1/* libFLAC - Free Lossless Audio Codec library 2 * Copyright (C) 2000-2009 Josh Coalson 3 * Copyright (C) 2011-2016 Xiph.Org Foundation 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * - Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 12 * - Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * - Neither the name of the Xiph.org Foundation nor the names of its 17 * contributors may be used to endorse or promote products derived from 18 * this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR 24 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 25 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 26 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 27 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 28 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 29 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 30 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33#ifdef HAVE_CONFIG_H 34# include <config.h> 35#endif 36 37#include <math.h> 38 39#include "FLAC/assert.h" 40#include "FLAC/format.h" 41#include "share/compat.h" 42#include "private/bitmath.h" 43#include "private/lpc.h" 44#include "private/macros.h" 45#if defined DEBUG || defined FLAC__OVERFLOW_DETECT || defined FLAC__OVERFLOW_DETECT_VERBOSE 46#include <stdio.h> 47#endif 48 49/* OPT: #undef'ing this may improve the speed on some architectures */ 50#define FLAC__LPC_UNROLLED_FILTER_LOOPS 51 52#ifndef FLAC__INTEGER_ONLY_LIBRARY 53 54#if defined(_MSC_VER) && (_MSC_VER < 1800) 55#include <float.h> 56static inline long int lround(double x) { 57 return (long)(x + _copysign(0.5, x)); 58} 59#elif !defined(HAVE_LROUND) && defined(__GNUC__) 60static inline long int lround(double x) { 61 return (long)(x + __builtin_copysign(0.5, x)); 62} 63/* If this fails, we are in the presence of a mid 90's compiler, move along... */ 64#endif 65 66void FLAC__lpc_window_data(const FLAC__int32 in[], const FLAC__real window[], FLAC__real out[], unsigned data_len) 67{ 68 unsigned i; 69 for(i = 0; i < data_len; i++) 70 out[i] = in[i] * window[i]; 71} 72 73void FLAC__lpc_compute_autocorrelation(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]) 74{ 75 /* a readable, but slower, version */ 76#if 0 77 FLAC__real d; 78 unsigned i; 79 80 FLAC__ASSERT(lag > 0); 81 FLAC__ASSERT(lag <= data_len); 82 83 /* 84 * Technically we should subtract the mean first like so: 85 * for(i = 0; i < data_len; i++) 86 * data[i] -= mean; 87 * but it appears not to make enough of a difference to matter, and 88 * most signals are already closely centered around zero 89 */ 90 while(lag--) { 91 for(i = lag, d = 0.0; i < data_len; i++) 92 d += data[i] * data[i - lag]; 93 autoc[lag] = d; 94 } 95#endif 96 97 /* 98 * this version tends to run faster because of better data locality 99 * ('data_len' is usually much larger than 'lag') 100 */ 101 FLAC__real d; 102 unsigned sample, coeff; 103 const unsigned limit = data_len - lag; 104 105 FLAC__ASSERT(lag > 0); 106 FLAC__ASSERT(lag <= data_len); 107 108 for(coeff = 0; coeff < lag; coeff++) 109 autoc[coeff] = 0.0; 110 for(sample = 0; sample <= limit; sample++) { 111 d = data[sample]; 112 for(coeff = 0; coeff < lag; coeff++) 113 autoc[coeff] += d * data[sample+coeff]; 114 } 115 for(; sample < data_len; sample++) { 116 d = data[sample]; 117 for(coeff = 0; coeff < data_len - sample; coeff++) 118 autoc[coeff] += d * data[sample+coeff]; 119 } 120} 121 122void FLAC__lpc_compute_lp_coefficients(const FLAC__real autoc[], unsigned *max_order, FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER], double error[]) 123{ 124 unsigned i, j; 125 double r, err, lpc[FLAC__MAX_LPC_ORDER]; 126 127 FLAC__ASSERT(0 != max_order); 128 FLAC__ASSERT(0 < *max_order); 129 FLAC__ASSERT(*max_order <= FLAC__MAX_LPC_ORDER); 130 FLAC__ASSERT(autoc[0] != 0.0); 131 132 err = autoc[0]; 133 134 for(i = 0; i < *max_order; i++) { 135 /* Sum up this iteration's reflection coefficient. */ 136 r = -autoc[i+1]; 137 for(j = 0; j < i; j++) 138 r -= lpc[j] * autoc[i-j]; 139 r /= err; 140 141 /* Update LPC coefficients and total error. */ 142 lpc[i]=r; 143 for(j = 0; j < (i>>1); j++) { 144 double tmp = lpc[j]; 145 lpc[j] += r * lpc[i-1-j]; 146 lpc[i-1-j] += r * tmp; 147 } 148 if(i & 1) 149 lpc[j] += lpc[j] * r; 150 151 err *= (1.0 - r * r); 152 153 /* save this order */ 154 for(j = 0; j <= i; j++) 155 lp_coeff[i][j] = (FLAC__real)(-lpc[j]); /* negate FIR filter coeff to get predictor coeff */ 156 error[i] = err; 157 158 /* see SF bug https://sourceforge.net/p/flac/bugs/234/ */ 159 if(err == 0.0) { 160 *max_order = i+1; 161 return; 162 } 163 } 164} 165 166int FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[], unsigned order, unsigned precision, FLAC__int32 qlp_coeff[], int *shift) 167{ 168 unsigned i; 169 double cmax; 170 FLAC__int32 qmax, qmin; 171 172 FLAC__ASSERT(precision > 0); 173 FLAC__ASSERT(precision >= FLAC__MIN_QLP_COEFF_PRECISION); 174 175 /* drop one bit for the sign; from here on out we consider only |lp_coeff[i]| */ 176 precision--; 177 qmax = 1 << precision; 178 qmin = -qmax; 179 qmax--; 180 181 /* calc cmax = max( |lp_coeff[i]| ) */ 182 cmax = 0.0; 183 for(i = 0; i < order; i++) { 184 const double d = fabs(lp_coeff[i]); 185 if(d > cmax) 186 cmax = d; 187 } 188 189 if(cmax <= 0.0) { 190 /* => coefficients are all 0, which means our constant-detect didn't work */ 191 return 2; 192 } 193 else { 194 const int max_shiftlimit = (1 << (FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN-1)) - 1; 195 const int min_shiftlimit = -max_shiftlimit - 1; 196 int log2cmax; 197 198 (void)frexp(cmax, &log2cmax); 199 log2cmax--; 200 *shift = (int)precision - log2cmax - 1; 201 202 if(*shift > max_shiftlimit) 203 *shift = max_shiftlimit; 204 else if(*shift < min_shiftlimit) 205 return 1; 206 } 207 208 if(*shift >= 0) { 209 double error = 0.0; 210 FLAC__int32 q; 211 for(i = 0; i < order; i++) { 212 error += lp_coeff[i] * (1 << *shift); 213 q = lround(error); 214 215#ifdef FLAC__OVERFLOW_DETECT 216 if(q > qmax+1) /* we expect q==qmax+1 occasionally due to rounding */ 217 fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q>qmax %d>%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmax,*shift,cmax,precision+1,i,lp_coeff[i]); 218 else if(q < qmin) 219 fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q<qmin %d<%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmin,*shift,cmax,precision+1,i,lp_coeff[i]); 220#endif 221 if(q > qmax) 222 q = qmax; 223 else if(q < qmin) 224 q = qmin; 225 error -= q; 226 qlp_coeff[i] = q; 227 } 228 } 229 /* negative shift is very rare but due to design flaw, negative shift is 230 * not allowed in the decoder, so it must be handled specially by scaling 231 * down coeffs 232 */ 233 else { 234 const int nshift = -(*shift); 235 double error = 0.0; 236 FLAC__int32 q; 237#ifdef DEBUG 238 fprintf(stderr,"FLAC__lpc_quantize_coefficients: negative shift=%d order=%u cmax=%f\n", *shift, order, cmax); 239#endif 240 for(i = 0; i < order; i++) { 241 error += lp_coeff[i] / (1 << nshift); 242 q = lround(error); 243#ifdef FLAC__OVERFLOW_DETECT 244 if(q > qmax+1) /* we expect q==qmax+1 occasionally due to rounding */ 245 fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q>qmax %d>%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmax,*shift,cmax,precision+1,i,lp_coeff[i]); 246 else if(q < qmin) 247 fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q<qmin %d<%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmin,*shift,cmax,precision+1,i,lp_coeff[i]); 248#endif 249 if(q > qmax) 250 q = qmax; 251 else if(q < qmin) 252 q = qmin; 253 error -= q; 254 qlp_coeff[i] = q; 255 } 256 *shift = 0; 257 } 258 259 return 0; 260} 261 262#if defined(_MSC_VER) 263// silence MSVC warnings about __restrict modifier 264#pragma warning ( disable : 4028 ) 265#endif 266 267void FLAC__lpc_compute_residual_from_qlp_coefficients(const FLAC__int32 * flac_restrict data, unsigned data_len, const FLAC__int32 * flac_restrict qlp_coeff, unsigned order, int lp_quantization, FLAC__int32 * flac_restrict residual) 268#if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS) 269{ 270 FLAC__int64 sumo; 271 unsigned i, j; 272 FLAC__int32 sum; 273 const FLAC__int32 *history; 274 275#ifdef FLAC__OVERFLOW_DETECT_VERBOSE 276 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization); 277 for(i=0;i<order;i++) 278 fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]); 279 fprintf(stderr,"\n"); 280#endif 281 FLAC__ASSERT(order > 0); 282 283 for(i = 0; i < data_len; i++) { 284 sumo = 0; 285 sum = 0; 286 history = data; 287 for(j = 0; j < order; j++) { 288 sum += qlp_coeff[j] * (*(--history)); 289 sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history); 290 if(sumo > 2147483647ll || sumo < -2147483648ll) 291 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%" PRId64 "\n",i,j,qlp_coeff[j],*history,sumo); 292 } 293 *(residual++) = *(data++) - (sum >> lp_quantization); 294 } 295 296 /* Here's a slower but clearer version: 297 for(i = 0; i < data_len; i++) { 298 sum = 0; 299 for(j = 0; j < order; j++) 300 sum += qlp_coeff[j] * data[i-j-1]; 301 residual[i] = data[i] - (sum >> lp_quantization); 302 } 303 */ 304} 305#else /* fully unrolled version for normal use */ 306{ 307 int i; 308 FLAC__int32 sum; 309 310 FLAC__ASSERT(order > 0); 311 FLAC__ASSERT(order <= 32); 312 313 /* 314 * We do unique versions up to 12th order since that's the subset limit. 315 * Also they are roughly ordered to match frequency of occurrence to 316 * minimize branching. 317 */ 318 if(order <= 12) { 319 if(order > 8) { 320 if(order > 10) { 321 if(order == 12) { 322 for(i = 0; i < (int)data_len; i++) { 323 sum = 0; 324 sum += qlp_coeff[11] * data[i-12]; 325 sum += qlp_coeff[10] * data[i-11]; 326 sum += qlp_coeff[9] * data[i-10]; 327 sum += qlp_coeff[8] * data[i-9]; 328 sum += qlp_coeff[7] * data[i-8]; 329 sum += qlp_coeff[6] * data[i-7]; 330 sum += qlp_coeff[5] * data[i-6]; 331 sum += qlp_coeff[4] * data[i-5]; 332 sum += qlp_coeff[3] * data[i-4]; 333 sum += qlp_coeff[2] * data[i-3]; 334 sum += qlp_coeff[1] * data[i-2]; 335 sum += qlp_coeff[0] * data[i-1]; 336 residual[i] = data[i] - (sum >> lp_quantization); 337 } 338 } 339 else { /* order == 11 */ 340 for(i = 0; i < (int)data_len; i++) { 341 sum = 0; 342 sum += qlp_coeff[10] * data[i-11]; 343 sum += qlp_coeff[9] * data[i-10]; 344 sum += qlp_coeff[8] * data[i-9]; 345 sum += qlp_coeff[7] * data[i-8]; 346 sum += qlp_coeff[6] * data[i-7]; 347 sum += qlp_coeff[5] * data[i-6]; 348 sum += qlp_coeff[4] * data[i-5]; 349 sum += qlp_coeff[3] * data[i-4]; 350 sum += qlp_coeff[2] * data[i-3]; 351 sum += qlp_coeff[1] * data[i-2]; 352 sum += qlp_coeff[0] * data[i-1]; 353 residual[i] = data[i] - (sum >> lp_quantization); 354 } 355 } 356 } 357 else { 358 if(order == 10) { 359 for(i = 0; i < (int)data_len; i++) { 360 sum = 0; 361 sum += qlp_coeff[9] * data[i-10]; 362 sum += qlp_coeff[8] * data[i-9]; 363 sum += qlp_coeff[7] * data[i-8]; 364 sum += qlp_coeff[6] * data[i-7]; 365 sum += qlp_coeff[5] * data[i-6]; 366 sum += qlp_coeff[4] * data[i-5]; 367 sum += qlp_coeff[3] * data[i-4]; 368 sum += qlp_coeff[2] * data[i-3]; 369 sum += qlp_coeff[1] * data[i-2]; 370 sum += qlp_coeff[0] * data[i-1]; 371 residual[i] = data[i] - (sum >> lp_quantization); 372 } 373 } 374 else { /* order == 9 */ 375 for(i = 0; i < (int)data_len; i++) { 376 sum = 0; 377 sum += qlp_coeff[8] * data[i-9]; 378 sum += qlp_coeff[7] * data[i-8]; 379 sum += qlp_coeff[6] * data[i-7]; 380 sum += qlp_coeff[5] * data[i-6]; 381 sum += qlp_coeff[4] * data[i-5]; 382 sum += qlp_coeff[3] * data[i-4]; 383 sum += qlp_coeff[2] * data[i-3]; 384 sum += qlp_coeff[1] * data[i-2]; 385 sum += qlp_coeff[0] * data[i-1]; 386 residual[i] = data[i] - (sum >> lp_quantization); 387 } 388 } 389 } 390 } 391 else if(order > 4) { 392 if(order > 