1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H
11#define EIGEN_SPARSE_SELFADJOINTVIEW_H
12
13namespace Eigen {
14
15/** \ingroup SparseCore_Module
16  * \class SparseSelfAdjointView
17  *
18  * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
19  *
20  * \param MatrixType the type of the dense matrix storing the coefficients
21  * \param Mode can be either \c #Lower or \c #Upper
22  *
23  * This class is an expression of a sefladjoint matrix from a triangular part of a matrix
24  * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
25  * and most of the time this is the only way that it is used.
26  *
27  * \sa SparseMatrixBase::selfadjointView()
28  */
29namespace internal {
30
31template<typename MatrixType, unsigned int Mode>
32struct traits<SparseSelfAdjointView<MatrixType,Mode> > : traits<MatrixType> {
33};
34
35template<int SrcMode,int DstMode,typename MatrixType,int DestOrder>
36void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0);
37
38template<int Mode,typename MatrixType,int DestOrder>
39void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0);
40
41}
42
43template<typename MatrixType, unsigned int _Mode> class SparseSelfAdjointView
44  : public EigenBase<SparseSelfAdjointView<MatrixType,_Mode> >
45{
46  public:
47
48    enum {
49      Mode = _Mode,
50      TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0),
51      RowsAtCompileTime = internal::traits<SparseSelfAdjointView>::RowsAtCompileTime,
52      ColsAtCompileTime = internal::traits<SparseSelfAdjointView>::ColsAtCompileTime
53    };
54
55    typedef EigenBase<SparseSelfAdjointView> Base;
56    typedef typename MatrixType::Scalar Scalar;
57    typedef typename MatrixType::StorageIndex StorageIndex;
58    typedef Matrix<StorageIndex,Dynamic,1> VectorI;
59    typedef typename internal::ref_selector<MatrixType>::non_const_type MatrixTypeNested;
60    typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
61
62    explicit inline SparseSelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
63    {
64      eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices");
65    }
66
67    inline Index rows() const { return m_matrix.rows(); }
68    inline Index cols() const { return m_matrix.cols(); }
69
70    /** \internal \returns a reference to the nested matrix */
71    const _MatrixTypeNested& matrix() const { return m_matrix; }
72    typename internal::remove_reference<MatrixTypeNested>::type& matrix() { return m_matrix; }
73
74    /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs.
75      *
76      * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
77      * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
78      */
79    template<typename OtherDerived>
80    Product<SparseSelfAdjointView, OtherDerived>
81    operator*(const SparseMatrixBase<OtherDerived>& rhs) const
82    {
83      return Product<SparseSelfAdjointView, OtherDerived>(*this, rhs.derived());
84    }
85
86    /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs.
87      *
88      * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
89      * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
90      */
91    template<typename OtherDerived> friend
92    Product<OtherDerived, SparseSelfAdjointView>
93    operator*(const SparseMatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
94    {
95      return Product<OtherDerived, SparseSelfAdjointView>(lhs.derived(), rhs);
96    }
97
98    /** Efficient sparse self-adjoint matrix times dense vector/matrix product */
99    template<typename OtherDerived>
100    Product<SparseSelfAdjointView,OtherDerived>
101    operator*(const MatrixBase<OtherDerived>& rhs) const
102    {
103      return Product<SparseSelfAdjointView,OtherDerived>(*this, rhs.derived());
104    }
105
106    /** Efficient dense vector/matrix times sparse self-adjoint matrix product */
107    template<typename OtherDerived> friend
108    Product<OtherDerived,SparseSelfAdjointView>
109    operator*(const MatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
110    {
111      return Product<OtherDerived,SparseSelfAdjointView>(lhs.derived(), rhs);
112    }
113
114    /** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
115      * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
116      *
117      * \returns a reference to \c *this
118      *
119      * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
120      * call this function with u.adjoint().
