1/*-------------------------------------------------------------------------
2 * drawElements Quality Program Tester Core
3 * ----------------------------------------
4 *
5 * Copyright 2016 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 *      http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief ASTC Utilities.
22 *//*--------------------------------------------------------------------*/
23
24#include "tcuAstcUtil.hpp"
25#include "deFloat16.h"
26#include "deRandom.hpp"
27#include "deMeta.hpp"
28
29#include <algorithm>
30
31namespace tcu
32{
33namespace astc
34{
35
36using std::vector;
37
38namespace
39{
40
41// Common utilities
42
43enum
44{
45	MAX_BLOCK_WIDTH		= 12,
46	MAX_BLOCK_HEIGHT	= 12
47};
48
49inline deUint32 getBit (deUint32 src, int ndx)
50{
51	DE_ASSERT(de::inBounds(ndx, 0, 32));
52	return (src >> ndx) & 1;
53}
54
55inline deUint32 getBits (deUint32 src, int low, int high)
56{
57	const int numBits = (high-low) + 1;
58
59	DE_ASSERT(de::inRange(numBits, 1, 32));
60
61	if (numBits < 32)
62		return (deUint32)((src >> low) & ((1u<<numBits)-1));
63	else
64		return (deUint32)((src >> low) & 0xFFFFFFFFu);
65}
66
67inline bool isBitSet (deUint32 src, int ndx)
68{
69	return getBit(src, ndx) != 0;
70}
71
72inline deUint32 reverseBits (deUint32 src, int numBits)
73{
74	DE_ASSERT(de::inRange(numBits, 0, 32));
75	deUint32 result = 0;
76	for (int i = 0; i < numBits; i++)
77		result |= ((src >> i) & 1) << (numBits-1-i);
78	return result;
79}
80
81inline deUint32 bitReplicationScale (deUint32 src, int numSrcBits, int numDstBits)
82{
83	DE_ASSERT(numSrcBits <= numDstBits);
84	DE_ASSERT((src & ((1<<numSrcBits)-1)) == src);
85	deUint32 dst = 0;
86	for (int shift = numDstBits-numSrcBits; shift > -numSrcBits; shift -= numSrcBits)
87		dst |= shift >= 0 ? src << shift : src >> -shift;
88	return dst;
89}
90
91inline deInt32 signExtend (deInt32 src, int numSrcBits)
92{
93	DE_ASSERT(de::inRange(numSrcBits, 2, 31));
94	const bool negative = (src & (1 << (numSrcBits-1))) != 0;
95	return src | (negative ? ~((1 << numSrcBits) - 1) : 0);
96}
97
98inline bool isFloat16InfOrNan (deFloat16 v)
99{
100	return getBits(v, 10, 14) == 31;
101}
102
103enum ISEMode
104{
105	ISEMODE_TRIT = 0,
106	ISEMODE_QUINT,
107	ISEMODE_PLAIN_BIT,
108
109	ISEMODE_LAST
110};
111
112struct ISEParams
113{
114	ISEMode		mode;
115	int			numBits;
116
117	ISEParams (ISEMode mode_, int numBits_) : mode(mode_), numBits(numBits_) {}
118};
119
120inline int computeNumRequiredBits (const ISEParams& iseParams, int numValues)
121{
122	switch (iseParams.mode)
123	{
124		case ISEMODE_TRIT:			return deDivRoundUp32(numValues*8, 5) + numValues*iseParams.numBits;
125		case ISEMODE_QUINT:			return deDivRoundUp32(numValues*7, 3) + numValues*iseParams.numBits;
126		case ISEMODE_PLAIN_BIT:		return numValues*iseParams.numBits;
127		default:
128			DE_ASSERT(false);
129			return -1;
130	}
131}
132
133ISEParams computeMaximumRangeISEParams (int numAvailableBits, int numValuesInSequence)
134{
135	int curBitsForTritMode		= 6;
136	int curBitsForQuintMode		= 5;
137	int curBitsForPlainBitMode	= 8;
138
139	while (true)
140	{
141		DE_ASSERT(curBitsForTritMode > 0 || curBitsForQuintMode > 0 || curBitsForPlainBitMode > 0);
142
143		const int tritRange			= curBitsForTritMode > 0		? (3 << curBitsForTritMode) - 1			: -1;
144		const int quintRange		= curBitsForQuintMode > 0		? (5 << curBitsForQuintMode) - 1		: -1;
145		const int plainBitRange		= curBitsForPlainBitMode > 0	? (1 << curBitsForPlainBitMode) - 1		: -1;
146		const int maxRange			= de::max(de::max(tritRange, quintRange), plainBitRange);
147
148		if (maxRange == tritRange)
149		{
150			const ISEParams params(ISEMODE_TRIT, curBitsForTritMode);
151			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
152				return ISEParams(ISEMODE_TRIT, curBitsForTritMode);
153			curBitsForTritMode--;
154		}
155		else if (maxRange == quintRange)
156		{
157			const ISEParams params(ISEMODE_QUINT, curBitsForQuintMode);
158			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
159				return ISEParams(ISEMODE_QUINT, curBitsForQuintMode);
160			curBitsForQuintMode--;
161		}
162		else
163		{
164			const ISEParams params(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
165			DE_ASSERT(maxRange == plainBitRange);
166			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
167				return ISEParams(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
168			curBitsForPlainBitMode--;
169		}
170	}
171}
172
173inline int computeNumColorEndpointValues (deUint32 endpointMode)
174{
175	DE_ASSERT(endpointMode < 16);
176	return (endpointMode/4 + 1) * 2;
177}
178
179// Decompression utilities
180
181enum DecompressResult
182{
183	DECOMPRESS_RESULT_VALID_BLOCK	= 0,	//!< Decompressed valid block
184	DECOMPRESS_RESULT_ERROR,				//!< Encountered error while decompressing, error color written
185
186	DECOMPRESS_RESULT_LAST
187};
188
189// A helper for getting bits from a 128-bit block.
190class Block128
191{
192private:
193	typedef deUint64 Word;
194
195	enum
196	{
197		WORD_BYTES	= sizeof(Word),
198		WORD_BITS	= 8*WORD_BYTES,
199		NUM_WORDS	= 128 / WORD_BITS
200	};
201
202	DE_STATIC_ASSERT(128 % WORD_BITS == 0);
203
204public:
205	Block128 (const deUint8* src)
206	{
207		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
208		{
209			m_words[wordNdx] = 0;
210			for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++)
211				m_words[wordNdx] |= (Word)src[wordNdx*WORD_BYTES + byteNdx] << (8*byteNdx);
212		}
213	}
214
215	deUint32 getBit (int ndx) const
216	{
217		DE_ASSERT(de::inBounds(ndx, 0, 128));
218		return (m_words[ndx / WORD_BITS] >> (ndx % WORD_BITS)) & 1;
219	}
220
221	deUint32 getBits (int low, int high) const
222	{
223		DE_ASSERT(de::inBounds(low, 0, 128));
224		DE_ASSERT(de::inBounds(high, 0, 128));
225		DE_ASSERT(de::inRange(high-low+1, 0, 32));
226
227		if (high-low+1 == 0)
228			return 0;
229
230		const int word0Ndx = low / WORD_BITS;
231		const int word1Ndx = high / WORD_BITS;
232
233		// \note "foo << bar << 1" done instead of "foo << (bar+1)" to avoid overflow, i.e. shift amount being too big.
234
235		if (word0Ndx == word1Ndx)
236			return (deUint32)((m_words[word0Ndx] & ((((Word)1 << high%WORD_BITS << 1) - 1))) >> ((Word)low % WORD_BITS));
237		else
238		{
239			DE_ASSERT(word1Ndx == word0Ndx + 1);
240
241			return (deUint32)(m_words[word0Ndx] >> (low%WORD_BITS)) |
242				   (deUint32)((m_words[word1Ndx] & (((Word)1 << high%WORD_BITS << 1) - 1)) << (high-low - high%WORD_BITS));
243		}
244	}
245
246	bool isBitSet (int ndx) const
247	{
248		DE_ASSERT(de::inBounds(ndx, 0, 128));
249		return getBit(ndx) != 0;
250	}
251
252private:
253	Word m_words[NUM_WORDS];
254};
255
256// A helper for sequential access into a Block128.
257class BitAccessStream
258{
259public:
260	BitAccessStream (const Block128& src, int startNdxInSrc, int length, bool forward)
261		: m_src				(src)
262		, m_startNdxInSrc	(startNdxInSrc)
263		, m_length			(length)
264		, m_forward			(forward)
265		, m_ndx				(0)
266	{
267	}
268
269	// Get the next num bits. Bits at positions greater than or equal to m_length are zeros.
270	deUint32 getNext (int num)
271	{
272		if (num == 0 || m_ndx >= m_length)
273			return 0;
274
275		const int end				= m_ndx + num;
276		const int numBitsFromSrc	= de::max(0, de::min(m_length, end) - m_ndx);
277		const int low				= m_ndx;
278		const int high				= m_ndx + numBitsFromSrc - 1;
279
280		m_ndx += num;
281
282		return m_forward ?			   m_src.getBits(m_startNdxInSrc + low,  m_startNdxInSrc + high)
283						 : reverseBits(m_src.getBits(m_startNdxInSrc - high, m_startNdxInSrc - low), numBitsFromSrc);
284	}
285
286private:
287	const Block128&		m_src;
288	const int			m_startNdxInSrc;
289	const int			m_length;
290	const bool			m_forward;
291
292	int					m_ndx;
293};
294
295struct ISEDecodedResult
296{
297	deUint32 m;
298	deUint32 tq; //!< Trit or quint value, depending on ISE mode.
299	deUint32 v;
300};
301
302// Data from an ASTC block's "block mode" part (i.e. bits [0,10]).
303struct ASTCBlockMode
304{
305	bool		isError;
306	// \note Following fields only relevant if !isError.
307	bool		isVoidExtent;
308	// \note Following fields only relevant if !isVoidExtent.
309	bool		isDualPlane;
310	int			weightGridWidth;
311	int			weightGridHeight;
312	ISEParams	weightISEParams;
313
314	ASTCBlockMode (void)
315		: isError			(true)
316		, isVoidExtent		(true)
317		, isDualPlane		(true)
318		, weightGridWidth	(-1)
319		, weightGridHeight	(-1)
320		, weightISEParams	(ISEMODE_LAST, -1)
321	{
322	}
323};
324
325inline int computeNumWeights (const ASTCBlockMode& mode)
326{
327	return mode.weightGridWidth * mode.weightGridHeight * (mode.isDualPlane ? 2 : 1);
328}
329
330struct ColorEndpointPair
331{
332	UVec4 e0;
333	UVec4 e1;
334};
335
336struct TexelWeightPair
337{
338	deUint32 w[2];
339};
340
341ASTCBlockMode getASTCBlockMode (deUint32 blockModeData)
342{
343	ASTCBlockMode blockMode;
344	blockMode.isError = true; // \note Set to false later, if not error.
345
346	blockMode.isVoidExtent = getBits(blockModeData, 0, 8) == 0x1fc;
347
348	if (!blockMode.isVoidExtent)
349	{
350		if ((getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 6, 8) == 7) || getBits(blockModeData, 0, 3) == 0)
351			return blockMode; // Invalid ("reserved").
352
353		deUint32 r = (deUint32)-1; // \note Set in the following branches.
354
355		if (getBits(blockModeData, 0, 1) == 0)
356		{
357			const deUint32 r0	= getBit(blockModeData, 4);
358			const deUint32 r1	= getBit(blockModeData, 2);
359			const deUint32 r2	= getBit(blockModeData, 3);
360			const deUint32 i78	= getBits(blockModeData, 7, 8);
361
362			r = (r2 << 2) | (r1 << 1) | (r0 << 0);
363
364			if (i78 == 3)
365			{
366				const bool i5 = isBitSet(blockModeData, 5);
367				blockMode.weightGridWidth	= i5 ? 10 : 6;
368				blockMode.weightGridHeight	= i5 ? 6  : 10;
369			}
370			else
371			{
372				const deUint32 a = getBits(blockModeData, 5, 6);
373				switch (i78)
374				{
375					case 0:		blockMode.weightGridWidth = 12;		blockMode.weightGridHeight = a + 2;									break;
376					case 1:		blockMode.weightGridWidth = a + 2;	blockMode.weightGridHeight = 12;									break;
377					case 2:		blockMode.weightGridWidth = a + 6;	blockMode.weightGridHeight = getBits(blockModeData, 9, 10) + 6;		break;
378					default: DE_ASSERT(false);
379				}
380			}
381		}
382		else
383		{
384			const deUint32 r0	= getBit(blockModeData, 4);
385			const deUint32 r1	= getBit(blockModeData, 0);
386			const deUint32 r2	= getBit(blockModeData, 1);
387			const deUint32 i23	= getBits(blockModeData, 2, 3);
388			const deUint32 a	= getBits(blockModeData, 5, 6);
389
390			r = (r2 << 2) | (r1 << 1) | (r0 << 0);
391
392			if (i23 == 3)
393			{
394				const deUint32	b	= getBit(blockModeData, 7);
395				const bool		i8	= isBitSet(blockModeData, 8);
396				blockMode.weightGridWidth	= i8 ? b+2 : a+2;
397				blockMode.weightGridHeight	= i8 ? a+2 : b+6;
398			}
399			else
400			{
401				const deUint32 b = getBits(blockModeData, 7, 8);
402
403				switch (i23)
404				{
405					case 0:		blockMode.weightGridWidth = b + 4;	blockMode.weightGridHeight = a + 2;	break;
406					case 1:		blockMode.weightGridWidth = b + 8;	blockMode.weightGridHeight = a + 2;	break;
407					case 2:		blockMode.weightGridWidth = a + 2;	blockMode.weightGridHeight = b + 8;	break;
408					default: DE_ASSERT(false);
409				}
410			}
411		}
412
413		const bool	zeroDH		= getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 7, 8) == 2;
414		const bool	h			= zeroDH ? 0 : isBitSet(blockModeData, 9);
415		blockMode.isDualPlane	= zeroDH ? 0 : isBitSet(blockModeData, 10);
416
417		{
418			ISEMode&	m	= blockMode.weightISEParams.mode;
419			int&		b	= blockMode.weightISEParams.numBits;
420			m = ISEMODE_PLAIN_BIT;
421			b = 0;
422
423			if (h)
424			{
425				switch (r)
426				{
427					case 2:							m = ISEMODE_QUINT;	b = 1;	break;
428					case 3:		m = ISEMODE_TRIT;						b = 2;	break;
429					case 4:												b = 4;	break;
430					case 5:							m = ISEMODE_QUINT;	b = 2;	break;
431					case 6:		m = ISEMODE_TRIT;						b = 3;	break;
432					case 7:												b = 5;	break;
433					default:	DE_ASSERT(false);
434				}
435			}
436			else
437			{
438				switch (r)
439				{
440					case 2:												b = 1;	break;
441					case 3:		m = ISEMODE_TRIT;								break;
442					case 4:												b = 2;	break;
443					case 5:							m = ISEMODE_QUINT;			break;
444					case 6:		m = ISEMODE_TRIT;						b = 1;	break;
445					case 7:												b = 3;	break;
446					default:	DE_ASSERT(false);
447				}
448			}
449		}
450	}
451
452	blockMode.isError = false;
453	return blockMode;
454}
455
456inline void setASTCErrorColorBlock (void* dst, int blockWidth, int blockHeight, bool isSRGB)
457{
458	if (isSRGB)
459	{
460		deUint8* const dstU = (deUint8*)dst;
461
462		for (int i = 0; i < blockWidth*blockHeight; i++)
463		{
464			dstU[4*i + 0] = 0xff;
465			dstU[4*i + 1] = 0;
466			dstU[4*i + 2] = 0xff;
467			dstU[4*i + 3] = 0xff;
468		}
469	}
470	else
471	{
472		float* const dstF = (float*)dst;
473
474		for (int i = 0; i < blockWidth*blockHeight; i++)
475		{
476			dstF[4*i + 0] = 1.0f;
477			dstF[4*i + 1] = 0.0f;
478			dstF[4*i + 2] = 1.0f;
479			dstF[4*i + 3] = 1.0f;
480		}
481	}
482}
483
484DecompressResult decodeVoidExtentBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode)
485{
486	const deUint32	minSExtent			= blockData.getBits(12, 24);
487	const deUint32	maxSExtent			= blockData.getBits(25, 37);
488	const deUint32	minTExtent			= blockData.getBits(38, 50);
489	const deUint32	maxTExtent			= blockData.getBits(51, 63);
490	const bool		allExtentsAllOnes	= minSExtent == 0x1fff && maxSExtent == 0x1fff && minTExtent == 0x1fff && maxTExtent == 0x1fff;
491	const bool		isHDRBlock			= blockData.isBitSet(9);
492
493	if ((isLDRMode && isHDRBlock) || (!allExtentsAllOnes && (minSExtent >= maxSExtent || minTExtent >= maxTExtent)))
494	{
495		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
496		return DECOMPRESS_RESULT_ERROR;
497	}
498
499	const deUint32 rgba[4] =
500	{
501		blockData.getBits(64,  79),
502		blockData.getBits(80,  95),
503		blockData.getBits(96,  111),
504		blockData.getBits(112, 127)
505	};
506
507	if (isSRGB)
508	{
509		deUint8* const dstU = (deUint8*)dst;
510		for (int i = 0; i < blockWidth*blockHeight; i++)
511		for (int c = 0; c < 4; c++)
512			dstU[i*4 + c] = (deUint8)((rgba[c] & 0xff00) >> 8);
513	}
514	else
515	{
516		float* const dstF = (float*)dst;
517
518		if (isHDRBlock)
519		{
520			for (int c = 0; c < 4; c++)
521			{
522				if (isFloat16InfOrNan((deFloat16)rgba[c]))
523					throw InternalError("Infinity or NaN color component in HDR void extent block in ASTC texture (behavior undefined by ASTC specification)");
524			}
525
526			for (int i = 0; i < blockWidth*blockHeight; i++)
527			for (int c = 0; c < 4; c++)
528				dstF[i*4 + c] = deFloat16To32((deFloat16)rgba[c]);
529		}
530		else
531		{
532			for (int i = 0; i < blockWidth*blockHeight; i++)
533			for (int c = 0; c < 4; c++)
534				dstF[i*4 + c] = rgba[c] == 65535 ? 1.0f : (float)rgba[c] / 65536.0f;
535		}
536	}
537
538	return DECOMPRESS_RESULT_VALID_BLOCK;
539}
540
541void decodeColorEndpointModes (deUint32* endpointModesDst, const Block128& blockData, int numPartitions, int extraCemBitsStart)
542{
543	if (numPartitions == 1)
544		endpointModesDst[0] = blockData.getBits(13, 16);
545	else
546	{
547		const deUint32 highLevelSelector = blockData.getBits(23, 24);
548
549		if (highLevelSelector == 0)
550		{
551			const deUint32 mode = blockData.getBits(25, 28);
552			for (int i = 0; i < numPartitions; i++)
553				endpointModesDst[i] = mode;
554		}
555		else
556		{
557			for (int partNdx = 0; partNdx < numPartitions; partNdx++)
558			{
559				const deUint32 cemClass		= highLevelSelector - (blockData.isBitSet(25 + partNdx) ? 0 : 1);
560				const deUint32 lowBit0Ndx	= numPartitions + 2*partNdx;
561				const deUint32 lowBit1Ndx	= numPartitions + 2*partNdx + 1;
562				const deUint32 lowBit0		= blockData.getBit(lowBit0Ndx < 4 ? 25+lowBit0Ndx : extraCemBitsStart+lowBit0Ndx-4);
563				const deUint32 lowBit1		= blockData.getBit(lowBit1Ndx < 4 ? 25+lowBit1Ndx : extraCemBitsStart+lowBit1Ndx-4);
564
565				endpointModesDst[partNdx] = (cemClass << 2) | (lowBit1 << 1) | lowBit0;
566			}
567		}
568	}
569}
570
571int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions)
572{
573	int result = 0;
574	for (int i = 0; i < numPartitions; i++)
575		result += computeNumColorEndpointValues(endpointModes[i]);
576	return result;
577}
578
579void decodeISETritBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
580{
581	DE_ASSERT(de::inRange(numValues, 1, 5));
582
583	deUint32 m[5];
584
585	m[0]			= data.getNext(numBits);
586	deUint32 T01	= data.getNext(2);
587	m[1]			= data.getNext(numBits);
588	deUint32 T23	= data.getNext(2);
589	m[2]			= data.getNext(numBits);
590	deUint32 T4		= data.getNext(1);
591	m[3]			= data.getNext(numBits);
592	deUint32 T56	= data.getNext(2);
593	m[4]			= data.getNext(numBits);
594	deUint32 T7		= data.getNext(1);
595
596	switch (numValues)
597	{
598		// \note Fall-throughs.