6) { 393 if(order == 8) { 394 for(i = 0; i < (int)data_len; i++) { 395 sum = 0; 396 sum += qlp_coeff[7] * data[i-8]; 397 sum += qlp_coeff[6] * data[i-7]; 398 sum += qlp_coeff[5] * data[i-6]; 399 sum += qlp_coeff[4] * data[i-5]; 400 sum += qlp_coeff[3] * data[i-4]; 401 sum += qlp_coeff[2] * data[i-3]; 402 sum += qlp_coeff[1] * data[i-2]; 403 sum += qlp_coeff[0] * data[i-1]; 404 residual[i] = data[i] - (sum >> lp_quantization); 405 } 406 } 407 else { /* order == 7 */ 408 for(i = 0; i < (int)data_len; i++) { 409 sum = 0; 410 sum += qlp_coeff[6] * data[i-7]; 411 sum += qlp_coeff[5] * data[i-6]; 412 sum += qlp_coeff[4] * data[i-5]; 413 sum += qlp_coeff[3] * data[i-4]; 414 sum += qlp_coeff[2] * data[i-3]; 415 sum += qlp_coeff[1] * data[i-2]; 416 sum += qlp_coeff[0] * data[i-1]; 417 residual[i] = data[i] - (sum >> lp_quantization); 418 } 419 } 420 } 421 else { 422 if(order == 6) { 423 for(i = 0; i < (int)data_len; i++) { 424 sum = 0; 425 sum += qlp_coeff[5] * data[i-6]; 426 sum += qlp_coeff[4] * data[i-5]; 427 sum += qlp_coeff[3] * data[i-4]; 428 sum += qlp_coeff[2] * data[i-3]; 429 sum += qlp_coeff[1] * data[i-2]; 430 sum += qlp_coeff[0] * data[i-1]; 431 residual[i] = data[i] - (sum >> lp_quantization); 432 } 433 } 434 else { /* order == 5 */ 435 for(i = 0; i < (int)data_len; i++) { 436 sum = 0; 437 sum += qlp_coeff[4] * data[i-5]; 438 sum += qlp_coeff[3] * data[i-4]; 439 sum += qlp_coeff[2] * data[i-3]; 440 sum += qlp_coeff[1] * data[i-2]; 441 sum += qlp_coeff[0] * data[i-1]; 442 residual[i] = data[i] - (sum >> lp_quantization); 443 } 444 } 445 } 446 } 447 else { 448 if(order > 2) { 449 if(order == 4) { 450 for(i = 0; i < (int)data_len; i++) { 451 sum = 0; 452 sum += qlp_coeff[3] * data[i-4]; 453 sum += qlp_coeff[2] * data[i-3]; 454 sum += qlp_coeff[1] * data[i-2]; 455 sum += qlp_coeff[0] * data[i-1]; 456 residual[i] = data[i] - (sum >> lp_quantization); 457 } 458 } 459 else { /* order == 3 */ 460 for(i = 0; i < (int)data_len; i++) { 461 sum = 0; 462 sum += qlp_coeff[2] * data[i-3]; 463 sum += qlp_coeff[1] * data[i-2]; 464 sum += qlp_coeff[0] * data[i-1]; 465 residual[i] = data[i] - (sum >> lp_quantization); 466 } 467 } 468 } 469 else { 470 if(order == 2) { 471 for(i = 0; i < (int)data_len; i++) { 472 sum = 0; 473 sum += qlp_coeff[1] * data[i-2]; 474 sum += qlp_coeff[0] * data[i-1]; 475 residual[i] = data[i] - (sum >> lp_quantization); 476 } 477 } 478 else { /* order == 1 */ 479 for(i = 0; i < (int)data_len; i++) 480 residual[i] = data[i] - ((qlp_coeff[0] * data[i-1]) >> lp_quantization); 481 } 482 } 483 } 484 } 485 else { /* order > 12 */ 486 for(i = 0; i < (int)data_len; i++) { 487 sum = 0; 488 switch(order) { 489 case 32: sum += qlp_coeff[31] * data[i-32]; 490 case 31: sum += qlp_coeff[30] * data[i-31]; 491 case 30: sum += qlp_coeff[29] * data[i-30]; 492 case 29: sum += qlp_coeff[28] * data[i-29]; 493 case 28: sum += qlp_coeff[27] * data[i-28]; 494 case 27: sum += qlp_coeff[26] * data[i-27]; 495 case 26: sum += qlp_coeff[25] * data[i-26]; 496 case 25: sum += qlp_coeff[24] * data[i-25]; 497 case 24: sum += qlp_coeff[23] * data[i-24]; 498 case 23: sum += qlp_coeff[22] * data[i-23]; 499 case 22: sum += qlp_coeff[21] * data[i-22]; 500 case 21: sum += qlp_coeff[20] * data[i-21]; 501 case 20: sum += qlp_coeff[19] * data[i-20]; 502 case 19: sum += qlp_coeff[18] * data[i-19]; 503 case 18: sum += qlp_coeff[17] * data[i-18]; 504 case 17: sum += qlp_coeff[16] * data[i-17]; 505 case 16: sum += qlp_coeff[15] * data[i-16]; 506 case 15: sum += qlp_coeff[14] * data[i-15]; 507 case 14: sum += qlp_coeff[13] * data[i-14]; 508 case 13: sum += qlp_coeff[12] * data[i-13]; 509 sum += qlp_coeff[11] * data[i-12]; 510 sum += qlp_coeff[10] * data[i-11]; 511 sum += qlp_coeff[ 9] * data[i-10]; 512 sum += qlp_coeff[ 8] * data[i- 9]; 513 sum += qlp_coeff[ 7] * data[i- 8]; 514 sum += qlp_coeff[ 6] * data[i- 7]; 515 sum += qlp_coeff[ 5] * data[i- 6]; 516 sum += qlp_coeff[ 4] * data[i- 5]; 517 sum += qlp_coeff[ 3] * data[i- 4]; 518 sum += qlp_coeff[ 2] * data[i- 3]; 519 sum += qlp_coeff[ 1] * data[i- 2]; 520 sum += qlp_coeff[ 0] * data[i- 1]; 521 } 522 residual[i] = data[i] - (sum >> lp_quantization); 523 } 524 } 525} 526#endif 527 528void FLAC__lpc_compute_residual_from_qlp_coefficients_wide(const FLAC__int32 * flac_restrict data, unsigned data_len, const FLAC__int32 * flac_restrict qlp_coeff, unsigned order, int lp_quantization, FLAC__int32 * flac_restrict residual) 529#if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS) 530{ 531 unsigned i, j; 532 FLAC__int64 sum; 533 const FLAC__int32 *history; 534 535#ifdef FLAC__OVERFLOW_DETECT_VERBOSE 536 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization); 537 for(i=0;i<order;i++) 538 fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]); 539 fprintf(stderr,"\n"); 540#endif 541 FLAC__ASSERT(order > 0); 542 543 for(i = 0; i < data_len; i++) { 544 sum = 0; 545 history = data; 546 for(j = 0; j < order; j++) 547 sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history)); 548 if(FLAC__bitmath_silog2(sum >> lp_quantization) > 32) { 549 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, sum=%" PRId64 "\n", i, (sum >> lp_quantization)); 550 break; 551 } 552 if(FLAC__bitmath_silog2((FLAC__int64)(*data) - (sum >> lp_quantization)) > 32) { 553 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, data=%d, sum=%" PRId64 ", residual=%" PRId64 "\n", i, *data, (int64_t)(sum >> lp_quantization), ((FLAC__int64)(*data) - (sum >> lp_quantization))); 554 break; 555 } 556 *(residual++) = *(data++) - (FLAC__int32)(sum >> lp_quantization); 557 } 558} 559#else /* fully unrolled version for normal use */ 560{ 561 int i; 562 FLAC__int64 sum; 563 564 FLAC__ASSERT(order > 0); 565 FLAC__ASSERT(order <= 32); 566 567 /* 568 * We do unique versions up to 12th order since that's the subset limit. 569 * Also they are roughly ordered to match frequency of occurrence to 570 * minimize branching. 