121      */
122    template<typename DerivedU>
123    SparseSelfAdjointView& rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1));
124
125    /** \returns an expression of P H P^-1 */
126    // TODO implement twists in a more evaluator friendly fashion
127    SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode> twistedBy(const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm) const
128    {
129      return SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode>(m_matrix, perm);
130    }
131
132    template<typename SrcMatrixType,int SrcMode>
133    SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType,SrcMode>& permutedMatrix)
134    {
135      internal::call_assignment_no_alias_no_transpose(*this, permutedMatrix);
136      return *this;
137    }
138
139    SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src)
140    {
141      PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull;
142      return *this = src.twistedBy(pnull);
143    }
144
145    template<typename SrcMatrixType,unsigned int SrcMode>
146    SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcMode>& src)
147    {
148      PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull;
149      return *this = src.twistedBy(pnull);
150    }
151
152    void resize(Index rows, Index cols)
153    {
154      EIGEN_ONLY_USED_FOR_DEBUG(rows);
155      EIGEN_ONLY_USED_FOR_DEBUG(cols);
156      eigen_assert(rows == this->rows() && cols == this->cols()
157                && "SparseSelfadjointView::resize() does not actually allow to resize.");
158    }
159
160  protected:
161
162    MatrixTypeNested m_matrix;
163    //mutable VectorI m_countPerRow;
164    //mutable VectorI m_countPerCol;
165  private:
166    template<typename Dest> void evalTo(Dest &) const;
167};
168
169/***************************************************************************
170* Implementation of SparseMatrixBase methods
171***************************************************************************/
172
173template<typename Derived>
174template<unsigned int UpLo>
175typename SparseMatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView() const
176{
177  return SparseSelfAdjointView<const Derived, UpLo>(derived());
178}
179
180template<typename Derived>
181template<unsigned int UpLo>
182typename SparseMatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView()
183{
184  return SparseSelfAdjointView<Derived, UpLo>(derived());
185}
186
187/***************************************************************************
188* Implementation of SparseSelfAdjointView methods
189***************************************************************************/
190
191template<typename MatrixType, unsigned int Mode>
192template<typename DerivedU>
193SparseSelfAdjointView<MatrixType,Mode>&
194SparseSelfAdjointView<MatrixType,Mode>::rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha)
195{
196  SparseMatrix<Scalar,(MatrixType::Flags&RowMajorBit)?RowMajor:ColMajor> tmp = u * u.adjoint();
197  if(alpha==Scalar(0))
198    m_matrix = tmp.template triangularView<Mode>();
199  else
200    m_matrix += alpha * tmp.template triangularView<Mode>();
201
202  return *this;
203}
204
205namespace internal {
206
207// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.>
208//      in the future selfadjoint-ness should be defined by the expression traits
209//      such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
210template<typename MatrixType, unsigned int Mode>
211struct evaluator_traits<SparseSelfAdjointView<MatrixType,Mode> >
212{
213  typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
214  typedef SparseSelfAdjointShape Shape;
215};
216
217struct SparseSelfAdjoint2Sparse {};
218
219template<> struct AssignmentKind<SparseShape,SparseSelfAdjointShape> { typedef SparseSelfAdjoint2Sparse Kind; };
220template<> struct AssignmentKind<SparseSelfAdjointShape,SparseShape> { typedef Sparse2Sparse Kind; };
221
222template< typename DstXprType, typename SrcXprType, typename Functor>
223struct Assignment<DstXprType, SrcXprType, Functor, SparseSelfAdjoint2Sparse>
