1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
11#define EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
12
13namespace Eigen {
14
15/** \class TensorImagePatch
16  * \ingroup CXX11_Tensor_Module
17  *
18  * \brief Patch extraction specialized for image processing.
19  * This assumes that the input has a least 3 dimensions ordered as follow:
20  *  1st dimension: channels (of size d)
21  *  2nd dimension: rows (of size r)
22  *  3rd dimension: columns (of size c)
23  *  There can be additional dimensions such as time (for video) or batch (for
24  * bulk processing after the first 3.
25  * Calling the image patch code with patch_rows and patch_cols is equivalent
26  * to calling the regular patch extraction code with parameters d, patch_rows,
27  * patch_cols, and 1 for all the additional dimensions.
28  */
29namespace internal {
30template<DenseIndex Rows, DenseIndex Cols, typename XprType>
31struct traits<TensorImagePatchOp<Rows, Cols, XprType> > : public traits<XprType>
32{
33  typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
34  typedef traits<XprType> XprTraits;
35  typedef typename XprTraits::StorageKind StorageKind;
36  typedef typename XprTraits::Index Index;
37  typedef typename XprType::Nested Nested;
38  typedef typename remove_reference<Nested>::type _Nested;
39  static const int NumDimensions = XprTraits::NumDimensions + 1;
40  static const int Layout = XprTraits::Layout;
41};
42
43template<DenseIndex Rows, DenseIndex Cols, typename XprType>
44struct eval<TensorImagePatchOp<Rows, Cols, XprType>, Eigen::Dense>
45{
46  typedef const TensorImagePatchOp<Rows, Cols, XprType>& type;
47};
48
49template<DenseIndex Rows, DenseIndex Cols, typename XprType>
50struct nested<TensorImagePatchOp<Rows, Cols, XprType>, 1, typename eval<TensorImagePatchOp<Rows, Cols, XprType> >::type>
51{
52  typedef TensorImagePatchOp<Rows, Cols, XprType> type;
53};
54
55}  // end namespace internal
56
57template<DenseIndex Rows, DenseIndex Cols, typename XprType>
58class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprType>, ReadOnlyAccessors>
59{
60  public:
61  typedef typename Eigen::internal::traits<TensorImagePatchOp>::Scalar Scalar;
62  typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
63  typedef typename XprType::CoeffReturnType CoeffReturnType;
64  typedef typename Eigen::internal::nested<TensorImagePatchOp>::type Nested;
65  typedef typename Eigen::internal::traits<TensorImagePatchOp>::StorageKind StorageKind;
66  typedef typename Eigen::internal::traits<TensorImagePatchOp>::Index Index;
67
68  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols,
69                                                           DenseIndex row_strides, DenseIndex col_strides,
70                                                           DenseIndex in_row_strides, DenseIndex in_col_strides,
71                                                           DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
72                                                           PaddingType padding_type, Scalar padding_value)
73      : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
74        m_row_strides(row_strides), m_col_strides(col_strides),
75        m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
76        m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
77        m_padding_explicit(false), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0),
78        m_padding_type(padding_type), m_padding_value(padding_value) {}
79
80  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols,
81                                                           DenseIndex row_strides, DenseIndex col_strides,
82                                                           DenseIndex in_row_strides, DenseIndex in_col_strides,
83                                                           DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
84                                                           DenseIndex padding_top, DenseIndex padding_bottom,
85                                                           DenseIndex padding_left, DenseIndex padding_right,
86                                                           Scalar padding_value)
87      : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
88        m_row_strides(row_strides), m_col_strides(col_strides),
89        m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
90        m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
91        m_padding_explicit(true), m_padding_top(padding_top), m_padding_bottom(padding_bottom),
92        m_padding_left(padding_left), m_padding_right(padding_right),
93        m_padding_type(PADDING_VALID), m_padding_value(padding_value) {}
94
95    EIGEN_DEVICE_FUNC
96    DenseIndex patch_rows() const { return m_patch_rows; }
97    EIGEN_DEVICE_FUNC
98    DenseIndex patch_cols() const { return m_patch_cols; }
99    EIGEN_DEVICE_FUNC
100    DenseIndex row_strides() const { return m_row_strides; }
101    EIGEN_DEVICE_FUNC
102    DenseIndex col_strides() const { return m_col_strides; }
103    EIGEN_DEVICE_FUNC
104    DenseIndex in_row_strides() const { return m_in_row_strides; }
105    EIGEN_DEVICE_FUNC
106    DenseIndex in_col_strides() const { return m_in_col_strides; }
107    EIGEN_DEVICE_FUNC
108    DenseIndex row_inflate_strides() const { return m_row_inflate_strides; }
109    EIGEN_DEVICE_FUNC
110    DenseIndex col_inflate_strides() const { return m_col_inflate_strides; }
111    EIGEN_DEVICE_FUNC
112    bool padding_explicit() const { return m_padding_explicit; }
