1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5// Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_JACOBISVD_H
12#define EIGEN_JACOBISVD_H
13
14namespace Eigen {
15
16namespace internal {
17// forward declaration (needed by ICC)
18// the empty body is required by MSVC
19template<typename MatrixType, int QRPreconditioner,
20         bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
21struct svd_precondition_2x2_block_to_be_real {};
22
23/*** QR preconditioners (R-SVD)
24 ***
25 *** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
26 *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
27 *** JacobiSVD which by itself is only able to work on square matrices.
28 ***/
29
30enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };
31
32template<typename MatrixType, int QRPreconditioner, int Case>
33struct qr_preconditioner_should_do_anything
34{
35  enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
36             MatrixType::ColsAtCompileTime != Dynamic &&
37             MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
38         b = MatrixType::RowsAtCompileTime != Dynamic &&
39             MatrixType::ColsAtCompileTime != Dynamic &&
40             MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
41         ret = !( (QRPreconditioner == NoQRPreconditioner) ||
42                  (Case == PreconditionIfMoreColsThanRows && bool(a)) ||
43                  (Case == PreconditionIfMoreRowsThanCols && bool(b)) )
44  };
45};
46
47template<typename MatrixType, int QRPreconditioner, int Case,
48         bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
49> struct qr_preconditioner_impl {};
50
51template<typename MatrixType, int QRPreconditioner, int Case>
52class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
53{
54public:
55  void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
56  bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
57  {
58    return false;
59  }
60};
61
62/*** preconditioner using FullPivHouseholderQR ***/
63
64template<typename MatrixType>
65class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
66{
67public:
68  typedef typename MatrixType::Scalar Scalar;
69  enum
70  {
71    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
72    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
73  };
74  typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
75
76  void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
77  {
78    if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
79    {
80      m_qr.~QRType();
81      ::new (&m_qr) QRType(svd.rows(), svd.cols());
82    }
83    if (svd.m_computeFullU) m_workspace.resize(svd.rows());
84  }
85
86  bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
87  {
88    if(matrix.rows() > matrix.cols())
89    {
90      m_qr.compute(matrix);
91      svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
92      if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
93      if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
94      return true;
95    }
96    return false;
97  }
98private:
99  typedef FullPivHouseholderQR<MatrixType> QRType;
100  QRType m_qr;
101  WorkspaceType m_workspace;
102};
103
104template<typename MatrixType>
105class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
106{
107public:
108  typedef typename MatrixType::Scalar Scalar;
109  enum
110  {
111    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
112    ColsAtCompileTime = MatrixType::ColsAtCompileTime,
113    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
114    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
115    TrOptions = RowsAtCompileTime==1 ? (MatrixType::Options & ~(RowMajor))
116              : ColsAtCompileTime==1 ? (MatrixType::Options |   RowMajor)
117              : MatrixType::Options
118  };
119  typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, TrOptions, MaxColsAtCompileTime, MaxRowsAtCompileTime>
120          TransposeTypeWithSameStorageOrder;
121
122  void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
123  {
124    if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
125    {
126      m_qr.~QRType();
127      ::new (&m_qr) QRType(svd.cols(), svd.rows());
128    }
129    m_adjoint.resize(svd.cols(), svd.rows());
130    if (svd.m_computeFullV) m_workspace.resize(svd.cols());
131  }
132
133  bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
134  {
135    if(matrix.cols() > matrix.rows())
136    {
137      m_adjoint = matrix.adjoint();
138      m_qr.compute(m_adjoint);
139      svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
140      if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
141      if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
142      return true;
143    }
144    else return false;
145  }
146private:
147  typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
148  QRType m_qr;
149  TransposeTypeWithSameStorageOrder m_adjoint;
150  typename internal::plain_row_type<MatrixType>::type m_workspace;
151};
152
153/*** preconditioner using ColPivHouseholderQR ***/
154
155template<typename MatrixType>
156class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
157{
158public:
159  void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
160  {
161    if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
162    {
163      m_qr.~QRType();
164      ::new (&m_qr) QRType(svd.rows(), svd.cols());
165    }
166    if (svd.m_computeFullU) m_workspace.resize(svd.rows());
167    else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
168  }
169
170  bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
171  {
172    if(matrix.rows() > matrix.cols())
173    {
174      m_qr.compute(matrix);
175      svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
176      if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
177      else if(svd.m_computeThinU)
178      {
179        svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
180        m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
181      }
182      if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
183      return true;
184    }
185    return false;
186  }
187
188private:
189  typedef ColPivHouseholderQR<MatrixType> QRType;
190  QRType m_qr;
191  typename internal::plain_col_type<MatrixType>::type m_workspace;
192};
193
194template<typename MatrixType>
195class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
196{
197public:
198  typedef typename MatrixType::Scalar Scalar;
199  enum
200  {
201    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
202    ColsAtCompileTime = MatrixType::ColsAtCompileTime,
203    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
204    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
205    TrOptions = RowsAtCompileTime==1 ? (MatrixType::Options & ~(RowMajor))