224{
225  typedef typename DstXprType::StorageIndex StorageIndex;
226  typedef internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> AssignOpType;
227
228  template<typename DestScalar,int StorageOrder>
229  static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignOpType&/*func*/)
230  {
231    internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), dst);
232  }
233
234  // FIXME: the handling of += and -= in sparse matrices should be cleanup so that next two overloads could be reduced to:
235  template<typename DestScalar,int StorageOrder,typename AssignFunc>
236  static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignFunc& func)
237  {
238    SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
239    run(tmp, src, AssignOpType());
240    call_assignment_no_alias_no_transpose(dst, tmp, func);
241  }
242
243  template<typename DestScalar,int StorageOrder>
244  static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src,
245                  const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */)
246  {
247    SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
248    run(tmp, src, AssignOpType());
249    dst += tmp;
250  }
251
252  template<typename DestScalar,int StorageOrder>
253  static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src,
254                  const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */)
255  {
256    SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
257    run(tmp, src, AssignOpType());
258    dst -= tmp;
259  }
260
261  template<typename DestScalar>
262  static void run(DynamicSparseMatrix<DestScalar,ColMajor,StorageIndex>& dst, const SrcXprType &src, const AssignOpType&/*func*/)
263  {
264    // TODO directly evaluate into dst;
265    SparseMatrix<DestScalar,ColMajor,StorageIndex> tmp(dst.rows(),dst.cols());
266    internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), tmp);
267    dst = tmp;
268  }
269};
270
271} // end namespace internal
272
273/***************************************************************************
274* Implementation of sparse self-adjoint time dense matrix
275***************************************************************************/
276
277namespace internal {
278
279template<int Mode, typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType>
280inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
281{
282  EIGEN_ONLY_USED_FOR_DEBUG(alpha);
283
284  typedef typename internal::nested_eval<SparseLhsType,DenseRhsType::MaxColsAtCompileTime>::type SparseLhsTypeNested;
285  typedef typename internal::remove_all<SparseLhsTypeNested>::type SparseLhsTypeNestedCleaned;
286  typedef evaluator<SparseLhsTypeNestedCleaned> LhsEval;
287  typedef typename LhsEval::InnerIterator LhsIterator;
288  typedef typename SparseLhsType::Scalar LhsScalar;
289
290  enum {
291    LhsIsRowMajor = (LhsEval::Flags&RowMajorBit)==RowMajorBit,
292    ProcessFirstHalf =
293              ((Mode&(Upper|Lower))==(Upper|Lower))
294          || ( (Mode&Upper) && !LhsIsRowMajor)
295          || ( (Mode&Lower) && LhsIsRowMajor),
296    ProcessSecondHalf = !ProcessFirstHalf
297  };
298
299  SparseLhsTypeNested lhs_nested(lhs);
300  LhsEval lhsEval(lhs_nested);
301
302  // work on one column at once
303  for (Index k=0; k<rhs.cols(); ++k)
304  {
305    for (Index j=0; j<lhs.outerSize(); ++j)
306    {
307      LhsIterator i(lhsEval,j);
308      // handle diagonal coeff
309      if (ProcessSecondHalf)
310      {
311        while (i && i.index()<j) ++i;
312        if(i && i.index()==j)
313        {
314          res(j,k) += alpha * i.value() * rhs(j,k);
315          ++i;
316        }
317      }
318
319      // premultiplied rhs for scatters
320      typename ScalarBinaryOpTraits<AlphaType, typename DenseRhsType::Scalar>::ReturnType rhs_j(alpha*rhs(j,k));
321      // accumulator for partial scalar product
322      typename DenseResType::Scalar res_j(0);
323      for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i)
324      {
325        LhsScalar lhs_ij = i.value();
326        if(!LhsIsRowMajor) lhs_ij = numext::conj(lhs_ij);
