1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "sparse.h"
11#include <Eigen/SparseCore>
12#include <sstream>
13
14template<typename Solver, typename Rhs, typename Guess,typename Result>
15void solve_with_guess(IterativeSolverBase<Solver>& solver, const MatrixBase<Rhs>& b, const Guess& g, Result &x) {
16  if(internal::random<bool>())
17  {
18    // With a temporary through evaluator<SolveWithGuess>
19    x = solver.derived().solveWithGuess(b,g) + Result::Zero(x.rows(), x.cols());
20  }
21  else
22  {
23    // direct evaluation within x through Assignment<Result,SolveWithGuess>
24    x = solver.derived().solveWithGuess(b.derived(),g);
25  }
26}
27
28template<typename Solver, typename Rhs, typename Guess,typename Result>
29void solve_with_guess(SparseSolverBase<Solver>& solver, const MatrixBase<Rhs>& b, const Guess& , Result& x) {
30  if(internal::random<bool>())
31    x = solver.derived().solve(b) + Result::Zero(x.rows(), x.cols());
32  else
33    x = solver.derived().solve(b);
34}
35
36template<typename Solver, typename Rhs, typename Guess,typename Result>
37void solve_with_guess(SparseSolverBase<Solver>& solver, const SparseMatrixBase<Rhs>& b, const Guess& , Result& x) {
38  x = solver.derived().solve(b);
39}
40
41template<typename Solver, typename Rhs, typename DenseMat, typename DenseRhs>
42void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db)
43{
44  typedef typename Solver::MatrixType Mat;
45  typedef typename Mat::Scalar Scalar;
46  typedef typename Mat::StorageIndex StorageIndex;
47
48  DenseRhs refX = dA.householderQr().solve(db);
49  {
50    Rhs x(A.cols(), b.cols());
51    Rhs oldb = b;
52
53    solver.compute(A);
54    if (solver.info() != Success)
55    {
56      std::cerr << "ERROR | sparse solver testing, factorization failed (" << typeid(Solver).name() << ")\n";
57      VERIFY(solver.info() == Success);
58    }
59    x = solver.solve(b);
60    if (solver.info() != Success)
61    {
62      std::cerr << "WARNING | sparse solver testing: solving failed (" << typeid(Solver).name() << ")\n";
63      return;
64    }
65    VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
66    VERIFY(x.isApprox(refX,test_precision<Scalar>()));
67
68    x.setZero();
69    solve_with_guess(solver, b, x, x);
70    VERIFY(solver.info() == Success && "solving failed when using analyzePattern/factorize API");
71    VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
72    VERIFY(x.isApprox(refX,test_precision<Scalar>()));
73
74    x.setZero();
75    // test the analyze/factorize API
76    solver.analyzePattern(A);
77    solver.factorize(A);
78    VERIFY(solver.info() == Success && "factorization failed when using analyzePattern/factorize API");
79    x = solver.solve(b);
80    VERIFY(solver.info() == Success && "solving failed when using analyzePattern/factorize API");
81    VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
82    VERIFY(x.isApprox(refX,test_precision<Scalar>()));
83
84    x.setZero();
85    // test with Map
86    MappedSparseMatrix<Scalar,Mat::Options,StorageIndex> Am(A.rows(), A.cols(), A.nonZeros(), const_cast<StorageIndex*>(A.outerIndexPtr()), const_cast<StorageIndex*>(A.innerIndexPtr()), const_cast<Scalar*>(A.valuePtr()));
87    solver.compute(Am);
88    VERIFY(solver.info() == Success && "factorization failed when using Map");
89    DenseRhs dx(refX);
90    dx.setZero();
91    Map<DenseRhs> xm(dx.data(), dx.rows(), dx.cols());
92    Map<const DenseRhs> bm(db.data(), db.rows(), db.cols());
93    xm = solver.solve(bm);
94    VERIFY(solver.info() == Success && "solving failed when using Map");
95    VERIFY(oldb.isApprox(bm) && "sparse solver testing: the rhs should not be modified!");
96    VERIFY(xm.isApprox(refX,test_precision<Scalar>()));
97  }
98
99  // if not too large, do some extra check:
100  if(A.rows()<2000)
101  {
102    // test initialization ctor
103    {
104      Rhs x(b.rows(), b.cols());
105      Solver solver2(A);
106      VERIFY(solver2.info() == Success);