599		case 1: T23		= 0;
600		case 2: T4		= 0;
601		case 3: T56		= 0;
602		case 4: T7		= 0;
603		case 5: break;
604		default:
605			DE_ASSERT(false);
606	}
607
608	const deUint32 T = (T7 << 7) | (T56 << 5) | (T4 << 4) | (T23 << 2) | (T01 << 0);
609
610	static const deUint32 tritsFromT[256][5] =
611	{
612		{ 0,0,0,0,0 }, { 1,0,0,0,0 }, { 2,0,0,0,0 }, { 0,0,2,0,0 }, { 0,1,0,0,0 }, { 1,1,0,0,0 }, { 2,1,0,0,0 }, { 1,0,2,0,0 }, { 0,2,0,0,0 }, { 1,2,0,0,0 }, { 2,2,0,0,0 }, { 2,0,2,0,0 }, { 0,2,2,0,0 }, { 1,2,2,0,0 }, { 2,2,2,0,0 }, { 2,0,2,0,0 },
613		{ 0,0,1,0,0 }, { 1,0,1,0,0 }, { 2,0,1,0,0 }, { 0,1,2,0,0 }, { 0,1,1,0,0 }, { 1,1,1,0,0 }, { 2,1,1,0,0 }, { 1,1,2,0,0 }, { 0,2,1,0,0 }, { 1,2,1,0,0 }, { 2,2,1,0,0 }, { 2,1,2,0,0 }, { 0,0,0,2,2 }, { 1,0,0,2,2 }, { 2,0,0,2,2 }, { 0,0,2,2,2 },
614		{ 0,0,0,1,0 }, { 1,0,0,1,0 }, { 2,0,0,1,0 }, { 0,0,2,1,0 }, { 0,1,0,1,0 }, { 1,1,0,1,0 }, { 2,1,0,1,0 }, { 1,0,2,1,0 }, { 0,2,0,1,0 }, { 1,2,0,1,0 }, { 2,2,0,1,0 }, { 2,0,2,1,0 }, { 0,2,2,1,0 }, { 1,2,2,1,0 }, { 2,2,2,1,0 }, { 2,0,2,1,0 },
615		{ 0,0,1,1,0 }, { 1,0,1,1,0 }, { 2,0,1,1,0 }, { 0,1,2,1,0 }, { 0,1,1,1,0 }, { 1,1,1,1,0 }, { 2,1,1,1,0 }, { 1,1,2,1,0 }, { 0,2,1,1,0 }, { 1,2,1,1,0 }, { 2,2,1,1,0 }, { 2,1,2,1,0 }, { 0,1,0,2,2 }, { 1,1,0,2,2 }, { 2,1,0,2,2 }, { 1,0,2,2,2 },
616		{ 0,0,0,2,0 }, { 1,0,0,2,0 }, { 2,0,0,2,0 }, { 0,0,2,2,0 }, { 0,1,0,2,0 }, { 1,1,0,2,0 }, { 2,1,0,2,0 }, { 1,0,2,2,0 }, { 0,2,0,2,0 }, { 1,2,0,2,0 }, { 2,2,0,2,0 }, { 2,0,2,2,0 }, { 0,2,2,2,0 }, { 1,2,2,2,0 }, { 2,2,2,2,0 }, { 2,0,2,2,0 },
617		{ 0,0,1,2,0 }, { 1,0,1,2,0 }, { 2,0,1,2,0 }, { 0,1,2,2,0 }, { 0,1,1,2,0 }, { 1,1,1,2,0 }, { 2,1,1,2,0 }, { 1,1,2,2,0 }, { 0,2,1,2,0 }, { 1,2,1,2,0 }, { 2,2,1,2,0 }, { 2,1,2,2,0 }, { 0,2,0,2,2 }, { 1,2,0,2,2 }, { 2,2,0,2,2 }, { 2,0,2,2,2 },
618		{ 0,0,0,0,2 }, { 1,0,0,0,2 }, { 2,0,0,0,2 }, { 0,0,2,0,2 }, { 0,1,0,0,2 }, { 1,1,0,0,2 }, { 2,1,0,0,2 }, { 1,0,2,0,2 }, { 0,2,0,0,2 }, { 1,2,0,0,2 }, { 2,2,0,0,2 }, { 2,0,2,0,2 }, { 0,2,2,0,2 }, { 1,2,2,0,2 }, { 2,2,2,0,2 }, { 2,0,2,0,2 },
619		{ 0,0,1,0,2 }, { 1,0,1,0,2 }, { 2,0,1,0,2 }, { 0,1,2,0,2 }, { 0,1,1,0,2 }, { 1,1,1,0,2 }, { 2,1,1,0,2 }, { 1,1,2,0,2 }, { 0,2,1,0,2 }, { 1,2,1,0,2 }, { 2,2,1,0,2 }, { 2,1,2,0,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,0,2,2,2 },
620		{ 0,0,0,0,1 }, { 1,0,0,0,1 }, { 2,0,0,0,1 }, { 0,0,2,0,1 }, { 0,1,0,0,1 }, { 1,1,0,0,1 }, { 2,1,0,0,1 }, { 1,0,2,0,1 }, { 0,2,0,0,1 }, { 1,2,0,0,1 }, { 2,2,0,0,1 }, { 2,0,2,0,1 }, { 0,2,2,0,1 }, { 1,2,2,0,1 }, { 2,2,2,0,1 }, { 2,0,2,0,1 },
621		{ 0,0,1,0,1 }, { 1,0,1,0,1 }, { 2,0,1,0,1 }, { 0,1,2,0,1 }, { 0,1,1,0,1 }, { 1,1,1,0,1 }, { 2,1,1,0,1 }, { 1,1,2,0,1 }, { 0,2,1,0,1 }, { 1,2,1,0,1 }, { 2,2,1,0,1 }, { 2,1,2,0,1 }, { 0,0,1,2,2 }, { 1,0,1,2,2 }, { 2,0,1,2,2 }, { 0,1,2,2,2 },
622		{ 0,0,0,1,1 }, { 1,0,0,1,1 }, { 2,0,0,1,1 }, { 0,0,2,1,1 }, { 0,1,0,1,1 }, { 1,1,0,1,1 }, { 2,1,0,1,1 }, { 1,0,2,1,1 }, { 0,2,0,1,1 }, { 1,2,0,1,1 }, { 2,2,0,1,1 }, { 2,0,2,1,1 }, { 0,2,2,1,1 }, { 1,2,2,1,1 }, { 2,2,2,1,1 }, { 2,0,2,1,1 },
623		{ 0,0,1,1,1 }, { 1,0,1,1,1 }, { 2,0,1,1,1 }, { 0,1,2,1,1 }, { 0,1,1,1,1 }, { 1,1,1,1,1 }, { 2,1,1,1,1 }, { 1,1,2,1,1 }, { 0,2,1,1,1 }, { 1,2,1,1,1 }, { 2,2,1,1,1 }, { 2,1,2,1,1 }, { 0,1,1,2,2 }, { 1,1,1,2,2 }, { 2,1,1,2,2 }, { 1,1,2,2,2 },
624		{ 0,0,0,2,1 }, { 1,0,0,2,1 }, { 2,0,0,2,1 }, { 0,0,2,2,1 }, { 0,1,0,2,1 }, { 1,1,0,2,1 }, { 2,1,0,2,1 }, { 1,0,2,2,1 }, { 0,2,0,2,1 }, { 1,2,0,2,1 }, { 2,2,0,2,1 }, { 2,0,2,2,1 }, { 0,2,2,2,1 }, { 1,2,2,2,1 }, { 2,2,2,2,1 }, { 2,0,2,2,1 },
625		{ 0,0,1,2,1 }, { 1,0,1,2,1 }, { 2,0,1,2,1 }, { 0,1,2,2,1 }, { 0,1,1,2,1 }, { 1,1,1,2,1 }, { 2,1,1,2,1 }, { 1,1,2,2,1 }, { 0,2,1,2,1 }, { 1,2,1,2,1 }, { 2,2,1,2,1 }, { 2,1,2,2,1 }, { 0,2,1,2,2 }, { 1,2,1,2,2 }, { 2,2,1,2,2 }, { 2,1,2,2,2 },
626		{ 0,0,0,1,2 }, { 1,0,0,1,2 }, { 2,0,0,1,2 }, { 0,0,2,1,2 }, { 0,1,0,1,2 }, { 1,1,0,1,2 }, { 2,1,0,1,2 }, { 1,0,2,1,2 }, { 0,2,0,1,2 }, { 1,2,0,1,2 }, { 2,2,0,1,2 }, { 2,0,2,1,2 }, { 0,2,2,1,2 }, { 1,2,2,1,2 }, { 2,2,2,1,2 }, { 2,0,2,1,2 },
627		{ 0,0,1,1,2 }, { 1,0,1,1,2 }, { 2,0,1,1,2 }, { 0,1,2,1,2 }, { 0,1,1,1,2 }, { 1,1,1,1,2 }, { 2,1,1,1,2 }, { 1,1,2,1,2 }, { 0,2,1,1,2 }, { 1,2,1,1,2 }, { 2,2,1,1,2 }, { 2,1,2,1,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,1,2,2,2 }
628	};
629
630	const deUint32 (& trits)[5] = tritsFromT[T];
631
632	for (int i = 0; i < numValues; i++)
633	{
634		dst[i].m	= m[i];
635		dst[i].tq	= trits[i];
636		dst[i].v	= (trits[i] << numBits) + m[i];
637	}
638}
639
640void decodeISEQuintBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
641{
642	DE_ASSERT(de::inRange(numValues, 1, 3));
643
644	deUint32 m[3];
645
646	m[0]			= data.getNext(numBits);
647	deUint32 Q012	= data.getNext(3);
648	m[1]			= data.getNext(numBits);
649	deUint32 Q34	= data.getNext(2);
650	m[2]			= data.getNext(numBits);
651	deUint32 Q56	= data.getNext(2);
652
653	switch (numValues)
654	{
655		// \note Fall-throughs.
656		case 1: Q34		= 0;
657		case 2: Q56		= 0;
658		case 3: break;
659		default:
660			DE_ASSERT(false);
661	}
662
663	const deUint32 Q = (Q56 << 5) | (Q34 << 3) | (Q012 << 0);
664
665	static const deUint32 quintsFromQ[256][3] =
666	{
667		{ 0,0,0 }, { 1,0,0 }, { 2,0,0 }, { 3,0,0 }, { 4,0,0 }, { 0,4,0 }, { 4,4,0 }, { 4,4,4 }, { 0,1,0 }, { 1,1,0 }, { 2,1,0 }, { 3,1,0 }, { 4,1,0 }, { 1,4,0 }, { 4,4,1 }, { 4,4,4 },
668		{ 0,2,0 }, { 1,2,0 }, { 2,2,0 }, { 3,2,0 }, { 4,2,0 }, { 2,4,0 }, { 4,4,2 }, { 4,4,4 }, { 0,3,0 }, { 1,3,0 }, { 2,3,0 }, { 3,3,0 }, { 4,3,0 }, { 3,4,0 }, { 4,4,3 }, { 4,4,4 },
669		{ 0,0,1 }, { 1,0,1 }, { 2,0,1 }, { 3,0,1 }, { 4,0,1 }, { 0,4,1 }, { 4,0,4 }, { 0,4,4 }, { 0,1,1 }, { 1,1,1 }, { 2,1,1 }, { 3,1,1 }, { 4,1,1 }, { 1,4,1 }, { 4,1,4 }, { 1,4,4 },
670		{ 0,2,1 }, { 1,2,1 }, { 2,2,1 }, { 3,2,1 }, { 4,2,1 }, { 2,4,1 }, { 4,2,4 }, { 2,4,4 }, { 0,3,1 }, { 1,3,1 }, { 2,3,1 }, { 3,3,1 }, { 4,3,1 }, { 3,4,1 }, { 4,3,4 }, { 3,4,4 },
671		{ 0,0,2 }, { 1,0,2 }, { 2,0,2 }, { 3,0,2 }, { 4,0,2 }, { 0,4,2 }, { 2,0,4 }, { 3,0,4 }, { 0,1,2 }, { 1,1,2 }, { 2,1,2 }, { 3,1,2 }, { 4,1,2 }, { 1,4,2 }, { 2,1,4 }, { 3,1,4 },
672		{ 0,2,2 }, { 1,2,2 }, { 2,2,2 }, { 3,2,2 }, { 4,2,2 }, { 2,4,2 }, { 2,2,4 }, { 3,2,4 }, { 0,3,2 }, { 1,3,2 }, { 2,3,2 }, { 3,3,2 }, { 4,3,2 }, { 3,4,2 }, { 2,3,4 }, { 3,3,4 },
673		{ 0,0,3 }, { 1,0,3 }, { 2,0,3 }, { 3,0,3 }, { 4,0,3 }, { 0,4,3 }, { 0,0,4 }, { 1,0,4 }, { 0,1,3 }, { 1,1,3 }, { 2,1,3 }, { 3,1,3 }, { 4,1,3 }, { 1,4,3 }, { 0,1,4 }, { 1,1,4 },
674		{ 0,2,3 }, { 1,2,3 }, { 2,2,3 }, { 3,2,3 }, { 4,2,3 }, { 2,4,3 }, { 0,2,4 }, { 1,2,4 }, { 0,3,3 }, { 1,3,3 }, { 2,3,3 }, { 3,3,3 }, { 4,3,3 }, { 3,4,3 }, { 0,3,4 }, { 1,3,4 }
675	};
676
677	const deUint32 (& quints)[3] = quintsFromQ[Q];
678
679	for (int i = 0; i < numValues; i++)
680	{
681		dst[i].m	= m[i];
682		dst[i].tq	= quints[i];
683		dst[i].v	= (quints[i] << numBits) + m[i];
684	}
685}
686
687inline void decodeISEBitBlock (ISEDecodedResult* dst, BitAccessStream& data, int numBits)
688{
689	dst[0].m = data.getNext(numBits);
690	dst[0].v = dst[0].m;
691}
692
693void decodeISE (ISEDecodedResult* dst, int numValues, BitAccessStream& data, const ISEParams& params)
694{
695	if (params.mode == ISEMODE_TRIT)
696	{
697		const int numBlocks = deDivRoundUp32(numValues, 5);
698		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
699		{
700			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5;
701			decodeISETritBlock(&dst[5*blockNdx], numValuesInBlock, data, params.numBits);
702		}
703	}
704	else if (params.mode == ISEMODE_QUINT)
705	{
706		const int numBlocks = deDivRoundUp32(numValues, 3);
707		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
708		{
709			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3;
710			decodeISEQuintBlock(&dst[3*blockNdx], numValuesInBlock, data, params.numBits);
711		}
712	}
713	else
714	{
715		DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT);
716		for (int i = 0; i < numValues; i++)
717			decodeISEBitBlock(&dst[i], data, params.numBits);
718	}
719}
720
721void unquantizeColorEndpoints (deUint32* dst, const ISEDecodedResult* iseResults, int numEndpoints, const ISEParams& iseParams)
722{
723	if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
724	{
725		const int rangeCase				= iseParams.numBits*2 - (iseParams.mode == ISEMODE_TRIT ? 2 : 1);
726		DE_ASSERT(de::inRange(rangeCase, 0, 10));
727		static const deUint32	Ca[11]	= { 204, 113, 93, 54, 44, 26, 22, 13, 11, 6, 5 };
728		const deUint32			C		= Ca[rangeCase];
729
730		for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
731		{
732			const deUint32 a = getBit(iseResults[endpointNdx].m, 0);
733			const deUint32 b = getBit(iseResults[endpointNdx].m, 1);
734			const deUint32 c = getBit(iseResults[endpointNdx].m, 2);
735			const deUint32 d = getBit(iseResults[endpointNdx].m, 3);
736			const deUint32 e = getBit(iseResults[endpointNdx].m, 4);
737			const deUint32 f = getBit(iseResults[endpointNdx].m, 5);
738
739			const deUint32 A = a == 0 ? 0 : (1<<9)-1;
740			const deUint32 B = rangeCase == 0	? 0
741							 : rangeCase == 1	? 0
742							 : rangeCase == 2	? (b << 8) |									(b << 4) |				(b << 2) |	(b << 1)
743							 : rangeCase == 3	? (b << 8) |												(b << 3) |	(b << 2)
744							 : rangeCase == 4	? (c << 8) | (b << 7) |										(c << 3) |	(b << 2) |	(c << 1) |	(b << 0)
745							 : rangeCase == 5	? (c << 8) | (b << 7) |													(c << 2) |	(b << 1) |	(c << 0)
746							 : rangeCase == 6	? (d << 8) | (c << 7) | (b << 6) |										(d << 2) |	(c << 1) |	(b << 0)
747							 : rangeCase == 7	? (d << 8) | (c << 7) | (b << 6) |													(d << 1) |	(c << 0)
748							 : rangeCase == 8	? (e << 8) | (d << 7) | (c << 6) | (b << 5) |										(e << 1) |	(d << 0)
749							 : rangeCase == 9	? (e << 8) | (d << 7) | (c << 6) | (b << 5) |													(e << 0)
750							 : rangeCase == 10	? (f << 8) | (e << 7) | (d << 6) | (c << 5) |	(b << 4) |										(f << 0)
751							 : (deUint32)-1;
752			DE_ASSERT(B != (deUint32)-1);
753
754			dst[endpointNdx] = (((iseResults[endpointNdx].tq*C + B) ^ A) >> 2) | (A & 0x80);
755		}
756	}
757	else
758	{
759		DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
760
761		for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
762			dst[endpointNdx] = bitReplicationScale(iseResults[endpointNdx].v, iseParams.numBits, 8);
763	}
764}
765
766inline void bitTransferSigned (deInt32& a, deInt32& b)
767{
768	b >>= 1;
769	b |= a & 0x80;
770	a >>= 1;
771	a &= 0x3f;
772	if (isBitSet(a, 5))
773		a -= 0x40;
774}
775
776inline UVec4 clampedRGBA (const IVec4& rgba)
777{
778	return UVec4(de::clamp(rgba.x(), 0, 0xff),
779				 de::clamp(rgba.y(), 0, 0xff),
780				 de::clamp(rgba.z(), 0, 0xff),
781				 de::clamp(rgba.w(), 0, 0xff));
782}
783
784inline IVec4 blueContract (int r, int g, int b, int a)
785{
786	return IVec4((r+b)>>1, (g+b)>>1, b, a);
787}
788
789inline bool isColorEndpointModeHDR (deUint32 mode)
790{
791	return mode == 2	||
792		   mode == 3	||
793		   mode == 7	||
794		   mode == 11	||
795		   mode == 14	||
796		   mode == 15;
797}
798
799void decodeHDREndpointMode7 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3)
800{
801	const deUint32 m10		= getBit(v1, 7) | (getBit(v2, 7) << 1);
802	const deUint32 m23		= getBits(v0, 6, 7);
803	const deUint32 majComp	= m10 != 3	? m10
804							: m23 != 3	? m23
805							:			  0;
806	const deUint32 mode		= m10 != 3	? m23
807							: m23 != 3	? 4
808							:			  5;
809
810	deInt32			red		= (deInt32)getBits(v0, 0, 5);
811	deInt32			green	= (deInt32)getBits(v1, 0, 4);
812	deInt32			blue	= (deInt32)getBits(v2, 0, 4);
813	deInt32			scale	= (deInt32)getBits(v3, 0, 4);
814
815	{
816#define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
817#define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5, V6,S6) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); SHOR(V6,S6,x6); } while (false)
818
819		const deUint32	x0	= getBit(v1, 6);
820		const deUint32	x1	= getBit(v1, 5);
821		const deUint32	x2	= getBit(v2, 6);
822		const deUint32	x3	= getBit(v2, 5);
823		const deUint32	x4	= getBit(v3, 7);