571 */ 572 if(order <= 12) { 573 if(order > 8) { 574 if(order > 10) { 575 if(order == 12) { 576 for(i = 0; i < (int)data_len; i++) { 577 sum = 0; 578 sum += qlp_coeff[11] * (FLAC__int64)data[i-12]; 579 sum += qlp_coeff[10] * (FLAC__int64)data[i-11]; 580 sum += qlp_coeff[9] * (FLAC__int64)data[i-10]; 581 sum += qlp_coeff[8] * (FLAC__int64)data[i-9]; 582 sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; 583 sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; 584 sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; 585 sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; 586 sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; 587 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 588 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 589 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 590 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); 591 } 592 } 593 else { /* order == 11 */ 594 for(i = 0; i < (int)data_len; i++) { 595 sum = 0; 596 sum += qlp_coeff[10] * (FLAC__int64)data[i-11]; 597 sum += qlp_coeff[9] * (FLAC__int64)data[i-10]; 598 sum += qlp_coeff[8] * (FLAC__int64)data[i-9]; 599 sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; 600 sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; 601 sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; 602 sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; 603 sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; 604 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 605 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 606 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 607 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); 608 } 609 } 610 } 611 else { 612 if(order == 10) { 613 for(i = 0; i < (int)data_len; i++) { 614 sum = 0; 615 sum += qlp_coeff[9] * (FLAC__int64)data[i-10]; 616 sum += qlp_coeff[8] * (FLAC__int64)data[i-9]; 617 sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; 618 sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; 619 sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; 620 sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; 621 sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; 622 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 623 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 624 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 625 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); 626 } 627 } 628 else { /* order == 9 */ 629 for(i = 0; i < (int)data_len; i++) { 630 sum = 0; 631 sum += qlp_coeff[8] * (FLAC__int64)data[i-9]; 632 sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; 633 sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; 634 sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; 635 sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; 636 sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; 637 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 638 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 639 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 640 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); 641 } 642 } 643 } 644 } 645 else if(order > 4) { 646 if(order > 6) { 647 if(order == 8) { 648 for(i = 0; i < (int)data_len; i++) { 649 sum = 0; 650 sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; 651 sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; 652 sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; 653 sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; 654 sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; 655 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 656 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 657 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 658 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); 659 } 660 } 661 else { /* order == 7 */ 662 for(i = 0; i < (int)data_len; i++) { 663 sum = 0; 664 sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; 665 sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; 666 sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; 667 sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; 668 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 669 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 670 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 671 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); 672 } 673 } 674 } 675 else { 676 if(order == 6) { 677 for(i = 0; i < (int)data_len; i++) { 678 sum = 0; 679 sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; 680 sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; 681 sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; 682 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 683 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 684 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 685 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); 686 } 687 } 688 else { /* order == 5 */ 689 for(i = 0; i < (int)data_len; i++) { 690 sum = 0; 691 sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; 692 sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; 693 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 694 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 695 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 696 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); 697 } 698 } 699 } 700 } 701 else { 702 if(order > 2) { 703 if(order == 4) { 704 for(i = 0; i < (int)data_len; i++) { 705 sum = 0; 706 sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; 707 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 708 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 709 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 710 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); 711 } 712 } 713 else { /* order == 3 */ 714 for(i = 0; i < (int)data_len; i++) { 715 sum = 0; 716 