueRegion* R,
455                              SVal V);
456
457  /// Clears out all bindings in the given region and assigns a new value
458  /// as a Default binding.
459  RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
460                                  const TypedRegion *R,
461                                  SVal DefaultVal);
462
463  /// \brief Create a new store with the specified binding removed.
464  /// \param ST the original store, that is the basis for the new store.
465  /// \param L the location whose binding should be removed.
466  StoreRef killBinding(Store ST, Loc L) override;
467
468  void incrementReferenceCount(Store store) override {
469    getRegionBindings(store).manualRetain();
470  }
471
472  /// If the StoreManager supports it, decrement the reference count of
473  /// the specified Store object.  If the reference count hits 0, the memory
474  /// associated with the object is recycled.
475  void decrementReferenceCount(Store store) override {
476    getRegionBindings(store).manualRelease();
477  }
478
479  bool includedInBindings(Store store, const MemRegion *region) const override;
480
481  /// \brief Return the value bound to specified location in a given state.
482  ///
483  /// The high level logic for this method is this:
484  /// getBinding (L)
485  ///   if L has binding
486  ///     return L's binding
487  ///   else if L is in killset
488  ///     return unknown
489  ///   else
490  ///     if L is on stack or heap
491  ///       return undefined
492  ///     else
493  ///       return symbolic
494  SVal getBinding(Store S, Loc L, QualType T) override {
495    return getBinding(getRegionBindings(S), L, T);
496  }
497
498  SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
499
500  SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
501
502  SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
503
504  SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
505
506  SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
507
508  SVal getBindingForLazySymbol(const TypedValueRegion *R);
509
510  SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
511                                         const TypedValueRegion *R,
512                                         QualType Ty);
513
514  SVal getLazyBinding(const SubRegion *LazyBindingRegion,
515                      RegionBindingsRef LazyBinding);
516
517  /// Get bindings for the values in a struct and return a CompoundVal, used
518  /// when doing struct copy:
519  /// struct s x, y;
520  /// x = y;
521  /// y's value is retrieved by this method.
522  SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
523  SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
524  NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
525
526  /// Used to lazily generate derived symbols for bindings that are defined
527  /// implicitly by default bindings in a super region.
528  ///
529  /// Note that callers may need to specially handle LazyCompoundVals, which
530  /// are returned as is in case the caller needs to treat them differently.
531  Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
532                                                  const MemRegion *superR,
533                                                  const TypedValueRegion *R,
534                                                  QualType Ty);
535
536  /// Get the state and region whose binding this region \p R corresponds to.
537  ///
538  /// If there is no lazy binding for \p R, the returned value will have a null
539  /// \c second. Note that a null pointer can represents a valid Store.
540  std::pair<Store, const SubRegion *>
541  findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
542                  const SubRegion *originalRegion);
543
544  /// Returns the cached set of interesting SVals contained within a lazy
545  /// binding.
546  ///
547  /// The precise value of "interesting" is determined for the purposes of
548  /// RegionStore's internal analysis. It must always contain all regions and
549  /// symbols, but may omit constants and other kinds of SVal.
550  const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
551
552  //===------------------------------------------------------------------===//
553  // State pruning.
554  //===------------------------------------------------------------------===//
555
556  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
557  ///  It returns a new Store with these values removed.
558  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
559                              SymbolReaper& SymReaper) override;
560
561  //===------------------------------------------------------------------===//
562  // Region "extents".
563  //===------------------------------------------------------------------===//
564
565  // FIXME: This method will soon be eliminated; see the note in Store.h.
566  DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
567                                         const MemRegion* R,
568                                         QualType EleTy) override;
569
570  //===------------------------------------------------------------------===//
571  // Utility methods.
572  //===------------------------------------------------------------------===//
573
574  RegionBindingsRef getRegionBindings(Store store) const {
575    return RegionBindingsRef(CBFactory,
576                             static_cast<const RegionBindings::TreeTy*>(store),
577                             RBFactory.getTreeFactory());
578  }
579
580  void print(Store store, raw_ostream &Out, const char* nl,
581             const char *sep) override;
582
583  void iterBindings(Store store, BindingsHandler& f) override {
584    RegionBindingsRef B = getRegionBindings(store);
585    for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
586      const ClusterBindings &Cluster = I.getData();
587      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
588           CI != CE; ++CI) {
589        const BindingKey &K = CI.getKey();
590        if (!K.isDirect())
591          continue;
592        if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
593          // FIXME: Possibly incorporate the offset?
594          if (!f.HandleBinding(*this, store, R, CI.getData()))
595            return;
596        }
597      }
598    }
599  }
600};
601
602} // end anonymous namespace
603
604//===----------------------------------------------------------------------===//
605// RegionStore creation.
606//===----------------------------------------------------------------------===//
607
608std::unique_ptr<StoreManager>
609ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
610  RegionStoreFeatures F = maximal_features_tag();
611  return llvm::make_unique<RegionStoreManager>(StMgr, F);
612}
613
614std::unique_ptr<StoreManager>
615ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
616  RegionStoreFeatures F = minimal_features_tag();
617  F.enableFields(true);
618  return llvm::make_unique<RegionStoreManager>(StMgr, F);
619}
620
621
622//===----------------------------------------------------------------------===//
623// Region Cluster analysis.
624//===----------------------------------------------------------------------===//
625
626namespace {
627/// Used to determine which global regions are automatically included in the
628/// initial worklist of a ClusterAnalysis.
629enum GlobalsFilterKind {
630  /// Don't include any global regions.
631  GFK_None,
632  /// Only include system globals.
633  GFK_SystemOnly,
634  /// Include all global regions.
635  GFK_All
636};
637
638template <typename DERIVED>
639class ClusterAnalysis  {
640protected:
641  typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
642  typedef const MemRegion * WorkListElement;
643  typedef SmallVector<WorkListElement, 10> WorkList;
644
645  llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
646
647  WorkList WL;
648
649  RegionStoreManager &RM;
650  ASTContext &Ctx;
651  SValBuilder &svalBuilder;
652
653  RegionBindingsRef B;
654
655
656protected:
657  const ClusterBindings *getCluster(const MemRegion *R) {
658    return B.lookup(R);
659  }
660
661  /// Returns true if all clusters in the given memspace should be initially
662  /// included in the cluster analysis. Subclasses may provide their
663  /// own implementation.
664  bool includeEntireMemorySpace(const MemRegion *Base) {
665    return false;
666  }
667
668public:
669  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
670                  RegionBindingsRef b)
671      : RM(rm), Ctx(StateMgr.getContext()),
672        svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
673
674  RegionBindingsRef getRegionBindings() const { return B; }
675
676  bool isVisited(const MemRegion *R) {
677    return Visited.count(getCluster(R));
678  }
679
680  void GenerateClusters() {
681    // Scan the entire set of bindings and record the region clusters.
682    for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
683         RI != RE; ++RI){
684      const MemRegion *Base = RI.getKey();
685
686      const ClusterBindings &Cluster = RI.getData();
687      assert(!Cluster.isEmpty() && "Empty clusters should be removed");
688      static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
689
690      // If the base's memspace should be entirely invalidated, add the cluster
691      // to the workspace up front.
692      if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
693        AddToWorkList(WorkListElement(Base), &Cluster);
694    }
695  }
696
697  bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
698    if (C && !Visited.insert(C).second)
699      return false;
700    WL.push_back(E);
701    return true;
702  }
703
704  bool AddToWorkList(const MemRegion *R) {
705    return static_cast<DERIVED*>(this)->AddToWorkList(R);
706  }
707
708  void RunWorkList() {
709    while (!WL.empty()) {
710      WorkListElement E = WL.pop_back_val();
711      const MemRegion *BaseR = E;
712
713      static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
714    }
715  }
716
717  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
718  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
719
720  void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
721                    bool Flag) {
722    static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
723  }
724};
725}
726
727//===----------------------------------------------------------------------===//
728// Binding invalidation.