107      x = solver2.solve(b);
108      VERIFY(x.isApprox(refX,test_precision<Scalar>()));
109    }
110
111    // test dense Block as the result and rhs:
112    {
113      DenseRhs x(refX.rows(), refX.cols());
114      DenseRhs oldb(db);
115      x.setZero();
116      x.block(0,0,x.rows(),x.cols()) = solver.solve(db.block(0,0,db.rows(),db.cols()));
117      VERIFY(oldb.isApprox(db) && "sparse solver testing: the rhs should not be modified!");
118      VERIFY(x.isApprox(refX,test_precision<Scalar>()));
119    }
120
121    // test uncompressed inputs
122    {
123      Mat A2 = A;
124      A2.reserve((ArrayXf::Random(A.outerSize())+2).template cast<typename Mat::StorageIndex>().eval());
125      solver.compute(A2);
126      Rhs x = solver.solve(b);
127      VERIFY(x.isApprox(refX,test_precision<Scalar>()));
128    }
129
130    // test expression as input
131    {
132      solver.compute(0.5*(A+A));
133      Rhs x = solver.solve(b);
134      VERIFY(x.isApprox(refX,test_precision<Scalar>()));
135
136      Solver solver2(0.5*(A+A));
137      Rhs x2 = solver2.solve(b);
138      VERIFY(x2.isApprox(refX,test_precision<Scalar>()));
139    }
140  }
141}
142
143template<typename Solver, typename Rhs>
144void check_sparse_solving_real_cases(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const typename Solver::MatrixType& fullA, const Rhs& refX)
145{
146  typedef typename Solver::MatrixType Mat;
147  typedef typename Mat::Scalar Scalar;
148  typedef typename Mat::RealScalar RealScalar;
149
150  Rhs x(A.cols(), b.cols());
151
152  solver.compute(A);
153  if (solver.info() != Success)
154  {
155    std::cerr << "ERROR | sparse solver testing, factorization failed (" << typeid(Solver).name() << ")\n";
156    VERIFY(solver.info() == Success);
157  }
158  x = solver.solve(b);
159
160  if (solver.info() != Success)
161  {
162    std::cerr << "WARNING | sparse solver testing, solving failed (" << typeid(Solver).name() << ")\n";
163    return;
164  }
165
166  RealScalar res_error = (fullA*x-b).norm()/b.norm();
167  VERIFY( (res_error <= test_precision<Scalar>() ) && "sparse solver failed without noticing it");
168
169
170  if(refX.size() != 0 && (refX - x).norm()/refX.norm() > test_precision<Scalar>())
171  {
172    std::cerr << "WARNING | found solution is different from the provided reference one\n";
173  }
174
175}
176template<typename Solver, typename DenseMat>
177void check_sparse_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
178{
179  typedef typename Solver::MatrixType Mat;
180  typedef typename Mat::Scalar Scalar;
181
182  solver.compute(A);
183  if (solver.info() != Success)
184  {
185    std::cerr << "WARNING | sparse solver testing: factorization failed (check_sparse_determinant)\n";
186    return;
187  }
188
189  Scalar refDet = dA.determinant();
190  VERIFY_IS_APPROX(refDet,solver.determinant());
191}
192template<typename Solver, typename DenseMat>
193void check_sparse_abs_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
194{
195  using std::abs;
196  typedef typename Solver::MatrixType Mat;
197  typedef typename Mat::Scalar Scalar;
198
199  solver.compute(A);
200  if (solver.info() != Success)
201  {
202    std::cerr << "WARNING | sparse solver testing: factorization failed (check_sparse_abs_determinant)\n";
203    return;
204  }
205
206  Scalar refDet = abs(dA.determinant());
207  VERIFY_IS_APPROX(refDet,solver.absDeterminant());
208}
209
210template<typename Solver, typename DenseMat>
211int generate_sparse_spd_problem(Solver& , typename Solver::MatrixType& A, typename Solver::MatrixType& halfA, DenseMat& dA, int maxSize = 300)
212{
213  typedef typename Solver::MatrixType Mat;
214  typedef typename Mat::Scalar Scalar;
215  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
216
217  int size = internal::random<int>(1,maxSize);
218  double density = (std::max)(8./(size*size), 0.01);
219
220  Mat M(size, size);
221  DenseMatrix dM(size, size);
222
223  initSparse<Scalar>(density, dM, M, ForceNonZeroDiag);