113    EIGEN_DEVICE_FUNC
114    DenseIndex padding_top() const { return m_padding_top; }
115    EIGEN_DEVICE_FUNC
116    DenseIndex padding_bottom() const { return m_padding_bottom; }
117    EIGEN_DEVICE_FUNC
118    DenseIndex padding_left() const { return m_padding_left; }
119    EIGEN_DEVICE_FUNC
120    DenseIndex padding_right() const { return m_padding_right; }
121    EIGEN_DEVICE_FUNC
122    PaddingType padding_type() const { return m_padding_type; }
123    EIGEN_DEVICE_FUNC
124    Scalar padding_value() const { return m_padding_value; }
125
126    EIGEN_DEVICE_FUNC
127    const typename internal::remove_all<typename XprType::Nested>::type&
128    expression() const { return m_xpr; }
129
130  protected:
131    typename XprType::Nested m_xpr;
132    const DenseIndex m_patch_rows;
133    const DenseIndex m_patch_cols;
134    const DenseIndex m_row_strides;
135    const DenseIndex m_col_strides;
136    const DenseIndex m_in_row_strides;
137    const DenseIndex m_in_col_strides;
138    const DenseIndex m_row_inflate_strides;
139    const DenseIndex m_col_inflate_strides;
140    const bool m_padding_explicit;
141    const DenseIndex m_padding_top;
142    const DenseIndex m_padding_bottom;
143    const DenseIndex m_padding_left;
144    const DenseIndex m_padding_right;
145    const PaddingType m_padding_type;
146    const Scalar m_padding_value;
147};
148
149// Eval as rvalue
150template<DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device>
151struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
152{
153  typedef TensorImagePatchOp<Rows, Cols, ArgType> XprType;
154  typedef typename XprType::Index Index;
155  static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
156  static const int NumDims = NumInputDims + 1;
157  typedef DSizes<Index, NumDims> Dimensions;
158  typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
159  typedef TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>,
160                          Device> Self;
161  typedef TensorEvaluator<ArgType, Device> Impl;
162  typedef typename XprType::CoeffReturnType CoeffReturnType;
163  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
164  static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
165
166  enum {
167    IsAligned = false,
168    PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
169    Layout = TensorEvaluator<ArgType, Device>::Layout,
170    CoordAccess = false,
171    RawAccess = false
172  };
173
174  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
175      : m_impl(op.expression(), device)
176  {
177    EIGEN_STATIC_ASSERT((NumDims >= 4), YOU_MADE_A_PROGRAMMING_MISTAKE);
178
179    m_paddingValue = op.padding_value();
180
181    const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
182
183    // Caches a few variables.
184    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
185      m_inputDepth = input_dims[0];
186      m_inputRows = input_dims[1];
187      m_inputCols = input_dims[2];
188    } else {
189      m_inputDepth = input_dims[NumInputDims-1];
190      m_inputRows = input_dims[NumInputDims-2];
191      m_inputCols = input_dims[NumInputDims-3];
192    }
193
194    m_row_strides = op.row_strides();
195    m_col_strides = op.col_strides();
196
197    // Input strides and effective input/patch size
198    m_in_row_strides = op.in_row_strides();
199    m_in_col_strides = op.in_col_strides();
200    m_row_inflate_strides = op.row_inflate_strides();
201    m_col_inflate_strides = op.col_inflate_strides();
202    // The "effective" input rows and input cols are the input rows and cols
203    // after inflating them with zeros.
204    // For examples, a 2x3 matrix with row_inflate_strides and
205    // col_inflate_strides of 2 comes from:
206    //   A B C
207    //   D E F
208    //
209    // to a matrix is 3 x 5:
210    //
211    //   A . B . C
212    //   . . . . .
213    //   D . E . F
214
215    m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
216    m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
217    m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1);
218    m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1);
219
220    if (op.padding_explicit()) {
221      m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
222      m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
223      m_rowPaddingTop = op.padding_top();
224      m_colPaddingLeft = op.padding_left();
225    } else {
226      // Computing padding from the type
227      switch (op.padding_type()) {
228        case PADDING_VALID:
229          m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
230          m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
231          // Calculate the padding
232          m_rowPaddingTop = numext::maxi<Index>(0, ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2);
233          m_colPaddingLeft = numext::maxi<Index>(0, ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2);
234          break;
235        case PADDING_SAME:
236          m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides));
237          m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides));
238          // Calculate the padding
239          m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2;
240          m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2;
241          break;
242        default:
243          eigen_assert(false && "unexpected padding");
244      }
245    }
246    eigen_assert(m_outputRows > 0);
247    eigen_assert(m_outputCols > 0);
248
249    // Dimensions for result of extraction.