729//===----------------------------------------------------------------------===//
730
731bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
732                                              ScanReachableSymbols &Callbacks) {
733  assert(R == R->getBaseRegion() && "Should only be called for base regions");
734  RegionBindingsRef B = getRegionBindings(S);
735  const ClusterBindings *Cluster = B.lookup(R);
736
737  if (!Cluster)
738    return true;
739
740  for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
741       RI != RE; ++RI) {
742    if (!Callbacks.scan(RI.getData()))
743      return false;
744  }
745
746  return true;
747}
748
749static inline bool isUnionField(const FieldRegion *FR) {
750  return FR->getDecl()->getParent()->isUnion();
751}
752
753typedef SmallVector<const FieldDecl *, 8> FieldVector;
754
755static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
756  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
757
758  const MemRegion *Base = K.getConcreteOffsetRegion();
759  const MemRegion *R = K.getRegion();
760
761  while (R != Base) {
762    if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
763      if (!isUnionField(FR))
764        Fields.push_back(FR->getDecl());
765
766    R = cast<SubRegion>(R)->getSuperRegion();
767  }
768}
769
770static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
771  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
772
773  if (Fields.empty())
774    return true;
775
776  FieldVector FieldsInBindingKey;
777  getSymbolicOffsetFields(K, FieldsInBindingKey);
778
779  ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
780  if (Delta >= 0)
781    return std::equal(FieldsInBindingKey.begin() + Delta,
782                      FieldsInBindingKey.end(),
783                      Fields.begin());
784  else
785    return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
786                      Fields.begin() - Delta);
787}
788
789/// Collects all bindings in \p Cluster that may refer to bindings within
790/// \p Top.
791///
792/// Each binding is a pair whose \c first is the key (a BindingKey) and whose
793/// \c second is the value (an SVal).
794///
795/// The \p IncludeAllDefaultBindings parameter specifies whether to include
796/// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
797/// an aggregate within a larger aggregate with a default binding.
798static void
799collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
800                         SValBuilder &SVB, const ClusterBindings &Cluster,
801                         const SubRegion *Top, BindingKey TopKey,
802                         bool IncludeAllDefaultBindings) {
803  FieldVector FieldsInSymbolicSubregions;
804  if (TopKey.hasSymbolicOffset()) {
805    getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
806    Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion());
807    TopKey = BindingKey::Make(Top, BindingKey::Default);
808  }
809
810  // Find the length (in bits) of the region being invalidated.
811  uint64_t Length = UINT64_MAX;
812  SVal Extent = Top->getExtent(SVB);
813  if (Optional<nonloc::ConcreteInt> ExtentCI =
814          Extent.getAs<nonloc::ConcreteInt>()) {
815    const llvm::APSInt &ExtentInt = ExtentCI->getValue();
816    assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
817    // Extents are in bytes but region offsets are in bits. Be careful!
818    Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
819  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
820    if (FR->getDecl()->isBitField())
821      Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
822  }
823
824  for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
825       I != E; ++I) {
826    BindingKey NextKey = I.getKey();
827    if (NextKey.getRegion() == TopKey.getRegion()) {
828      // FIXME: This doesn't catch the case where we're really invalidating a
829      // region with a symbolic offset. Example:
830      //      R: points[i].y
831      //   Next: points[0].x
832
833      if (NextKey.getOffset() > TopKey.getOffset() &&
834          NextKey.getOffset() - TopKey.getOffset() < Length) {
835        // Case 1: The next binding is inside the region we're invalidating.
836        // Include it.
837        Bindings.push_back(*I);
838
839      } else if (NextKey.getOffset() == TopKey.getOffset()) {
840        // Case 2: The next binding is at the same offset as the region we're
841        // invalidating. In this case, we need to leave default bindings alone,
842        // since they may be providing a default value for a regions beyond what
843        // we're invalidating.
844        // FIXME: This is probably incorrect; consider invalidating an outer
845        // struct whose first field is bound to a LazyCompoundVal.
846        if (IncludeAllDefaultBindings || NextKey.isDirect())
847          Bindings.push_back(*I);
848      }
849
850    } else if (NextKey.hasSymbolicOffset()) {
851      const MemRegion *Base = NextKey.getConcreteOffsetRegion();
852      if (Top->isSubRegionOf(Base)) {
853        // Case 3: The next key is symbolic and we just changed something within
854        // its concrete region. We don't know if the binding is still valid, so
855        // we'll be conservative and include it.
856        if (IncludeAllDefaultBindings || NextKey.isDirect())
857          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
858            Bindings.push_back(*I);
859      } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
860        // Case 4: The next key is symbolic, but we changed a known
861        // super-region. In this case the binding is certainly included.
862        if (Top == Base || BaseSR->isSubRegionOf(Top))
863          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
864            Bindings.push_back(*I);
865      }
866    }
867  }
868}
869
870static void
871collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
872                         SValBuilder &SVB, const ClusterBindings &Cluster,
873                         const SubRegion *Top, bool IncludeAllDefaultBindings) {
874  collectSubRegionBindings(Bindings, SVB, Cluster, Top,
875                           BindingKey::Make(Top, BindingKey::Default),
876                           IncludeAllDefaultBindings);
877}
878
879RegionBindingsRef
880RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
881                                            const SubRegion *Top) {
882  BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
883  const MemRegion *ClusterHead = TopKey.getBaseRegion();
884
885  if (Top == ClusterHead) {
886    // We can remove an entire cluster's bindings all in one go.
887    return B.remove(Top);
888  }
889
890  const ClusterBindings *Cluster = B.lookup(ClusterHead);
891  if (!Cluster) {
892    // If we're invalidating a region with a symbolic offset, we need to make
893    // sure we don't treat the base region as uninitialized anymore.
894    if (TopKey.hasSymbolicOffset()) {
895      const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
896      return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
897    }
898    return B;
899  }
900
901  SmallVector<BindingPair, 32> Bindings;
902  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
903                           /*IncludeAllDefaultBindings=*/false);
904
905  ClusterBindingsRef Result(*Cluster, CBFactory);
906  for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
907                                                    E = Bindings.end();
908       I != E; ++I)
909    Result = Result.remove(I->first);
910
911  // If we're invalidating a region with a symbolic offset, we need to make sure
912  // we don't treat the base region as uninitialized anymore.
913  // FIXME: This isn't very precise; see the example in
914  // collectSubRegionBindings.
915  if (TopKey.hasSymbolicOffset()) {
916    const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
917    Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
918                        UnknownVal());
919  }
920
921  if (Result.isEmpty())
922    return B.remove(ClusterHead);
923  return B.add(ClusterHead, Result.asImmutableMap());
924}
925
926namespace {
927class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
928{
929  const Expr *Ex;
930  unsigned Count;
931  const LocationContext *LCtx;
932  InvalidatedSymbols &IS;
933  RegionAndSymbolInvalidationTraits &ITraits;
934  StoreManager::InvalidatedRegions *Regions;
935  GlobalsFilterKind GlobalsFilter;
936public:
937  invalidateRegionsWorker(RegionStoreManager &rm,
938                          ProgramStateManager &stateMgr,
939                          RegionBindingsRef b,
940                          const Expr *ex, unsigned count,
941                          const LocationContext *lctx,
942                          InvalidatedSymbols &is,
943                          RegionAndSymbolInvalidationTraits &ITraitsIn,
944                          StoreManager::InvalidatedRegions *r,
945                          GlobalsFilterKind GFK)
946     : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b),
947       Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
948       GlobalsFilter(GFK) {}
949
950  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
951  void VisitBinding(SVal V);
952
953  using ClusterAnalysis::AddToWorkList;
954
955  bool AddToWorkList(const MemRegion *R);
956
957  /// Returns true if all clusters in the memory space for \p Base should be
958  /// be invalidated.
959  bool includeEntireMemorySpace(const MemRegion *Base);
960
961  /// Returns true if the memory space of the given region is one of the global
962  /// regions specially included at the start of invalidation.
