1/* The guts of the Reed-Solomon decoder, meant to be #included
2 * into a function body with the following typedefs, macros and variables supplied
3 * according to the code parameters:
4
5 * data_t - a typedef for the data symbol
6 * data_t data[] - array of NN data and parity symbols to be corrected in place
7 * retval - an integer lvalue into which the decoder's return code is written
8 * NROOTS - the number of roots in the RS code generator polynomial,
9 *          which is the same as the number of parity symbols in a block.
10            Integer variable or literal.
11 * NN - the total number of symbols in a RS block. Integer variable or literal.
12 * PAD - the number of pad symbols in a block. Integer variable or literal.
13 * ALPHA_TO - The address of an array of NN elements to convert Galois field
14 *            elements in index (log) form to polynomial form. Read only.
15 * INDEX_OF - The address of an array of NN elements to convert Galois field
16 *            elements in polynomial form to index (log) form. Read only.
17 * MODNN - a function to reduce its argument modulo NN. May be inline or a macro.
18 * FCR - An integer literal or variable specifying the first consecutive root of the
19 *       Reed-Solomon generator polynomial. Integer variable or literal.
20 * PRIM - The primitive root of the generator poly. Integer variable or literal.
21 * DEBUG - If set to 1 or more, do various internal consistency checking. Leave this
22 *         undefined for production code
23
24 * The memset(), memmove(), and memcpy() functions are used. The appropriate header
25 * file declaring these functions (usually <string.h>) must be included by the calling
26 * program.
27 */
28
29
30#if !defined(NROOTS)
31#error "NROOTS not defined"
32#endif
33
34#if !defined(NN)
35#error "NN not defined"
36#endif
37
38#if !defined(PAD)
39#error "PAD not defined"
40#endif
41
42#if !defined(ALPHA_TO)
43#error "ALPHA_TO not defined"
44#endif
45
46#if !defined(INDEX_OF)
47#error "INDEX_OF not defined"
48#endif
49
50#if !defined(MODNN)
51#error "MODNN not defined"
52#endif
53
54#if !defined(FCR)
55#error "FCR not defined"
56#endif
57
58#if !defined(PRIM)
59#error "PRIM not defined"
60#endif
61
62#if !defined(NULL)
63#define NULL ((void *)0)
64#endif
65
66#undef MIN
67#define	MIN(a,b)	((a) < (b) ? (a) : (b))
68#undef A0
69#define A0 (NN)
70
71{
72  int deg_lambda, el, deg_omega;
73  int i, j, r,k;
74  data_t u,q,tmp,num1,num2,den,discr_r;
75  data_t lambda[NROOTS+1], s[NROOTS];	/* Err+Eras Locator poly
76					 * and syndrome poly */
77  data_t b[NROOTS+1], t[NROOTS+1], omega[NROOTS+1];
78  data_t root[NROOTS], reg[NROOTS+1], loc[NROOTS];
79  int syn_error, count;
80
81  /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
82  for(i=0;i<NROOTS;i++)
83    s[i] = data[0];
84
85  for(j=1;j<NN-PAD;j++){
86    for(i=0;i<NROOTS;i++){
87      if(s[i] == 0){
88	s[i] = data[j];
89      } else {
90	s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR+i)*PRIM)];
91      }
92    }
93  }
94
95  /* Convert syndromes to index form, checking for nonzero condition */
96  syn_error = 0;
97  for(i=0;i<NROOTS;i++){
98    syn_error |= s[i];
99    s[i] = INDEX_OF[s[i]];
100  }
101
102  if (!syn_error) {
103    /* if syndrome is zero, data[] is a codeword and there are no
104     * errors to correct. So return data[] unmodified
105     */
106    count = 0;
107    goto finish;
108  }
109  memset(&lambda[1],0,NROOTS*sizeof(lambda[0]));
110  lambda[0] = 1;
111
112  if (no_eras > 0) {
113    /* Init lambda to be the erasure locator polynomial */
114    lambda[1] = ALPHA_TO[MODNN(PRIM*(NN-1-eras_pos[0]))];
115    for (i = 1; i < no_eras; i++) {
116      u = MODNN(PRIM*(NN-1-eras_pos[i]));
117      for (j = i+1; j > 0; j--) {
118	tmp = INDEX_OF[lambda[j - 1]];
119	if(tmp != A0)
120	  lambda[j] ^= ALPHA_TO[MODNN(u + tmp)];
121      }
122    }
123
124#if DEBUG >= 1
125    /* Test code that verifies the erasure locator polynomial just constructed
126       Needed only for decoder debugging. */
127
128    /* find roots of the erasure location polynomial */
129    for(i=1;i<=no_eras;i++)
130      reg[i] = INDEX_OF[lambda[i]];
131
132    count = 0;
133    for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
134      q = 1;
135      for (j = 1; j <= no_eras; j++)
136	if (reg[j] != A0) {
137	  reg[j] = MODNN(reg[j] + j);
138	  q ^= ALPHA_TO[reg[j]];
139	}
140      if (q != 0)
141	continue;
142      /* store root and error location number indices */
143      root[count] = i;
144      loc[count] = k;
145      count++;
146    }