206              : ColsAtCompileTime==1 ? (MatrixType::Options |   RowMajor)
207              : MatrixType::Options
208  };
209
210  typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, TrOptions, MaxColsAtCompileTime, MaxRowsAtCompileTime>
211          TransposeTypeWithSameStorageOrder;
212
213  void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
214  {
215    if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
216    {
217      m_qr.~QRType();
218      ::new (&m_qr) QRType(svd.cols(), svd.rows());
219    }
220    if (svd.m_computeFullV) m_workspace.resize(svd.cols());
221    else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
222    m_adjoint.resize(svd.cols(), svd.rows());
223  }
224
225  bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
226  {
227    if(matrix.cols() > matrix.rows())
228    {
229      m_adjoint = matrix.adjoint();
230      m_qr.compute(m_adjoint);
231
232      svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
233      if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
234      else if(svd.m_computeThinV)
235      {
236        svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
237        m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
238      }
239      if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
240      return true;
241    }
242    else return false;
243  }
244
245private:
246  typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
247  QRType m_qr;
248  TransposeTypeWithSameStorageOrder m_adjoint;
249  typename internal::plain_row_type<MatrixType>::type m_workspace;
250};
251
252/*** preconditioner using HouseholderQR ***/
253
254template<typename MatrixType>
255class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
256{
257public:
258  void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
259  {
260    if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
261    {
262      m_qr.~QRType();
263      ::new (&m_qr) QRType(svd.rows(), svd.cols());
264    }
265    if (svd.m_computeFullU) m_workspace.resize(svd.rows());
266    else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
267  }
268
269  bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
270  {
271    if(matrix.rows() > matrix.cols())
272    {
273      m_qr.compute(matrix);
274      svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
275      if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
276      else if(svd.m_computeThinU)
277      {
278        svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
279        m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
280      }
281      if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
282      return true;
283    }
284    return false;
285  }
286private:
287  typedef HouseholderQR<MatrixType> QRType;
288  QRType m_qr;
289  typename internal::plain_col_type<MatrixType>::type m_workspace;
290};
291
292template<typename MatrixType>
293class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
294{
295public:
296  typedef typename MatrixType::Scalar Scalar;
297  enum
298  {
299    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
300    ColsAtCompileTime = MatrixType::ColsAtCompileTime,
301    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
302    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
303    Options = MatrixType::Options
304  };
305
306  typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
307          TransposeTypeWithSameStorageOrder;
308
309  void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
310  {
311    if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
312    {
313      m_qr.~QRType();
314      ::new (&m_qr) QRType(svd.cols(), svd.rows());
315    }
316    if (svd.m_computeFullV) m_workspace.resize(svd.cols());
317    else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
318    m_adjoint.resize(svd.cols(), svd.rows());
319  }
320
321  bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
322  {
323    if(matrix.cols() > matrix.rows())
324    {
325      m_adjoint = matrix.adjoint();
326      m_qr.compute(m_adjoint);
327
328      svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
329      if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
330      else if(svd.m_computeThinV)
331      {
332        svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
333        m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
334      }
335      if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
336      return true;
337    }
338    else return false;
339  }
340
341private:
342  typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
343  QRType m_qr;
344  TransposeTypeWithSameStorageOrder m_adjoint;
345  typename internal::plain_row_type<MatrixType>::type m_workspace;
346};
347
348/*** 2x2 SVD implementation
349 ***
350 *** JacobiSVD consists in performing a series of 2x2 SVD subproblems
351 ***/
352
353template<typename MatrixType, int QRPreconditioner>
354struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
355{
356  typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
357  typedef typename MatrixType::RealScalar RealScalar;
358  static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; }
359};
360
361template<typename MatrixType, int QRPreconditioner>
362struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
363{
364  typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
365  typedef typename MatrixType::Scalar Scalar;
366  typedef typename MatrixType::RealScalar RealScalar;
367  static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry)
368  {
369    using std::sqrt;
370    using std::abs;
371    Scalar z;
372    JacobiRotation<Scalar> rot;
373    RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
374
375    const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
376    const RealScalar precision = NumTraits<Scalar>::epsilon();
377
378    if(n==0)
379    {
380      // make sure first column is zero
381      work_matrix.coeffRef(p,p) = work_matrix.coeffRef(q,p) = Scalar(0);
382
383      if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero)
384      {
385        // work_matrix.coeff(p,q) can be zero if work_matrix.coeff(q,p) is not zero but small enough to underflow when computing n
386        z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
387        work_matrix.row(p) *= z;
388        if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
389      }
390      if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero)
391      {
392        z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
393        work_matrix.row(q) *= z;
394        if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
395      }
396      // otherwise the second row is already zero, so we have nothing to do.