963  bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
964};
965}
966
967bool invalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
968  bool doNotInvalidateSuperRegion = ITraits.hasTrait(
969      R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
970  const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
971  return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
972}
973
974void invalidateRegionsWorker::VisitBinding(SVal V) {
975  // A symbol?  Mark it touched by the invalidation.
976  if (SymbolRef Sym = V.getAsSymbol())
977    IS.insert(Sym);
978
979  if (const MemRegion *R = V.getAsRegion()) {
980    AddToWorkList(R);
981    return;
982  }
983
984  // Is it a LazyCompoundVal?  All references get invalidated as well.
985  if (Optional<nonloc::LazyCompoundVal> LCS =
986          V.getAs<nonloc::LazyCompoundVal>()) {
987
988    const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
989
990    for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
991                                                        E = Vals.end();
992         I != E; ++I)
993      VisitBinding(*I);
994
995    return;
996  }
997}
998
999void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
1000                                           const ClusterBindings *C) {
1001
1002  bool PreserveRegionsContents =
1003      ITraits.hasTrait(baseR,
1004                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1005
1006  if (C) {
1007    for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
1008      VisitBinding(I.getData());
1009
1010    // Invalidate regions contents.
1011    if (!PreserveRegionsContents)
1012      B = B.remove(baseR);
1013  }
1014
1015  // BlockDataRegion?  If so, invalidate captured variables that are passed
1016  // by reference.
1017  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1018    for (BlockDataRegion::referenced_vars_iterator
1019         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1020         BI != BE; ++BI) {
1021      const VarRegion *VR = BI.getCapturedRegion();
1022      const VarDecl *VD = VR->getDecl();
1023      if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1024        AddToWorkList(VR);
1025      }
1026      else if (Loc::isLocType(VR->getValueType())) {
1027        // Map the current bindings to a Store to retrieve the value
1028        // of the binding.  If that binding itself is a region, we should
1029        // invalidate that region.  This is because a block may capture
1030        // a pointer value, but the thing pointed by that pointer may
1031        // get invalidated.
1032        SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1033        if (Optional<Loc> L = V.getAs<Loc>()) {
1034          if (const MemRegion *LR = L->getAsRegion())
1035            AddToWorkList(LR);
1036        }
1037      }
1038    }
1039    return;
1040  }
1041
1042  // Symbolic region?
1043  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1044    IS.insert(SR->getSymbol());
1045
1046  // Nothing else should be done in the case when we preserve regions context.
1047  if (PreserveRegionsContents)
1048    return;
1049
1050  // Otherwise, we have a normal data region. Record that we touched the region.
1051  if (Regions)
1052    Regions->push_back(baseR);
1053
1054  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
1055    // Invalidate the region by setting its default value to
1056    // conjured symbol. The type of the symbol is irrelevant.
1057    DefinedOrUnknownSVal V =
1058      svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1059    B = B.addBinding(baseR, BindingKey::Default, V);
1060    return;
1061  }
1062
1063  if (!baseR->isBoundable())
1064    return;
1065
1066  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1067  QualType T = TR->getValueType();
1068
1069  if (isInitiallyIncludedGlobalRegion(baseR)) {
1070    // If the region is a global and we are invalidating all globals,
1071    // erasing the entry is good enough.  This causes all globals to be lazily
1072    // symbolicated from the same base symbol.
1073    return;
1074  }
1075
1076  if (T->isStructureOrClassType()) {
1077    // Invalidate the region by setting its default value to
1078    // conjured symbol. The type of the symbol is irrelevant.
1079    DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1080                                                          Ctx.IntTy, Count);
1081    B = B.addBinding(baseR, BindingKey::Default, V);
1082    return;
1083  }
1084
1085  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1086    bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1087        baseR,
1088        RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1089
1090    if (doNotInvalidateSuperRegion) {
1091      // We are not doing blank invalidation of the whole array region so we
1092      // have to manually invalidate each elements.
1093      Optional<uint64_t> NumElements;
1094
1095      // Compute lower and upper offsets for region within array.
1096      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1097        NumElements = CAT->getSize().getZExtValue();
1098      if (!NumElements) // We are not dealing with a constant size array
1099        goto conjure_default;
1100      QualType ElementTy = AT->getElementType();
1101      uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1102      const RegionOffset &RO = baseR->getAsOffset();
1103      const MemRegion *SuperR = baseR->getBaseRegion();
1104      if (RO.hasSymbolicOffset()) {
1105        // If base region has a symbolic offset,
1106        // we revert to invalidating the super region.
1107        if (SuperR)
1108          AddToWorkList(SuperR);
1109        goto conjure_default;
1110      }
1111
1112      uint64_t LowerOffset = RO.getOffset();
1113      uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1114      bool UpperOverflow = UpperOffset < LowerOffset;
1115
1116      // Invalidate regions which are within array boundaries,
1117      // or have a symbolic offset.
1118      if (!SuperR)
1119        goto conjure_default;
1120
1121      const ClusterBindings *C = B.lookup(SuperR);
1122      if (!C)
1123        goto conjure_default;
1124
1125      for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
1126           ++I) {
1127        const BindingKey &BK = I.getKey();
1128        Optional<uint64_t> ROffset =
1129            BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset();
1130
1131        // Check offset is not symbolic and within array's boundaries.
1132        // Handles arrays of 0 elements and of 0-sized elements as well.
1133        if (!ROffset ||
1134            ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1135             (UpperOverflow &&
1136              (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1137             (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1138          B = B.removeBinding(I.getKey());
1139          // Bound symbolic regions need to be invalidated for dead symbol
1140          // detection.
1141          SVal V = I.getData();
1142          const MemRegion *R = V.getAsRegion();
1143          if (R && isa<SymbolicRegion>(R))
1144            VisitBinding(V);
1145        }
1146      }
1147    }
1148  conjure_default:
1149      // Set the default value of the array to conjured symbol.
1150    DefinedOrUnknownSVal V =
1151    svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1152                                     AT->getElementType(), Count);
1153    B = B.addBinding(baseR, BindingKey::Default, V);
1154    return;
1155  }
1156
1157  DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1158                                                        T,Count);
1159  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1160  B = B.addBinding(baseR, BindingKey::Direct, V);
1161}
1162
1163bool invalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1164    const MemRegion *R) {
1165  switch (GlobalsFilter) {
1166  case GFK_None:
1167    return false;
1168  case GFK_SystemOnly:
1169    return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1170  case GFK_All:
1171    return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1172  }
1173
1174  llvm_unreachable("unknown globals filter");
1175}
1176
1177bool invalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1178  if (isInitiallyIncludedGlobalRegion(Base))
1179    return true;
1180
1181  const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1182  return ITraits.hasTrait(MemSpace,
1183                          RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
1184}
1185
1186RegionBindingsRef
1187RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1188                                           const Expr *Ex,
1189                                           unsigned Count,
1190                                           const LocationContext *LCtx,
1191                                           RegionBindingsRef B,
1192                                           InvalidatedRegions *Invalidated) {
1193  // Bind the globals memory space to a new symbol that we will use to derive
1194  // the bindings for all globals.
1195  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1196  SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
1197                                        /* type does not matter */ Ctx.IntTy,
1198                                        Count);
1199
1200  B = B.removeBinding(GS)
1201       .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1202
1203  // Even if there are no bindings in the global scope, we still need to
1204  // record that we touched it.
1205  if (Invalidated)
1206    Invalidated->push_back(GS);
1207
1208  return B;
1209}
1210
1211void RegionStoreManager::populateWorkList(invalidateRegionsWorker &W,
1212                                          ArrayRef<SVal> Values,
1213                                          InvalidatedRegions *TopLevelRegions) {
1214  for (ArrayRef<SVal>::iterator I = Values.begin(),
1215                                E = Values.end(); I != E; ++I) {
1216    SVal V = *I;
1217    if (Optional<nonloc::LazyCompoundVal> LCS =
1218        V.getAs<nonloc::LazyCompoundVal>()) {
1219
1220      const SValListTy &Vals = getInterestingValues(*LCS);
1221
1222      for (SValListTy::const_iterator I = Vals.begin(),
1223                                      E = Vals.end(); I != E; ++I) {
1224        // Note: the last argument is false here because these are
1225        // non-top-level regions.