824		const deUint32	x5	= getBit(v3, 6);
825		const deUint32	x6	= getBit(v3, 5);
826
827		deInt32&		R	= red;
828		deInt32&		G	= green;
829		deInt32&		B	= blue;
830		deInt32&		S	= scale;
831
832		switch (mode)
833		{
834			case 0: ASSIGN_X_BITS(R,9,  R,8,  R,7,  R,10,  R,6,  S,6,   S,5); break;
835			case 1: ASSIGN_X_BITS(R,8,  G,5,  R,7,  B,5,   R,6,  R,10,  R,9); break;
836			case 2: ASSIGN_X_BITS(R,9,  R,8,  R,7,  R,6,   S,7,  S,6,   S,5); break;
837			case 3: ASSIGN_X_BITS(R,8,  G,5,  R,7,  B,5,   R,6,  S,6,   S,5); break;
838			case 4: ASSIGN_X_BITS(G,6,  G,5,  B,6,  B,5,   R,6,  R,7,   S,5); break;
839			case 5: ASSIGN_X_BITS(G,6,  G,5,  B,6,  B,5,   R,6,  S,6,   S,5); break;
840			default:
841				DE_ASSERT(false);
842		}
843
844#undef ASSIGN_X_BITS
845#undef SHOR
846	}
847
848	static const int shiftAmounts[] = { 1, 1, 2, 3, 4, 5 };
849	DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(shiftAmounts));
850
851	red		<<= shiftAmounts[mode];
852	green	<<= shiftAmounts[mode];
853	blue	<<= shiftAmounts[mode];
854	scale	<<= shiftAmounts[mode];
855
856	if (mode != 5)
857	{
858		green	= red - green;
859		blue	= red - blue;
860	}
861
862	if (majComp == 1)
863		std::swap(red, green);
864	else if (majComp == 2)
865		std::swap(red, blue);
866
867	e0 = UVec4(de::clamp(red	- scale,	0, 0xfff),
868			   de::clamp(green	- scale,	0, 0xfff),
869			   de::clamp(blue	- scale,	0, 0xfff),
870			   0x780);
871
872	e1 = UVec4(de::clamp(red,				0, 0xfff),
873			   de::clamp(green,				0, 0xfff),
874			   de::clamp(blue,				0, 0xfff),
875			   0x780);
876}
877
878void decodeHDREndpointMode11 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5)
879{
880	const deUint32 major = (getBit(v5, 7) << 1) | getBit(v4, 7);
881
882	if (major == 3)
883	{
884		e0 = UVec4(v0<<4, v2<<4, getBits(v4,0,6)<<5, 0x780);
885		e1 = UVec4(v1<<4, v3<<4, getBits(v5,0,6)<<5, 0x780);
886	}
887	else
888	{
889		const deUint32 mode = (getBit(v3, 7) << 2) | (getBit(v2, 7) << 1) | getBit(v1, 7);
890
891		deInt32 a	= (deInt32)((getBit(v1, 6) << 8) | v0);
892		deInt32 c	= (deInt32)(getBits(v1, 0, 5));
893		deInt32 b0	= (deInt32)(getBits(v2, 0, 5));
894		deInt32 b1	= (deInt32)(getBits(v3, 0, 5));
895		deInt32 d0	= (deInt32)(getBits(v4, 0, 4));
896		deInt32 d1	= (deInt32)(getBits(v5, 0, 4));
897
898		{
899#define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
900#define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); } while (false)
901
902			const deUint32 x0 = getBit(v2, 6);
903			const deUint32 x1 = getBit(v3, 6);
904			const deUint32 x2 = getBit(v4, 6);
905			const deUint32 x3 = getBit(v5, 6);
906			const deUint32 x4 = getBit(v4, 5);
907			const deUint32 x5 = getBit(v5, 5);
908
909			switch (mode)
910			{
911				case 0: ASSIGN_X_BITS(b0,6,  b1,6,   d0,6,  d1,6,  d0,5,  d1,5); break;
912				case 1: ASSIGN_X_BITS(b0,6,  b1,6,   b0,7,  b1,7,  d0,5,  d1,5); break;
913				case 2: ASSIGN_X_BITS(a,9,   c,6,    d0,6,  d1,6,  d0,5,  d1,5); break;
914				case 3: ASSIGN_X_BITS(b0,6,  b1,6,   a,9,   c,6,   d0,5,  d1,5); break;
915				case 4: ASSIGN_X_BITS(b0,6,  b1,6,   b0,7,  b1,7,  a,9,   a,10); break;
916				case 5: ASSIGN_X_BITS(a,9,   a,10,   c,7,   c,6,   d0,5,  d1,5); break;
917				case 6: ASSIGN_X_BITS(b0,6,  b1,6,   a,11,  c,6,   a,9,   a,10); break;
918				case 7: ASSIGN_X_BITS(a,9,   a,10,   a,11,  c,6,   d0,5,  d1,5); break;
919				default:
920					DE_ASSERT(false);
921			}
922
923#undef ASSIGN_X_BITS
924#undef SHOR
925		}
926
927		static const int numDBits[] = { 7, 6, 7, 6, 5, 6, 5, 6 };
928		DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(numDBits));
929
930		d0 = signExtend(d0, numDBits[mode]);
931		d1 = signExtend(d1, numDBits[mode]);
932
933		const int shiftAmount = (mode >> 1) ^ 3;
934		a	<<= shiftAmount;
935		c	<<= shiftAmount;
936		b0	<<= shiftAmount;
937		b1	<<= shiftAmount;
938		d0	<<= shiftAmount;
939		d1	<<= shiftAmount;
940
941		e0 = UVec4(de::clamp(a-c,			0, 0xfff),
942				   de::clamp(a-b0-c-d0,		0, 0xfff),
943				   de::clamp(a-b1-c-d1,		0, 0xfff),
944				   0x780);
945
946		e1 = UVec4(de::clamp(a,				0, 0xfff),
947				   de::clamp(a-b0,			0, 0xfff),
948				   de::clamp(a-b1,			0, 0xfff),
949				   0x780);
950
951		if (major == 1)
952		{
953			std::swap(e0.x(), e0.y());
954			std::swap(e1.x(), e1.y());
955		}
956		else if (major == 2)
957		{
958			std::swap(e0.x(), e0.z());
959			std::swap(e1.x(), e1.z());
960		}
961	}
962}
963
964void decodeHDREndpointMode15(UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5, deUint32 v6In, deUint32 v7In)
965{
966	decodeHDREndpointMode11(e0, e1, v0, v1, v2, v3, v4, v5);
967
968	const deUint32	mode	= (getBit(v7In, 7) << 1) | getBit(v6In, 7);
969	deInt32			v6		= (deInt32)getBits(v6In, 0, 6);
970	deInt32			v7		= (deInt32)getBits(v7In, 0, 6);
971
972	if (mode == 3)
973	{
974		e0.w() = v6 << 5;
975		e1.w() = v7 << 5;
976	}
977	else
978	{
979		v6 |= (v7 << (mode+1)) & 0x780;
980		v7 &= (0x3f >> mode);
981		v7 ^= 0x20 >> mode;
982		v7 -= 0x20 >> mode;
983		v6 <<= 4-mode;
984		v7 <<= 4-mode;
985
986		v7 += v6;
987		v7 = de::clamp(v7, 0, 0xfff);
988		e0.w() = v6;
989		e1.w() = v7;
990	}
991}
992
993void decodeColorEndpoints (ColorEndpointPair* dst, const deUint32* unquantizedEndpoints, const deUint32* endpointModes, int numPartitions)
994{
995	int unquantizedNdx = 0;
996
997	for (int partitionNdx = 0; partitionNdx < numPartitions; partitionNdx++)
998	{
999		const deUint32		endpointMode	= endpointModes[partitionNdx];
1000		const deUint32*		v				= &unquantizedEndpoints[unquantizedNdx];
1001		UVec4&				e0				= dst[partitionNdx].e0;
1002		UVec4&				e1				= dst[partitionNdx].e1;
1003
1004		unquantizedNdx += computeNumColorEndpointValues(endpointMode);
1005
1006		switch (endpointMode)
1007		{
1008			case 0:
1009				e0 = UVec4(v[0], v[0], v[0], 0xff);
1010				e1 = UVec4(v[1], v[1], v[1], 0xff);
1011				break;
1012
1013			case 1:
1014			{
1015				const deUint32 L0 = (v[0] >> 2) | (getBits(v[1], 6, 7) << 6);
1016				const deUint32 L1 = de::min(0xffu, L0 + getBits(v[1], 0, 5));
1017				e0 = UVec4(L0, L0, L0, 0xff);
1018				e1 = UVec4(L1, L1, L1, 0xff);
1019				break;
1020			}
1021
1022			case 2:
1023			{
1024				const deUint32 v1Gr		= v[1] >= v[0];
1025				const deUint32 y0		= v1Gr ? v[0]<<4 : (v[1]<<4) + 8;
1026				const deUint32 y1		= v1Gr ? v[1]<<4 : (v[0]<<4) - 8;
1027
1028				e0 = UVec4(y0, y0, y0, 0x780);
1029				e1 = UVec4(y1, y1, y1, 0x780);
1030				break;
1031			}
1032
1033			case 3:
1034			{
1035				const bool		m	= isBitSet(v[0], 7);
1036				const deUint32	y0	= m ? (getBits(v[1], 5, 7) << 9) | (getBits(v[0], 0, 6) << 2)
1037										: (getBits(v[1], 4, 7) << 8) | (getBits(v[0], 0, 6) << 1);
1038				const deUint32	d	= m ? getBits(v[1], 0, 4) << 2
1039										: getBits(v[1], 0, 3) << 1;
1040				const deUint32	y1	= de::min(0xfffu, y0+d);
1041
1042				e0 = UVec4(y0, y0, y0, 0x780);
1043				e1 = UVec4(y1, y1, y1, 0x780);
1044				break;
1045			}
1046
1047			case 4:
1048				e0 = UVec4(v[0], v[0], v[0], v[2]);
1049				e1 = UVec4(v[1], v[1], v[1], v[3]);
1050				break;
1051
1052			case 5:
1053			{
1054				deInt32 v0 = (deInt32)v[0];
1055				deInt32 v1 = (deInt32)v[1];
1056				deInt32 v2 = (deInt32)v[2];
1057				deInt32 v3 = (deInt32)v[3];
1058				bitTransferSigned(v1, v0);
1059				bitTransferSigned(v3, v2);
1060
1061				e0 = clampedRGBA(IVec4(v0,		v0,		v0,		v2));
1062				e1 = clampedRGBA(IVec4(v0+v1,	v0+v1,	v0+v1,	v2+v3));
1063				break;
1064			}
1065
1066			case 6:
1067				e0 = UVec4((v[0]*v[3]) >> 8,	(v[1]*v[3]) >> 8,	(v[2]*v[3]) >> 8,	0xff);
1068				e1 = UVec4(v[0],				v[1],				v[2],				0xff);
1069				break;
1070
1071			case 7:
1072				decodeHDREndpointMode7(e0, e1, v[0], v[1], v[2], v[3]);
1073				break;
1074
1075			case 8:
1076				if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4])
1077				{
1078					e0 = UVec4(v[0], v[2], v[4], 0xff);
1079					e1 = UVec4(v[1], v[3], v[5], 0xff);
1080				}
1081				else
1082				{
1083					e0 = blueContract(v[1], v[3], v[5], 0xff).asUint();
1084					e1 = blueContract(v[0], v[2], v[4], 0xff).asUint();
1085				}
1086				break;
1087
1088			case 9:
1089			{
1090				deInt32 v0 = (deInt32)v[0];
1091				deInt32 v1 = (deInt32)v[1];
1092				deInt32 v2 = (deInt32)v[2];
1093				deInt32 v3 = (deInt32)v[3];
1094				deInt32 v4 = (deInt32)v[4];
1095				deInt32 v5 = (deInt32)v[5];
1096				bitTransferSigned(v1, v0);
1097				bitTransferSigned(v3, v2);
1098				bitTransferSigned(v5, v4);
1099
1100				if (v1+v3+v5 >= 0)
1101				{
1102					e0 = clampedRGBA(IVec4(v0,		v2,		v4,		0xff));
1103					e1 = clampedRGBA(IVec4(v0+v1,	v2+v3,	v4+v5,	0xff));
1104				}
1105				else
1106				{
1107					e0 = clampedRGBA(blueContract(v0+v1,	v2+v3,	v4+v5,	0xff));
1108					e1 = clampedRGBA(blueContract(v0,		v2,		v4,		0xff));
1109				}
1110				break;
1111			}
1112
1113			case 10:
1114				e0 = UVec4((v[0]*v[3]) >> 8,	(v[1]*v[3]) >> 8,	(v[2]*v[3]) >> 8,	v[4]);
1115				e1 = UVec4(v[0],				v[1],				v[2],				v[5]);
1116				break;
1117
1118			case 11:
1119				decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
1120				break;
1121
1122			case 12:
1123				if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4])
1124				{
1125					e0 = UVec4(v[0], v[2], v[4], v[6]);
1126					e1 = UVec4(v[1], v[3], v[5], v[7]);
1127				}
1128				else
1129				{
1130					e0 = clampedRGBA(blueContract(v[1], v[3], v[5], v[7]));
1131					e1 = clampedRGBA(blueContract(v[0], v[2], v[4], v[6]));
1132				}
1133				break;
1134
1135			case 13:
1136			{
1137				deInt32 v0 = (deInt32)v[0];
1138				deInt32 v1 = (deInt32)v[1];
1139				deInt32 v2 = (deInt32)v[2];
1140				deInt32 v3 = (deInt32)v[3];
1141				deInt32 v4 = (deInt32)v[4];
1142				deInt32 v5 = (deInt32)v[5];
1143				deInt32 v6 = (deInt32)v[6];
1144				deInt32 v7 = (deInt32)v[7];
1145				bitTransferSigned(v1, v0);
1146				bitTransferSigned(v3, v2);
1147				bitTransferSigned(v5, v4);
1148				bitTransferSigned(v7, v6);
1149
1150				if (v1+v3+v5 >= 0)
1151				{
1152					e0 = clampedRGBA(IVec4(v0,		v2,		v4,		v6));
1153					e1 = clampedRGBA(IVec4(v0+v1,	v2+v3,	v4+v5,	v6+v7));
1154				}
1155				else
1156				{
1157					e0 = clampedRGBA(blueContract(v0+v1,	v2+v3,	v4+v5,	v6+v7));
1158					e1 = clampedRGBA(blueContract(v0,		v2,		v4,		v6));
1159				}
1160
1161				break;
1162			}
1163
1164			case 14:
1165				decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
1166				e0.w() = v[6];
1167				e1.w() = v[7];
1168				break;
1169
1170			case 15:
1171				decodeHDREndpointMode15(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
1172				break;
1173
1174			default:
1175				DE_ASSERT(false);
1176		}
1177	}
1178}
1179
1180void computeColorEndpoints (ColorEndpointPair* dst, const Block128& blockData, const deUint32* endpointModes, int numPartitions, int numColorEndpointValues, const ISEParams& iseParams, int numBitsAvailable)
1181{
1182	const int			colorEndpointDataStart = numPartitions == 1 ? 17 : 29;
1183	ISEDecodedResult	colorEndpointData[18];
1184
1185	{
1186		BitAccessStream dataStream(blockData, colorEndpointDataStart, numBitsAvailable, true);
1187		decodeISE(&colorEndpointData[0], numColorEndpointValues, dataStream, iseParams);
1188	}
1189
1190	{
1191		deUint32 unquantizedEndpoints[18];
1192		unquantizeColorEndpoints(&unquantizedEndpoints[0], &colorEndpointData[0], numColorEndpointValues, iseParams);
1193		decodeColorEndpoints(dst, &unquantizedEndpoints[0], &endpointModes[0], numPartitions);
1194	}
1195}
1196
1197void unquantizeWeights (deUint32 dst[64], const ISEDecodedResult* weightGrid, const ASTCBlockMode& blockMode)
1198{
1199	const int			numWeights	= computeNumWeights(blockMode);
1200	const ISEParams&	iseParams	= blockMode.weightISEParams;
1201
1202	if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
1203	{
1204		const int rangeCase = iseParams.numBits*2 + (iseParams.mode == ISEMODE_QUINT ? 1 : 0);
1205
1206		if (rangeCase == 0 || rangeCase == 1)
1207		{
1208			static const deUint32 map0[3]	= { 0, 32, 63 };
1209			static const deUint32 map1[5]	= { 0, 16, 32, 47, 63 };
1210			const deUint32* const map		= rangeCase == 0 ? &map0[0] : &map1[0];