224
225  A = M * M.adjoint();
226  dA = dM * dM.adjoint();
227
228  halfA.resize(size,size);
229  if(Solver::UpLo==(Lower|Upper))
230    halfA = A;
231  else
232    halfA.template selfadjointView<Solver::UpLo>().rankUpdate(M);
233
234  return size;
235}
236
237
238#ifdef TEST_REAL_CASES
239template<typename Scalar>
240inline std::string get_matrixfolder()
241{
242  std::string mat_folder = TEST_REAL_CASES;
243  if( internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value )
244    mat_folder  = mat_folder + static_cast<std::string>("/complex/");
245  else
246    mat_folder = mat_folder + static_cast<std::string>("/real/");
247  return mat_folder;
248}
249std::string sym_to_string(int sym)
250{
251  if(sym==Symmetric) return "Symmetric ";
252  if(sym==SPD)       return "SPD ";
253  return "";
254}
255template<typename Derived>
256std::string solver_stats(const IterativeSolverBase<Derived> &solver)
257{
258  std::stringstream ss;
259  ss << solver.iterations() << " iters, error: " << solver.error();
260  return ss.str();
261}
262template<typename Derived>
263std::string solver_stats(const SparseSolverBase<Derived> &/*solver*/)
264{
265  return "";
266}
267#endif
268
269template<typename Solver> void check_sparse_spd_solving(Solver& solver, int maxSize = 300, int maxRealWorldSize = 100000)
270{
271  typedef typename Solver::MatrixType Mat;
272  typedef typename Mat::Scalar Scalar;
273  typedef typename Mat::StorageIndex StorageIndex;
274  typedef SparseMatrix<Scalar,ColMajor, StorageIndex> SpMat;
275  typedef SparseVector<Scalar, 0, StorageIndex> SpVec;
276  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
277  typedef Matrix<Scalar,Dynamic,1> DenseVector;
278
279  // generate the problem
280  Mat A, halfA;
281  DenseMatrix dA;
282  for (int i = 0; i < g_repeat; i++) {
283    int size = generate_sparse_spd_problem(solver, A, halfA, dA, maxSize);
284
285    // generate the right hand sides
286    int rhsCols = internal::random<int>(1,16);
287    double density = (std::max)(8./(size*rhsCols), 0.1);
288    SpMat B(size,rhsCols);
289    DenseVector b = DenseVector::Random(size);
290    DenseMatrix dB(size,rhsCols);
291    initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
292    SpVec c = B.col(0);
293    DenseVector dc = dB.col(0);
294
295    CALL_SUBTEST( check_sparse_solving(solver, A,     b,  dA, b)  );
296    CALL_SUBTEST( check_sparse_solving(solver, halfA, b,  dA, b)  );
297    CALL_SUBTEST( check_sparse_solving(solver, A,     dB, dA, dB) );
298    CALL_SUBTEST( check_sparse_solving(solver, halfA, dB, dA, dB) );
299    CALL_SUBTEST( check_sparse_solving(solver, A,     B,  dA, dB) );
300    CALL_SUBTEST( check_sparse_solving(solver, halfA, B,  dA, dB) );
301    CALL_SUBTEST( check_sparse_solving(solver, A,     c,  dA, dc) );
302    CALL_SUBTEST( check_sparse_solving(solver, halfA, c,  dA, dc) );
303
304    // check only once
305    if(i==0)
306    {
307      b = DenseVector::Zero(size);
308      check_sparse_solving(solver, A, b, dA, b);
309    }
310  }
311
312  // First, get the folder
313#ifdef TEST_REAL_CASES
314  // Test real problems with double precision only
315  if (internal::is_same<typename NumTraits<Scalar>::Real, double>::value)
316  {
317    std::string mat_folder = get_matrixfolder<Scalar>();
318    MatrixMarketIterator<Scalar> it(mat_folder);
319    for (; it; ++it)
320    {
321      if (it.sym() == SPD){
322        A = it.matrix();
323        if(A.diagonal().size() <= maxRealWorldSize)
324        {
325          DenseVector b = it.rhs();
326          DenseVector refX = it.refX();
327          PermutationMatrix<Dynamic, Dynamic, StorageIndex> pnull;
328          halfA.resize(A.rows(), A.cols());
329          if(Solver::UpLo == (Lower|Upper))
330            halfA = A;
331          else
332            halfA.template selfadjointView<Solver::UpLo>() = A.template triangularView<Eigen::Lower>().twistedBy(pnull);
333
334          std::cout << "INFO | Testing " << sym_to_string(it.sym()) << "sparse problem " << it.matname()