1226        if (const MemRegion *R = (*I).getAsRegion())
1227          W.AddToWorkList(R);
1228      }
1229      continue;
1230    }
1231
1232    if (const MemRegion *R = V.getAsRegion()) {
1233      if (TopLevelRegions)
1234        TopLevelRegions->push_back(R);
1235      W.AddToWorkList(R);
1236      continue;
1237    }
1238  }
1239}
1240
1241StoreRef
1242RegionStoreManager::invalidateRegions(Store store,
1243                                     ArrayRef<SVal> Values,
1244                                     const Expr *Ex, unsigned Count,
1245                                     const LocationContext *LCtx,
1246                                     const CallEvent *Call,
1247                                     InvalidatedSymbols &IS,
1248                                     RegionAndSymbolInvalidationTraits &ITraits,
1249                                     InvalidatedRegions *TopLevelRegions,
1250                                     InvalidatedRegions *Invalidated) {
1251  GlobalsFilterKind GlobalsFilter;
1252  if (Call) {
1253    if (Call->isInSystemHeader())
1254      GlobalsFilter = GFK_SystemOnly;
1255    else
1256      GlobalsFilter = GFK_All;
1257  } else {
1258    GlobalsFilter = GFK_None;
1259  }
1260
1261  RegionBindingsRef B = getRegionBindings(store);
1262  invalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1263                            Invalidated, GlobalsFilter);
1264
1265  // Scan the bindings and generate the clusters.
1266  W.GenerateClusters();
1267
1268  // Add the regions to the worklist.
1269  populateWorkList(W, Values, TopLevelRegions);
1270
1271  W.RunWorkList();
1272
1273  // Return the new bindings.
1274  B = W.getRegionBindings();
1275
1276  // For calls, determine which global regions should be invalidated and
1277  // invalidate them. (Note that function-static and immutable globals are never
1278  // invalidated by this.)
1279  // TODO: This could possibly be more precise with modules.
1280  switch (GlobalsFilter) {
1281  case GFK_All:
1282    B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1283                               Ex, Count, LCtx, B, Invalidated);
1284    // FALLTHROUGH
1285  case GFK_SystemOnly:
1286    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1287                               Ex, Count, LCtx, B, Invalidated);
1288    // FALLTHROUGH
1289  case GFK_None:
1290    break;
1291  }
1292
1293  return StoreRef(B.asStore(), *this);
1294}
1295
1296//===----------------------------------------------------------------------===//
1297// Extents for regions.
1298//===----------------------------------------------------------------------===//
1299
1300DefinedOrUnknownSVal
1301RegionStoreManager::getSizeInElements(ProgramStateRef state,
1302                                      const MemRegion *R,
1303                                      QualType EleTy) {
1304  SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
1305  const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
1306  if (!SizeInt)
1307    return UnknownVal();
1308
1309  CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
1310
1311  if (Ctx.getAsVariableArrayType(EleTy)) {
1312    // FIXME: We need to track extra state to properly record the size
1313    // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
1314    // we don't have a divide-by-zero below.
1315    return UnknownVal();
1316  }
1317
1318  CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
1319
1320  // If a variable is reinterpreted as a type that doesn't fit into a larger
1321  // type evenly, round it down.
1322  // This is a signed value, since it's used in arithmetic with signed indices.
1323  return svalBuilder.makeIntVal(RegionSize / EleSize, false);
1324}
1325
1326//===----------------------------------------------------------------------===//
1327// Location and region casting.
1328//===----------------------------------------------------------------------===//
1329
1330/// ArrayToPointer - Emulates the "decay" of an array to a pointer
1331///  type.  'Array' represents the lvalue of the array being decayed
1332///  to a pointer, and the returned SVal represents the decayed
1333///  version of that lvalue (i.e., a pointer to the first element of
1334///  the array).  This is called by ExprEngine when evaluating casts
1335///  from arrays to pointers.
1336SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1337  if (!Array.getAs<loc::MemRegionVal>())
1338    return UnknownVal();
1339
1340  const MemRegion* R = Array.castAs<loc::MemRegionVal>().getRegion();
1341  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1342  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1343}
1344
1345//===----------------------------------------------------------------------===//
1346// Loading values from regions.
1347//===----------------------------------------------------------------------===//
1348
1349SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1350  assert(!L.getAs<UnknownVal>() && "location unknown");
1351  assert(!L.getAs<UndefinedVal>() && "location undefined");
1352
1353  // For access to concrete addresses, return UnknownVal.  Checks
1354  // for null dereferences (and similar errors) are done by checkers, not
1355  // the Store.
1356  // FIXME: We can consider lazily symbolicating such memory, but we really
1357  // should defer this when we can reason easily about symbolicating arrays
1358  // of bytes.
1359  if (L.getAs<loc::ConcreteInt>()) {
1360    return UnknownVal();
1361  }
1362  if (!L.getAs<loc::MemRegionVal>()) {
1363    return UnknownVal();
1364  }
1365
1366  const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1367
1368  if (isa<BlockDataRegion>(MR)) {
1369    return UnknownVal();
1370  }
1371
1372  if (isa<AllocaRegion>(MR) ||
1373      isa<SymbolicRegion>(MR) ||
1374      isa<CodeTextRegion>(MR)) {
1375    if (T.isNull()) {
1376      if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1377        T = TR->getLocationType();
1378      else {
1379        const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
1380        T = SR->getSymbol()->getType();
1381      }
1382    }
1383    MR = GetElementZeroRegion(MR, T);
1384  }
1385
1386  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1387  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1388  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1389  QualType RTy = R->getValueType();
1390
1391  // FIXME: we do not yet model the parts of a complex type, so treat the
1392  // whole thing as "unknown".
1393  if (RTy->isAnyComplexType())
1394    return UnknownVal();
1395
1396  // FIXME: We should eventually handle funny addressing.  e.g.:
1397  //
1398  //   int x = ...;
1399  //   int *p = &x;
1400  //   char *q = (char*) p;
1401  //   char c = *q;  // returns the first byte of 'x'.
1402  //
1403  // Such funny addressing will occur due to layering of regions.
1404  if (RTy->isStructureOrClassType())
1405    return getBindingForStruct(B, R);
1406
1407  // FIXME: Handle unions.
1408  if (RTy->isUnionType())
1409    return createLazyBinding(B, R);
1410
1411  if (RTy->isArrayType()) {
1412    if (RTy->isConstantArrayType())
1413      return getBindingForArray(B, R);
1414    else
1415      return UnknownVal();
1416  }
1417
1418  // FIXME: handle Vector types.
1419  if (RTy->isVectorType())
1420    return UnknownVal();
1421
1422  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1423    return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
1424
1425  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1426    // FIXME: Here we actually perform an implicit conversion from the loaded
1427    // value to the element type.  Eventually we want to compose these values
1428    // more intelligently.  For example, an 'element' can encompass multiple
1429    // bound regions (e.g., several bound bytes), or could be a subset of
1430    // a larger value.
1431    return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
1432  }
1433
1434  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1435    // FIXME: Here we actually perform an implicit conversion from the loaded
1436    // value to the ivar type.  What we should model is stores to ivars
1437    // that blow past the extent of the ivar.  If the address of the ivar is
1438    // reinterpretted, it is possible we stored a different value that could
1439    // fit within the ivar.  Either we need to cast these when storing them
1440    // or reinterpret them lazily (as we do here).
1441    return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
1442  }
1443
1444  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1445    // FIXME: Here we actually perform an implicit conversion from the loaded
1446    // value to the variable type.  What we should model is stores to variables
1447    // that blow past the extent of the variable.  If the address of the
1448    // variable is reinterpretted, it is possible we stored a different value
1449    // that could fit within the variable.  Either we need to cast these when
1450    // storing them or reinterpret them lazily (as we do here).
1451    return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
1452  }
1453
1454  const SVal *V = B.lookup(R, BindingKey::Direct);
1455
1456  // Check if the region has a binding.