1211			for (int i = 0; i < numWeights; i++)
1212			{
1213				DE_ASSERT(weightGrid[i].v < (rangeCase == 0 ? 3u : 5u));
1214				dst[i] = map[weightGrid[i].v];
1215			}
1216		}
1217		else
1218		{
1219			DE_ASSERT(rangeCase <= 6);
1220			static const deUint32	Ca[5]	= { 50, 28, 23, 13, 11 };
1221			const deUint32			C		= Ca[rangeCase-2];
1222
1223			for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1224			{
1225				const deUint32 a = getBit(weightGrid[weightNdx].m, 0);
1226				const deUint32 b = getBit(weightGrid[weightNdx].m, 1);
1227				const deUint32 c = getBit(weightGrid[weightNdx].m, 2);
1228
1229				const deUint32 A = a == 0 ? 0 : (1<<7)-1;
1230				const deUint32 B = rangeCase == 2 ? 0
1231								 : rangeCase == 3 ? 0
1232								 : rangeCase == 4 ? (b << 6) |					(b << 2) |				(b << 0)
1233								 : rangeCase == 5 ? (b << 6) |								(b << 1)
1234								 : rangeCase == 6 ? (c << 6) | (b << 5) |					(c << 1) |	(b << 0)
1235								 : (deUint32)-1;
1236
1237				dst[weightNdx] = (((weightGrid[weightNdx].tq*C + B) ^ A) >> 2) | (A & 0x20);
1238			}
1239		}
1240	}
1241	else
1242	{
1243		DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
1244
1245		for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1246			dst[weightNdx] = bitReplicationScale(weightGrid[weightNdx].v, iseParams.numBits, 6);
1247	}
1248
1249	for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1250		dst[weightNdx] += dst[weightNdx] > 32 ? 1 : 0;
1251
1252	// Initialize nonexistent weights to poison values
1253	for (int weightNdx = numWeights; weightNdx < 64; weightNdx++)
1254		dst[weightNdx] = ~0u;
1255
1256}
1257
1258void interpolateWeights (TexelWeightPair* dst, const deUint32 (&unquantizedWeights) [64], int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
1259{
1260	const int		numWeightsPerTexel	= blockMode.isDualPlane ? 2 : 1;
1261	const deUint32	scaleX				= (1024 + blockWidth/2) / (blockWidth-1);
1262	const deUint32	scaleY				= (1024 + blockHeight/2) / (blockHeight-1);
1263
1264	DE_ASSERT(blockMode.weightGridWidth*blockMode.weightGridHeight*numWeightsPerTexel <= DE_LENGTH_OF_ARRAY(unquantizedWeights));
1265
1266	for (int texelY = 0; texelY < blockHeight; texelY++)
1267	{
1268		for (int texelX = 0; texelX < blockWidth; texelX++)
1269		{
1270			const deUint32 gX	= (scaleX*texelX*(blockMode.weightGridWidth-1) + 32) >> 6;
1271			const deUint32 gY	= (scaleY*texelY*(blockMode.weightGridHeight-1) + 32) >> 6;
1272			const deUint32 jX	= gX >> 4;
1273			const deUint32 jY	= gY >> 4;
1274			const deUint32 fX	= gX & 0xf;
1275			const deUint32 fY	= gY & 0xf;
1276
1277			const deUint32 w11	= (fX*fY + 8) >> 4;
1278			const deUint32 w10	= fY - w11;
1279			const deUint32 w01	= fX - w11;
1280			const deUint32 w00	= 16 - fX - fY + w11;
1281
1282			const deUint32 i00	= jY*blockMode.weightGridWidth + jX;
1283			const deUint32 i01	= i00 + 1;
1284			const deUint32 i10	= i00 + blockMode.weightGridWidth;
1285			const deUint32 i11	= i00 + blockMode.weightGridWidth + 1;
1286
1287			// These addresses can be out of bounds, but respective weights will be 0 then.
1288			DE_ASSERT(deInBounds32(i00, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w00 == 0);
1289			DE_ASSERT(deInBounds32(i01, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w01 == 0);
1290			DE_ASSERT(deInBounds32(i10, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w10 == 0);
1291			DE_ASSERT(deInBounds32(i11, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w11 == 0);
1292
1293			for (int texelWeightNdx = 0; texelWeightNdx < numWeightsPerTexel; texelWeightNdx++)
1294			{
1295				// & 0x3f clamps address to bounds of unquantizedWeights
1296				const deUint32 p00	= unquantizedWeights[(i00 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1297				const deUint32 p01	= unquantizedWeights[(i01 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1298				const deUint32 p10	= unquantizedWeights[(i10 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1299				const deUint32 p11	= unquantizedWeights[(i11 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1300
1301				dst[texelY*blockWidth + texelX].w[texelWeightNdx] = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
1302			}
1303		}
1304	}
1305}
1306
1307void computeTexelWeights (TexelWeightPair* dst, const Block128& blockData, int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
1308{
1309	ISEDecodedResult weightGrid[64];
1310
1311	{
1312		BitAccessStream dataStream(blockData, 127, computeNumRequiredBits(blockMode.weightISEParams, computeNumWeights(blockMode)), false);
1313		decodeISE(&weightGrid[0], computeNumWeights(blockMode), dataStream, blockMode.weightISEParams);
1314	}
1315
1316	{
1317		deUint32 unquantizedWeights[64];
1318		unquantizeWeights(&unquantizedWeights[0], &weightGrid[0], blockMode);
1319		interpolateWeights(dst, unquantizedWeights, blockWidth, blockHeight, blockMode);
1320	}
1321}
1322
1323inline deUint32 hash52 (deUint32 v)
1324{
1325	deUint32 p = v;
1326	p ^= p >> 15;	p -= p << 17;	p += p << 7;	p += p << 4;
1327	p ^= p >>  5;	p += p << 16;	p ^= p >> 7;	p ^= p >> 3;
1328	p ^= p <<  6;	p ^= p >> 17;
1329	return p;
1330}
1331
1332int computeTexelPartition (deUint32 seedIn, deUint32 xIn, deUint32 yIn, deUint32 zIn, int numPartitions, bool smallBlock)
1333{
1334	DE_ASSERT(zIn == 0);
1335	const deUint32	x		= smallBlock ? xIn << 1 : xIn;
1336	const deUint32	y		= smallBlock ? yIn << 1 : yIn;
1337	const deUint32	z		= smallBlock ? zIn << 1 : zIn;
1338	const deUint32	seed	= seedIn + 1024*(numPartitions-1);
1339	const deUint32	rnum	= hash52(seed);
1340	deUint8			seed1	= (deUint8)( rnum							& 0xf);
1341	deUint8			seed2	= (deUint8)((rnum >>  4)					& 0xf);
1342	deUint8			seed3	= (deUint8)((rnum >>  8)					& 0xf);
1343	deUint8			seed4	= (deUint8)((rnum >> 12)					& 0xf);
1344	deUint8			seed5	= (deUint8)((rnum >> 16)					& 0xf);
1345	deUint8			seed6	= (deUint8)((rnum >> 20)					& 0xf);
1346	deUint8			seed7	= (deUint8)((rnum >> 24)					& 0xf);
1347	deUint8			seed8	= (deUint8)((rnum >> 28)					& 0xf);
1348	deUint8			seed9	= (deUint8)((rnum >> 18)					& 0xf);
1349	deUint8			seed10	= (deUint8)((rnum >> 22)					& 0xf);
1350	deUint8			seed11	= (deUint8)((rnum >> 26)					& 0xf);
1351	deUint8			seed12	= (deUint8)(((rnum >> 30) | (rnum << 2))	& 0xf);
1352
1353	seed1  = (deUint8)(seed1  * seed1 );
1354	seed2  = (deUint8)(seed2  * seed2 );
1355	seed3  = (deUint8)(seed3  * seed3 );
1356	seed4  = (deUint8)(seed4  * seed4 );
1357	seed5  = (deUint8)(seed5  * seed5 );
1358	seed6  = (deUint8)(seed6  * seed6 );
1359	seed7  = (deUint8)(seed7  * seed7 );
1360	seed8  = (deUint8)(seed8  * seed8 );
1361	seed9  = (deUint8)(seed9  * seed9 );
1362	seed10 = (deUint8)(seed10 * seed10);
1363	seed11 = (deUint8)(seed11 * seed11);
1364	seed12 = (deUint8)(seed12 * seed12);
1365
1366	const int shA = (seed & 2) != 0		? 4		: 5;
1367	const int shB = numPartitions == 3	? 6		: 5;
1368	const int sh1 = (seed & 1) != 0		? shA	: shB;
1369	const int sh2 = (seed & 1) != 0		? shB	: shA;
1370	const int sh3 = (seed & 0x10) != 0	? sh1	: sh2;
1371
1372	seed1  = (deUint8)(seed1  >> sh1);
1373	seed2  = (deUint8)(seed2  >> sh2);
1374	seed3  = (deUint8)(seed3  >> sh1);
1375	seed4  = (deUint8)(seed4  >> sh2);
1376	seed5  = (deUint8)(seed5  >> sh1);
1377	seed6  = (deUint8)(seed6  >> sh2);
1378	seed7  = (deUint8)(seed7  >> sh1);
1379	seed8  = (deUint8)(seed8  >> sh2);
1380	seed9  = (deUint8)(seed9  >> sh3);
1381	seed10 = (deUint8)(seed10 >> sh3);
1382	seed11 = (deUint8)(seed11 >> sh3);
1383	seed12 = (deUint8)(seed12 >> sh3);
1384
1385	const int a =						0x3f & (seed1*x + seed2*y + seed11*z + (rnum >> 14));
1386	const int b =						0x3f & (seed3*x + seed4*y + seed12*z + (rnum >> 10));
1387	const int c = numPartitions >= 3 ?	0x3f & (seed5*x + seed6*y + seed9*z  + (rnum >>  6))	: 0;
1388	const int d = numPartitions >= 4 ?	0x3f & (seed7*x + seed8*y + seed10*z + (rnum >>  2))	: 0;
1389
1390	return a >= b && a >= c && a >= d	? 0
1391		 : b >= c && b >= d				? 1
1392		 : c >= d						? 2
1393		 :								  3;
1394}
1395
1396DecompressResult setTexelColors (void* dst, ColorEndpointPair* colorEndpoints, TexelWeightPair* texelWeights, int ccs, deUint32 partitionIndexSeed,
1397								 int numPartitions, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode, const deUint32* colorEndpointModes)
1398{
1399	const bool			smallBlock	= blockWidth*blockHeight < 31;
1400	DecompressResult	result		= DECOMPRESS_RESULT_VALID_BLOCK;
1401	bool				isHDREndpoint[4];
1402
1403	for (int i = 0; i < numPartitions; i++)
1404		isHDREndpoint[i] = isColorEndpointModeHDR(colorEndpointModes[i]);
1405
1406	for (int texelY = 0; texelY < blockHeight; texelY++)
1407	for (int texelX = 0; texelX < blockWidth; texelX++)
1408	{
1409		const int				texelNdx			= texelY*blockWidth + texelX;
1410		const int				colorEndpointNdx	= numPartitions == 1 ? 0 : computeTexelPartition(partitionIndexSeed, texelX, texelY, 0, numPartitions, smallBlock);
1411		DE_ASSERT(colorEndpointNdx < numPartitions);
1412		const UVec4&			e0					= colorEndpoints[colorEndpointNdx].e0;
1413		const UVec4&			e1					= colorEndpoints[colorEndpointNdx].e1;
1414		const TexelWeightPair&	weight				= texelWeights[texelNdx];
1415
1416		if (isLDRMode && isHDREndpoint[colorEndpointNdx])
1417		{
1418			if (isSRGB)
1419			{
1420				((deUint8*)dst)[texelNdx*4 + 0] = 0xff;
1421				((deUint8*)dst)[texelNdx*4 + 1] = 0;
1422				((deUint8*)dst)[texelNdx*4 + 2] = 0xff;
1423				((deUint8*)dst)[texelNdx*4 + 3] = 0xff;
1424			}
1425			else
1426			{
1427				((float*)dst)[texelNdx*4 + 0] = 1.0f;
1428				((float*)dst)[texelNdx*4 + 1] = 0;
1429				((float*)dst)[texelNdx*4 + 2] = 1.0f;
1430				((float*)dst)[texelNdx*4 + 3] = 1.0f;
1431			}
1432
1433			result = DECOMPRESS_RESULT_ERROR;
1434		}
1435		else
1436		{
1437			for (int channelNdx = 0; channelNdx < 4; channelNdx++)
1438			{
1439				if (!isHDREndpoint[colorEndpointNdx] || (channelNdx == 3 && colorEndpointModes[colorEndpointNdx] == 14)) // \note Alpha for mode 14 is treated the same as LDR.
1440				{
1441					const deUint32 c0	= (e0[channelNdx] << 8) | (isSRGB ? 0x80 : e0[channelNdx]);
1442					const deUint32 c1	= (e1[channelNdx] << 8) | (isSRGB ? 0x80 : e1[channelNdx]);
1443					const deUint32 w	= weight.w[ccs == channelNdx ? 1 : 0];
1444					const deUint32 c	= (c0*(64-w) + c1*w + 32) / 64;
1445
1446					if (isSRGB)
1447						((deUint8*)dst)[texelNdx*4 + channelNdx] = (deUint8)((c & 0xff00) >> 8);
1448					else
1449						((float*)dst)[texelNdx*4 + channelNdx] = c == 65535 ? 1.0f : (float)c / 65536.0f;
1450				}
1451				else
1452				{
1453					DE_STATIC_ASSERT((de::meta::TypesSame<deFloat16, deUint16>::Value));
1454					const deUint32		c0	= e0[channelNdx] << 4;
1455					const deUint32		c1	= e1[channelNdx] << 4;
1456					const deUint32		w	= weight.w[ccs == channelNdx ? 1 : 0];
1457					const deUint32		c	= (c0*(64-w) + c1*w + 32) / 64;
1458					const deUint32		e	= getBits(c, 11, 15);
1459					const deUint32		m	= getBits(c, 0, 10);
1460					const deUint32		mt	= m < 512		? 3*m
1461											: m >= 1536		? 5*m - 2048
1462											:				  4*m - 512;
1463					const deFloat16		cf	= (deFloat16)((e << 10) + (mt >> 3));
1464
1465					((float*)dst)[texelNdx*4 + channelNdx] = deFloat16To32(isFloat16InfOrNan(cf) ? 0x7bff : cf);
1466				}
1467			}
1468		}
1469	}
1470
1471	return result;
1472}
1473
1474DecompressResult decompressBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDR)
1475{
1476	DE_ASSERT(isLDR || !isSRGB);
1477
1478	// Decode block mode.
1479
1480	const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10));
1481
1482	// Check for block mode errors.
1483
1484	if (blockMode.isError)
1485	{
1486		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1487		return DECOMPRESS_RESULT_ERROR;
1488	}
1489
1490	// Separate path for void-extent.
1491
1492	if (blockMode.isVoidExtent)
1493		return decodeVoidExtentBlock(dst, blockData, blockWidth, blockHeight, isSRGB, isLDR);
1494
1495	// Compute weight grid values.
