1
2/* @(#)e_jn.c 1.4 95/01/18 */
3/*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 *
7 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
12 */
13
14/*
15 * __ieee754_jn(n, x), __ieee754_yn(n, x)
16 * floating point Bessel's function of the 1st and 2nd kind
17 * of order n
18 *
19 * Special cases:
20 *	y0(0)=ieee_y1(0)=ieee_yn(n,0) = -inf with division by zero signal;
21 *	y0(-ve)=ieee_y1(-ve)=ieee_yn(n,-ve) are NaN with invalid signal.
22 * Note 2. About ieee_jn(n,x), ieee_yn(n,x)
23 *	For n=0, ieee_j0(x) is called,
24 *	for n=1, ieee_j1(x) is called,
25 *	for n<x, forward recursion us used starting
26 *	from values of ieee_j0(x) and ieee_j1(x).
27 *	for n>x, a continued fraction approximation to
28 *	j(n,x)/j(n-1,x) is evaluated and then backward
29 *	recursion is used starting from a supposed value
30 *	for j(n,x). The resulting value of j(0,x) is
31 *	compared with the actual value to correct the
32 *	supposed value of j(n,x).
33 *
34 *	yn(n,x) is similar in all respects, except
35 *	that forward recursion is used for all
36 *	values of n>1.
37 *
38 */
39
40#include "fdlibm.h"
41
42#ifdef __STDC__
43static const double
44#else
45static double
46#endif
47invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
48two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
49one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
50
51static double zero  =  0.00000000000000000000e+00;
52
53#ifdef __STDC__
54	double __ieee754_jn(int n, double x)
55#else
56	double __ieee754_jn(n,x)
57	int n; double x;
58#endif
59{
60	int i,hx,ix,lx, sgn;
61	double a, b, temp, di;
62	double z, w;
63
64    /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
65     * Thus, J(-n,x) = J(n,-x)
66     */
67	hx = __HI(x);
68	ix = 0x7fffffff&hx;
69	lx = __LO(x);
70    /* if J(n,NaN) is NaN */
71	if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
72	if(n<0){
73		n = -n;
74		x = -x;
75		hx ^= 0x80000000;
76	}
77	if(n==0) return(__ieee754_j0(x));
78	if(n==1) return(__ieee754_j1(x));
79	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
80	x = ieee_fabs(x);
81	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
82	    b = zero;
83	else if((double)n<=x) {
84		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
85	    if(ix>=0x52D00000) { /* x > 2**302 */
86    /* (x >> n**2)
87     *	    Jn(x) = ieee_cos(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
88     *	    Yn(x) = ieee_sin(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
89     *	    Let s=ieee_sin(x), c=ieee_cos(x),
90     *		xn=x-(2n+1)*pi/4, sqt2 = ieee_sqrt(2),then
91     *
92     *		   n	sin(xn)*sqt2	cos(xn)*sqt2
93     *		----------------------------------
94     *		   0	 s-c		 c+s
95     *		   1	-s-c 		-c+s
96     *		   2	-s+c		-c-s
97     *		   3	 s+c		 c-s
98     */
99		switch(n&3) {
100		    case 0: temp =  ieee_cos(x)+ieee_sin(x); break;
101		    case 1: temp = -ieee_cos(x)+ieee_sin(x); break;
102		    case 2: temp = -ieee_cos(x)-ieee_sin(x); break;
103		    case 3: temp =  ieee_cos(x)-ieee_sin(x); break;
104		}
105		b = invsqrtpi*temp/ieee_sqrt(x);
106	    } else {
107	        a = __ieee754_j0(x);
108	        b = __ieee754_j1(x);
109	        for(i=1;i<n;i++){
110		    temp = b;
111		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
112		    a = temp;
113	        }
114	    }
115	} else {
116	    if(ix<0x3e100000) {	/* x < 2**-29 */
117    /* x is tiny, return the first Taylor expansion of J(n,x)
118     * J(n,x) = 1/n!*(x/2)^n  - ...
119     */
120		if(n>33)	/* underflow */
121		    b = zero;
122		else {
123		    temp = x*0.5; b = temp;
124		    for (a=one,i=2;i<=n;i++) {
125			a *= (double)i;		/* a = n! */
126			b *= temp;		/* b = (x/2)^n */
127		    }
128		    b = b/a;
129		}
130	    } else {
131		/* use backward recurrence */
132		/* 			x      x^2      x^2
133		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
134		 *			2n  - 2(n+1) - 2(n+2)
135		 *
136		 * 			1      1        1
137		 *  (for large x)   =  ----  ------   ------   .....