335                  << " (" << A.rows() << "x" << A.cols() << ") using " << typeid(Solver).name() << "..." << std::endl;
336          CALL_SUBTEST( check_sparse_solving_real_cases(solver, A,     b, A, refX) );
337          std::string stats = solver_stats(solver);
338          if(stats.size()>0)
339            std::cout << "INFO |  " << stats << std::endl;
340          CALL_SUBTEST( check_sparse_solving_real_cases(solver, halfA, b, A, refX) );
341        }
342        else
343        {
344          std::cout << "INFO | Skip sparse problem \"" << it.matname() << "\" (too large)" << std::endl;
345        }
346      }
347    }
348  }
349#else
350  EIGEN_UNUSED_VARIABLE(maxRealWorldSize);
351#endif
352}
353
354template<typename Solver> void check_sparse_spd_determinant(Solver& solver)
355{
356  typedef typename Solver::MatrixType Mat;
357  typedef typename Mat::Scalar Scalar;
358  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
359
360  // generate the problem
361  Mat A, halfA;
362  DenseMatrix dA;
363  generate_sparse_spd_problem(solver, A, halfA, dA, 30);
364
365  for (int i = 0; i < g_repeat; i++) {
366    check_sparse_determinant(solver, A,     dA);
367    check_sparse_determinant(solver, halfA, dA );
368  }
369}
370
371template<typename Solver, typename DenseMat>
372Index generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300, int options = ForceNonZeroDiag)
373{
374  typedef typename Solver::MatrixType Mat;
375  typedef typename Mat::Scalar Scalar;
376
377  Index size = internal::random<int>(1,maxSize);
378  double density = (std::max)(8./(size*size), 0.01);
379
380  A.resize(size,size);
381  dA.resize(size,size);
382
383  initSparse<Scalar>(density, dA, A, options);
384
385  return size;
386}
387
388
389struct prune_column {
390  Index m_col;
391  prune_column(Index col) : m_col(col) {}
392  template<class Scalar>
393  bool operator()(Index, Index col, const Scalar&) const {
394    return col != m_col;
395  }
396};
397
398
399template<typename Solver> void check_sparse_square_solving(Solver& solver, int maxSize = 300, int maxRealWorldSize = 100000, bool checkDeficient = false)
400{
401  typedef typename Solver::MatrixType Mat;
402  typedef typename Mat::Scalar Scalar;
403  typedef SparseMatrix<Scalar,ColMajor, typename Mat::StorageIndex> SpMat;
404  typedef SparseVector<Scalar, 0, typename Mat::StorageIndex> SpVec;
405  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
406  typedef Matrix<Scalar,Dynamic,1> DenseVector;
407
408  int rhsCols = internal::random<int>(1,16);
409
410  Mat A;
411  DenseMatrix dA;
412  for (int i = 0; i < g_repeat; i++) {
413    Index size = generate_sparse_square_problem(solver, A, dA, maxSize);
414
415    A.makeCompressed();
416    DenseVector b = DenseVector::Random(size);
417    DenseMatrix dB(size,rhsCols);
418    SpMat B(size,rhsCols);
419    double density = (std::max)(8./(size*rhsCols), 0.1);
420    initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
421    B.makeCompressed();
422    SpVec c = B.col(0);
423    DenseVector dc = dB.col(0);
424    CALL_SUBTEST(check_sparse_solving(solver, A, b,  dA, b));
425    CALL_SUBTEST(check_sparse_solving(solver, A, dB, dA, dB));
426    CALL_SUBTEST(check_sparse_solving(solver, A, B,  dA, dB));
427    CALL_SUBTEST(check_sparse_solving(solver, A, c,  dA, dc));
428
429    // check only once
430    if(i==0)
431    {
432      b = DenseVector::Zero(size);
433      check_sparse_solving(solver, A, b, dA, b);
434    }
435    // regression test for Bug 792 (structurally rank deficient matrices):
436    if(checkDeficient && size>1) {
437      Index col = internal::random<int>(0,int(size-1));
438      A.prune(prune_column(col));
439      solver.compute(A);
440      VERIFY_IS_EQUAL(solver.info(), NumericalIssue);
441    }
442  }
443
444  // First, get the folder
445#ifdef TEST_REAL_CASES
446  // Test real problems with double precision only
447  if (internal::is_same<typename NumTraits<Scalar>::Real, double>::value)