1457  if (V)
1458    return *V;
1459
1460  // The location does not have a bound value.  This means that it has
1461  // the value it had upon its creation and/or entry to the analyzed
1462  // function/method.  These are either symbolic values or 'undefined'.
1463  if (R->hasStackNonParametersStorage()) {
1464    // All stack variables are considered to have undefined values
1465    // upon creation.  All heap allocated blocks are considered to
1466    // have undefined values as well unless they are explicitly bound
1467    // to specific values.
1468    return UndefinedVal();
1469  }
1470
1471  // All other values are symbolic.
1472  return svalBuilder.getRegionValueSymbolVal(R);
1473}
1474
1475static QualType getUnderlyingType(const SubRegion *R) {
1476  QualType RegionTy;
1477  if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1478    RegionTy = TVR->getValueType();
1479
1480  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1481    RegionTy = SR->getSymbol()->getType();
1482
1483  return RegionTy;
1484}
1485
1486/// Checks to see if store \p B has a lazy binding for region \p R.
1487///
1488/// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1489/// if there are additional bindings within \p R.
1490///
1491/// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1492/// for lazy bindings for super-regions of \p R.
1493static Optional<nonloc::LazyCompoundVal>
1494getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1495                       const SubRegion *R, bool AllowSubregionBindings) {
1496  Optional<SVal> V = B.getDefaultBinding(R);
1497  if (!V)
1498    return None;
1499
1500  Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1501  if (!LCV)
1502    return None;
1503
1504  // If the LCV is for a subregion, the types might not match, and we shouldn't
1505  // reuse the binding.
1506  QualType RegionTy = getUnderlyingType(R);
1507  if (!RegionTy.isNull() &&
1508      !RegionTy->isVoidPointerType()) {
1509    QualType SourceRegionTy = LCV->getRegion()->getValueType();
1510    if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1511      return None;
1512  }
1513
1514  if (!AllowSubregionBindings) {
1515    // If there are any other bindings within this region, we shouldn't reuse
1516    // the top-level binding.
1517    SmallVector<BindingPair, 16> Bindings;
1518    collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1519                             /*IncludeAllDefaultBindings=*/true);
1520    if (Bindings.size() > 1)
1521      return None;
1522  }
1523
1524  return *LCV;
1525}
1526
1527
1528std::pair<Store, const SubRegion *>
1529RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1530                                   const SubRegion *R,
1531                                   const SubRegion *originalRegion) {
1532  if (originalRegion != R) {
1533    if (Optional<nonloc::LazyCompoundVal> V =
1534          getExistingLazyBinding(svalBuilder, B, R, true))
1535      return std::make_pair(V->getStore(), V->getRegion());
1536  }
1537
1538  typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1539  StoreRegionPair Result = StoreRegionPair();
1540
1541  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1542    Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1543                             originalRegion);
1544
1545    if (Result.second)
1546      Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1547
1548  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1549    Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1550                                       originalRegion);
1551
1552    if (Result.second)
1553      Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1554
1555  } else if (const CXXBaseObjectRegion *BaseReg =
1556               dyn_cast<CXXBaseObjectRegion>(R)) {
1557    // C++ base object region is another kind of region that we should blast
1558    // through to look for lazy compound value. It is like a field region.
1559    Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1560                             originalRegion);
1561
1562    if (Result.second)
1563      Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1564                                                            Result.second);
1565  }
1566
1567  return Result;
1568}
1569
1570SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1571                                              const ElementRegion* R) {
1572  // We do not currently model bindings of the CompoundLiteralregion.
1573  if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1574    return UnknownVal();
1575
1576  // Check if the region has a binding.
1577  if (const Optional<SVal> &V = B.getDirectBinding(R))
1578    return *V;
1579
1580  const MemRegion* superR = R->getSuperRegion();
1581
1582  // Check if the region is an element region of a string literal.
1583  if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1584    // FIXME: Handle loads from strings where the literal is treated as
1585    // an integer, e.g., *((unsigned int*)"hello")
1586    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1587    if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1588      return UnknownVal();
1589
1590    const StringLiteral *Str = StrR->getStringLiteral();
1591    SVal Idx = R->getIndex();
1592    if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
1593      int64_t i = CI->getValue().getSExtValue();
1594      // Abort on string underrun.  This can be possible by arbitrary
1595      // clients of getBindingForElement().
1596      if (i < 0)
1597        return UndefinedVal();
1598      int64_t length = Str->getLength();
1599      // Technically, only i == length is guaranteed to be null.
1600      // However, such overflows should be caught before reaching this point;
1601      // the only time such an access would be made is if a string literal was
1602      // used to initialize a larger array.
1603      char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1604      return svalBuilder.makeIntVal(c, T);
1605    }
1606  }
1607
1608  // Check for loads from a code text region.  For such loads, just give up.
1609  if (isa<CodeTextRegion>(superR))
1610    return UnknownVal();
1611
1612  // Handle the case where we are indexing into a larger scalar object.
1613  // For example, this handles:
1614  //   int x = ...
1615  //   char *y = &x;
1616  //   return *y;
1617  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1618  const RegionRawOffset &O = R->getAsArrayOffset();
1619
1620  // If we cannot reason about the offset, return an unknown value.
1621  if (!O.getRegion())
1622    return UnknownVal();
1623
1624  if (const TypedValueRegion *baseR =
1625        dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1626    QualType baseT = baseR->getValueType();
1627    if (baseT->isScalarType()) {
1628      QualType elemT = R->getElementType();
1629      if (elemT->isScalarType()) {
1630        if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1631          if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1632            if (SymbolRef parentSym = V->getAsSymbol())
1633              return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1634
1635            if (V->isUnknownOrUndef())
1636              return *V;
1637            // Other cases: give up.  We are indexing into a larger object
1638            // that has some value, but we don't know how to handle that yet.
1639            return UnknownVal();
1640          }
1641        }
1642      }
1643    }
1644  }
1645  return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1646}
1647
1648SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1649                                            const FieldRegion* R) {
1650
1651  // Check if the region has a binding.
1652  if (const Optional<SVal> &V = B.getDirectBinding(R))
1653    return *V;
1654
1655  QualType Ty = R->getValueType();
1656  return getBindingForFieldOrElementCommon(B, R, Ty);
1657}
1658
1659Optional<SVal>
1660RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1661                                                     const MemRegion *superR,
1662                                                     const TypedValueRegion *R,
1663                                                     QualType Ty) {
1664
1665  if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1666    const SVal &val = D.getValue();
1667    if (SymbolRef parentSym = val.getAsSymbol())
1668      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1669
1670    if (val.isZeroConstant())
1671      return svalBuilder.makeZeroVal(Ty);
1672
1673    if (val.isUnknownOrUndef())
1674      return val;
1675
1676    // Lazy bindings are usually handled through getExistingLazyBinding().
1677    // We should unify these two code paths at some point.
1678    if (val.getAs<nonloc::LazyCompoundVal>())
1679      return val;
1680
1681    llvm_unreachable("Unknown default value");
1682  }
1683
1684  return None;
1685}
1686
1687SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
1688                                        RegionBindingsRef LazyBinding) {
1689  SVal Result;
1690  if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1691    Result = getBindingForElement(LazyBinding, ER);
1692  else
1693    Result = getBindingForField(LazyBinding,
1694                                cast<FieldRegion>(LazyBindingRegion));
1695
1696  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1697  // default value for /part/ of an aggregate from a default value for the
1698  // /entire/ aggregate. The most common case of this is when struct Outer
1699  // has as its first member a struct Inner, which is copied in from a stack
1700  // variable. In this case, even if the Outer's default value is symbolic, 0,
1701  // or unknown, it gets overridden by the Inner's default value of undefined.
1702  //
1703  // This is a general problem -- if the Inner is zero-initialized, the Outer
1704  // will now look zero-initialized. The proper way to solve this is with a
1705  // new version of RegionStore that tracks the extent of a binding as well
1706  // as the offset.
1707  //
1708  // This hack only takes care of the undefined case because that can very
1709  // quickly result in a warning.