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 717 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 718 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 719 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); 720 } 721 } 722 } 723 else { 724 if(order == 2) { 725 for(i = 0; i < (int)data_len; i++) { 726 sum = 0; 727 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 728 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 729 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); 730 } 731 } 732 else { /* order == 1 */ 733 for(i = 0; i < (int)data_len; i++) 734 residual[i] = data[i] - (FLAC__int32)((qlp_coeff[0] * (FLAC__int64)data[i-1]) >> lp_quantization); 735 } 736 } 737 } 738 } 739 else { /* order > 12 */ 740 for(i = 0; i < (int)data_len; i++) { 741 sum = 0; 742 switch(order) { 743 case 32: sum += qlp_coeff[31] * (FLAC__int64)data[i-32]; 744 case 31: sum += qlp_coeff[30] * (FLAC__int64)data[i-31]; 745 case 30: sum += qlp_coeff[29] * (FLAC__int64)data[i-30]; 746 case 29: sum += qlp_coeff[28] * (FLAC__int64)data[i-29]; 747 case 28: sum += qlp_coeff[27] * (FLAC__int64)data[i-28]; 748 case 27: sum += qlp_coeff[26] * (FLAC__int64)data[i-27]; 749 case 26: sum += qlp_coeff[25] * (FLAC__int64)data[i-26]; 750 case 25: sum += qlp_coeff[24] * (FLAC__int64)data[i-25]; 751 case 24: sum += qlp_coeff[23] * (FLAC__int64)data[i-24]; 752 case 23: sum += qlp_coeff[22] * (FLAC__int64)data[i-23]; 753 case 22: sum += qlp_coeff[21] * (FLAC__int64)data[i-22]; 754 case 21: sum += qlp_coeff[20] * (FLAC__int64)data[i-21]; 755 case 20: sum += qlp_coeff[19] * (FLAC__int64)data[i-20]; 756 case 19: sum += qlp_coeff[18] * (FLAC__int64)data[i-19]; 757 case 18: sum += qlp_coeff[17] * (FLAC__int64)data[i-18]; 758 case 17: sum += qlp_coeff[16] * (FLAC__int64)data[i-17]; 759 case 16: sum += qlp_coeff[15] * (FLAC__int64)data[i-16]; 760 case 15: sum += qlp_coeff[14] * (FLAC__int64)data[i-15]; 761 case 14: sum += qlp_coeff[13] * (FLAC__int64)data[i-14]; 762 case 13: sum += qlp_coeff[12] * (FLAC__int64)data[i-13]; 763 sum += qlp_coeff[11] * (FLAC__int64)data[i-12]; 764 sum += qlp_coeff[10] * (FLAC__int64)data[i-11]; 765 sum += qlp_coeff[ 9] * (FLAC__int64)data[i-10]; 766 sum += qlp_coeff[ 8] * (FLAC__int64)data[i- 9]; 767 sum += qlp_coeff[ 7] * (FLAC__int64)data[i- 8]; 768 sum += qlp_coeff[ 6] * (FLAC__int64)data[i- 7]; 769 sum += qlp_coeff[ 5] * (FLAC__int64)data[i- 6]; 770 sum += qlp_coeff[ 4] * (FLAC__int64)data[i- 5]; 771 sum += qlp_coeff[ 3] * (FLAC__int64)data[i- 4]; 772 sum += qlp_coeff[ 2] * (FLAC__int64)data[i- 3]; 773 sum += qlp_coeff[ 1] * (FLAC__int64)data[i- 2]; 774 sum += qlp_coeff[ 0] * (FLAC__int64)data[i- 1]; 775 } 776 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); 777 } 778 } 779} 780#endif 781 782#endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */ 783 784void FLAC__lpc_restore_signal(const FLAC__int32 * flac_restrict residual, unsigned data_len, const FLAC__int32 * flac_restrict qlp_coeff, unsigned order, int lp_quantization, FLAC__int32 * flac_restrict data) 785#if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS) 786{ 787 FLAC__int64 sumo; 788 unsigned i, j; 789 FLAC__int32 sum; 790 const FLAC__int32 *r = residual, *history; 791 792#ifdef FLAC__OVERFLOW_DETECT_VERBOSE 793 fprintf(stderr,"FLAC__lpc_restore_signal: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization); 794 for(i=0;i<order;i++) 795 fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]); 796 fprintf(stderr,"\n"); 797#endif 798 FLAC__ASSERT(order > 0); 799 800 for(i = 0; i < data_len; i++) { 801 sumo = 0; 802 sum = 0; 803 history = data; 804 for(j = 0; j < order; j++) { 805 sum += qlp_coeff[j] * (*(--history)); 806 sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history); 807 if(sumo > 2147483647ll || sumo < -2147483648ll) 808 fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%" PRId64 "\n",i,j,qlp_coeff[j],*history,sumo); 809 } 810 *(data++) = *(r++) + (sum >> lp_quantization); 811 } 812 813 /* Here's a slower but clearer version: 814 for(i = 0; i < data_len; i++) { 815 sum = 0; 816 for(j = 0; j < order; j++) 817 sum += qlp_coeff[j] * data[i-j-1]; 818 data[i] = residual[i] + (sum >> lp_quantization); 819 } 820 */ 821} 822#else /* fully unrolled version for normal use */ 823{ 824 int i; 825 FLAC__int32 sum; 826 827 FLAC__ASSERT(order > 0); 828 FLAC__ASSERT(order <= 32); 829 830 /* 831 * We do unique versions up to 12th order since that's the subset limit. 832 * Also they are roughly ordered to match frequency of occurrence to 833 * minimize branching. 834 */ 835 if(order <= 12) { 836 if(order > 8) { 837 if(order > 10) { 838 if(order == 12) { 839 for(i = 0; i < (int)data_len; i++) { 840 sum = 0; 841 sum += qlp_coeff[11] * data[i-12]; 842 sum += qlp_coeff[10] * data[i-11]; 843 sum += qlp_coeff[9] * data[i-10]; 844 sum += qlp_coeff[8] * data[i-9]; 845 sum += qlp_coeff[7] * data[i-8]; 846 sum += qlp_coeff[6] * data[i-7]; 847 sum += qlp_coeff[5] * data[i-6]; 848 sum += qlp_coeff[4] * data[i-5]; 849 sum += qlp_coeff[3] * data[i-4]; 850 sum += qlp_coeff[2] * data[i-3]; 851 sum += qlp_coeff[1] * data[i-2]; 852 sum += qlp_coeff[0] * data[i-1]; 853 data[i] = residual[i] + (sum >> lp_quantization); 854 } 855 } 856 else { /* order == 11 */ 857 for(i = 0; i < (int)data_len; i++) { 858 sum = 0; 859 sum += qlp_coeff[10] * data[i-11]; 860 sum += qlp_coeff[9] * data[i-10]; 861 sum += qlp_coeff[8] * data[i-9]; 862 sum += qlp_coeff[7] * data[i-8]; 863 sum += qlp_coeff[6] * data[i-7]; 864 sum += qlp_coeff[5] * data[i-6]; 865 sum += qlp_coeff[4] * data[i-5]; 866 sum += qlp_coeff[3] * data[i-4]; 867 sum += qlp_coeff[2] * data[i-3]; 868 sum += qlp_coeff[1] * data[i-2]; 869 sum += qlp_coeff[0] * data[i-1]; 870 data[i] = residual[i] + (sum >> lp_quantization); 871 } 872 } 873 } 874 else { 875 if(order == 10) { 876 for(i = 0; i < (int)data_len; i++) { 877 sum = 0; 878 sum += qlp_coeff[9] * data[i-10]; 879 