397    }
398    else
399    {
400      rot.c() = conj(work_matrix.coeff(p,p)) / n;
401      rot.s() = work_matrix.coeff(q,p) / n;
402      work_matrix.applyOnTheLeft(p,q,rot);
403      if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
404      if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero)
405      {
406        z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
407        work_matrix.col(q) *= z;
408        if(svd.computeV()) svd.m_matrixV.col(q) *= z;
409      }
410      if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero)
411      {
412        z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
413        work_matrix.row(q) *= z;
414        if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
415      }
416    }
417
418    // update largest diagonal entry
419    maxDiagEntry = numext::maxi<RealScalar>(maxDiagEntry,numext::maxi<RealScalar>(abs(work_matrix.coeff(p,p)), abs(work_matrix.coeff(q,q))));
420    // and check whether the 2x2 block is already diagonal
421    RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry);
422    return abs(work_matrix.coeff(p,q))>threshold || abs(work_matrix.coeff(q,p)) > threshold;
423  }
424};
425
426template<typename _MatrixType, int QRPreconditioner>
427struct traits<JacobiSVD<_MatrixType,QRPreconditioner> >
428{
429  typedef _MatrixType MatrixType;
430};
431
432} // end namespace internal
433
434/** \ingroup SVD_Module
435  *
436  *
437  * \class JacobiSVD
438  *
439  * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
440  *
441  * \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition
442  * \tparam QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
443  *                        for the R-SVD step for non-square matrices. See discussion of possible values below.
444  *
445  * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
446  *   \f[ A = U S V^* \f]
447  * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
448  * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
449  * and right \em singular \em vectors of \a A respectively.
450  *
451  * Singular values are always sorted in decreasing order.
452  *
453  * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly.
454  *
455  * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
456  * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
457  * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
458  * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
459  *
460  * Here's an example demonstrating basic usage:
461  * \include JacobiSVD_basic.cpp
462  * Output: \verbinclude JacobiSVD_basic.out
463  *
464  * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than
465  * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and
466  * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms.
467  * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
468  *
469  * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
470  * terminate in finite (and reasonable) time.
471  *
472  * The possible values for QRPreconditioner are:
473  * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
474  * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
475  *     Contrary to other QRs, it doesn't allow computing thin unitaries.
476  * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
477  *     This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
478  *     is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive
479  *     process is more reliable than the optimized bidiagonal SVD iterations.
480  * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing
481  *     JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
482  *     faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
483  *     if QR preconditioning is needed before applying it anyway.
484  *
485  * \sa MatrixBase::jacobiSvd()
486  */
487template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
488 : public SVDBase<JacobiSVD<_MatrixType,QRPreconditioner> >
489{
490    typedef SVDBase<JacobiSVD> Base;
491  public:
492
493    typedef _MatrixType MatrixType;
494    typedef typename MatrixType::Scalar Scalar;
495    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
496    enum {
497      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
498      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
499      DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
500      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
501      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
502      MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
503      MatrixOptions = MatrixType::Options
504    };
505
506    typedef typename Base::MatrixUType MatrixUType;
507    typedef typename Base::MatrixVType MatrixVType;
508    typedef typename Base::SingularValuesType SingularValuesType;
509
510    typedef typename internal::plain_row_type<MatrixType>::type RowType;
511    typedef typename internal::plain_col_type<MatrixType>::type ColType;
512    typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
513                   MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
514            WorkMatrixType;
515
516    /** \brief Default Constructor.
517      *
518      * The default constructor is useful in cases in which the user intends to
519      * perform decompositions via JacobiSVD::compute(const MatrixType&).