1496
1497	const int numWeights			= computeNumWeights(blockMode);
1498	const int numWeightDataBits		= computeNumRequiredBits(blockMode.weightISEParams, numWeights);
1499	const int numPartitions			= (int)blockData.getBits(11, 12) + 1;
1500
1501	// Check for errors in weight grid, partition and dual-plane parameters.
1502
1503	if (numWeights > 64								||
1504		numWeightDataBits > 96						||
1505		numWeightDataBits < 24						||
1506		blockMode.weightGridWidth > blockWidth		||
1507		blockMode.weightGridHeight > blockHeight	||
1508		(numPartitions == 4 && blockMode.isDualPlane))
1509	{
1510		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1511		return DECOMPRESS_RESULT_ERROR;
1512	}
1513
1514	// Compute number of bits available for color endpoint data.
1515
1516	const bool	isSingleUniqueCem			= numPartitions == 1 || blockData.getBits(23, 24) == 0;
1517	const int	numConfigDataBits			= (numPartitions == 1 ? 17 : isSingleUniqueCem ? 29 : 25 + 3*numPartitions) +
1518											  (blockMode.isDualPlane ? 2 : 0);
1519	const int	numBitsForColorEndpoints	= 128 - numWeightDataBits - numConfigDataBits;
1520	const int	extraCemBitsStart			= 127 - numWeightDataBits - (isSingleUniqueCem		? -1
1521																		: numPartitions == 4	? 7
1522																		: numPartitions == 3	? 4
1523																		: numPartitions == 2	? 1
1524																		: 0);
1525	// Decode color endpoint modes.
1526
1527	deUint32 colorEndpointModes[4];
1528	decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart);
1529
1530	const int numColorEndpointValues = computeNumColorEndpointValues(colorEndpointModes, numPartitions);
1531
1532	// Check for errors in color endpoint value count.
1533
1534	if (numColorEndpointValues > 18 || numBitsForColorEndpoints < deDivRoundUp32(13*numColorEndpointValues, 5))
1535	{
1536		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1537		return DECOMPRESS_RESULT_ERROR;
1538	}
1539
1540	// Compute color endpoints.
1541
1542	ColorEndpointPair colorEndpoints[4];
1543	computeColorEndpoints(&colorEndpoints[0], blockData, &colorEndpointModes[0], numPartitions, numColorEndpointValues,
1544						  computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues), numBitsForColorEndpoints);
1545
1546	// Compute texel weights.
1547
1548	TexelWeightPair texelWeights[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT];
1549	computeTexelWeights(&texelWeights[0], blockData, blockWidth, blockHeight, blockMode);
1550
1551	// Set texel colors.
1552
1553	const int		ccs						= blockMode.isDualPlane ? (int)blockData.getBits(extraCemBitsStart-2, extraCemBitsStart-1) : -1;
1554	const deUint32	partitionIndexSeed		= numPartitions > 1 ? blockData.getBits(13, 22) : (deUint32)-1;
1555
1556	return setTexelColors(dst, &colorEndpoints[0], &texelWeights[0], ccs, partitionIndexSeed, numPartitions, blockWidth, blockHeight, isSRGB, isLDR, &colorEndpointModes[0]);
1557}
1558
1559void decompress (const PixelBufferAccess& dst, const deUint8* data, bool isSRGB, bool isLDR)
1560{
1561	DE_ASSERT(isLDR || !isSRGB);
1562
1563	const int blockWidth = dst.getWidth();
1564	const int blockHeight = dst.getHeight();
1565
1566	union
1567	{
1568		deUint8		sRGB[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
1569		float		linear[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
1570	} decompressedBuffer;
1571
1572	const Block128 blockData(data);
1573	decompressBlock(isSRGB ? (void*)&decompressedBuffer.sRGB[0] : (void*)&decompressedBuffer.linear[0],
1574					blockData, dst.getWidth(), dst.getHeight(), isSRGB, isLDR);
1575
1576	if (isSRGB)
1577	{
1578		for (int i = 0; i < blockHeight; i++)
1579		for (int j = 0; j < blockWidth; j++)
1580		{
1581			dst.setPixel(IVec4(decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 0],
1582							   decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 1],
1583							   decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 2],
1584							   decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 3]), j, i);
1585		}
1586	}
1587	else
1588	{
1589		for (int i = 0; i < blockHeight; i++)
1590		for (int j = 0; j < blockWidth; j++)
1591		{
1592			dst.setPixel(Vec4(decompressedBuffer.linear[(i*blockWidth + j) * 4 + 0],
1593							  decompressedBuffer.linear[(i*blockWidth + j) * 4 + 1],
1594							  decompressedBuffer.linear[(i*blockWidth + j) * 4 + 2],
1595							  decompressedBuffer.linear[(i*blockWidth + j) * 4 + 3]), j, i);
1596		}
1597	}
1598}
1599
1600// Helper class for setting bits in a 128-bit block.
1601class AssignBlock128
1602{
1603private:
1604	typedef deUint64 Word;
1605
1606	enum
1607	{
1608		WORD_BYTES	= sizeof(Word),
1609		WORD_BITS	= 8*WORD_BYTES,
1610		NUM_WORDS	= 128 / WORD_BITS
1611	};
1612
1613	DE_STATIC_ASSERT(128 % WORD_BITS == 0);
1614
1615public:
1616	AssignBlock128 (void)
1617	{
1618		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
1619			m_words[wordNdx] = 0;
1620	}
1621
1622	void setBit (int ndx, deUint32 val)
1623	{
1624		DE_ASSERT(de::inBounds(ndx, 0, 128));
1625		DE_ASSERT((val & 1) == val);
1626		const int wordNdx	= ndx / WORD_BITS;
1627		const int bitNdx	= ndx % WORD_BITS;
1628		m_words[wordNdx] = (m_words[wordNdx] & ~((Word)1 << bitNdx)) | ((Word)val << bitNdx);
1629	}
1630
1631	void setBits (int low, int high, deUint32 bits)
1632	{
1633		DE_ASSERT(de::inBounds(low, 0, 128));
1634		DE_ASSERT(de::inBounds(high, 0, 128));
1635		DE_ASSERT(de::inRange(high-low+1, 0, 32));
1636		DE_ASSERT((bits & (((Word)1 << (high-low+1)) - 1)) == bits);
1637
1638		if (high-low+1 == 0)
1639			return;
1640
1641		const int word0Ndx		= low / WORD_BITS;
1642		const int word1Ndx		= high / WORD_BITS;
1643		const int lowNdxInW0	= low % WORD_BITS;
1644
1645		if (word0Ndx == word1Ndx)
1646			m_words[word0Ndx] = (m_words[word0Ndx] & ~((((Word)1 << (high-low+1)) - 1) << lowNdxInW0)) | ((Word)bits << lowNdxInW0);
1647		else
1648		{
1649			DE_ASSERT(word1Ndx == word0Ndx + 1);
1650
1651			const int	highNdxInW1			= high % WORD_BITS;
1652			const int	numBitsToSetInW0	= WORD_BITS - lowNdxInW0;
1653			const Word	bitsLowMask			= ((Word)1 << numBitsToSetInW0) - 1;
1654
1655			m_words[word0Ndx] = (m_words[word0Ndx] & (((Word)1 << lowNdxInW0) - 1))			| (((Word)bits & bitsLowMask) << lowNdxInW0);
1656			m_words[word1Ndx] = (m_words[word1Ndx] & ~(((Word)1 << (highNdxInW1+1)) - 1))	| (((Word)bits & ~bitsLowMask) >> numBitsToSetInW0);
1657		}
1658	}
1659
1660	void assignToMemory (deUint8* dst) const
1661	{
1662		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
1663		{
1664			for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++)
1665				dst[wordNdx*WORD_BYTES + byteNdx] = (deUint8)((m_words[wordNdx] >> (8*byteNdx)) & 0xff);
1666		}
1667	}
1668
1669	void pushBytesToVector (vector<deUint8>& dst) const
1670	{
1671		const int assignStartIndex = (int)dst.size();
1672		dst.resize(dst.size() + BLOCK_SIZE_BYTES);
1673		assignToMemory(&dst[assignStartIndex]);
1674	}
1675
1676private:
1677	Word m_words[NUM_WORDS];
1678};
1679
1680// A helper for sequential access into a AssignBlock128.
1681class BitAssignAccessStream
1682{
1683public:
1684	BitAssignAccessStream (AssignBlock128& dst, int startNdxInSrc, int length, bool forward)
1685		: m_dst				(dst)
1686		, m_startNdxInSrc	(startNdxInSrc)
1687		, m_length			(length)
1688		, m_forward			(forward)
1689		, m_ndx				(0)
1690	{
1691	}
1692
1693	// Set the next num bits. Bits at positions greater than or equal to m_length are not touched.
1694	void setNext (int num, deUint32 bits)
1695	{
1696		DE_ASSERT((bits & (((deUint64)1 << num) - 1)) == bits);
1697
1698		if (num == 0 || m_ndx >= m_length)
1699			return;
1700
1701		const int		end				= m_ndx + num;
1702		const int		numBitsToDst	= de::max(0, de::min(m_length, end) - m_ndx);
1703		const int		low				= m_ndx;
1704		const int		high			= m_ndx + numBitsToDst - 1;
1705		const deUint32	actualBits		= getBits(bits, 0, numBitsToDst-1);
1706
1707		m_ndx += num;
1708
1709		return m_forward ? m_dst.setBits(m_startNdxInSrc + low,  m_startNdxInSrc + high, actualBits)
1710						 : m_dst.setBits(m_startNdxInSrc - high, m_startNdxInSrc - low, reverseBits(actualBits, numBitsToDst));
1711	}
1712
1713private:
1714	AssignBlock128&		m_dst;
1715	const int			m_startNdxInSrc;
1716	const int			m_length;
1717	const bool			m_forward;
1718
1719	int					m_ndx;
1720};
1721
1722struct VoidExtentParams
1723{
1724	DE_STATIC_ASSERT((de::meta::TypesSame<deFloat16, deUint16>::Value));
1725	bool		isHDR;
1726	deUint16	r;
1727	deUint16	g;
1728	deUint16	b;
1729	deUint16	a;
1730	// \note Currently extent coordinates are all set to all-ones.
1731
1732	VoidExtentParams (bool isHDR_, deUint16 r_, deUint16 g_, deUint16 b_, deUint16 a_) : isHDR(isHDR_), r(r_), g(g_), b(b_), a(a_) {}
1733};
1734
1735static AssignBlock128 generateVoidExtentBlock (const VoidExtentParams& params)
1736{
1737	AssignBlock128 block;
1738
1739	block.setBits(0, 8, 0x1fc); // \note Marks void-extent block.
1740	block.setBit(9, params.isHDR);
1741	block.setBits(10, 11, 3); // \note Spec shows that these bits are both set, although they serve no purpose.
1742
1743	// Extent coordinates - currently all-ones.
1744	block.setBits(12, 24, 0x1fff);
1745	block.setBits(25, 37, 0x1fff);
1746	block.setBits(38, 50, 0x1fff);
1747	block.setBits(51, 63, 0x1fff);
1748
1749	DE_ASSERT(!params.isHDR || (!isFloat16InfOrNan(params.r) &&
1750								!isFloat16InfOrNan(params.g) &&
1751								!isFloat16InfOrNan(params.b) &&
1752								!isFloat16InfOrNan(params.a)));
1753
1754	block.setBits(64,  79,  params.r);
1755	block.setBits(80,  95,  params.g);
1756	block.setBits(96,  111, params.b);
1757	block.setBits(112, 127, params.a);
1758
1759	return block;
1760}
1761
1762// An input array of ISE inputs for an entire ASTC block. Can be given as either single values in the
1763// range [0, maximumValueOfISERange] or as explicit block value specifications. The latter is needed
1764// so we can test all possible values of T and Q in a block, since multiple T or Q values may map
1765// to the same set of decoded values.
1766struct ISEInput
1767{
1768	struct Block
1769	{
1770		deUint32 tOrQValue; //!< The 8-bit T or 7-bit Q in a trit or quint ISE block.
1771		deUint32 bitValues[5];
1772	};
1773
1774	bool isGivenInBlockForm;
1775	union
1776	{
1777		//!< \note 64 comes from the maximum number of weight values in an ASTC block.
1778		deUint32	plain[64];
1779		Block		block[64];
1780	} value;
1781
1782	ISEInput (void)
1783		: isGivenInBlockForm (false)
1784	{
1785	}
1786};
1787
1788static inline deUint32 computeISERangeMax (const ISEParams& iseParams)
1789{
1790	switch (iseParams.mode)
1791	{
1792		case ISEMODE_TRIT:			return (1u << iseParams.numBits) * 3 - 1;
1793		case ISEMODE_QUINT:			return (1u << iseParams.numBits) * 5 - 1;
1794		case ISEMODE_PLAIN_BIT:		return (1u << iseParams.numBits)     - 1;
1795		default:
1796			DE_ASSERT(false);
1797			return -1;
1798	}
1799}
1800
1801struct NormalBlockParams
1802{
1803	int					weightGridWidth;
1804	int					weightGridHeight;
1805	ISEParams			weightISEParams;
1806	bool				isDualPlane;
1807	deUint32			ccs; //! \note Irrelevant if !isDualPlane.
1808	int					numPartitions;
1809	deUint32			colorEndpointModes[4];
1810	// \note Below members are irrelevant if numPartitions == 1.
1811	bool				isMultiPartSingleCemMode; //! \note If true, the single CEM is at colorEndpointModes[0].
1812	deUint32			partitionSeed;
1813
1814	NormalBlockParams (void)
1815		: weightGridWidth			(-1)
1816		, weightGridHeight			(-1)
1817		, weightISEParams			(ISEMODE_LAST, -1)
1818		, isDualPlane				(true)
1819		, ccs						((deUint32)-1)
1820		, numPartitions				(-1)
1821		, isMultiPartSingleCemMode	(false)
1822		, partitionSeed				((deUint32)-1)
1823	{
1824		colorEndpointModes[0] = 0;
1825		colorEndpointModes[1] = 0;
1826		colorEndpointModes[2] = 0;
1827		colorEndpointModes[3] = 0;
1828	}
1829};
1830
1831struct NormalBlockISEInputs
1832{
1833	ISEInput weight;
1834	ISEInput endpoint;
1835
1836	NormalBlockISEInputs (void)
1837		: weight	()
1838		, endpoint	()
1839	{
1840	}
1841};
1842
1843static inline int computeNumWeights (const NormalBlockParams& params)
1844{
1845	return params.weightGridWidth * params.weightGridHeight * (params.isDualPlane ? 2 : 1);
1846}
1847
1848static inline int computeNumBitsForColorEndpoints (const NormalBlockParams& params)
1849{
1850	const int numWeightBits			= computeNumRequiredBits(params.weightISEParams, computeNumWeights(params));
1851	const int numConfigDataBits		= (params.numPartitions == 1 ? 17 : params.isMultiPartSingleCemMode ? 29 : 25 + 3*params.numPartitions) +
1852									  (params.isDualPlane ? 2 : 0);
1853
1854	return 128 - numWeightBits - numConfigDataBits;
1855}
1856
1857static inline int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions, bool isMultiPartSingleCemMode)
1858{
1859	if (isMultiPartSingleCemMode)
1860		return numPartitions * computeNumColorEndpointValues(endpointModes[0]);
1861	else
1862	{
1863		int result = 0;
1864		for (int i = 0; i < numPartitions; i++)
1865			result += computeNumColorEndpointValues(endpointModes[i]);
1866		return result;
1867	}
1868}
1869
1870static inline bool isValidBlockParams (const NormalBlockParams& params, int blockWidth, int blockHeight)
1871{
1872	const int numWeights				= computeNumWeights(params);
1873	const int numWeightBits				= computeNumRequiredBits(params.weightISEParams, numWeights);
1874	const int numColorEndpointValues	= computeNumColorEndpointValues(&params.colorEndpointModes[0], params.numPartitions, params.isMultiPartSingleCemMode);
1875	const int numBitsForColorEndpoints	= computeNumBitsForColorEndpoints(params);
1876
1877	return numWeights <= 64										&&
1878		   de::inRange(numWeightBits, 24, 96)					&&
1879		   params.weightGridWidth <= blockWidth					&&
1880		   params.weightGridHeight <= blockHeight				&&
1881		   !(params.numPartitions == 4 && params.isDualPlane)	&&
1882		   numColorEndpointValues <= 18							&&
1883		   numBitsForColorEndpoints >= deDivRoundUp32(13*numColorEndpointValues, 5);
1884}
1885
1886// Write bits 0 to 10 of an ASTC block.
1887static void writeBlockMode (AssignBlock128& dst, const NormalBlockParams& blockParams)
1888{
1889	const deUint32	d = blockParams.isDualPlane != 0;
1890	// r and h initialized in switch below.
1891	deUint32		r;
1892	deUint32		h;
1893	// a, b and blockModeLayoutNdx initialized in block mode layout index detecting loop below.
1894	deUint32		a = (deUint32)-1;
1895	deUint32		b = (deUint32)-1;
1896	int				blockModeLayoutNdx;
1897
1898	// Find the values of r and h (ISE range).
1899	switch (computeISERangeMax(blockParams.weightISEParams))
1900	{
1901		case 1:		r = 2; h = 0;	break;
1902		case 2:		r = 3; h = 0;	break;
1903		case 3:		r = 4; h = 0;	break;
1904		case 4:		r = 5; h = 0;	break;
1905		case 5:		r = 6; h = 0;	break;
1906		case 7:		r = 7; h = 0;	break;
1907
1908		case 9:		r = 2; h = 1;	break;
1909		case 11:	r = 3; h = 1;	break;
1910		case 15:	r = 4; h = 1;	break;
1911		case 19:	r = 5; h = 1;	break;
1912		case 23:	r = 6; h = 1;	break;
1913		case 31:	r = 7; h = 1;	break;
1914
1915		default:
1916			DE_ASSERT(false);
1917			r = (deUint32)-1;
1918			h = (deUint32)-1;
1919	}
1920
1921	// Find block mode layout index, i.e. appropriate row in the "2d block mode layout" table in ASTC spec.