1710  if (Result.isUndef())
1711    Result = UnknownVal();
1712
1713  return Result;
1714}
1715
1716SVal
1717RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1718                                                      const TypedValueRegion *R,
1719                                                      QualType Ty) {
1720
1721  // At this point we have already checked in either getBindingForElement or
1722  // getBindingForField if 'R' has a direct binding.
1723
1724  // Lazy binding?
1725  Store lazyBindingStore = nullptr;
1726  const SubRegion *lazyBindingRegion = nullptr;
1727  std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
1728  if (lazyBindingRegion)
1729    return getLazyBinding(lazyBindingRegion,
1730                          getRegionBindings(lazyBindingStore));
1731
1732  // Record whether or not we see a symbolic index.  That can completely
1733  // be out of scope of our lookup.
1734  bool hasSymbolicIndex = false;
1735
1736  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1737  // default value for /part/ of an aggregate from a default value for the
1738  // /entire/ aggregate. The most common case of this is when struct Outer
1739  // has as its first member a struct Inner, which is copied in from a stack
1740  // variable. In this case, even if the Outer's default value is symbolic, 0,
1741  // or unknown, it gets overridden by the Inner's default value of undefined.
1742  //
1743  // This is a general problem -- if the Inner is zero-initialized, the Outer
1744  // will now look zero-initialized. The proper way to solve this is with a
1745  // new version of RegionStore that tracks the extent of a binding as well
1746  // as the offset.
1747  //
1748  // This hack only takes care of the undefined case because that can very
1749  // quickly result in a warning.
1750  bool hasPartialLazyBinding = false;
1751
1752  const SubRegion *SR = dyn_cast<SubRegion>(R);
1753  while (SR) {
1754    const MemRegion *Base = SR->getSuperRegion();
1755    if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
1756      if (D->getAs<nonloc::LazyCompoundVal>()) {
1757        hasPartialLazyBinding = true;
1758        break;
1759      }
1760
1761      return *D;
1762    }
1763
1764    if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
1765      NonLoc index = ER->getIndex();
1766      if (!index.isConstant())
1767        hasSymbolicIndex = true;
1768    }
1769
1770    // If our super region is a field or element itself, walk up the region
1771    // hierarchy to see if there is a default value installed in an ancestor.
1772    SR = dyn_cast<SubRegion>(Base);
1773  }
1774
1775  if (R->hasStackNonParametersStorage()) {
1776    if (isa<ElementRegion>(R)) {
1777      // Currently we don't reason specially about Clang-style vectors.  Check
1778      // if superR is a vector and if so return Unknown.
1779      if (const TypedValueRegion *typedSuperR =
1780            dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
1781        if (typedSuperR->getValueType()->isVectorType())
1782          return UnknownVal();
1783      }
1784    }
1785
1786    // FIXME: We also need to take ElementRegions with symbolic indexes into
1787    // account.  This case handles both directly accessing an ElementRegion
1788    // with a symbolic offset, but also fields within an element with
1789    // a symbolic offset.
1790    if (hasSymbolicIndex)
1791      return UnknownVal();
1792
1793    if (!hasPartialLazyBinding)
1794      return UndefinedVal();
1795  }
1796
1797  // All other values are symbolic.
1798  return svalBuilder.getRegionValueSymbolVal(R);
1799}
1800
1801SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1802                                               const ObjCIvarRegion* R) {
1803  // Check if the region has a binding.
1804  if (const Optional<SVal> &V = B.getDirectBinding(R))
1805    return *V;
1806
1807  const MemRegion *superR = R->getSuperRegion();
1808
1809  // Check if the super region has a default binding.
1810  if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
1811    if (SymbolRef parentSym = V->getAsSymbol())
1812      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1813
1814    // Other cases: give up.
1815    return UnknownVal();
1816  }
1817
1818  return getBindingForLazySymbol(R);
1819}
1820
1821SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
1822                                          const VarRegion *R) {
1823
1824  // Check if the region has a binding.
1825  if (const Optional<SVal> &V = B.getDirectBinding(R))
1826    return *V;
1827
1828  // Lazily derive a value for the VarRegion.
1829  const VarDecl *VD = R->getDecl();
1830  const MemSpaceRegion *MS = R->getMemorySpace();
1831
1832  // Arguments are always symbolic.
1833  if (isa<StackArgumentsSpaceRegion>(MS))
1834    return svalBuilder.getRegionValueSymbolVal(R);
1835
1836  // Is 'VD' declared constant?  If so, retrieve the constant value.
1837  if (VD->getType().isConstQualified())
1838    if (const Expr *Init = VD->getInit())
1839      if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1840        return *V;
1841
1842  // This must come after the check for constants because closure-captured
1843  // constant variables may appear in UnknownSpaceRegion.
1844  if (isa<UnknownSpaceRegion>(MS))
1845    return svalBuilder.getRegionValueSymbolVal(R);
1846
1847  if (isa<GlobalsSpaceRegion>(MS)) {
1848    QualType T = VD->getType();
1849
1850    // Function-scoped static variables are default-initialized to 0; if they
1851    // have an initializer, it would have been processed by now.
1852    if (isa<StaticGlobalSpaceRegion>(MS))
1853      return svalBuilder.makeZeroVal(T);
1854
1855    if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
1856      assert(!V->getAs<nonloc::LazyCompoundVal>());
1857      return V.getValue();
1858    }
1859
1860    return svalBuilder.getRegionValueSymbolVal(R);
1861  }
1862
1863  return UndefinedVal();
1864}
1865
1866SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1867  // All other values are symbolic.
1868  return svalBuilder.getRegionValueSymbolVal(R);
1869}
1870
1871const RegionStoreManager::SValListTy &
1872RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
1873  // First, check the cache.
1874  LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
1875  if (I != LazyBindingsMap.end())
1876    return I->second;
1877
1878  // If we don't have a list of values cached, start constructing it.
1879  SValListTy List;
1880
1881  const SubRegion *LazyR = LCV.getRegion();
1882  RegionBindingsRef B = getRegionBindings(LCV.getStore());
1883
1884  // If this region had /no/ bindings at the time, there are no interesting
1885  // values to return.
1886  const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
1887  if (!Cluster)
1888    return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
1889
1890  SmallVector<BindingPair, 32> Bindings;
1891  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
1892                           /*IncludeAllDefaultBindings=*/true);
1893  for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
1894                                                    E = Bindings.end();
1895       I != E; ++I) {
1896    SVal V = I->second;
1897    if (V.isUnknownOrUndef() || V.isConstant())
1898      continue;
1899
1900    if (Optional<nonloc::LazyCompoundVal> InnerLCV =
1901            V.getAs<nonloc::LazyCompoundVal>()) {
1902      const SValListTy &InnerList = getInterestingValues(*InnerLCV);
1903      List.insert(List.end(), InnerList.begin(), InnerList.end());
1904      continue;
1905    }
1906
1907    List.push_back(V);
1908  }
1909
1910  return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
1911}
1912
1913NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
1914                                             const TypedValueRegion *R) {
1915  if (Optional<nonloc::LazyCompoundVal> V =
1916        getExistingLazyBinding(svalBuilder, B, R, false))
1917    return *V;
1918
1919  return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
1920}
1921
1922static bool isRecordEmpty(const RecordDecl *RD) {
1923  if (!RD->field_empty())
1924    return false;
1925  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
1926    return CRD->getNumBases() == 0;
1927  return true;
1928}
1929
1930SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
1931                                             const TypedValueRegion *R) {
1932  const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
1933  if (!RD->getDefinition() || isRecordEmpty(RD))
1934    return UnknownVal();
1935
1936  return createLazyBinding(B, R);
1937}
1938
1939SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
1940                                            const TypedValueRegion *R) {
1941  assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
1942         "Only constant array types can have compound bindings.");
1943
1944  return createLazyBinding(B, R);
1945}
1946
1947bool RegionStoreManager::includedInBindings(Store store,
1948                                            const MemRegion *region) const {
1949  RegionBindingsRef B = getRegionBindings(store);
1950  region = region->getBaseRegion();
1951
1952  // Quick path: if the base is the head of a cluster, the region is live.