327        res_j += lhs_ij * rhs(i.index(),k);
328        res(i.index(),k) += numext::conj(lhs_ij) * rhs_j;
329      }
330      res(j,k) += alpha * res_j;
331
332      // handle diagonal coeff
333      if (ProcessFirstHalf && i && (i.index()==j))
334        res(j,k) += alpha * i.value() * rhs(j,k);
335    }
336  }
337}
338
339
340template<typename LhsView, typename Rhs, int ProductType>
341struct generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType>
342: generic_product_impl_base<LhsView, Rhs, generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType> >
343{
344  template<typename Dest>
345  static void scaleAndAddTo(Dest& dst, const LhsView& lhsView, const Rhs& rhs, const typename Dest::Scalar& alpha)
346  {
347    typedef typename LhsView::_MatrixTypeNested Lhs;
348    typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
349    typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
350    LhsNested lhsNested(lhsView.matrix());
351    RhsNested rhsNested(rhs);
352
353    internal::sparse_selfadjoint_time_dense_product<LhsView::Mode>(lhsNested, rhsNested, dst, alpha);
354  }
355};
356
357template<typename Lhs, typename RhsView, int ProductType>
358struct generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType>
359: generic_product_impl_base<Lhs, RhsView, generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType> >
360{
361  template<typename Dest>
362  static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const RhsView& rhsView, const typename Dest::Scalar& alpha)
363  {
364    typedef typename RhsView::_MatrixTypeNested Rhs;
365    typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
366    typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
367    LhsNested lhsNested(lhs);
368    RhsNested rhsNested(rhsView.matrix());
369
370    // transpose everything
371    Transpose<Dest> dstT(dst);
372    internal::sparse_selfadjoint_time_dense_product<RhsView::TransposeMode>(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha);
373  }
374};
375
376// NOTE: these two overloads are needed to evaluate the sparse selfadjoint view into a full sparse matrix
377// TODO: maybe the copy could be handled by generic_product_impl so that these overloads would not be needed anymore
378
379template<typename LhsView, typename Rhs, int ProductTag>
380struct product_evaluator<Product<LhsView, Rhs, DefaultProduct>, ProductTag, SparseSelfAdjointShape, SparseShape>
381  : public evaluator<typename Product<typename Rhs::PlainObject, Rhs, DefaultProduct>::PlainObject>
382{
383  typedef Product<LhsView, Rhs, DefaultProduct> XprType;
384  typedef typename XprType::PlainObject PlainObject;
385  typedef evaluator<PlainObject> Base;
386
387  product_evaluator(const XprType& xpr)
388    : m_lhs(xpr.lhs()), m_result(xpr.rows(), xpr.cols())
389  {
390    ::new (static_cast<Base*>(this)) Base(m_result);
391    generic_product_impl<typename Rhs::PlainObject, Rhs, SparseShape, SparseShape, ProductTag>::evalTo(m_result, m_lhs, xpr.rhs());
392  }
393
394protected:
395  typename Rhs::PlainObject m_lhs;
396  PlainObject m_result;
397};
398
399template<typename Lhs, typename RhsView, int ProductTag>
400struct product_evaluator<Product<Lhs, RhsView, DefaultProduct>, ProductTag, SparseShape, SparseSelfAdjointShape>
401  : public evaluator<typename Product<Lhs, typename Lhs::PlainObject, DefaultProduct>::PlainObject>
402{
403  typedef Product<Lhs, RhsView, DefaultProduct> XprType;
404  typedef typename XprType::PlainObject PlainObject;
405  typedef evaluator<PlainObject> Base;
406
407  product_evaluator(const XprType& xpr)
408    : m_rhs(xpr.rhs()), m_result(xpr.rows(), xpr.cols())
409  {
410    ::new (static_cast<Base*>(this)) Base(m_result);
411    generic_product_impl<Lhs, typename Lhs::PlainObject, SparseShape, SparseShape, ProductTag>::evalTo(m_result, xpr.lhs(), m_rhs);
412  }
413
414protected:
415  typename Lhs::PlainObject m_rhs;
416  PlainObject m_result;
417};
418
419} // namespace internal
420
421/***************************************************************************