1922
1923	{
1924		enum BlockModeLayoutABVariable { Z=0, A=1, B=2 };
1925
1926		static const struct BlockModeLayout
1927		{
1928			int							aNumBits;
1929			int							bNumBits;
1930			BlockModeLayoutABVariable	gridWidthVariableTerm;
1931			int							gridWidthConstantTerm;
1932			BlockModeLayoutABVariable	gridHeightVariableTerm;
1933			int							gridHeightConstantTerm;
1934		} blockModeLayouts[] =
1935		{
1936			{ 2, 2,   B,  4,   A,  2},
1937			{ 2, 2,   B,  8,   A,  2},
1938			{ 2, 2,   A,  2,   B,  8},
1939			{ 2, 1,   A,  2,   B,  6},
1940			{ 2, 1,   B,  2,   A,  2},
1941			{ 2, 0,   Z, 12,   A,  2},
1942			{ 2, 0,   A,  2,   Z, 12},
1943			{ 0, 0,   Z,  6,   Z, 10},
1944			{ 0, 0,   Z, 10,   Z,  6},
1945			{ 2, 2,   A,  6,   B,  6}
1946		};
1947
1948		for (blockModeLayoutNdx = 0; blockModeLayoutNdx < DE_LENGTH_OF_ARRAY(blockModeLayouts); blockModeLayoutNdx++)
1949		{
1950			const BlockModeLayout&	layout					= blockModeLayouts[blockModeLayoutNdx];
1951			const int				aMax					= (1 << layout.aNumBits) - 1;
1952			const int				bMax					= (1 << layout.bNumBits) - 1;
1953			const int				variableOffsetsMax[3]	= { 0, aMax, bMax };
1954			const int				widthMin				= layout.gridWidthConstantTerm;
1955			const int				heightMin				= layout.gridHeightConstantTerm;
1956			const int				widthMax				= widthMin  + variableOffsetsMax[layout.gridWidthVariableTerm];
1957			const int				heightMax				= heightMin + variableOffsetsMax[layout.gridHeightVariableTerm];
1958
1959			DE_ASSERT(layout.gridWidthVariableTerm != layout.gridHeightVariableTerm || layout.gridWidthVariableTerm == Z);
1960
1961			if (de::inRange(blockParams.weightGridWidth, widthMin, widthMax) &&
1962				de::inRange(blockParams.weightGridHeight, heightMin, heightMax))
1963			{
1964				deUint32	dummy			= 0;
1965				deUint32&	widthVariable	= layout.gridWidthVariableTerm == A  ? a : layout.gridWidthVariableTerm == B  ? b : dummy;
1966				deUint32&	heightVariable	= layout.gridHeightVariableTerm == A ? a : layout.gridHeightVariableTerm == B ? b : dummy;
1967
1968				widthVariable	= blockParams.weightGridWidth  - layout.gridWidthConstantTerm;
1969				heightVariable	= blockParams.weightGridHeight - layout.gridHeightConstantTerm;
1970
1971				break;
1972			}
1973		}
1974	}
1975
1976	// Set block mode bits.
1977
1978	const deUint32 a0 = getBit(a, 0);
1979	const deUint32 a1 = getBit(a, 1);
1980	const deUint32 b0 = getBit(b, 0);
1981	const deUint32 b1 = getBit(b, 1);
1982	const deUint32 r0 = getBit(r, 0);
1983	const deUint32 r1 = getBit(r, 1);
1984	const deUint32 r2 = getBit(r, 2);
1985
1986#define SB(NDX, VAL) dst.setBit((NDX), (VAL))
1987#define ASSIGN_BITS(B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0) do { SB(10,(B10)); SB(9,(B9)); SB(8,(B8)); SB(7,(B7)); SB(6,(B6)); SB(5,(B5)); SB(4,(B4)); SB(3,(B3)); SB(2,(B2)); SB(1,(B1)); SB(0,(B0)); } while (false)
1988
1989	switch (blockModeLayoutNdx)
1990	{
1991		case 0: ASSIGN_BITS(d,  h,  b1, b0, a1, a0, r0, 0,  0,  r2, r1);									break;
1992		case 1: ASSIGN_BITS(d,  h,  b1, b0, a1, a0, r0, 0,  1,  r2, r1);									break;
1993		case 2: ASSIGN_BITS(d,  h,  b1, b0, a1, a0, r0, 1,  0,  r2, r1);									break;
1994		case 3: ASSIGN_BITS(d,  h,   0,  b, a1, a0, r0, 1,  1,  r2, r1);									break;
1995		case 4: ASSIGN_BITS(d,  h,   1,  b, a1, a0, r0, 1,  1,  r2, r1);									break;
1996		case 5: ASSIGN_BITS(d,  h,   0,  0, a1, a0, r0, r2, r1,  0,  0);									break;
1997		case 6: ASSIGN_BITS(d,  h,   0,  1, a1, a0, r0, r2, r1,  0,  0);									break;
1998		case 7: ASSIGN_BITS(d,  h,   1,  1,  0,  0, r0, r2, r1,  0,  0);									break;
1999		case 8: ASSIGN_BITS(d,  h,   1,  1,  0,  1, r0, r2, r1,  0,  0);									break;
2000		case 9: ASSIGN_BITS(b1, b0,  1,  0, a1, a0, r0, r2, r1,  0,  0); DE_ASSERT(d == 0 && h == 0);		break;
2001		default:
2002			DE_ASSERT(false);
2003	}
2004
2005#undef ASSIGN_BITS
2006#undef SB
2007}
2008
2009// Write color endpoint mode data of an ASTC block.
2010static void writeColorEndpointModes (AssignBlock128& dst, const deUint32* colorEndpointModes, bool isMultiPartSingleCemMode, int numPartitions, int extraCemBitsStart)
2011{
2012	if (numPartitions == 1)
2013		dst.setBits(13, 16, colorEndpointModes[0]);
2014	else
2015	{
2016		if (isMultiPartSingleCemMode)
2017		{
2018			dst.setBits(23, 24, 0);
2019			dst.setBits(25, 28, colorEndpointModes[0]);
2020		}
2021		else
2022		{
2023			DE_ASSERT(numPartitions > 0);
2024			const deUint32 minCem				= *std::min_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]);
2025			const deUint32 maxCem				= *std::max_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]);
2026			const deUint32 minCemClass			= minCem/4;
2027			const deUint32 maxCemClass			= maxCem/4;
2028			DE_ASSERT(maxCemClass - minCemClass <= 1);
2029			DE_UNREF(minCemClass); // \note For non-debug builds.
2030			const deUint32 highLevelSelector	= de::max(1u, maxCemClass);
2031
2032			dst.setBits(23, 24, highLevelSelector);
2033
2034			for (int partNdx = 0; partNdx < numPartitions; partNdx++)
2035			{
2036				const deUint32 c			= colorEndpointModes[partNdx] / 4 == highLevelSelector ? 1 : 0;
2037				const deUint32 m			= colorEndpointModes[partNdx] % 4;
2038				const deUint32 lowMBit0Ndx	= numPartitions + 2*partNdx;
2039				const deUint32 lowMBit1Ndx	= numPartitions + 2*partNdx + 1;
2040				dst.setBit(25 + partNdx, c);
2041				dst.setBit(lowMBit0Ndx < 4 ? 25+lowMBit0Ndx : extraCemBitsStart+lowMBit0Ndx-4, getBit(m, 0));
2042				dst.setBit(lowMBit1Ndx < 4 ? 25+lowMBit1Ndx : extraCemBitsStart+lowMBit1Ndx-4, getBit(m, 1));
2043			}
2044		}
2045	}
2046}
2047
2048static void encodeISETritBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues)
2049{
2050	// tritBlockTValue[t0][t1][t2][t3][t4] is a value of T (not necessarily the only one) that will yield the given trits when decoded.
2051	static const deUint32 tritBlockTValue[3][3][3][3][3] =
2052	{
2053		{
2054			{{{0, 128, 96}, {32, 160, 224}, {64, 192, 28}}, {{16, 144, 112}, {48, 176, 240}, {80, 208, 156}}, {{3, 131, 99}, {35, 163, 227}, {67, 195, 31}}},
2055			{{{4, 132, 100}, {36, 164, 228}, {68, 196, 60}}, {{20, 148, 116}, {52, 180, 244}, {84, 212, 188}}, {{19, 147, 115}, {51, 179, 243}, {83, 211, 159}}},
2056			{{{8, 136, 104}, {40, 168, 232}, {72, 200, 92}}, {{24, 152, 120}, {56, 184, 248}, {88, 216, 220}}, {{12, 140, 108}, {44, 172, 236}, {76, 204, 124}}}
2057		},
2058		{
2059			{{{1, 129, 97}, {33, 161, 225}, {65, 193, 29}}, {{17, 145, 113}, {49, 177, 241}, {81, 209, 157}}, {{7, 135, 103}, {39, 167, 231}, {71, 199, 63}}},
2060			{{{5, 133, 101}, {37, 165, 229}, {69, 197, 61}}, {{21, 149, 117}, {53, 181, 245}, {85, 213, 189}}, {{23, 151, 119}, {55, 183, 247}, {87, 215, 191}}},
2061			{{{9, 137, 105}, {41, 169, 233}, {73, 201, 93}}, {{25, 153, 121}, {57, 185, 249}, {89, 217, 221}}, {{13, 141, 109}, {45, 173, 237}, {77, 205, 125}}}
2062		},
2063		{
2064			{{{2, 130, 98}, {34, 162, 226}, {66, 194, 30}}, {{18, 146, 114}, {50, 178, 242}, {82, 210, 158}}, {{11, 139, 107}, {43, 171, 235}, {75, 203, 95}}},
2065			{{{6, 134, 102}, {38, 166, 230}, {70, 198, 62}}, {{22, 150, 118}, {54, 182, 246}, {86, 214, 190}}, {{27, 155, 123}, {59, 187, 251}, {91, 219, 223}}},
2066			{{{10, 138, 106}, {42, 170, 234}, {74, 202, 94}}, {{26, 154, 122}, {58, 186, 250}, {90, 218, 222}}, {{14, 142, 110}, {46, 174, 238}, {78, 206, 126}}}
2067		}
2068	};
2069
2070	DE_ASSERT(de::inRange(numValues, 1, 5));
2071
2072	deUint32 tritParts[5];
2073	deUint32 bitParts[5];
2074
2075	for (int i = 0; i < 5; i++)
2076	{
2077		if (i < numValues)
2078		{
2079			if (fromExplicitInputBlock)
2080			{
2081				bitParts[i]		= blockInput.bitValues[i];
2082				tritParts[i]	= -1; // \note Won't be used, but silences warning.
2083			}
2084			else
2085			{
2086				// \todo [2016-01-20 pyry] numBits = 0 doesn't make sense
2087				bitParts[i]		= numBits > 0 ? getBits(nonBlockInput[i], 0, numBits-1) : 0;
2088				tritParts[i]	= nonBlockInput[i] >> numBits;
2089			}
2090		}
2091		else
2092		{
2093			bitParts[i]		= 0;
2094			tritParts[i]	= 0;
2095		}
2096	}
2097
2098	const deUint32 T = fromExplicitInputBlock ? blockInput.tOrQValue : tritBlockTValue[tritParts[0]]
2099																					  [tritParts[1]]
2100																					  [tritParts[2]]
2101																					  [tritParts[3]]
2102																					  [tritParts[4]];
2103
2104	dst.setNext(numBits,	bitParts[0]);
2105	dst.setNext(2,			getBits(T, 0, 1));
2106	dst.setNext(numBits,	bitParts[1]);
2107	dst.setNext(2,			getBits(T, 2, 3));
2108	dst.setNext(numBits,	bitParts[2]);
2109	dst.setNext(1,			getBit(T, 4));
2110	dst.setNext(numBits,	bitParts[3]);
2111	dst.setNext(2,			getBits(T, 5, 6));
2112	dst.setNext(numBits,	bitParts[4]);
2113	dst.setNext(1,			getBit(T, 7));
2114}
2115
2116static void encodeISEQuintBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues)
2117{
2118	// quintBlockQValue[q0][q1][q2] is a value of Q (not necessarily the only one) that will yield the given quints when decoded.
2119	static const deUint32 quintBlockQValue[5][5][5] =
2120	{
2121		{{0, 32, 64, 96, 102}, {8, 40, 72, 104, 110}, {16, 48, 80, 112, 118}, {24, 56, 88, 120, 126}, {5, 37, 69, 101, 39}},
2122		{{1, 33, 65, 97, 103}, {9, 41, 73, 105, 111}, {17, 49, 81, 113, 119}, {25, 57, 89, 121, 127}, {13, 45, 77, 109, 47}},
2123		{{2, 34, 66, 98, 70}, {10, 42, 74, 106, 78}, {18, 50, 82, 114, 86}, {26, 58, 90, 122, 94}, {21, 53, 85, 117, 55}},
2124		{{3, 35, 67, 99, 71}, {11, 43, 75, 107, 79}, {19, 51, 83, 115, 87}, {27, 59, 91, 123, 95}, {29, 61, 93, 125, 63}},
2125		{{4, 36, 68, 100, 38}, {12, 44, 76, 108, 46}, {20, 52, 84, 116, 54}, {28, 60, 92, 124, 62}, {6, 14, 22, 30, 7}}
2126	};
2127
2128	DE_ASSERT(de::inRange(numValues, 1, 3));
2129
2130	deUint32 quintParts[3];
2131	deUint32 bitParts[3];
2132
2133	for (int i = 0; i < 3; i++)
2134	{
2135		if (i < numValues)
2136		{
2137			if (fromExplicitInputBlock)
2138			{
2139				bitParts[i]		= blockInput.bitValues[i];
2140				quintParts[i]	= -1; // \note Won't be used, but silences warning.
2141			}
2142			else
2143			{
2144				// \todo [2016-01-20 pyry] numBits = 0 doesn't make sense
2145				bitParts[i]		= numBits > 0 ? getBits(nonBlockInput[i], 0, numBits-1) : 0;
2146				quintParts[i]	= nonBlockInput[i] >> numBits;
2147			}
2148		}
2149		else
2150		{
2151			bitParts[i]		= 0;
2152			quintParts[i]	= 0;
2153		}
2154	}
2155
2156	const deUint32 Q = fromExplicitInputBlock ? blockInput.tOrQValue : quintBlockQValue[quintParts[0]]
2157																					   [quintParts[1]]
2158																					   [quintParts[2]];
2159
2160	dst.setNext(numBits,	bitParts[0]);
2161	dst.setNext(3,			getBits(Q, 0, 2));
2162	dst.setNext(numBits,	bitParts[1]);
2163	dst.setNext(2,			getBits(Q, 3, 4));
2164	dst.setNext(numBits,	bitParts[2]);
2165	dst.setNext(2,			getBits(Q, 5, 6));
2166}
2167
2168static void encodeISEBitBlock (BitAssignAccessStream& dst, int numBits, deUint32 value)
2169{
2170	DE_ASSERT(de::inRange(value, 0u, (1u<<numBits)-1));
2171	dst.setNext(numBits, value);
2172}
2173
2174static void encodeISE (BitAssignAccessStream& dst, const ISEParams& params, const ISEInput& input, int numValues)
2175{
2176	if (params.mode == ISEMODE_TRIT)
2177	{
2178		const int numBlocks = deDivRoundUp32(numValues, 5);
2179		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2180		{
2181			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5;
2182			encodeISETritBlock(dst, params.numBits, input.isGivenInBlockForm,
2183							   input.isGivenInBlockForm ? input.value.block[blockNdx]	: ISEInput::Block(),
2184							   input.isGivenInBlockForm ? DE_NULL						: &input.value.plain[5*blockNdx],
2185							   numValuesInBlock);
2186		}
2187	}
2188	else if (params.mode == ISEMODE_QUINT)
2189	{
2190		const int numBlocks = deDivRoundUp32(numValues, 3);
2191		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2192		{
2193			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3;
2194			encodeISEQuintBlock(dst, params.numBits, input.isGivenInBlockForm,
2195								input.isGivenInBlockForm ? input.value.block[blockNdx]	: ISEInput::Block(),
2196								input.isGivenInBlockForm ? DE_NULL						: &input.value.plain[3*blockNdx],
2197								numValuesInBlock);
2198		}
2199	}
2200	else
2201	{
2202		DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT);
2203		for (int i = 0; i < numValues; i++)
2204			encodeISEBitBlock(dst, params.numBits, input.isGivenInBlockForm ? input.value.block[i].bitValues[0] : input.value.plain[i]);
2205	}
2206}
2207
2208static void writeWeightData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numWeights)
2209{
2210	const int				numWeightBits	= computeNumRequiredBits(iseParams, numWeights);
2211	BitAssignAccessStream	access			(dst, 127, numWeightBits, false);
2212	encodeISE(access, iseParams, input, numWeights);
2213}
2214
2215static void writeColorEndpointData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numEndpoints, int numBitsForColorEndpoints, int colorEndpointDataStartNdx)
2216{
2217	BitAssignAccessStream access(dst, colorEndpointDataStartNdx, numBitsForColorEndpoints, true);
2218	encodeISE(access, iseParams, input, numEndpoints);
2219}
2220
2221static AssignBlock128 generateNormalBlock (const NormalBlockParams& blockParams, int blockWidth, int blockHeight, const NormalBlockISEInputs& iseInputs)
2222{
2223	DE_ASSERT(isValidBlockParams(blockParams, blockWidth, blockHeight));
2224	DE_UNREF(blockWidth);	// \note For non-debug builds.
2225	DE_UNREF(blockHeight);	// \note For non-debug builds.
2226
2227	AssignBlock128	block;
2228	const int		numWeights		= computeNumWeights(blockParams);
2229	const int		numWeightBits	= computeNumRequiredBits(blockParams.weightISEParams, numWeights);
2230
2231	writeBlockMode(block, blockParams);
2232
2233	block.setBits(11, 12, blockParams.numPartitions - 1);
2234	if (blockParams.numPartitions > 1)
2235		block.setBits(13, 22, blockParams.partitionSeed);
2236
2237	{
2238		const int extraCemBitsStart = 127 - numWeightBits - (blockParams.numPartitions == 1 || blockParams.isMultiPartSingleCemMode		? -1
2239															: blockParams.numPartitions == 4											? 7
2240															: blockParams.numPartitions == 3											? 4
2241															: blockParams.numPartitions == 2											? 1
2242															: 0);
2243
2244		writeColorEndpointModes(block, &blockParams.colorEndpointModes[0], blockParams.isMultiPartSingleCemMode, blockParams.numPartitions, extraCemBitsStart);
2245
2246		if (blockParams.isDualPlane)
2247			block.setBits(extraCemBitsStart-2, extraCemBitsStart-1, blockParams.ccs);
2248	}
2249
2250	writeWeightData(block, blockParams.weightISEParams, iseInputs.weight, numWeights);
2251
2252	{
2253		const int			numColorEndpointValues		= computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
2254		const int			numBitsForColorEndpoints	= computeNumBitsForColorEndpoints(blockParams);
2255		const int			colorEndpointDataStartNdx	= blockParams.numPartitions == 1 ? 17 : 29;
2256		const ISEParams&	colorEndpointISEParams		= computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues);
2257
2258		writeColorEndpointData(block, colorEndpointISEParams, iseInputs.endpoint, numColorEndpointValues, numBitsForColorEndpoints, colorEndpointDataStartNdx);
2259	}
2260
2261	return block;
2262}
2263
2264// Generate default ISE inputs for weight and endpoint data - gradient-ish values.