1953  if (B.lookup(region))
1954    return true;
1955
1956  // Slow path: if the region is the VALUE of any binding, it is live.
1957  for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
1958    const ClusterBindings &Cluster = RI.getData();
1959    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1960         CI != CE; ++CI) {
1961      const SVal &D = CI.getData();
1962      if (const MemRegion *R = D.getAsRegion())
1963        if (R->getBaseRegion() == region)
1964          return true;
1965    }
1966  }
1967
1968  return false;
1969}
1970
1971//===----------------------------------------------------------------------===//
1972// Binding values to regions.
1973//===----------------------------------------------------------------------===//
1974
1975StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
1976  if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
1977    if (const MemRegion* R = LV->getRegion())
1978      return StoreRef(getRegionBindings(ST).removeBinding(R)
1979                                           .asImmutableMap()
1980                                           .getRootWithoutRetain(),
1981                      *this);
1982
1983  return StoreRef(ST, *this);
1984}
1985
1986RegionBindingsRef
1987RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
1988  if (L.getAs<loc::ConcreteInt>())
1989    return B;
1990
1991  // If we get here, the location should be a region.
1992  const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
1993
1994  // Check if the region is a struct region.
1995  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
1996    QualType Ty = TR->getValueType();
1997    if (Ty->isArrayType())
1998      return bindArray(B, TR, V);
1999    if (Ty->isStructureOrClassType())
2000      return bindStruct(B, TR, V);
2001    if (Ty->isVectorType())
2002      return bindVector(B, TR, V);
2003    if (Ty->isUnionType())
2004      return bindAggregate(B, TR, V);
2005  }
2006
2007  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
2008    // Binding directly to a symbolic region should be treated as binding
2009    // to element 0.
2010    QualType T = SR->getSymbol()->getType();
2011    if (T->isAnyPointerType() || T->isReferenceType())
2012      T = T->getPointeeType();
2013
2014    R = GetElementZeroRegion(SR, T);
2015  }
2016
2017  // Clear out bindings that may overlap with this binding.
2018  RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2019  return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
2020}
2021
2022RegionBindingsRef
2023RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2024                                            const MemRegion *R,
2025                                            QualType T) {
2026  SVal V;
2027
2028  if (Loc::isLocType(T))
2029    V = svalBuilder.makeNull();
2030  else if (T->isIntegralOrEnumerationType())
2031    V = svalBuilder.makeZeroVal(T);
2032  else if (T->isStructureOrClassType() || T->isArrayType()) {
2033    // Set the default value to a zero constant when it is a structure
2034    // or array.  The type doesn't really matter.
2035    V = svalBuilder.makeZeroVal(Ctx.IntTy);
2036  }
2037  else {
2038    // We can't represent values of this type, but we still need to set a value
2039    // to record that the region has been initialized.
2040    // If this assertion ever fires, a new case should be added above -- we
2041    // should know how to default-initialize any value we can symbolicate.
2042    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2043    V = UnknownVal();
2044  }
2045
2046  return B.addBinding(R, BindingKey::Default, V);
2047}
2048
2049RegionBindingsRef
2050RegionStoreManager::bindArray(RegionBindingsConstRef B,
2051                              const TypedValueRegion* R,
2052                              SVal Init) {
2053
2054  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2055  QualType ElementTy = AT->getElementType();
2056  Optional<uint64_t> Size;
2057
2058  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2059    Size = CAT->getSize().getZExtValue();
2060
2061  // Check if the init expr is a string literal.
2062  if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2063    const StringRegion *S = cast<StringRegion>(MRV->getRegion());
2064
2065    // Treat the string as a lazy compound value.
2066    StoreRef store(B.asStore(), *this);
2067    nonloc::LazyCompoundVal LCV = svalBuilder.makeLazyCompoundVal(store, S)
2068        .castAs<nonloc::LazyCompoundVal>();
2069    return bindAggregate(B, R, LCV);
2070  }
2071
2072  // Handle lazy compound values.
2073  if (Init.getAs<nonloc::LazyCompoundVal>())
2074    return bindAggregate(B, R, Init);
2075
2076  // Remaining case: explicit compound values.
2077
2078  if (Init.isUnknown())
2079    return setImplicitDefaultValue(B, R, ElementTy);
2080
2081  const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2082  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2083  uint64_t i = 0;
2084
2085  RegionBindingsRef NewB(B);
2086
2087  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
2088    // The init list might be shorter than the array length.
2089    if (VI == VE)
2090      break;
2091
2092    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
2093    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2094
2095    if (ElementTy->isStructureOrClassType())
2096      NewB = bindStruct(NewB, ER, *VI);
2097    else if (ElementTy->isArrayType())
2098      NewB = bindArray(NewB, ER, *VI);
2099    else
2100      NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2101  }
2102
2103  // If the init list is shorter than the array length, set the
2104  // array default value.
2105  if (Size.hasValue() && i < Size.getValue())
2106    NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2107
2108  return NewB;
2109}
2110
2111RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2112                                                 const TypedValueRegion* R,
2113                                                 SVal V) {
2114  QualType T = R->getValueType();
2115  assert(T->isVectorType());
2116  const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
2117
2118  // Handle lazy compound values and symbolic values.
2119  if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
2120    return bindAggregate(B, R, V);
2121
2122  // We may get non-CompoundVal accidentally due to imprecise cast logic or
2123  // that we are binding symbolic struct value. Kill the field values, and if
2124  // the value is symbolic go and bind it as a "default" binding.
2125  if (!V.getAs<nonloc::CompoundVal>()) {
2126    return bindAggregate(B, R, UnknownVal());
2127  }
2128
2129  QualType ElemType = VT->getElementType();
2130  nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2131  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2132  unsigned index = 0, numElements = VT->getNumElements();
2133  RegionBindingsRef NewB(B);
2134
2135  for ( ; index != numElements ; ++index) {
2136    if (VI == VE)
2137      break;
2138
2139    NonLoc Idx = svalBuilder.makeArrayIndex(index);
2140    const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2141
2142    if (ElemType->isArrayType())
2143      NewB = bindArray(NewB, ER, *VI);
2144    else if (ElemType->isStructureOrClassType())
2145      NewB = bindStruct(NewB, ER, *VI);
2146    else
2147      NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2148  }
2149  return NewB;
2150}
2151
2152Optional<RegionBindingsRef>
2153RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2154                                       const TypedValueRegion *R,
2155                                       const RecordDecl *RD,
2156                                       nonloc::LazyCompoundVal LCV) {
2157  FieldVector Fields;
2158
2159  if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2160    if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2161      return None;
2162
2163  for (const auto *FD : RD->fields()) {
2164    if (FD->isUnnamedBitfield())
2165      continue;
2166
2167    // If there are too many fields, or if any of the fields are aggregates,
2168    // just use the LCV as a default binding.
2169    if (Fields.size() == SmallStructLimit)
2170      return None;
2171
2172    QualType Ty = FD->getType();
2173    if (!(Ty->isScalarType() || Ty->isReferenceType()))
2174      return None;
2175
2176    Fields.push_back(FD);
2177  }
2178
2179  RegionBindingsRef NewB = B;
2180
2181  for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2182    const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2183    SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2184
2185    const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2186    NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2187  }
2188
2189  return NewB;
2190}
2191
2192RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2193                                                 const TypedValueRegion* R,
2194                                                 SVal V) {
2195  if (!Features.supportsFields())
2196    return B;
2197
2198  QualType T = R->getValueType();
2199  assert(T->isStructureOrClassType());
2200
2201  const RecordType* RT = T->getAs<RecordType>();
2202  const RecordDecl *RD = RT->getDecl();
2203
2204  if (!RD->isCompleteDefinition())
2205    return B;
2206
2207  // Handle lazy compound values and symbolic values.