138		 *			2n   2(n+1)   2(n+2)
139		 *			-- - ------ - ------ -
140		 *			 x     x         x
141		 *
142		 * Let w = 2n/x and h=2/x, then the above quotient
143		 * is equal to the continued fraction:
144		 *		    1
145		 *	= -----------------------
146		 *		       1
147		 *	   w - -----------------
148		 *			  1
149		 * 	        w+h - ---------
150		 *		       w+2h - ...
151		 *
152		 * To determine how many terms needed, let
153		 * Q(0) = w, Q(1) = w(w+h) - 1,
154		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
155		 * When Q(k) > 1e4	good for single
156		 * When Q(k) > 1e9	good for double
157		 * When Q(k) > 1e17	good for quadruple
158		 */
159	    /* determine k */
160		double t,v;
161		double q0,q1,h,tmp; int k,m;
162		w  = (n+n)/(double)x; h = 2.0/(double)x;
163		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
164		while(q1<1.0e9) {
165			k += 1; z += h;
166			tmp = z*q1 - q0;
167			q0 = q1;
168			q1 = tmp;
169		}
170		m = n+n;
171		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
172		a = t;
173		b = one;
174		/*  estimate ieee_log((2/x)^n*n!) = n*ieee_log(2/x)+n*ln(n)
175		 *  Hence, if n*(ieee_log(2n/x)) > ...
176		 *  single 8.8722839355e+01
177		 *  double 7.09782712893383973096e+02
178		 *  long double 1.1356523406294143949491931077970765006170e+04
179		 *  then recurrent value may overflow and the result is
180		 *  likely underflow to zero
181		 */
182		tmp = n;
183		v = two/x;
184		tmp = tmp*__ieee754_log(ieee_fabs(v*tmp));
185		if(tmp<7.09782712893383973096e+02) {
186	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
187		        temp = b;
188			b *= di;
189			b  = b/x - a;
190		        a = temp;
191			di -= two;
192	     	    }
193		} else {
194	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
195		        temp = b;
196			b *= di;
197			b  = b/x - a;
198		        a = temp;
199			di -= two;
200		    /* scale b to avoid spurious overflow */
201			if(b>1e100) {
202			    a /= b;
203			    t /= b;
204			    b  = one;
205			}
206	     	    }
207		}
208	    	b = (t*__ieee754_j0(x)/b);
209	    }
210	}
211	if(sgn==1) return -b; else return b;
212}
213
214#ifdef __STDC__
215	double __ieee754_yn(int n, double x)
216#else
217	double __ieee754_yn(n,x)
218	int n; double x;
219#endif
220{
221	int i,hx,ix,lx;
222	int sign;
223	double a, b, temp;
224
225	hx = __HI(x);
226	ix = 0x7fffffff&hx;
227	lx = __LO(x);
228    /* if Y(n,NaN) is NaN */
229	if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
230	if((ix|lx)==0) return -one/zero;
231	if(hx<0) return zero/zero;
232	sign = 1;
233	if(n<0){
234		n = -n;
235		sign = 1 - ((n&1)<<1);
236	}
237	if(n==0) return(__ieee754_y0(x));
238	if(n==1) return(sign*__ieee754_y1(x));
239	if(ix==0x7ff00000) return zero;
240	if(ix>=0x52D00000) { /* x > 2**302 */
241    /* (x >> n**2)
242     *	    Jn(x) = ieee_cos(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
243     *	    Yn(x) = ieee_sin(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
244     *	    Let s=ieee_sin(x), c=ieee_cos(x),
245     *		xn=x-(2n+1)*pi/4, sqt2 = ieee_sqrt(2),then
246     *
247     *		   n	sin(xn)*sqt2	cos(xn)*sqt2
248     *		----------------------------------
249     *		   0	 s-c		 c+s
250     *		   1	-s-c 		-c+s
251     *		   2	-s+c		-c-s
252     *		   3	 s+c		 c-s
253     */
254		switch(n&3) {
255		    case 0: temp =  ieee_sin(x)-ieee_cos(x); break;
256		    case 1: temp = -ieee_sin(x)-ieee_cos(x); break;
257		    case 2: temp = -ieee_sin(x)+ieee_cos(x); break;
258		    case 3: temp =  ieee_sin(x)+ieee_cos(x); break;
259		}
260		b = invsqrtpi*temp/ieee_sqrt(x);
261	} else {
262	    a = __ieee754_y0(x);
263	    b = __ieee754_y1(x);
264	/* quit if b is -inf */
265	    for(i=1;i<n&&(__HI(b) != 0xfff00000);i++){
266		temp = b;
267		b = ((double)(i+i)/x)*b - a;
268		a = temp;
269	    }
270	}
271	if(sign>0) return b; else return -b;
272}
273