2265static NormalBlockISEInputs generateDefaultISEInputs (const NormalBlockParams& blockParams)
2266{
2267	NormalBlockISEInputs result;
2268
2269	{
2270		result.weight.isGivenInBlockForm = false;
2271
2272		const int numWeights		= computeNumWeights(blockParams);
2273		const int weightRangeMax	= computeISERangeMax(blockParams.weightISEParams);
2274
2275		if (blockParams.isDualPlane)
2276		{
2277			for (int i = 0; i < numWeights; i += 2)
2278				result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
2279
2280			for (int i = 1; i < numWeights; i += 2)
2281				result.weight.value.plain[i] = weightRangeMax - (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
2282		}
2283		else
2284		{
2285			for (int i = 0; i < numWeights; i++)
2286				result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
2287		}
2288	}
2289
2290	{
2291		result.endpoint.isGivenInBlockForm = false;
2292
2293		const int			numColorEndpointValues		= computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
2294		const int			numBitsForColorEndpoints	= computeNumBitsForColorEndpoints(blockParams);
2295		const ISEParams&	colorEndpointISEParams		= computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues);
2296		const int			colorEndpointRangeMax		= computeISERangeMax(colorEndpointISEParams);
2297
2298		for (int i = 0; i < numColorEndpointValues; i++)
2299			result.endpoint.value.plain[i] = (i*colorEndpointRangeMax + (numColorEndpointValues-1)/2) / (numColorEndpointValues-1);
2300	}
2301
2302	return result;
2303}
2304
2305static const ISEParams s_weightISEParamsCandidates[] =
2306{
2307	ISEParams(ISEMODE_PLAIN_BIT,	1),
2308	ISEParams(ISEMODE_TRIT,			0),
2309	ISEParams(ISEMODE_PLAIN_BIT,	2),
2310	ISEParams(ISEMODE_QUINT,		0),
2311	ISEParams(ISEMODE_TRIT,			1),
2312	ISEParams(ISEMODE_PLAIN_BIT,	3),
2313	ISEParams(ISEMODE_QUINT,		1),
2314	ISEParams(ISEMODE_TRIT,			2),
2315	ISEParams(ISEMODE_PLAIN_BIT,	4),
2316	ISEParams(ISEMODE_QUINT,		2),
2317	ISEParams(ISEMODE_TRIT,			3),
2318	ISEParams(ISEMODE_PLAIN_BIT,	5)
2319};
2320
2321void generateRandomBlock (deUint8* dst, const IVec3& blockSize, de::Random& rnd)
2322{
2323	DE_ASSERT(blockSize.z() == 1);
2324
2325	if (rnd.getFloat() < 0.1f)
2326	{
2327		// Void extent block.
2328		const bool		isVoidExtentHDR		= rnd.getBool();
2329		const deUint16	r					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2330		const deUint16	g					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2331		const deUint16	b					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2332		const deUint16	a					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2333		generateVoidExtentBlock(VoidExtentParams(isVoidExtentHDR, r, g, b, a)).assignToMemory(dst);
2334	}
2335	else
2336	{
2337		// Not void extent block.
2338
2339		// Generate block params.
2340
2341		NormalBlockParams blockParams;
2342
2343		do
2344		{
2345			blockParams.weightGridWidth				= rnd.getInt(2, blockSize.x());
2346			blockParams.weightGridHeight			= rnd.getInt(2, blockSize.y());
2347			blockParams.weightISEParams				= s_weightISEParamsCandidates[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates)-1)];
2348			blockParams.numPartitions				= rnd.getInt(1, 4);
2349			blockParams.isMultiPartSingleCemMode	= rnd.getFloat() < 0.25f;
2350			blockParams.isDualPlane					= blockParams.numPartitions != 4 && rnd.getBool();
2351			blockParams.ccs							= rnd.getInt(0, 3);
2352			blockParams.partitionSeed				= rnd.getInt(0, 1023);
2353
2354			blockParams.colorEndpointModes[0] = rnd.getInt(0, 15);
2355
2356			{
2357				const int cemDiff = blockParams.isMultiPartSingleCemMode		? 0
2358									: blockParams.colorEndpointModes[0] == 0	? 1
2359									: blockParams.colorEndpointModes[0] == 15	? -1
2360									: rnd.getBool()								? 1 : -1;
2361
2362				for (int i = 1; i < blockParams.numPartitions; i++)
2363					blockParams.colorEndpointModes[i] = blockParams.colorEndpointModes[0] + (cemDiff == -1 ? rnd.getInt(-1, 0) : cemDiff == 1 ? rnd.getInt(0, 1) : 0);
2364			}
2365		} while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y()));
2366
2367		// Generate ISE inputs for both weight and endpoint data.
2368
2369		NormalBlockISEInputs iseInputs;
2370
2371		for (int weightOrEndpoints = 0; weightOrEndpoints <= 1; weightOrEndpoints++)
2372		{
2373			const bool			setWeights	= weightOrEndpoints == 0;
2374			const int			numValues	= setWeights ? computeNumWeights(blockParams) :
2375												computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
2376			const ISEParams		iseParams	= setWeights ? blockParams.weightISEParams : computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams), numValues);
2377			ISEInput&			iseInput	= setWeights ? iseInputs.weight : iseInputs.endpoint;
2378
2379			iseInput.isGivenInBlockForm = rnd.getBool();
2380
2381			if (iseInput.isGivenInBlockForm)
2382			{
2383				const int numValuesPerISEBlock	= iseParams.mode == ISEMODE_TRIT	? 5
2384												: iseParams.mode == ISEMODE_QUINT	? 3
2385												:									  1;
2386				const int iseBitMax				= (1 << iseParams.numBits) - 1;
2387				const int numISEBlocks			= deDivRoundUp32(numValues, numValuesPerISEBlock);
2388
2389				for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocks; iseBlockNdx++)
2390				{
2391					iseInput.value.block[iseBlockNdx].tOrQValue = rnd.getInt(0, 255);
2392					for (int i = 0; i < numValuesPerISEBlock; i++)
2393						iseInput.value.block[iseBlockNdx].bitValues[i] = rnd.getInt(0, iseBitMax);
2394				}
2395			}
2396			else
2397			{
2398				const int rangeMax = computeISERangeMax(iseParams);
2399
2400				for (int valueNdx = 0; valueNdx < numValues; valueNdx++)
2401					iseInput.value.plain[valueNdx] = rnd.getInt(0, rangeMax);
2402			}
2403		}
2404
2405		generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).assignToMemory(dst);
2406	}
2407}
2408
2409} // anonymous
2410
2411// Generate block data for a given BlockTestType and format.
2412void generateBlockCaseTestData (vector<deUint8>& dst, CompressedTexFormat format, BlockTestType testType)
2413{
2414	DE_ASSERT(isAstcFormat(format));
2415	DE_ASSERT(!(isAstcSRGBFormat(format) && isBlockTestTypeHDROnly(testType)));
2416
2417	const IVec3 blockSize = getBlockPixelSize(format);
2418	DE_ASSERT(blockSize.z() == 1);
2419
2420	switch (testType)
2421	{
2422		case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:
2423		// Generate a gradient-like set of LDR void-extent blocks.
2424		{
2425			const int			numBlocks	= 1<<13;
2426			const deUint32		numValues	= 1<<16;
2427			dst.reserve(numBlocks*BLOCK_SIZE_BYTES);
2428
2429			for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2430			{
2431				const deUint32 baseValue	= blockNdx*(numValues-1) / (numBlocks-1);
2432				const deUint16 r			= (deUint16)((baseValue + numValues*0/4) % numValues);
2433				const deUint16 g			= (deUint16)((baseValue + numValues*1/4) % numValues);
2434				const deUint16 b			= (deUint16)((baseValue + numValues*2/4) % numValues);
2435				const deUint16 a			= (deUint16)((baseValue + numValues*3/4) % numValues);
2436				AssignBlock128 block;
2437
2438				generateVoidExtentBlock(VoidExtentParams(false, r, g, b, a)).pushBytesToVector(dst);
2439			}
2440
2441			break;
2442		}
2443
2444		case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:
2445		// Generate a gradient-like set of HDR void-extent blocks, with values ranging from the largest finite negative to largest finite positive of fp16.
2446		{
2447			const float		minValue	= -65504.0f;
2448			const float		maxValue	= +65504.0f;
2449			const int		numBlocks	= 1<<13;
2450			dst.reserve(numBlocks*BLOCK_SIZE_BYTES);
2451
2452			for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2453			{
2454				const int			rNdx	= (blockNdx + numBlocks*0/4) % numBlocks;
2455				const int			gNdx	= (blockNdx + numBlocks*1/4) % numBlocks;
2456				const int			bNdx	= (blockNdx + numBlocks*2/4) % numBlocks;
2457				const int			aNdx	= (blockNdx + numBlocks*3/4) % numBlocks;
2458				const deFloat16		r		= deFloat32To16(minValue + (float)rNdx * (maxValue - minValue) / (float)(numBlocks-1));
2459				const deFloat16		g		= deFloat32To16(minValue + (float)gNdx * (maxValue - minValue) / (float)(numBlocks-1));
2460				const deFloat16		b		= deFloat32To16(minValue + (float)bNdx * (maxValue - minValue) / (float)(numBlocks-1));
2461				const deFloat16		a		= deFloat32To16(minValue + (float)aNdx * (maxValue - minValue) / (float)(numBlocks-1));
2462
2463				generateVoidExtentBlock(VoidExtentParams(true, r, g, b, a)).pushBytesToVector(dst);
2464			}
2465
2466			break;
2467		}
2468
2469		case BLOCK_TEST_TYPE_WEIGHT_GRID:
2470		// Generate different combinations of plane count, weight ISE params, and grid size.
2471		{
2472			for (int isDualPlane = 0;		isDualPlane <= 1;												isDualPlane++)
2473			for (int iseParamsNdx = 0;		iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates);	iseParamsNdx++)
2474			for (int weightGridWidth = 2;	weightGridWidth <= 12;											weightGridWidth++)
2475			for (int weightGridHeight = 2;	weightGridHeight <= 12;											weightGridHeight++)
2476			{
2477				NormalBlockParams		blockParams;
2478				NormalBlockISEInputs	iseInputs;
2479
2480				blockParams.weightGridWidth			= weightGridWidth;
2481				blockParams.weightGridHeight		= weightGridHeight;
2482				blockParams.isDualPlane				= isDualPlane != 0;
2483				blockParams.weightISEParams			= s_weightISEParamsCandidates[iseParamsNdx];
2484				blockParams.ccs						= 0;
2485				blockParams.numPartitions			= 1;
2486				blockParams.colorEndpointModes[0]	= 0;
2487
2488				if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2489					generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2490			}
2491
2492			break;
2493		}
2494
2495		case BLOCK_TEST_TYPE_WEIGHT_ISE:
2496		// For each weight ISE param set, generate blocks that cover:
2497		// - each single value of the ISE's range, at each position inside an ISE block
2498		// - for trit and quint ISEs, each single T or Q value of an ISE block
2499		{
2500			for (int iseParamsNdx = 0;	iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates);	iseParamsNdx++)
2501			{
2502				const ISEParams&	iseParams = s_weightISEParamsCandidates[iseParamsNdx];
2503				NormalBlockParams	blockParams;
2504
2505				blockParams.weightGridWidth			= 4;
2506				blockParams.weightGridHeight		= 4;
2507				blockParams.weightISEParams			= iseParams;
2508				blockParams.numPartitions			= 1;
2509				blockParams.isDualPlane				= blockParams.weightGridWidth * blockParams.weightGridHeight < 24 ? true : false;
2510				blockParams.ccs						= 0;
2511				blockParams.colorEndpointModes[0]	= 0;
2512
2513				while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2514				{
2515					blockParams.weightGridWidth--;
2516					blockParams.weightGridHeight--;
2517				}
2518
2519				const int numValuesInISEBlock	= iseParams.mode == ISEMODE_TRIT ? 5 : iseParams.mode == ISEMODE_QUINT ? 3 : 1;
2520				const int numWeights			= computeNumWeights(blockParams);
2521
2522				{
2523					const int				numWeightValues		= (int)computeISERangeMax(iseParams) + 1;
2524					const int				numBlocks			= deDivRoundUp32(numWeightValues, numWeights);
2525					NormalBlockISEInputs	iseInputs			= generateDefaultISEInputs(blockParams);
2526					iseInputs.weight.isGivenInBlockForm = false;
2527
2528					for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2529					for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2530					{
2531						for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
2532							iseInputs.weight.value.plain[weightNdx] = (blockNdx*numWeights + weightNdx + offset) % numWeightValues;
2533
2534						generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2535					}
2536				}
2537
2538				if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
2539				{
2540					NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2541					iseInputs.weight.isGivenInBlockForm = true;
2542
2543					const int numTQValues			= 1 << (iseParams.mode == ISEMODE_TRIT ? 8 : 7);
2544					const int numISEBlocksPerBlock	= deDivRoundUp32(numWeights, numValuesInISEBlock);
2545					const int numBlocks				= deDivRoundUp32(numTQValues, numISEBlocksPerBlock);
2546
2547					for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2548					for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2549					{
2550						for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++)
2551						{
2552							for (int i = 0; i < numValuesInISEBlock; i++)
2553								iseInputs.weight.value.block[iseBlockNdx].bitValues[i] = 0;
2554							iseInputs.weight.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues;
2555						}
2556
2557						generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2558					}
2559				}
2560			}
2561
2562			break;
2563		}
2564
2565		case BLOCK_TEST_TYPE_CEMS:
2566		// For each plane count & partition count combination, generate all color endpoint mode combinations.
2567		{
2568			for (int isDualPlane = 0;		isDualPlane <= 1;								isDualPlane++)
2569			for (int numPartitions = 1;		numPartitions <= (isDualPlane != 0 ? 3 : 4);	numPartitions++)
2570			{
2571				// Multi-partition, single-CEM mode.
2572				if (numPartitions > 1)
2573				{
2574					for (deUint32 singleCem = 0; singleCem < 16; singleCem++)
2575					{
2576						NormalBlockParams blockParams;
2577						blockParams.weightGridWidth				= 4;
2578						blockParams.weightGridHeight			= 4;
2579						blockParams.isDualPlane					= isDualPlane != 0;
2580						blockParams.ccs							= 0;
2581						blockParams.numPartitions				= numPartitions;
2582						blockParams.isMultiPartSingleCemMode	= true;
2583						blockParams.colorEndpointModes[0]		= singleCem;
2584						blockParams.partitionSeed				= 634;
2585
2586						for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++)
2587						{
2588							blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx];
2589							if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2590							{
2591								generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2592								break;
2593							}
2594						}
2595					}
2596				}
2597
2598				// Separate-CEM mode.
2599				for (deUint32 cem0 = 0; cem0 < 16; cem0++)
2600				for (deUint32 cem1 = 0; cem1 < (numPartitions >= 2 ? 16u : 1u); cem1++)
2601				for (deUint32 cem2 = 0; cem2 < (numPartitions >= 3 ? 16u : 1u); cem2++)
2602				for (deUint32 cem3 = 0; cem3 < (numPartitions >= 4 ? 16u : 1u); cem3++)
2603				{
2604					NormalBlockParams blockParams;
2605					blockParams.weightGridWidth				= 4;
2606					blockParams.weightGridHeight			= 4;
2607					blockParams.isDualPlane					= isDualPlane != 0;
2608					blockParams.ccs							= 0;
2609					blockParams.numPartitions				= numPartitions;
2610					blockParams.isMultiPartSingleCemMode	= false;
2611					blockParams.colorEndpointModes[0]		= cem0;
2612					blockParams.colorEndpointModes[1]		= cem1;
2613					blockParams.colorEndpointModes[2]		= cem2;
2614					blockParams.colorEndpointModes[3]		= cem3;
2615					blockParams.partitionSeed				= 634;
2616
2617					{
2618						const deUint32 minCem		= *std::min_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]);
2619						const deUint32 maxCem		= *std::max_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]);
2620						const deUint32 minCemClass	= minCem/4;
2621						const deUint32 maxCemClass	= maxCem/4;
2622
2623						if (maxCemClass - minCemClass > 1)
2624							continue;
2625					}
2626
2627					for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++)
2628					{
2629						blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx];
2630						if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2631						{
2632							generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2633							break;
2634						}
2635					}
2636				}
2637			}
2638
2639			break;
2640		}
2641
2642		case BLOCK_TEST_TYPE_PARTITION_SEED:
2643		// Test all partition seeds ("partition pattern indices").
