1//===-- tsan_fd.cc --------------------------------------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file is a part of ThreadSanitizer (TSan), a race detector. 11// 12//===----------------------------------------------------------------------===// 13 14#include "tsan_fd.h" 15#include "tsan_rtl.h" 16#include <sanitizer_common/sanitizer_atomic.h> 17 18namespace __tsan { 19 20const int kTableSizeL1 = 1024; 21const int kTableSizeL2 = 1024; 22const int kTableSize = kTableSizeL1 * kTableSizeL2; 23 24struct FdSync { 25 atomic_uint64_t rc; 26}; 27 28struct FdDesc { 29 FdSync *sync; 30 int creation_tid; 31 u32 creation_stack; 32}; 33 34struct FdContext { 35 atomic_uintptr_t tab[kTableSizeL1]; 36 // Addresses used for synchronization. 37 FdSync globsync; 38 FdSync filesync; 39 FdSync socksync; 40 u64 connectsync; 41}; 42 43static FdContext fdctx; 44 45static bool bogusfd(int fd) { 46 // Apparently a bogus fd value. 47 return fd < 0 || fd >= kTableSize; 48} 49 50static FdSync *allocsync(ThreadState *thr, uptr pc) { 51 FdSync *s = (FdSync*)user_alloc(thr, pc, sizeof(FdSync), kDefaultAlignment, 52 false); 53 atomic_store(&s->rc, 1, memory_order_relaxed); 54 return s; 55} 56 57static FdSync *ref(FdSync *s) { 58 if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) 59 atomic_fetch_add(&s->rc, 1, memory_order_relaxed); 60 return s; 61} 62 63static void unref(ThreadState *thr, uptr pc, FdSync *s) { 64 if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) { 65 if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) { 66 CHECK_NE(s, &fdctx.globsync); 67 CHECK_NE(s, &fdctx.filesync); 68 CHECK_NE(s, &fdctx.socksync); 69 user_free(thr, pc, s, false); 70 } 71 } 72} 73 74static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) { 75 CHECK_GE(fd, 0); 76 CHECK_LT(fd, kTableSize); 77 atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2]; 78 uptr l1 = atomic_load(pl1, memory_order_consume); 79 if (l1 == 0) { 80 uptr size = kTableSizeL2 * sizeof(FdDesc); 81 // We need this to reside in user memory to properly catch races on it. 82 void *p = user_alloc(thr, pc, size, kDefaultAlignment, false); 83 internal_memset(p, 0, size); 84 MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size); 85 if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel)) 86 l1 = (uptr)p; 87 else 88 user_free(thr, pc, p, false); 89 } 90 return &((FdDesc*)l1)[fd % kTableSizeL2]; // NOLINT 91} 92 93// pd must be already ref'ed. 94static void init(ThreadState *thr, uptr pc, int fd, FdSync *s, 95 bool write = true) { 96 FdDesc *d = fddesc(thr, pc, fd); 97 // As a matter of fact, we don't intercept all close calls. 98 // See e.g. libc __res_iclose(). 99 if (d->sync) { 100 unref(thr, pc, d->sync); 101 d->sync = 0; 102 } 103 if (flags()->io_sync == 0) { 104 unref(thr, pc, s); 105 } else if (flags()->io_sync == 1) { 106 d->sync = s; 107 } else if (flags()->io_sync == 2) { 108 unref(thr, pc, s); 109 d->sync = &fdctx.globsync; 110 } 111 d->creation_tid = thr->tid; 112 d->creation_stack = CurrentStackId(thr, pc); 113 if (write) { 114 // To catch races between fd usage and open. 115 MemoryRangeImitateWrite(thr, pc, (uptr)d, 8); 116 } else { 117 // See the dup-related comment in FdClose. 118 MemoryRead(thr, pc, (uptr)d, kSizeLog8); 119 } 120} 121 122void FdInit() { 123 atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed); 124 atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed); 125 atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed); 126} 127 128void FdOnFork(ThreadState *thr, uptr pc) { 129 // On fork() we need to reset all fd's, because the child is going 130 // close all them, and that will cause races between previous read/write 131 // and the close. 132 for (int l1 = 0; l1 < kTableSizeL1; l1++) { 133 FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed); 134 if (tab == 0) 135 break; 136 for (int l2 = 0; l2 < kTableSizeL2; l2++) { 137 FdDesc *d = &tab[l2]; 138 MemoryResetRange(thr, pc, (uptr)d, 8); 139 } 140 } 141} 142 143bool FdLocation(uptr addr, int *fd, int *tid, u32 *stack) { 144 for (int l1 = 0; l1 < kTableSizeL1; l1++) { 145 FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed); 146 if (tab == 0) 147 break; 148 if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) { 149 int l2 = (addr - (uptr)tab) / sizeof(FdDesc); 150 FdDesc *d = &tab[l2]; 151 *fd = l1 * kTableSizeL1 + l2; 152 *tid = d->creation_tid; 153 *stack = d->creation_stack; 154 return true; 155 } 156 } 157 return false; 158} 159 160void FdAcquire(ThreadState *thr, uptr pc, int fd) { 161 if (bogusfd(fd)) 162 return; 163 FdDesc *d = fddesc(thr, pc, fd); 164 FdSync *s = d->sync; 165 DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s); 