sum += qlp_coeff[8] * data[i-9]; 880 sum += qlp_coeff[7] * data[i-8]; 881 sum += qlp_coeff[6] * data[i-7]; 882 sum += qlp_coeff[5] * data[i-6]; 883 sum += qlp_coeff[4] * data[i-5]; 884 sum += qlp_coeff[3] * data[i-4]; 885 sum += qlp_coeff[2] * data[i-3]; 886 sum += qlp_coeff[1] * data[i-2]; 887 sum += qlp_coeff[0] * data[i-1]; 888 data[i] = residual[i] + (sum >> lp_quantization); 889 } 890 } 891 else { /* order == 9 */ 892 for(i = 0; i < (int)data_len; i++) { 893 sum = 0; 894 sum += qlp_coeff[8] * data[i-9]; 895 sum += qlp_coeff[7] * data[i-8]; 896 sum += qlp_coeff[6] * data[i-7]; 897 sum += qlp_coeff[5] * data[i-6]; 898 sum += qlp_coeff[4] * data[i-5]; 899 sum += qlp_coeff[3] * data[i-4]; 900 sum += qlp_coeff[2] * data[i-3]; 901 sum += qlp_coeff[1] * data[i-2]; 902 sum += qlp_coeff[0] * data[i-1]; 903 data[i] = residual[i] + (sum >> lp_quantization); 904 } 905 } 906 } 907 } 908 else if(order > 4) { 909 if(order > 6) { 910 if(order == 8) { 911 for(i = 0; i < (int)data_len; i++) { 912 sum = 0; 913 sum += qlp_coeff[7] * data[i-8]; 914 sum += qlp_coeff[6] * data[i-7]; 915 sum += qlp_coeff[5] * data[i-6]; 916 sum += qlp_coeff[4] * data[i-5]; 917 sum += qlp_coeff[3] * data[i-4]; 918 sum += qlp_coeff[2] * data[i-3]; 919 sum += qlp_coeff[1] * data[i-2]; 920 sum += qlp_coeff[0] * data[i-1]; 921 data[i] = residual[i] + (sum >> lp_quantization); 922 } 923 } 924 else { /* order == 7 */ 925 for(i = 0; i < (int)data_len; i++) { 926 sum = 0; 927 sum += qlp_coeff[6] * data[i-7]; 928 sum += qlp_coeff[5] * data[i-6]; 929 sum += qlp_coeff[4] * data[i-5]; 930 sum += qlp_coeff[3] * data[i-4]; 931 sum += qlp_coeff[2] * data[i-3]; 932 sum += qlp_coeff[1] * data[i-2]; 933 sum += qlp_coeff[0] * data[i-1]; 934 data[i] = residual[i] + (sum >> lp_quantization); 935 } 936 } 937 } 938 else { 939 if(order == 6) { 940 for(i = 0; i < (int)data_len; i++) { 941 sum = 0; 942 sum += qlp_coeff[5] * data[i-6]; 943 sum += qlp_coeff[4] * data[i-5]; 944 sum += qlp_coeff[3] * data[i-4]; 945 sum += qlp_coeff[2] * data[i-3]; 946 sum += qlp_coeff[1] * data[i-2]; 947 sum += qlp_coeff[0] * data[i-1]; 948 data[i] = residual[i] + (sum >> lp_quantization); 949 } 950 } 951 else { /* order == 5 */ 952 for(i = 0; i < (int)data_len; i++) { 953 sum = 0; 954 sum += qlp_coeff[4] * data[i-5]; 955 sum += qlp_coeff[3] * data[i-4]; 956 sum += qlp_coeff[2] * data[i-3]; 957 sum += qlp_coeff[1] * data[i-2]; 958 sum += qlp_coeff[0] * data[i-1]; 959 data[i] = residual[i] + (sum >> lp_quantization); 960 } 961 } 962 } 963 } 964 else { 965 if(order > 2) { 966 if(order == 4) { 967 for(i = 0; i < (int)data_len; i++) { 968 sum = 0; 969 sum += qlp_coeff[3] * data[i-4]; 970 sum += qlp_coeff[2] * data[i-3]; 971 sum += qlp_coeff[1] * data[i-2]; 972 sum += qlp_coeff[0] * data[i-1]; 973 data[i] = residual[i] + (sum >> lp_quantization); 974 } 975 } 976 else { /* order == 3 */ 977 for(i = 0; i < (int)data_len; i++) { 978 sum = 0; 979 sum += qlp_coeff[2] * data[i-3]; 980 sum += qlp_coeff[1] * data[i-2]; 981 sum += qlp_coeff[0] * data[i-1]; 982 data[i] = residual[i] + (sum >> lp_quantization); 983 } 984 } 985 } 986 else { 987 if(order == 2) { 988 for(i = 0; i < (int)data_len; i++) { 989 sum = 0; 990 sum += qlp_coeff[1] * data[i-2]; 991 sum += qlp_coeff[0] * data[i-1]; 992 data[i] = residual[i] + (sum >> lp_quantization); 993 } 994 } 995 else { /* order == 1 */ 996 for(i = 0; i < (int)data_len; i++) 997 data[i] = residual[i] + ((qlp_coeff[0] * data[i-1]) >> lp_quantization); 998 } 999 } 1000 } 1001 } 1002 else { /* order > 12 */ 1003 for(i = 0; i < (int)data_len; i++) { 1004 sum = 0; 1005 switch(order) { 1006 case 32: sum += qlp_coeff[31] * data[i-32]; 1007 case 31: sum += qlp_coeff[30] * data[i-31]; 1008 case 30: sum += qlp_coeff[29] * data[i-30]; 1009 case 29: sum += qlp_coeff[28] * data[i-29]; 1010 case 28: sum += qlp_coeff[27] * data[i-28]; 1011 case 27: sum += qlp_coeff[26] * data[i-27]; 1012 case 26: sum += qlp_coeff[25] * data[i-26]; 1013 case 25: sum += qlp_coeff[24] * data[i-25]; 1014 case 24: sum += qlp_coeff[23] * data[i-24]; 1015 case 23: sum += qlp_coeff[22] * data[i-23]; 1016 case 22: sum += qlp_coeff[21] * data[i-22]; 1017 case 21: sum += qlp_coeff[20] * data[i-21]; 1018 case 20: sum += qlp_coeff[19] * data[i-20]; 1019 case 19: sum += qlp_coeff[18] * data[i-19]; 1020 case 18: sum += qlp_coeff[17] * data[i-18]; 1021 case 17: sum += qlp_coeff[16] * data[i-17]; 1022 case 16: sum += qlp_coeff[15] * data[i-16]; 1023 case 15: sum += qlp_coeff[14] * data[i-15]; 1024 case 14: sum += qlp_coeff[13] * data[i-14]; 1025 case 13: sum += qlp_coeff[12] * data[i-13]; 1026 sum += qlp_coeff[11] * data[i-12]; 1027 sum += qlp_coeff[10] * data[i-11]; 1028 sum += qlp_coeff[ 9] * data[i-10]; 1029 sum += qlp_coeff[ 8] * data[i- 9]; 1030 sum += qlp_coeff[ 7] * data[i- 8]; 1031 sum += qlp_coeff[ 6] * data[i- 7]; 1032 sum += qlp_coeff[ 5] * data[i- 6]; 1033 sum += qlp_coeff[ 4] * data[i- 5]; 1034 sum += qlp_coeff[ 3] * data[i- 4]; 1035 sum += qlp_coeff[ 2] * data[i- 3]; 1036 sum += qlp_coeff[ 1] * data[i- 2]; 1037 sum += qlp_coeff[ 0] * data[i- 1]; 1038 } 1039 data[i] = residual[i] + (sum >> lp_quantization); 1040 } 1041 } 1042} 1043#endif 1044 1045void FLAC__lpc_restore_signal_wide(const FLAC__int32 * flac_restrict residual, unsigned data_len, const FLAC__int32 * flac_restrict qlp_coeff, unsigned order, int lp_quantization, FLAC__int32 * flac_restrict data) 1046#if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS) 1047{ 1048 unsigned i, j; 1049 FLAC__int64 sum; 1050 const FLAC__int32 *r = residual, *history; 1051 1052#ifdef FLAC__OVERFLOW_DETECT_VERBOSE 1053 fprintf(stderr,"FLAC__lpc_restore_signal_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization); 1054 for(i=0;i<order;i++) 1055 fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]); 1056 fprintf(stderr,"\n"); 1057#endif 1058 FLAC__ASSERT(order > 0); 1059 1060 for(i = 0; i < data_len; i++) { 