520      */
521    JacobiSVD()
522    {}
523
524
525    /** \brief Default Constructor with memory preallocation
526      *
527      * Like the default constructor but with preallocation of the internal data
528      * according to the specified problem size.
529      * \sa JacobiSVD()
530      */
531    JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
532    {
533      allocate(rows, cols, computationOptions);
534    }
535
536    /** \brief Constructor performing the decomposition of given matrix.
537     *
538     * \param matrix the matrix to decompose
539     * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
540     *                           By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
541     *                           #ComputeFullV, #ComputeThinV.
542     *
543     * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
544     * available with the (non-default) FullPivHouseholderQR preconditioner.
545     */
546    explicit JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
547    {
548      compute(matrix, computationOptions);
549    }
550
551    /** \brief Method performing the decomposition of given matrix using custom options.
552     *
553     * \param matrix the matrix to decompose
554     * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
555     *                           By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
556     *                           #ComputeFullV, #ComputeThinV.
557     *
558     * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
559     * available with the (non-default) FullPivHouseholderQR preconditioner.
560     */
561    JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
562
563    /** \brief Method performing the decomposition of given matrix using current options.
564     *
565     * \param matrix the matrix to decompose
566     *
567     * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
568     */
569    JacobiSVD& compute(const MatrixType& matrix)
570    {
571      return compute(matrix, m_computationOptions);
572    }
573
574    using Base::computeU;
575    using Base::computeV;
576    using Base::rows;
577    using Base::cols;
578    using Base::rank;
579
580  private:
581    void allocate(Index rows, Index cols, unsigned int computationOptions);
582
583  protected:
584    using Base::m_matrixU;
585    using Base::m_matrixV;
586    using Base::m_singularValues;
587    using Base::m_isInitialized;
588    using Base::m_isAllocated;
589    using Base::m_usePrescribedThreshold;
590    using Base::m_computeFullU;
591    using Base::m_computeThinU;
592    using Base::m_computeFullV;
593    using Base::m_computeThinV;
594    using Base::m_computationOptions;
595    using Base::m_nonzeroSingularValues;
596    using Base::m_rows;
597    using Base::m_cols;
598    using Base::m_diagSize;
599    using Base::m_prescribedThreshold;
600    WorkMatrixType m_workMatrix;
601
602    template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
603    friend struct internal::svd_precondition_2x2_block_to_be_real;
604    template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
605    friend struct internal::qr_preconditioner_impl;
606
607    internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
608    internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
609    MatrixType m_scaledMatrix;
610};
611
612template<typename MatrixType, int QRPreconditioner>
613void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
614{
615  eigen_assert(rows >= 0 && cols >= 0);
616
617  if (m_isAllocated &&
618      rows == m_rows &&
619      cols == m_cols &&
620      computationOptions == m_computationOptions)
621  {
622    return;
623  }
624
625  m_rows = rows;
626  m_cols = cols;
627  m_isInitialized = false;
628  m_isAllocated = true;
629  m_computationOptions = computationOptions;
630  m_computeFullU = (computationOptions & ComputeFullU) != 0;
631  m_computeThinU = (computationOptions & ComputeThinU) != 0;
632  m_computeFullV = (computationOptions & ComputeFullV) != 0;
633  m_computeThinV = (computationOptions & ComputeThinV) != 0;
634  eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U");
635  eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V");
636  eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
637              "JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns.");
638  if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
639  {
640      eigen_assert(!(m_computeThinU || m_computeThinV) &&
641              "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
642              "Use the ColPivHouseholderQR preconditioner instead.");
643  }
644  m_diagSize = (std::min)(m_rows, m_cols);
645  m_singularValues.resize(m_diagSize);
646  if(RowsAtCompileTime==Dynamic)
647    m_matrixU.resize(m_rows, m_computeFullU ? m_rows
648                            : m_computeThinU ? m_diagSize
649                            : 0);
650  if(ColsAtCompileTime==Dynamic)
651    m_matrixV.resize(m_cols, m_computeFullV ? m_cols
652                            : m_computeThinV ? m_diagSize
653                            : 0);
654  m_workMatrix.resize(m_diagSize, m_diagSize);
655
656  if(m_cols>m_rows)   m_qr_precond_morecols.allocate(*this);
657  if(m_rows>m_cols)   m_qr_precond_morerows.allocate(*this);
658  if(m_rows!=m_cols)  m_scaledMatrix.resize(rows,cols);
659}
660