250    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
251      // ColMajor
252      // 0: depth
253      // 1: patch_rows
254      // 2: patch_cols
255      // 3: number of patches
256      // 4 and beyond: anything else (such as batch).
257      m_dimensions[0] = input_dims[0];
258      m_dimensions[1] = op.patch_rows();
259      m_dimensions[2] = op.patch_cols();
260      m_dimensions[3] = m_outputRows * m_outputCols;
261      for (int i = 4; i < NumDims; ++i) {
262        m_dimensions[i] = input_dims[i-1];
263      }
264    } else {
265      // RowMajor
266      // NumDims-1: depth
267      // NumDims-2: patch_rows
268      // NumDims-3: patch_cols
269      // NumDims-4: number of patches
270      // NumDims-5 and beyond: anything else (such as batch).
271      m_dimensions[NumDims-1] = input_dims[NumInputDims-1];
272      m_dimensions[NumDims-2] = op.patch_rows();
273      m_dimensions[NumDims-3] = op.patch_cols();
274      m_dimensions[NumDims-4] = m_outputRows * m_outputCols;
275      for (int i = NumDims-5; i >= 0; --i) {
276        m_dimensions[i] = input_dims[i];
277      }
278    }
279
280    // Strides for moving the patch in various dimensions.
281    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
282      m_colStride = m_dimensions[1];
283      m_patchStride = m_colStride * m_dimensions[2] * m_dimensions[0];
284      m_otherStride = m_patchStride * m_dimensions[3];
285    } else {
286      m_colStride = m_dimensions[NumDims-2];
287      m_patchStride = m_colStride * m_dimensions[NumDims-3] * m_dimensions[NumDims-1];
288      m_otherStride = m_patchStride * m_dimensions[NumDims-4];
289    }
290
291    // Strides for navigating through the input tensor.
292    m_rowInputStride = m_inputDepth;
293    m_colInputStride = m_inputDepth * m_inputRows;
294    m_patchInputStride = m_inputDepth * m_inputRows * m_inputCols;
295
296    // Fast representations of different variables.
297    m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
298    m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
299    m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
300    m_fastInflateRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides);
301    m_fastInflateColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides);
302    m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
303
304    // Number of patches in the width dimension.
305    m_fastOutputRows = internal::TensorIntDivisor<Index>(m_outputRows);
306    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
307      m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
308    } else {
309      m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
310    }
311  }
312
313  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
314
315  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
316    m_impl.evalSubExprsIfNeeded(NULL);
317    return true;
318  }
319
320  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
321    m_impl.cleanup();
322  }
323
324  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
325  {
326    // Patch index corresponding to the passed in index.
327    const Index patchIndex = index / m_fastPatchStride;
328    // Find the offset of the element wrt the location of the first element.
329    const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth;
330
331    // Other ways to index this element.
332    const Index otherIndex = (NumDims == 4) ? 0 : index / m_fastOtherStride;
333    const Index patch2DIndex = (NumDims == 4) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
334
335    // Calculate col index in the input original tensor.
336    const Index colIndex = patch2DIndex / m_fastOutputRows;
337    const Index colOffset = patchOffset / m_fastColStride;
338    const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
339    const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInflateColStride) : 0);
340    if (inputCol < 0 || inputCol >= m_input_cols_eff ||
341        ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
342      return Scalar(m_paddingValue);
343    }
344
345    // Calculate row index in the original input tensor.
346    const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
347    const Index rowOffset = patchOffset - colOffset * m_colStride;
348    const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
349    const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInflateRowStride) : 0);
350    if (inputRow < 0 || inputRow >= m_input_rows_eff ||
351        ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
352      return Scalar(m_paddingValue);
353    }
354
355    const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
356    const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
357
358    const Index inputIndex = depth + origInputRow * m_rowInputStride + origInputCol * m_colInputStride + otherIndex * m_patchInputStride;
359    return m_impl.coeff(inputIndex);
360  }
361
362  template<int LoadMode>
363  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
364  {
365    EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
366    eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
367
368    if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1) {
369      return packetWithPossibleZero(index);
370    }
371
372    const Index indices[2] = {index, index + PacketSize - 1};
373    const Index patchIndex = indices[0] / m_fastPatchStride;
374    if (patchIndex != indices[1] / m_fastPatchStride) {
375      return packetWithPossibleZero(index);
376    }
377    const Index otherIndex = (NumDims == 4) ? 0 : indices[0] / m_fastOtherStride;
378    eigen_assert(otherIndex == indices[1] / m_fastOtherStride);
379
380    // Find the offset of the element wrt the location of the first element.