1061 sum = 0; 1062 history = data; 1063 for(j = 0; j < order; j++) 1064 sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history)); 1065 if(FLAC__bitmath_silog2(sum >> lp_quantization) > 32) { 1066 fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, sum=%" PRId64 "\n", i, (sum >> lp_quantization)); 1067 break; 1068 } 1069 if(FLAC__bitmath_silog2((FLAC__int64)(*r) + (sum >> lp_quantization)) > 32) { 1070 fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, residual=%d, sum=%" PRId64 ", data=%" PRId64 "\n", i, *r, (sum >> lp_quantization), ((FLAC__int64)(*r) + (sum >> lp_quantization))); 1071 break; 1072 } 1073 *(data++) = *(r++) + (FLAC__int32)(sum >> lp_quantization); 1074 } 1075} 1076#else /* fully unrolled version for normal use */ 1077{ 1078 int i; 1079 FLAC__int64 sum; 1080 1081 FLAC__ASSERT(order > 0); 1082 FLAC__ASSERT(order <= 32); 1083 1084 /* 1085 * We do unique versions up to 12th order since that's the subset limit. 1086 * Also they are roughly ordered to match frequency of occurrence to 1087 * minimize branching. 1088 */ 1089 if(order <= 12) { 1090 if(order > 8) { 1091 if(order > 10) { 1092 if(order == 12) { 1093 for(i = 0; i < (int)data_len; i++) { 1094 sum = 0; 1095 sum += qlp_coeff[11] * (FLAC__int64)data[i-12]; 1096 sum += qlp_coeff[10] * (FLAC__int64)data[i-11]; 1097 sum += qlp_coeff[9] * (FLAC__int64)data[i-10]; 1098 sum += qlp_coeff[8] * (FLAC__int64)data[i-9]; 1099 sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; 1100 sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; 1101 sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; 1102 sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; 1103 sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; 1104 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 1105 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 1106 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 1107 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); 1108 } 1109 } 1110 else { /* order == 11 */ 1111 for(i = 0; i < (int)data_len; i++) { 1112 sum = 0; 1113 sum += qlp_coeff[10] * (FLAC__int64)data[i-11]; 1114 sum += qlp_coeff[9] * (FLAC__int64)data[i-10]; 1115 sum += qlp_coeff[8] * (FLAC__int64)data[i-9]; 1116 sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; 1117 sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; 1118 sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; 1119 sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; 1120 sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; 1121 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 1122 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 1123 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 1124 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); 1125 } 1126 } 1127 } 1128 else { 1129 if(order == 10) { 1130 for(i = 0; i < (int)data_len; i++) { 1131 sum = 0; 1132 sum += qlp_coeff[9] * (FLAC__int64)data[i-10]; 1133 sum += qlp_coeff[8] * (FLAC__int64)data[i-9]; 1134 sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; 1135 sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; 1136 sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; 1137 sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; 1138 sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; 1139 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 1140 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 1141 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 1142 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); 1143 } 1144 } 1145 else { /* order == 9 */ 1146 for(i = 0; i < (int)data_len; i++) { 1147 sum = 0; 1148 sum += qlp_coeff[8] * (FLAC__int64)data[i-9]; 1149 sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; 1150 sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; 1151 sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; 1152 sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; 1153 sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; 1154 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 1155 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 1156 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 1157 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); 1158 } 1159 } 1160 } 1161 } 1162 else if(order > 4) { 1163 if(order > 6) { 1164 if(order == 8) { 1165 for(i = 0; i < (int)data_len; i++) { 1166 sum = 0; 1167 sum += qlp_coeff[7] * (FLAC__int64)data[i-8]; 1168 sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; 1169 sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; 1170 sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; 1171 sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; 1172 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 1173 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 1174 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 1175 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); 1176 } 1177 } 1178 else { /* order == 7 */ 1179 for(i = 0; i < (int)data_len; i++) { 1180 sum = 0; 1181 sum += qlp_coeff[6] * (FLAC__int64)data[i-7]; 1182 sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; 1183 sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; 1184 sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; 1185 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 1186 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 1187 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 1188 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); 1189 } 1190 } 1191 } 1192 else { 1193 if(order == 6) { 1194 for(i = 0; i < (int)data_len; i++) { 1195 sum = 0; 1196 sum += qlp_coeff[5] * (FLAC__int64)data[i-6]; 1197 sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; 1198 sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; 1199 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 1200 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 1201 