422* Implementation of symmetric copies and permutations
423***************************************************************************/
424namespace internal {
425
426template<int Mode,typename MatrixType,int DestOrder>
427void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
428{
429  typedef typename MatrixType::StorageIndex StorageIndex;
430  typedef typename MatrixType::Scalar Scalar;
431  typedef SparseMatrix<Scalar,DestOrder,StorageIndex> Dest;
432  typedef Matrix<StorageIndex,Dynamic,1> VectorI;
433  typedef evaluator<MatrixType> MatEval;
434  typedef typename evaluator<MatrixType>::InnerIterator MatIterator;
435
436  MatEval matEval(mat);
437  Dest& dest(_dest.derived());
438  enum {
439    StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor)
440  };
441
442  Index size = mat.rows();
443  VectorI count;
444  count.resize(size);
445  count.setZero();
446  dest.resize(size,size);
447  for(Index j = 0; j<size; ++j)
448  {
449    Index jp = perm ? perm[j] : j;
450    for(MatIterator it(matEval,j); it; ++it)
451    {
452      Index i = it.index();
453      Index r = it.row();
454      Index c = it.col();
455      Index ip = perm ? perm[i] : i;
456      if(Mode==(Upper|Lower))
457        count[StorageOrderMatch ? jp : ip]++;
458      else if(r==c)
459        count[ip]++;
460      else if(( Mode==Lower && r>c) || ( Mode==Upper && r<c))
461      {
462        count[ip]++;
463        count[jp]++;
464      }
465    }
466  }
467  Index nnz = count.sum();
468
469  // reserve space
470  dest.resizeNonZeros(nnz);
471  dest.outerIndexPtr()[0] = 0;
472  for(Index j=0; j<size; ++j)
473    dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
474  for(Index j=0; j<size; ++j)
475    count[j] = dest.outerIndexPtr()[j];
476
477  // copy data
478  for(StorageIndex j = 0; j<size; ++j)
479  {
480    for(MatIterator it(matEval,j); it; ++it)
481    {
482      StorageIndex i = internal::convert_index<StorageIndex>(it.index());
483      Index r = it.row();
484      Index c = it.col();
485
486      StorageIndex jp = perm ? perm[j] : j;
487      StorageIndex ip = perm ? perm[i] : i;
488
489      if(Mode==(Upper|Lower))
490      {
491        Index k = count[StorageOrderMatch ? jp : ip]++;
492        dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp;
493        dest.valuePtr()[k] = it.value();
494      }
495      else if(r==c)
496      {
497        Index k = count[ip]++;
498        dest.innerIndexPtr()[k] = ip;
499        dest.valuePtr()[k] = it.value();
500      }
501      else if(( (Mode&Lower)==Lower && r>c) || ( (Mode&Upper)==Upper && r<c))
502      {
503        if(!StorageOrderMatch)
504          std::swap(ip,jp);
505        Index k = count[jp]++;
506        dest.innerIndexPtr()[k] = ip;
507        dest.valuePtr()[k] = it.value();
508        k = count[ip]++;
509        dest.innerIndexPtr()[k] = jp;
510        dest.valuePtr()[k] = numext::conj(it.value());
511      }
512    }
513  }
514}
515
516template<int _SrcMode,int _DstMode,typename MatrixType,int DstOrder>
517void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
518{
519  typedef typename MatrixType::StorageIndex StorageIndex;
520  typedef typename MatrixType::Scalar Scalar;
521  SparseMatrix<Scalar,DstOrder,StorageIndex>& dest(_dest.derived());
522  typedef Matrix<StorageIndex,Dynamic,1> VectorI;
523  typedef evaluator<MatrixType> MatEval;
524  typedef typename evaluator<MatrixType>::InnerIterator MatIterator;
525
526  enum {
527    SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor,
528    StorageOrderMatch = int(SrcOrder) == int(DstOrder),
529    DstMode = DstOrder==RowMajor ? (_DstMode==Upper ? Lower : Upper) : _DstMode,
530    SrcMode = SrcOrder==RowMajor ? (_SrcMode==Upper ? Lower : Upper) : _SrcMode
531  };
532
533  MatEval matEval(mat);
534
535  Index size = mat.rows();
536  VectorI count(size);
537  count.setZero();
538  dest.resize(size,size);
539  for(StorageIndex j = 0; j<size; ++j)
540  {
541    StorageIndex jp = perm ? perm[j] : j;
542    for(MatIterator it(matEval,j); it; ++it)
543    {
544      StorageIndex i = it.index();