2644		{
2645			for (int		numPartitions = 2;	numPartitions <= 4;		numPartitions++)
2646			for (deUint32	partitionSeed = 0;	partitionSeed < 1<<10;	partitionSeed++)
2647			{
2648				NormalBlockParams blockParams;
2649				blockParams.weightGridWidth				= 4;
2650				blockParams.weightGridHeight			= 4;
2651				blockParams.weightISEParams				= ISEParams(ISEMODE_PLAIN_BIT, 2);
2652				blockParams.isDualPlane					= false;
2653				blockParams.numPartitions				= numPartitions;
2654				blockParams.isMultiPartSingleCemMode	= true;
2655				blockParams.colorEndpointModes[0]		= 0;
2656				blockParams.partitionSeed				= partitionSeed;
2657
2658				generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2659			}
2660
2661			break;
2662		}
2663
2664		// \note Fall-through.
2665		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:
2666		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:
2667		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:
2668		// For each endpoint mode, for each pair of components in the endpoint value, test 10x10 combinations of values for that pair.
2669		// \note Separate modes for HDR and mode 15 due to different color scales and biases.
2670		{
2671			for (deUint32 cem = 0; cem < 16; cem++)
2672			{
2673				const bool isHDRCem = cem == 2		||
2674									  cem == 3		||
2675									  cem == 7		||
2676									  cem == 11		||
2677									  cem == 14		||
2678									  cem == 15;
2679
2680				if ((testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR			&& isHDRCem)					||
2681					(testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15		&& (!isHDRCem || cem == 15))	||
2682					(testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15		&& cem != 15))
2683					continue;
2684
2685				NormalBlockParams blockParams;
2686				blockParams.weightGridWidth			= 3;
2687				blockParams.weightGridHeight		= 4;
2688				blockParams.weightISEParams			= ISEParams(ISEMODE_PLAIN_BIT, 2);
2689				blockParams.isDualPlane				= false;
2690				blockParams.numPartitions			= 1;
2691				blockParams.colorEndpointModes[0]	= cem;
2692
2693				{
2694					const int			numBitsForEndpoints		= computeNumBitsForColorEndpoints(blockParams);
2695					const int			numEndpointParts		= computeNumColorEndpointValues(cem);
2696					const ISEParams		endpointISE				= computeMaximumRangeISEParams(numBitsForEndpoints, numEndpointParts);
2697					const int			endpointISERangeMax		= computeISERangeMax(endpointISE);
2698
2699					for (int endpointPartNdx0 = 0;						endpointPartNdx0 < numEndpointParts; endpointPartNdx0++)
2700					for (int endpointPartNdx1 = endpointPartNdx0+1;		endpointPartNdx1 < numEndpointParts; endpointPartNdx1++)
2701					{
2702						NormalBlockISEInputs	iseInputs			= generateDefaultISEInputs(blockParams);
2703						const int				numEndpointValues	= de::min(10, endpointISERangeMax+1);
2704
2705						for (int endpointValueNdx0 = 0; endpointValueNdx0 < numEndpointValues; endpointValueNdx0++)
2706						for (int endpointValueNdx1 = 0; endpointValueNdx1 < numEndpointValues; endpointValueNdx1++)
2707						{
2708							const int endpointValue0 = endpointValueNdx0 * endpointISERangeMax / (numEndpointValues-1);
2709							const int endpointValue1 = endpointValueNdx1 * endpointISERangeMax / (numEndpointValues-1);
2710
2711							iseInputs.endpoint.value.plain[endpointPartNdx0] = endpointValue0;
2712							iseInputs.endpoint.value.plain[endpointPartNdx1] = endpointValue1;
2713
2714							generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2715						}
2716					}
2717				}
2718			}
2719
2720			break;
2721		}
2722
2723		case BLOCK_TEST_TYPE_ENDPOINT_ISE:
2724		// Similar to BLOCK_TEST_TYPE_WEIGHT_ISE, see above.
2725		{
2726			static const deUint32 endpointRangeMaximums[] = { 5, 9, 11, 19, 23, 39, 47, 79, 95, 159, 191 };
2727
2728			for (int endpointRangeNdx = 0; endpointRangeNdx < DE_LENGTH_OF_ARRAY(endpointRangeMaximums); endpointRangeNdx++)
2729			{
2730				bool validCaseGenerated = false;
2731
2732				for (int numPartitions = 1;			!validCaseGenerated && numPartitions <= 4;														numPartitions++)
2733				for (int isDual = 0;				!validCaseGenerated && isDual <= 1;																isDual++)
2734				for (int weightISEParamsNdx = 0;	!validCaseGenerated && weightISEParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates);	weightISEParamsNdx++)
2735				for (int weightGridWidth = 2;		!validCaseGenerated && weightGridWidth <= 12;													weightGridWidth++)
2736				for (int weightGridHeight = 2;		!validCaseGenerated && weightGridHeight <= 12;													weightGridHeight++)
2737				{
2738					NormalBlockParams blockParams;
2739					blockParams.weightGridWidth				= weightGridWidth;
2740					blockParams.weightGridHeight			= weightGridHeight;
2741					blockParams.weightISEParams				= s_weightISEParamsCandidates[weightISEParamsNdx];
2742					blockParams.isDualPlane					= isDual != 0;
2743					blockParams.ccs							= 0;
2744					blockParams.numPartitions				= numPartitions;
2745					blockParams.isMultiPartSingleCemMode	= true;
2746					blockParams.colorEndpointModes[0]		= 12;
2747					blockParams.partitionSeed				= 634;
2748
2749					if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2750					{
2751						const ISEParams endpointISEParams = computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams),
2752																						 computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, true));
2753
2754						if (computeISERangeMax(endpointISEParams) == endpointRangeMaximums[endpointRangeNdx])
2755						{
2756							validCaseGenerated = true;
2757
2758							const int numColorEndpoints		= computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, blockParams.isMultiPartSingleCemMode);
2759							const int numValuesInISEBlock	= endpointISEParams.mode == ISEMODE_TRIT ? 5 : endpointISEParams.mode == ISEMODE_QUINT ? 3 : 1;
2760
2761							{
2762								const int				numColorEndpointValues	= (int)computeISERangeMax(endpointISEParams) + 1;
2763								const int				numBlocks				= deDivRoundUp32(numColorEndpointValues, numColorEndpoints);
2764								NormalBlockISEInputs	iseInputs				= generateDefaultISEInputs(blockParams);
2765								iseInputs.endpoint.isGivenInBlockForm = false;
2766
2767								for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2768								for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2769								{
2770									for (int endpointNdx = 0; endpointNdx < numColorEndpoints; endpointNdx++)
2771										iseInputs.endpoint.value.plain[endpointNdx] = (blockNdx*numColorEndpoints + endpointNdx + offset) % numColorEndpointValues;
2772
2773									generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2774								}
2775							}
2776
2777							if (endpointISEParams.mode == ISEMODE_TRIT || endpointISEParams.mode == ISEMODE_QUINT)
2778							{
2779								NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2780								iseInputs.endpoint.isGivenInBlockForm = true;
2781
2782								const int numTQValues			= 1 << (endpointISEParams.mode == ISEMODE_TRIT ? 8 : 7);
2783								const int numISEBlocksPerBlock	= deDivRoundUp32(numColorEndpoints, numValuesInISEBlock);
2784								const int numBlocks				= deDivRoundUp32(numTQValues, numISEBlocksPerBlock);
2785
2786								for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2787								for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2788								{
2789									for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++)
2790									{
2791										for (int i = 0; i < numValuesInISEBlock; i++)
2792											iseInputs.endpoint.value.block[iseBlockNdx].bitValues[i] = 0;
2793										iseInputs.endpoint.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues;
2794									}
2795
2796									generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2797								}
2798							}
2799						}
2800					}
2801				}
2802
2803				DE_ASSERT(validCaseGenerated);
2804			}
2805
2806			break;
2807		}
2808
2809		case BLOCK_TEST_TYPE_CCS:
2810		// For all partition counts, test all values of the CCS (color component selector).
2811		{
2812			for (int		numPartitions = 1;		numPartitions <= 3;		numPartitions++)
2813			for (deUint32	ccs = 0;				ccs < 4;				ccs++)
2814			{
2815				NormalBlockParams blockParams;
2816				blockParams.weightGridWidth				= 3;
2817				blockParams.weightGridHeight			= 3;
2818				blockParams.weightISEParams				= ISEParams(ISEMODE_PLAIN_BIT, 2);
2819				blockParams.isDualPlane					= true;
2820				blockParams.ccs							= ccs;
2821				blockParams.numPartitions				= numPartitions;
2822				blockParams.isMultiPartSingleCemMode	= true;
2823				blockParams.colorEndpointModes[0]		= 8;
2824				blockParams.partitionSeed				= 634;
2825
2826				generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2827			}
2828
2829			break;
2830		}
2831
2832		case BLOCK_TEST_TYPE_RANDOM:
2833		// Generate a number of random (including invalid) blocks.
2834		{
2835			const int		numBlocks	= 16384;
2836			const deUint32	seed		= 1;
2837
2838			dst.resize(numBlocks*BLOCK_SIZE_BYTES);
2839
2840			generateRandomBlocks(&dst[0], numBlocks, format, seed);
2841
2842			break;
2843		}
2844
2845		default:
2846			DE_ASSERT(false);
2847	}
2848}
2849
2850void generateRandomBlocks (deUint8* dst, size_t numBlocks, CompressedTexFormat format, deUint32 seed)
2851{
2852	const IVec3		blockSize			= getBlockPixelSize(format);
2853	de::Random		rnd					(seed);
2854	size_t			numBlocksGenerated	= 0;
2855
2856	DE_ASSERT(isAstcFormat(format));
2857	DE_ASSERT(blockSize.z() == 1);
2858
2859	for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++)
2860	{
2861		deUint8* const	curBlockPtr		= dst + numBlocksGenerated*BLOCK_SIZE_BYTES;
2862
2863		generateRandomBlock(curBlockPtr, blockSize, rnd);
2864	}
2865}
2866
2867void generateRandomValidBlocks (deUint8* dst, size_t numBlocks, CompressedTexFormat format, TexDecompressionParams::AstcMode mode, deUint32 seed)
2868{
2869	const IVec3		blockSize			= getBlockPixelSize(format);
2870	de::Random		rnd					(seed);
2871	size_t			numBlocksGenerated	= 0;
2872
2873	DE_ASSERT(isAstcFormat(format));
2874	DE_ASSERT(blockSize.z() == 1);
2875
2876	for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++)
2877	{
2878		deUint8* const	curBlockPtr		= dst + numBlocksGenerated*BLOCK_SIZE_BYTES;
2879
2880		do
2881		{
2882			generateRandomBlock(curBlockPtr, blockSize, rnd);
2883		} while (!isValidBlock(curBlockPtr, format, mode));
2884	}
2885}
2886
2887// Generate a number of trivial dummy blocks to fill unneeded space in a texture.
2888void generateDummyVoidExtentBlocks (deUint8* dst, size_t numBlocks)
2889{
2890	AssignBlock128 block = generateVoidExtentBlock(VoidExtentParams(false, 0, 0, 0, 0));
2891	for (size_t ndx = 0; ndx < numBlocks; ndx++)
2892		block.assignToMemory(&dst[ndx * BLOCK_SIZE_BYTES]);
2893}
2894
2895void generateDummyNormalBlocks (deUint8* dst, size_t numBlocks, int blockWidth, int blockHeight)
2896{
2897	NormalBlockParams blockParams;
2898
2899	blockParams.weightGridWidth			= 3;
2900	blockParams.weightGridHeight		= 3;
2901	blockParams.weightISEParams			= ISEParams(ISEMODE_PLAIN_BIT, 5);
2902	blockParams.isDualPlane				= false;
2903	blockParams.numPartitions			= 1;
2904	blockParams.colorEndpointModes[0]	= 8;
2905
2906	NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2907	iseInputs.weight.isGivenInBlockForm = false;
2908
2909	const int numWeights		= computeNumWeights(blockParams);
2910	const int weightRangeMax	= computeISERangeMax(blockParams.weightISEParams);
2911
2912	for (size_t blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2913	{
2914		for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
2915			iseInputs.weight.value.plain[weightNdx] = (deUint32)((blockNdx*numWeights + weightNdx) * weightRangeMax / (numBlocks*numWeights-1));
2916
2917		generateNormalBlock(blockParams, blockWidth, blockHeight, iseInputs).assignToMemory(dst + blockNdx*BLOCK_SIZE_BYTES);
2918	}
2919}
2920
2921bool isValidBlock (const deUint8* data, CompressedTexFormat format, TexDecompressionParams::AstcMode mode)
2922{
2923	const tcu::IVec3		blockPixelSize	= getBlockPixelSize(format);
2924	const bool				isSRGB			= isAstcSRGBFormat(format);
2925	const bool				isLDR			= isSRGB || mode == TexDecompressionParams::ASTCMODE_LDR;
2926
2927	// sRGB is not supported in HDR mode
2928	DE_ASSERT(!(mode == TexDecompressionParams::ASTCMODE_HDR && isSRGB));
2929
2930	union
2931	{
2932		deUint8		sRGB[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
2933		float		linear[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
2934	} tmpBuffer;
2935	const Block128			blockData		(data);
2936	const DecompressResult	result			= decompressBlock((isSRGB ? (void*)&tmpBuffer.sRGB[0] : (void*)&tmpBuffer.linear[0]),
2937															  blockData, blockPixelSize.x(), blockPixelSize.y(), isSRGB, isLDR);
2938
2939	return result == DECOMPRESS_RESULT_VALID_BLOCK;
2940}
2941
2942void decompress (const PixelBufferAccess& dst, const deUint8* data, CompressedTexFormat format, TexDecompressionParams::AstcMode mode)
2943{
2944	const bool			isSRGBFormat	= isAstcSRGBFormat(format);
2945
2946#if defined(DE_DEBUG)
2947	const tcu::IVec3	blockPixelSize	= getBlockPixelSize(format);
2948
2949	DE_ASSERT(dst.getWidth()	== blockPixelSize.x() &&
2950			  dst.getHeight()	== blockPixelSize.y() &&
2951			  dst.getDepth()	== blockPixelSize.z());
2952	DE_ASSERT(mode == TexDecompressionParams::ASTCMODE_LDR || mode == TexDecompressionParams::ASTCMODE_HDR);
2953#endif
2954
2955	// sRGB is not supported in HDR mode
2956	DE_ASSERT(!(mode == TexDecompressionParams::ASTCMODE_HDR && isSRGBFormat));
2957
2958	decompress(dst, data, isSRGBFormat, isSRGBFormat || mode == TexDecompressionParams::ASTCMODE_LDR);
2959}
2960
2961const char* getBlockTestTypeName (BlockTestType testType)
2962{
2963	switch (testType)
2964	{
2965		case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:			return "void_extent_ldr";
2966		case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:			return "void_extent_hdr";
2967		case BLOCK_TEST_TYPE_WEIGHT_GRID:				return "weight_grid";
2968		case BLOCK_TEST_TYPE_WEIGHT_ISE:				return "weight_ise";
2969		case BLOCK_TEST_TYPE_CEMS:						return "color_endpoint_modes";
2970		case BLOCK_TEST_TYPE_PARTITION_SEED:			return "partition_pattern_index";
2971		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:		return "endpoint_value_ldr";
2972		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:	return "endpoint_value_hdr_cem_not_15";
2973		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:		return "endpoint_value_hdr_cem_15";
2974		case BLOCK_TEST_TYPE_ENDPOINT_ISE:				return "endpoint_ise";
2975		case BLOCK_TEST_TYPE_CCS:						return "color_component_selector";
2976		case BLOCK_TEST_TYPE_RANDOM:					return "random";
2977		default:
2978			DE_ASSERT(false);
2979			return DE_NULL;
2980	}
2981}
2982
2983const char* getBlockTestTypeDescription (BlockTestType testType)
2984{
2985	switch (testType)
2986	{
2987		case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:			return "Test void extent block, LDR mode";
2988		case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:			return "Test void extent block, HDR mode";
2989		case BLOCK_TEST_TYPE_WEIGHT_GRID:				return "Test combinations of plane count, weight integer sequence encoding parameters, and weight grid size";
2990		case BLOCK_TEST_TYPE_WEIGHT_ISE:				return "Test different integer sequence encoding block values for weight grid";
2991		case BLOCK_TEST_TYPE_CEMS:						return "Test different color endpoint mode combinations, combined with different plane and partition counts";
2992		case BLOCK_TEST_TYPE_PARTITION_SEED:			return "Test different partition pattern indices";
2993		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:		return "Test various combinations of each pair of color endpoint values, for each LDR color endpoint mode";
2994		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:	return "Test various combinations of each pair of color endpoint values, for each HDR color endpoint mode other than mode 15";
2995		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:		return "Test various combinations of each pair of color endpoint values, HDR color endpoint mode 15";
2996		case BLOCK_TEST_TYPE_ENDPOINT_ISE:				return "Test different integer sequence encoding block values for color endpoints";
2997		case BLOCK_TEST_TYPE_CCS:						return "Test color component selector, for different partition counts";
2998		case BLOCK_TEST_TYPE_RANDOM:					return "Random block test";
2999		default:
3000			DE_ASSERT(false);
3001			return DE_NULL;
3002	}
3003}
3004
3005bool isBlockTestTypeHDROnly (BlockTestType testType)
3006{
3007	return testType == BLOCK_TEST_TYPE_VOID_EXTENT_HDR			||
3008		   testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15	||
3009		   testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15;
3010}
3011
3012Vec4 getBlockTestTypeColorScale (BlockTestType testType)
3013{
3014	switch (testType)
3015	{
3016		case tcu::astc::BLOCK_TEST_TYPE_VOID_EXTENT_HDR:			return Vec4(0.5f/65504.0f);
3017		case tcu::astc::BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:	return Vec4(1.0f/65504.0f, 1.0f/65504.0f, 1.0f/65504.0f, 1.0f);
3018		case tcu::astc::BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:		return Vec4(1.0f/65504.0f);
3019		default:													return Vec4(1.0f);
3020	}
3021}
3022
3023Vec4 getBlockTestTypeColorBias (BlockTestType testType)
3024{
3025	switch (testType)
3026	{
3027		case tcu::astc::BLOCK_TEST_TYPE_VOID_EXTENT_HDR:	return Vec4(0.5f);
3028		default:											return Vec4(0.0f);
3029	}
3030}
3031
3032} // astc
3033} // tcu
3034