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 1202 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); 1203 } 1204 } 1205 else { /* order == 5 */ 1206 for(i = 0; i < (int)data_len; i++) { 1207 sum = 0; 1208 sum += qlp_coeff[4] * (FLAC__int64)data[i-5]; 1209 sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; 1210 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 1211 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 1212 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 1213 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); 1214 } 1215 } 1216 } 1217 } 1218 else { 1219 if(order > 2) { 1220 if(order == 4) { 1221 for(i = 0; i < (int)data_len; i++) { 1222 sum = 0; 1223 sum += qlp_coeff[3] * (FLAC__int64)data[i-4]; 1224 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 1225 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 1226 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 1227 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); 1228 } 1229 } 1230 else { /* order == 3 */ 1231 for(i = 0; i < (int)data_len; i++) { 1232 sum = 0; 1233 sum += qlp_coeff[2] * (FLAC__int64)data[i-3]; 1234 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 1235 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 1236 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); 1237 } 1238 } 1239 } 1240 else { 1241 if(order == 2) { 1242 for(i = 0; i < (int)data_len; i++) { 1243 sum = 0; 1244 sum += qlp_coeff[1] * (FLAC__int64)data[i-2]; 1245 sum += qlp_coeff[0] * (FLAC__int64)data[i-1]; 1246 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); 1247 } 1248 } 1249 else { /* order == 1 */ 1250 for(i = 0; i < (int)data_len; i++) 1251 data[i] = residual[i] + (FLAC__int32)((qlp_coeff[0] * (FLAC__int64)data[i-1]) >> lp_quantization); 1252 } 1253 } 1254 } 1255 } 1256 else { /* order > 12 */ 1257 for(i = 0; i < (int)data_len; i++) { 1258 sum = 0; 1259 switch(order) { 1260 case 32: sum += qlp_coeff[31] * (FLAC__int64)data[i-32]; 1261 case 31: sum += qlp_coeff[30] * (FLAC__int64)data[i-31]; 1262 case 30: sum += qlp_coeff[29] * (FLAC__int64)data[i-30]; 1263 case 29: sum += qlp_coeff[28] * (FLAC__int64)data[i-29]; 1264 case 28: sum += qlp_coeff[27] * (FLAC__int64)data[i-28]; 1265 case 27: sum += qlp_coeff[26] * (FLAC__int64)data[i-27]; 1266 case 26: sum += qlp_coeff[25] * (FLAC__int64)data[i-26]; 1267 case 25: sum += qlp_coeff[24] * (FLAC__int64)data[i-25]; 1268 case 24: sum += qlp_coeff[23] * (FLAC__int64)data[i-24]; 1269 case 23: sum += qlp_coeff[22] * (FLAC__int64)data[i-23]; 1270 case 22: sum += qlp_coeff[21] * (FLAC__int64)data[i-22]; 1271 case 21: sum += qlp_coeff[20] * (FLAC__int64)data[i-21]; 1272 case 20: sum += qlp_coeff[19] * (FLAC__int64)data[i-20]; 1273 case 19: sum += qlp_coeff[18] * (FLAC__int64)data[i-19]; 1274 case 18: sum += qlp_coeff[17] * (FLAC__int64)data[i-18]; 1275 case 17: sum += qlp_coeff[16] * (FLAC__int64)data[i-17]; 1276 case 16: sum += qlp_coeff[15] * (FLAC__int64)data[i-16]; 1277 case 15: sum += qlp_coeff[14] * (FLAC__int64)data[i-15]; 1278 case 14: sum += qlp_coeff[13] * (FLAC__int64)data[i-14]; 1279 case 13: sum += qlp_coeff[12] * (FLAC__int64)data[i-13]; 1280 sum += qlp_coeff[11] * (FLAC__int64)data[i-12]; 1281 sum += qlp_coeff[10] * (FLAC__int64)data[i-11]; 1282 sum += qlp_coeff[ 9] * (FLAC__int64)data[i-10]; 1283 sum += qlp_coeff[ 8] * (FLAC__int64)data[i- 9]; 1284 sum += qlp_coeff[ 7] * (FLAC__int64)data[i- 8]; 1285 sum += qlp_coeff[ 6] * (FLAC__int64)data[i- 7]; 1286 sum += qlp_coeff[ 5] * (FLAC__int64)data[i- 6]; 1287 sum += qlp_coeff[ 4] * (FLAC__int64)data[i- 5]; 1288 sum += qlp_coeff[ 3] * (FLAC__int64)data[i- 4]; 1289 sum += qlp_coeff[ 2] * (FLAC__int64)data[i- 3]; 1290 sum += qlp_coeff[ 1] * (FLAC__int64)data[i- 2]; 1291 sum += qlp_coeff[ 0] * (FLAC__int64)data[i- 1]; 1292 } 1293 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization); 1294 } 1295 } 1296} 1297#endif 1298 1299#if defined(_MSC_VER) 1300#pragma warning ( default : 4028 ) 1301#endif 1302 1303#ifndef FLAC__INTEGER_ONLY_LIBRARY 1304 1305double FLAC__lpc_compute_expected_bits_per_residual_sample(double lpc_error, unsigned total_samples) 1306{ 1307 double error_scale; 1308 1309 FLAC__ASSERT(total_samples > 0); 1310 1311 error_scale = 0.5 / (double)total_samples; 1312 1313 return FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error, error_scale); 1314} 1315 1316double FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(double lpc_error, double error_scale) 1317{ 1318 if(lpc_error > 0.0) { 1319 double bps = (double)0.5 * log(error_scale * lpc_error) / M_LN2; 1320 if(bps >= 0.0) 1321 return bps; 1322 else 1323 return 0.0; 1324 } 1325 else if(lpc_error < 0.0) { /* error should not be negative but can happen due to inadequate floating-point resolution */ 1326 return 1e32; 1327 } 1328 else { 1329 return 0.0; 1330 } 1331} 1332 1333unsigned FLAC__lpc_compute_best_order(const double lpc_error[], unsigned max_order, unsigned total_samples, unsigned overhead_bits_per_order) 1334{ 1335 unsigned order, indx, best_index; /* 'index' the index into lpc_error; index==order-1 since lpc_error[0] is for order==1, lpc_error[1] is for order==2, etc */ 1336 double bits, best_bits, error_scale; 1337 1338 FLAC__ASSERT(max_order > 0); 1339 FLAC__ASSERT(total_samples > 0); 1340 1341 error_scale = 0.5 / (double)total_samples; 1342 1343 best_index = 0; 1344 best_bits = (unsigned)(-1); 1345 1346 for(indx = 0, order = 1; indx < max_order; indx++, order++) { 1347 bits = FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error[indx], error_scale) * (double)(total_samples - order) + (double)(order * overhead_bits_per_order); 1348 if(bits < best_bits) { 1349 best_index = indx; 1350 best_bits = bits; 1351 } 1352 } 1353 1354 return best_index+1; /* +1 since indx of lpc_error[] is order-1 */ 1355} 1356 1357#endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */ 1358