147    if (count != no_eras) {
148      printf("count = %d no_eras = %d\n lambda(x) is WRONG\n",count,no_eras);
149      count = -1;
150      goto finish;
151    }
152#if DEBUG >= 2
153    printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
154    for (i = 0; i < count; i++)
155      printf("%d ", loc[i]);
156    printf("\n");
157#endif
158#endif
159  }
160  for(i=0;i<NROOTS+1;i++)
161    b[i] = INDEX_OF[lambda[i]];
162
163  /*
164   * Begin Berlekamp-Massey algorithm to determine error+erasure
165   * locator polynomial
166   */
167  r = no_eras;
168  el = no_eras;
169  while (++r <= NROOTS) {	/* r is the step number */
170    /* Compute discrepancy at the r-th step in poly-form */
171    discr_r = 0;
172    for (i = 0; i < r; i++){
173      if ((lambda[i] != 0) && (s[r-i-1] != A0)) {
174	discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r-i-1])];
175      }
176    }
177    discr_r = INDEX_OF[discr_r];	/* Index form */
178    if (discr_r == A0) {
179      /* 2 lines below: B(x) <-- x*B(x) */
180      memmove(&b[1],b,NROOTS*sizeof(b[0]));
181      b[0] = A0;
182    } else {
183      /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
184      t[0] = lambda[0];
185      for (i = 0 ; i < NROOTS; i++) {
186	if(b[i] != A0)
187	  t[i+1] = lambda[i+1] ^ ALPHA_TO[MODNN(discr_r + b[i])];
188	else
189	  t[i+1] = lambda[i+1];
190      }
191      if (2 * el <= r + no_eras - 1) {
192	el = r + no_eras - el;
193	/*
194	 * 2 lines below: B(x) <-- inv(discr_r) *
195	 * lambda(x)
196	 */
197	for (i = 0; i <= NROOTS; i++)
198	  b[i] = (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN);
199      } else {
200	/* 2 lines below: B(x) <-- x*B(x) */
201	memmove(&b[1],b,NROOTS*sizeof(b[0]));
202	b[0] = A0;
203      }
204      memcpy(lambda,t,(NROOTS+1)*sizeof(t[0]));
205    }
206  }
207
208  /* Convert lambda to index form and compute deg(lambda(x)) */
209  deg_lambda = 0;
210  for(i=0;i<NROOTS+1;i++){
211    lambda[i] = INDEX_OF[lambda[i]];
212    if(lambda[i] != A0)
213      deg_lambda = i;
214  }
215  /* Find roots of the error+erasure locator polynomial by Chien search */
216  memcpy(&reg[1],&lambda[1],NROOTS*sizeof(reg[0]));
217  count = 0;		/* Number of roots of lambda(x) */
218  for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
219    q = 1; /* lambda[0] is always 0 */
220    for (j = deg_lambda; j > 0; j--){
221      if (reg[j] != A0) {
222	reg[j] = MODNN(reg[j] + j);
223	q ^= ALPHA_TO[reg[j]];
224      }
225    }
226    if (q != 0)
227      continue; /* Not a root */
228    /* store root (index-form) and error location number */
229#if DEBUG>=2
230    printf("count %d root %d loc %d\n",count,i,k);
231#endif
232    root[count] = i;
233    loc[count] = k;
234    /* If we've already found max possible roots,
235     * abort the search to save time
236     */
237    if(++count == deg_lambda)
238      break;
239  }
240  if (deg_lambda != count) {
241    /*
242     * deg(lambda) unequal to number of roots => uncorrectable
243     * error detected
244     */
245    count = -1;
246    goto finish;
247  }
248  /*
249   * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
250   * x**NROOTS). in index form. Also find deg(omega).
251   */
252  deg_omega = deg_lambda-1;
253  for (i = 0; i <= deg_omega;i++){
254    tmp = 0;
255    for(j=i;j >= 0; j--){
256      if ((s[i - j] != A0) && (lambda[j] != A0))
257	tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])];
258    }
259    omega[i] = INDEX_OF[tmp];
260  }
261
262  /*
263   * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
264   * inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form
265   */
266  for (j = count-1; j >=0; j--) {
267    num1 = 0;
268    for (i = deg_omega; i >= 0; i--) {
269      if (omega[i] != A0)
270	num1  ^= ALPHA_TO[MODNN(omega[i] + i * root[j])];
271    }
272    num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)];
273    den = 0;
274
275    /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
276    for (i = MIN(deg_lambda,NROOTS-1) & ~1; i >= 0; i -=2) {
277      if(lambda[i+1] != A0)
278	den ^= ALPHA_TO[MODNN(lambda[i+1] + i * root[j])];
279    }
280#if DEBUG >= 1
281    if (den == 0) {
282      printf("\n ERROR: denominator = 0\n");
283      count = -1;
284      goto finish;
285    }
286#endif
287    /* Apply error to data */
288    if (num1 != 0 && loc[j] >= PAD) {
289      data[loc[j]-PAD] ^= ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])];
290    }
291  }
292 finish:
293  if(eras_pos != NULL){
294    for(i=0;i<count;i++)
295      eras_pos[i] = loc[i];
296  }
297  retval = count;
298}
299