448  {
449    std::string mat_folder = get_matrixfolder<Scalar>();
450    MatrixMarketIterator<Scalar> it(mat_folder);
451    for (; it; ++it)
452    {
453      A = it.matrix();
454      if(A.diagonal().size() <= maxRealWorldSize)
455      {
456        DenseVector b = it.rhs();
457        DenseVector refX = it.refX();
458        std::cout << "INFO | Testing " << sym_to_string(it.sym()) << "sparse problem " << it.matname()
459                  << " (" << A.rows() << "x" << A.cols() << ") using " << typeid(Solver).name() << "..." << std::endl;
460        CALL_SUBTEST(check_sparse_solving_real_cases(solver, A, b, A, refX));
461        std::string stats = solver_stats(solver);
462        if(stats.size()>0)
463          std::cout << "INFO |  " << stats << std::endl;
464      }
465      else
466      {
467        std::cout << "INFO | SKIP sparse problem \"" << it.matname() << "\" (too large)" << std::endl;
468      }
469    }
470  }
471#else
472  EIGEN_UNUSED_VARIABLE(maxRealWorldSize);
473#endif
474
475}
476
477template<typename Solver> void check_sparse_square_determinant(Solver& solver)
478{
479  typedef typename Solver::MatrixType Mat;
480  typedef typename Mat::Scalar Scalar;
481  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
482
483  for (int i = 0; i < g_repeat; i++) {
484    // generate the problem
485    Mat A;
486    DenseMatrix dA;
487
488    int size = internal::random<int>(1,30);
489    dA.setRandom(size,size);
490
491    dA = (dA.array().abs()<0.3).select(0,dA);
492    dA.diagonal() = (dA.diagonal().array()==0).select(1,dA.diagonal());
493    A = dA.sparseView();
494    A.makeCompressed();
495
496    check_sparse_determinant(solver, A, dA);
497  }
498}
499
500template<typename Solver> void check_sparse_square_abs_determinant(Solver& solver)
501{
502  typedef typename Solver::MatrixType Mat;
503  typedef typename Mat::Scalar Scalar;
504  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
505
506  for (int i = 0; i < g_repeat; i++) {
507    // generate the problem
508    Mat A;
509    DenseMatrix dA;
510    generate_sparse_square_problem(solver, A, dA, 30);
511    A.makeCompressed();
512    check_sparse_abs_determinant(solver, A, dA);
513  }
514}
515
516template<typename Solver, typename DenseMat>
517void generate_sparse_leastsquare_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300, int options = ForceNonZeroDiag)
518{
519  typedef typename Solver::MatrixType Mat;
520  typedef typename Mat::Scalar Scalar;
521
522  int rows = internal::random<int>(1,maxSize);
523  int cols = internal::random<int>(1,rows);
524  double density = (std::max)(8./(rows*cols), 0.01);
525
526  A.resize(rows,cols);
527  dA.resize(rows,cols);
528
529  initSparse<Scalar>(density, dA, A, options);
530}
531
532template<typename Solver> void check_sparse_leastsquare_solving(Solver& solver)
533{
534  typedef typename Solver::MatrixType Mat;
535  typedef typename Mat::Scalar Scalar;
536  typedef SparseMatrix<Scalar,ColMajor, typename Mat::StorageIndex> SpMat;
537  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
538  typedef Matrix<Scalar,Dynamic,1> DenseVector;
539
540  int rhsCols = internal::random<int>(1,16);
541
542  Mat A;
543  DenseMatrix dA;
544  for (int i = 0; i < g_repeat; i++) {
545    generate_sparse_leastsquare_problem(solver, A, dA);
546
547    A.makeCompressed();
548    DenseVector b = DenseVector::Random(A.rows());
549    DenseMatrix dB(A.rows(),rhsCols);
550    SpMat B(A.rows(),rhsCols);
551    double density = (std::max)(8./(A.rows()*rhsCols), 0.1);
552    initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
553    B.makeCompressed();
554    check_sparse_solving(solver, A, b,  dA, b);
555    check_sparse_solving(solver, A, dB, dA, dB);
556    check_sparse_solving(solver, A, B,  dA, dB);
557
558    // check only once
559    if(i==0)
560    {
561      b = DenseVector::Zero(A.rows());
562      check_sparse_solving(solver, A, b, dA, b);
563    }
564  }
565}
566