661template<typename MatrixType, int QRPreconditioner>
662JacobiSVD<MatrixType, QRPreconditioner>&
663JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
664{
665  using std::abs;
666  allocate(matrix.rows(), matrix.cols(), computationOptions);
667
668  // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
669  // only worsening the precision of U and V as we accumulate more rotations
670  const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();
671
672  // limit for denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
673  const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
674
675  // Scaling factor to reduce over/under-flows
676  RealScalar scale = matrix.cwiseAbs().maxCoeff();
677  if(scale==RealScalar(0)) scale = RealScalar(1);
678
679  /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
680
681  if(m_rows!=m_cols)
682  {
683    m_scaledMatrix = matrix / scale;
684    m_qr_precond_morecols.run(*this, m_scaledMatrix);
685    m_qr_precond_morerows.run(*this, m_scaledMatrix);
686  }
687  else
688  {
689    m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize) / scale;
690    if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows);
691    if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize);
692    if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
693    if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
694  }
695
696  /*** step 2. The main Jacobi SVD iteration. ***/
697  RealScalar maxDiagEntry = m_workMatrix.cwiseAbs().diagonal().maxCoeff();
698
699  bool finished = false;
700  while(!finished)
701  {
702    finished = true;
703
704    // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix
705
706    for(Index p = 1; p < m_diagSize; ++p)
707    {
708      for(Index q = 0; q < p; ++q)
709      {
710        // if this 2x2 sub-matrix is not diagonal already...
711        // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
712        // keep us iterating forever. Similarly, small denormal numbers are considered zero.
713        RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry);
714        if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold)
715        {
716          finished = false;
717          // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
718          // the complex to real operation returns true if the updated 2x2 block is not already diagonal
719          if(internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q, maxDiagEntry))
720          {
721            JacobiRotation<RealScalar> j_left, j_right;
722            internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
723
724            // accumulate resulting Jacobi rotations
725            m_workMatrix.applyOnTheLeft(p,q,j_left);
726            if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
727
728            m_workMatrix.applyOnTheRight(p,q,j_right);
729            if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right);
730
731            // keep track of the largest diagonal coefficient
732            maxDiagEntry = numext::maxi<RealScalar>(maxDiagEntry,numext::maxi<RealScalar>(abs(m_workMatrix.coeff(p,p)), abs(m_workMatrix.coeff(q,q))));
733          }
734        }
735      }
736    }
737  }
738
739  /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/
740
741  for(Index i = 0; i < m_diagSize; ++i)
742  {
743    // For a complex matrix, some diagonal coefficients might note have been
744    // treated by svd_precondition_2x2_block_to_be_real, and the imaginary part
745    // of some diagonal entry might not be null.
746    if(NumTraits<Scalar>::IsComplex && abs(numext::imag(m_workMatrix.coeff(i,i)))>considerAsZero)
747    {
748      RealScalar a = abs(m_workMatrix.coeff(i,i));
749      m_singularValues.coeffRef(i) = abs(a);
750      if(computeU()) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a;
751    }
752    else
753    {
754      // m_workMatrix.coeff(i,i) is already real, no difficulty:
755      RealScalar a = numext::real(m_workMatrix.coeff(i,i));
756      m_singularValues.coeffRef(i) = abs(a);
757      if(computeU() && (a<RealScalar(0))) m_matrixU.col(i) = -m_matrixU.col(i);
758    }
759  }
760
761  m_singularValues *= scale;
762
763  /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/
764
765  m_nonzeroSingularValues = m_diagSize;
766  for(Index i = 0; i < m_diagSize; i++)
767  {
768    Index pos;
769    RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos);
770    if(maxRemainingSingularValue == RealScalar(0))
771    {
772      m_nonzeroSingularValues = i;
773      break;
774    }
775    if(pos)
776    {
777      pos += i;
778      std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
779      if(computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i));
780      if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i));
781    }
782  }
783
784  m_isInitialized = true;
785  return *this;
786}
787
788/** \svd_module
789  *
790  * \return the singular value decomposition of \c *this computed by two-sided
791  * Jacobi transformations.
792  *
793  * \sa class JacobiSVD
794  */
795template<typename Derived>
796JacobiSVD<typename MatrixBase<Derived>::PlainObject>
797MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
798{
799  return JacobiSVD<PlainObject>(*this, computationOptions);
800}
801
802} // end namespace Eigen
803
804#endif // EIGEN_JACOBISVD_H
805