2208  if (Optional<nonloc::LazyCompoundVal> LCV =
2209        V.getAs<nonloc::LazyCompoundVal>()) {
2210    if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2211      return *NewB;
2212    return bindAggregate(B, R, V);
2213  }
2214  if (V.getAs<nonloc::SymbolVal>())
2215    return bindAggregate(B, R, V);
2216
2217  // We may get non-CompoundVal accidentally due to imprecise cast logic or
2218  // that we are binding symbolic struct value. Kill the field values, and if
2219  // the value is symbolic go and bind it as a "default" binding.
2220  if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
2221    return bindAggregate(B, R, UnknownVal());
2222
2223  const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2224  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2225
2226  RecordDecl::field_iterator FI, FE;
2227  RegionBindingsRef NewB(B);
2228
2229  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2230
2231    if (VI == VE)
2232      break;
2233
2234    // Skip any unnamed bitfields to stay in sync with the initializers.
2235    if (FI->isUnnamedBitfield())
2236      continue;
2237
2238    QualType FTy = FI->getType();
2239    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2240
2241    if (FTy->isArrayType())
2242      NewB = bindArray(NewB, FR, *VI);
2243    else if (FTy->isStructureOrClassType())
2244      NewB = bindStruct(NewB, FR, *VI);
2245    else
2246      NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2247    ++VI;
2248  }
2249
2250  // There may be fewer values in the initialize list than the fields of struct.
2251  if (FI != FE) {
2252    NewB = NewB.addBinding(R, BindingKey::Default,
2253                           svalBuilder.makeIntVal(0, false));
2254  }
2255
2256  return NewB;
2257}
2258
2259RegionBindingsRef
2260RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2261                                  const TypedRegion *R,
2262                                  SVal Val) {
2263  // Remove the old bindings, using 'R' as the root of all regions
2264  // we will invalidate. Then add the new binding.
2265  return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2266}
2267
2268//===----------------------------------------------------------------------===//
2269// State pruning.
2270//===----------------------------------------------------------------------===//
2271
2272namespace {
2273class removeDeadBindingsWorker :
2274  public ClusterAnalysis<removeDeadBindingsWorker> {
2275  SmallVector<const SymbolicRegion*, 12> Postponed;
2276  SymbolReaper &SymReaper;
2277  const StackFrameContext *CurrentLCtx;
2278
2279public:
2280  removeDeadBindingsWorker(RegionStoreManager &rm,
2281                           ProgramStateManager &stateMgr,
2282                           RegionBindingsRef b, SymbolReaper &symReaper,
2283                           const StackFrameContext *LCtx)
2284    : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b),
2285      SymReaper(symReaper), CurrentLCtx(LCtx) {}
2286
2287  // Called by ClusterAnalysis.
2288  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2289  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2290  using ClusterAnalysis<removeDeadBindingsWorker>::VisitCluster;
2291
2292  using ClusterAnalysis::AddToWorkList;
2293
2294  bool AddToWorkList(const MemRegion *R);
2295
2296  bool UpdatePostponed();
2297  void VisitBinding(SVal V);
2298};
2299}
2300
2301bool removeDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2302  const MemRegion *BaseR = R->getBaseRegion();
2303  return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2304}
2305
2306void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2307                                                   const ClusterBindings &C) {
2308
2309  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2310    if (SymReaper.isLive(VR))
2311      AddToWorkList(baseR, &C);
2312
2313    return;
2314  }
2315
2316  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2317    if (SymReaper.isLive(SR->getSymbol()))
2318      AddToWorkList(SR, &C);
2319    else
2320      Postponed.push_back(SR);
2321
2322    return;
2323  }
2324
2325  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2326    AddToWorkList(baseR, &C);
2327    return;
2328  }
2329
2330  // CXXThisRegion in the current or parent location context is live.
2331  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2332    const StackArgumentsSpaceRegion *StackReg =
2333      cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2334    const StackFrameContext *RegCtx = StackReg->getStackFrame();
2335    if (CurrentLCtx &&
2336        (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2337      AddToWorkList(TR, &C);
2338  }
2339}
2340
2341void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2342                                            const ClusterBindings *C) {
2343  if (!C)
2344    return;
2345
2346  // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2347  // This means we should continue to track that symbol.
2348  if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2349    SymReaper.markLive(SymR->getSymbol());
2350
2351  for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) {
2352    // Element index of a binding key is live.
2353    SymReaper.markElementIndicesLive(I.getKey().getRegion());
2354
2355    VisitBinding(I.getData());
2356  }
2357}
2358
2359void removeDeadBindingsWorker::VisitBinding(SVal V) {
2360  // Is it a LazyCompoundVal?  All referenced regions are live as well.
2361  if (Optional<nonloc::LazyCompoundVal> LCS =
2362          V.getAs<nonloc::LazyCompoundVal>()) {
2363
2364    const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2365
2366    for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2367                                                        E = Vals.end();
2368         I != E; ++I)
2369      VisitBinding(*I);
2370
2371    return;
2372  }
2373
2374  // If V is a region, then add it to the worklist.
2375  if (const MemRegion *R = V.getAsRegion()) {
2376    AddToWorkList(R);
2377    SymReaper.markLive(R);
2378
2379    // All regions captured by a block are also live.
2380    if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2381      BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2382                                                E = BR->referenced_vars_end();
2383      for ( ; I != E; ++I)
2384        AddToWorkList(I.getCapturedRegion());
2385    }
2386  }
2387
2388
2389  // Update the set of live symbols.
2390  for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
2391       SI!=SE; ++SI)
2392    SymReaper.markLive(*SI);
2393}
2394
2395bool removeDeadBindingsWorker::UpdatePostponed() {
2396  // See if any postponed SymbolicRegions are actually live now, after
2397  // having done a scan.
2398  bool changed = false;
2399
2400  for (SmallVectorImpl<const SymbolicRegion*>::iterator
2401        I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
2402    if (const SymbolicRegion *SR = *I) {
2403      if (SymReaper.isLive(SR->getSymbol())) {
2404        changed |= AddToWorkList(SR);
2405        *I = nullptr;
2406      }
2407    }
2408  }
2409
2410  return changed;
2411}
2412
2413StoreRef RegionStoreManager::removeDeadBindings(Store store,
2414                                                const StackFrameContext *LCtx,
2415                                                SymbolReaper& SymReaper) {
2416  RegionBindingsRef B = getRegionBindings(store);
2417  removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2418  W.GenerateClusters();
2419
2420  // Enqueue the region roots onto the worklist.
2421  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2422       E = SymReaper.region_end(); I != E; ++I) {
2423    W.AddToWorkList(*I);
2424  }
2425
2426  do W.RunWorkList(); while (W.UpdatePostponed());
2427
2428  // We have now scanned the store, marking reachable regions and symbols
2429  // as live.  We now remove all the regions that are dead from the store
2430  // as well as update DSymbols with the set symbols that are now dead.
2431  for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2432    const MemRegion *Base = I.getKey();
2433
2434    // If the cluster has been visited, we know the region has been marked.
2435    if (W.isVisited(Base))
2436      continue;
2437
2438    // Remove the dead entry.
2439    B = B.remove(Base);
2440
2441    if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
2442      SymReaper.maybeDead(SymR->getSymbol());
2443
2444    // Mark all non-live symbols that this binding references as dead.
2445    const ClusterBindings &Cluster = I.getData();
2446    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2447         CI != CE; ++CI) {
2448      SVal X = CI.getData();
2449      SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2450      for (; SI != SE; ++SI)
2451        SymReaper.maybeDead(*SI);
2452    }
2453  }
2454
2455  return StoreRef(B.asStore(), *this);
2456}
2457
2458//===----------------------------------------------------------------------===//
2459// Utility methods.
2460//===----------------------------------------------------------------------===//
2461
2462void RegionStoreManager::print(Store store, raw_ostream &OS,
2463                               const char* nl, const char *sep) {
2464  RegionBindingsRef B = getRegionBindings(store);
2465  OS << "Store (direct and default bindings), "
2466     << B.asStore()
2467     << " :" << nl;
2468  B.dump(OS, nl);
2469}
2470