166 MemoryRead(thr, pc, (uptr)d, kSizeLog8); 167 if (s) 168 Acquire(thr, pc, (uptr)s); 169} 170 171void FdRelease(ThreadState *thr, uptr pc, int fd) { 172 if (bogusfd(fd)) 173 return; 174 FdDesc *d = fddesc(thr, pc, fd); 175 FdSync *s = d->sync; 176 DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s); 177 MemoryRead(thr, pc, (uptr)d, kSizeLog8); 178 if (s) 179 Release(thr, pc, (uptr)s); 180} 181 182void FdAccess(ThreadState *thr, uptr pc, int fd) { 183 DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd); 184 if (bogusfd(fd)) 185 return; 186 FdDesc *d = fddesc(thr, pc, fd); 187 MemoryRead(thr, pc, (uptr)d, kSizeLog8); 188} 189 190void FdClose(ThreadState *thr, uptr pc, int fd, bool write) { 191 DPrintf("#%d: FdClose(%d)\n", thr->tid, fd); 192 if (bogusfd(fd)) 193 return; 194 FdDesc *d = fddesc(thr, pc, fd); 195 if (write) { 196 // To catch races between fd usage and close. 197 MemoryWrite(thr, pc, (uptr)d, kSizeLog8); 198 } else { 199 // This path is used only by dup2/dup3 calls. 200 // We do read instead of write because there is a number of legitimate 201 // cases where write would lead to false positives: 202 // 1. Some software dups a closed pipe in place of a socket before closing 203 // the socket (to prevent races actually). 204 // 2. Some daemons dup /dev/null in place of stdin/stdout. 205 // On the other hand we have not seen cases when write here catches real 206 // bugs. 207 MemoryRead(thr, pc, (uptr)d, kSizeLog8); 208 } 209 // We need to clear it, because if we do not intercept any call out there 210 // that creates fd, we will hit false postives. 211 MemoryResetRange(thr, pc, (uptr)d, 8); 212 unref(thr, pc, d->sync); 213 d->sync = 0; 214 d->creation_tid = 0; 215 d->creation_stack = 0; 216} 217 218void FdFileCreate(ThreadState *thr, uptr pc, int fd) { 219 DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd); 220 if (bogusfd(fd)) 221 return; 222 init(thr, pc, fd, &fdctx.filesync); 223} 224 225void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd, bool write) { 226 DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd); 227 if (bogusfd(oldfd) || bogusfd(newfd)) 228 return; 229 // Ignore the case when user dups not yet connected socket. 230 FdDesc *od = fddesc(thr, pc, oldfd); 231 MemoryRead(thr, pc, (uptr)od, kSizeLog8); 232 FdClose(thr, pc, newfd, write); 233 init(thr, pc, newfd, ref(od->sync), write); 234} 235 236void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) { 237 DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd); 238 FdSync *s = allocsync(thr, pc); 239 init(thr, pc, rfd, ref(s)); 240 init(thr, pc, wfd, ref(s)); 241 unref(thr, pc, s); 242} 243 244void FdEventCreate(ThreadState *thr, uptr pc, int fd) { 245 DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd); 246 if (bogusfd(fd)) 247 return; 248 init(thr, pc, fd, allocsync(thr, pc)); 249} 250 251void FdSignalCreate(ThreadState *thr, uptr pc, int fd) { 252 DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd); 253 if (bogusfd(fd)) 254 return; 255 init(thr, pc, fd, 0); 256} 257 258void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) { 259 DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd); 260 if (bogusfd(fd)) 261 return; 262 init(thr, pc, fd, 0); 263} 264 265void FdPollCreate(ThreadState *thr, uptr pc, int fd) { 266 DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd); 267 if (bogusfd(fd)) 268 return; 269 init(thr, pc, fd, allocsync(thr, pc)); 270} 271 272void FdSocketCreate(ThreadState *thr, uptr pc, int fd) { 273 DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd); 274 if (bogusfd(fd)) 275 return; 276 // It can be a UDP socket. 277 init(thr, pc, fd, &fdctx.socksync); 278} 279 280void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) { 281 DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd); 282 if (bogusfd(fd)) 283 return; 284 // Synchronize connect->accept. 285 Acquire(thr, pc, (uptr)&fdctx.connectsync); 286 init(thr, pc, newfd, &fdctx.socksync); 287} 288 289void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) { 290 DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd); 291 if (bogusfd(fd)) 292 return; 293 // Synchronize connect->accept. 294 Release(thr, pc, (uptr)&fdctx.connectsync); 295} 296 297void FdSocketConnect(ThreadState *thr, uptr pc, int fd) { 298 DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd); 299 if (bogusfd(fd)) 300 return; 301 init(thr, pc, fd, &fdctx.socksync); 302} 303 304uptr File2addr(const char *path) { 305 (void)path; 306 static u64 addr; 307 return (uptr)&addr; 308} 309 310uptr Dir2addr(const char *path) { 311 (void)path; 312 static u64 addr; 313 return (uptr)&addr; 314} 315 316} // namespace __tsan 317