381    const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth,
382                                   (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth};
383
384    const Index patch2DIndex = (NumDims == 4) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
385    eigen_assert(patch2DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
386
387    const Index colIndex = patch2DIndex / m_fastOutputRows;
388    const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride};
389
390    // Calculate col indices in the original input tensor.
391    const Index inputCols[2] = {colIndex * m_col_strides + colOffsets[0] -
392      m_colPaddingLeft, colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
393    if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
394      return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
395    }
396
397    if (inputCols[0] == inputCols[1]) {
398      const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
399      const Index rowOffsets[2] = {patchOffsets[0] - colOffsets[0]*m_colStride, patchOffsets[1] - colOffsets[1]*m_colStride};
400      eigen_assert(rowOffsets[0] <= rowOffsets[1]);
401      // Calculate col indices in the original input tensor.
402      const Index inputRows[2] = {rowIndex * m_row_strides + rowOffsets[0] -
403        m_rowPaddingTop, rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
404
405      if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
406        return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
407      }
408
409      if (inputRows[0] >= 0 && inputRows[1] < m_inputRows) {
410        // no padding
411        const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
412        const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
413        const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride + otherIndex * m_patchInputStride;
414        return m_impl.template packet<Unaligned>(inputIndex);
415      }
416    }
417
418    return packetWithPossibleZero(index);
419  }
420
421  EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
422
423  const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
424
425  Index rowPaddingTop() const { return m_rowPaddingTop; }
426  Index colPaddingLeft() const { return m_colPaddingLeft; }
427  Index outputRows() const { return m_outputRows; }
428  Index outputCols() const { return m_outputCols; }
429  Index userRowStride() const { return m_row_strides; }
430  Index userColStride() const { return m_col_strides; }
431  Index userInRowStride() const { return m_in_row_strides; }
432  Index userInColStride() const { return m_in_col_strides; }
433  Index rowInflateStride() const { return m_row_inflate_strides; }
434  Index colInflateStride() const { return m_col_inflate_strides; }
435
436  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
437  costPerCoeff(bool vectorized) const {
438    // We conservatively estimate the cost for the code path where the computed
439    // index is inside the original image and
440    // TensorEvaluator<ArgType, Device>::CoordAccess is false.
441    const double compute_cost = 3 * TensorOpCost::DivCost<Index>() +
442                                6 * TensorOpCost::MulCost<Index>() +
443                                8 * TensorOpCost::MulCost<Index>();
444    return m_impl.costPerCoeff(vectorized) +
445           TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
446  }
447
448 protected:
449  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
450  {
451    EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
452    for (int i = 0; i < PacketSize; ++i) {
453      values[i] = coeff(index+i);
454    }
455    PacketReturnType rslt = internal::pload<PacketReturnType>(values);
456    return rslt;
457  }
458
459  Dimensions m_dimensions;
460
461  Index m_otherStride;
462  Index m_patchStride;
463  Index m_colStride;
464  Index m_row_strides;
465  Index m_col_strides;
466
467  Index m_in_row_strides;
468  Index m_in_col_strides;
469  Index m_row_inflate_strides;
470  Index m_col_inflate_strides;
471
472  Index m_input_rows_eff;
473  Index m_input_cols_eff;
474  Index m_patch_rows_eff;
475  Index m_patch_cols_eff;
476
477  internal::TensorIntDivisor<Index> m_fastOtherStride;
478  internal::TensorIntDivisor<Index> m_fastPatchStride;
479  internal::TensorIntDivisor<Index> m_fastColStride;
480  internal::TensorIntDivisor<Index> m_fastInflateRowStride;
481  internal::TensorIntDivisor<Index> m_fastInflateColStride;
482  internal::TensorIntDivisor<Index> m_fastInputColsEff;
483
484  Index m_rowInputStride;
485  Index m_colInputStride;
486  Index m_patchInputStride;
487
488  Index m_inputDepth;
489  Index m_inputRows;
490  Index m_inputCols;
491
492  Index m_outputRows;
493  Index m_outputCols;
494
495  Index m_rowPaddingTop;
496  Index m_colPaddingLeft;
497
498  internal::TensorIntDivisor<Index> m_fastOutputRows;
499  internal::TensorIntDivisor<Index> m_fastOutputDepth;
500
501  Scalar m_paddingValue;
502
503  TensorEvaluator<ArgType, Device> m_impl;
504};
505
506
507} // end namespace Eigen
508
509#endif // EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
510