545      if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
546        continue;
547
548      StorageIndex ip = perm ? perm[i] : i;
549      count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
550    }
551  }
552  dest.outerIndexPtr()[0] = 0;
553  for(Index j=0; j<size; ++j)
554    dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
555  dest.resizeNonZeros(dest.outerIndexPtr()[size]);
556  for(Index j=0; j<size; ++j)
557    count[j] = dest.outerIndexPtr()[j];
558
559  for(StorageIndex j = 0; j<size; ++j)
560  {
561
562    for(MatIterator it(matEval,j); it; ++it)
563    {
564      StorageIndex i = it.index();
565      if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
566        continue;
567
568      StorageIndex jp = perm ? perm[j] : j;
569      StorageIndex ip = perm? perm[i] : i;
570
571      Index k = count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
572      dest.innerIndexPtr()[k] = int(DstMode)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp);
573
574      if(!StorageOrderMatch) std::swap(ip,jp);
575      if( ((int(DstMode)==int(Lower) && ip<jp) || (int(DstMode)==int(Upper) && ip>jp)))
576        dest.valuePtr()[k] = numext::conj(it.value());
577      else
578        dest.valuePtr()[k] = it.value();
579    }
580  }
581}
582
583}
584
585// TODO implement twists in a more evaluator friendly fashion
586
587namespace internal {
588
589template<typename MatrixType, int Mode>
590struct traits<SparseSymmetricPermutationProduct<MatrixType,Mode> > : traits<MatrixType> {
591};
592
593}
594
595template<typename MatrixType,int Mode>
596class SparseSymmetricPermutationProduct
597  : public EigenBase<SparseSymmetricPermutationProduct<MatrixType,Mode> >
598{
599  public:
600    typedef typename MatrixType::Scalar Scalar;
601    typedef typename MatrixType::StorageIndex StorageIndex;
602    enum {
603      RowsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::RowsAtCompileTime,
604      ColsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::ColsAtCompileTime
605    };
606  protected:
607    typedef PermutationMatrix<Dynamic,Dynamic,StorageIndex> Perm;
608  public:
609    typedef Matrix<StorageIndex,Dynamic,1> VectorI;
610    typedef typename MatrixType::Nested MatrixTypeNested;
611    typedef typename internal::remove_all<MatrixTypeNested>::type NestedExpression;
612
613    SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm)
614      : m_matrix(mat), m_perm(perm)
615    {}
616
617    inline Index rows() const { return m_matrix.rows(); }
618    inline Index cols() const { return m_matrix.cols(); }
619
620    const NestedExpression& matrix() const { return m_matrix; }
621    const Perm& perm() const { return m_perm; }
622
623  protected:
624    MatrixTypeNested m_matrix;
625    const Perm& m_perm;
626
627};
628
629namespace internal {
630
631template<typename DstXprType, typename MatrixType, int Mode, typename Scalar>
632struct Assignment<DstXprType, SparseSymmetricPermutationProduct<MatrixType,Mode>, internal::assign_op<Scalar,typename MatrixType::Scalar>, Sparse2Sparse>
633{
634  typedef SparseSymmetricPermutationProduct<MatrixType,Mode> SrcXprType;
635  typedef typename DstXprType::StorageIndex DstIndex;
636  template<int Options>
637  static void run(SparseMatrix<Scalar,Options,DstIndex> &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &)
638  {
639    // internal::permute_symm_to_fullsymm<Mode>(m_matrix,_dest,m_perm.indices().data());
640    SparseMatrix<Scalar,(Options&RowMajor)==RowMajor ? ColMajor : RowMajor, DstIndex> tmp;
641    internal::permute_symm_to_fullsymm<Mode>(src.matrix(),tmp,src.perm().indices().data());
642    dst = tmp;
643  }
644
645  template<typename DestType,unsigned int DestMode>
646  static void run(SparseSelfAdjointView<DestType,DestMode>& dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &)
647  {
648    internal::permute_symm_to_symm<Mode,DestMode>(src.matrix(),dst.matrix(),src.perm().indices().data());
649  }
650};
651
652} // end namespace internal
653
654} // end namespace Eigen
655
656#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H
657