1/* GENERATED SOURCE. DO NOT MODIFY. */
2// © 2016 and later: Unicode, Inc. and others.
3// License & terms of use: http://www.unicode.org/copyright.html#License
4/*
5*******************************************************************************
6*
7*   Copyright (C) 1999-2015, International Business Machines
8*   Corporation and others.  All Rights Reserved.
9*
10*******************************************************************************
11*   CollationWeights.java, ported from collationweights.h/.cpp
12*
13*   C++ version created on: 2001mar08 as ucol_wgt.h
14*   created by: Markus W. Scherer
15*/
16
17package android.icu.impl.coll;
18
19import java.util.Arrays;
20
21/**
22 * Allocates n collation element weights between two exclusive limits.
23 * Used only internally by the collation tailoring builder.
24 * @hide Only a subset of ICU is exposed in Android
25 */
26public final class CollationWeights {
27    public CollationWeights() {}
28
29    public void initForPrimary(boolean compressible) {
30        middleLength=1;
31        minBytes[1] = Collation.MERGE_SEPARATOR_BYTE + 1;
32        maxBytes[1] = Collation.TRAIL_WEIGHT_BYTE;
33        if(compressible) {
34            minBytes[2] = Collation.PRIMARY_COMPRESSION_LOW_BYTE + 1;
35            maxBytes[2] = Collation.PRIMARY_COMPRESSION_HIGH_BYTE - 1;
36        } else {
37            minBytes[2] = 2;
38            maxBytes[2] = 0xff;
39        }
40        minBytes[3] = 2;
41        maxBytes[3] = 0xff;
42        minBytes[4] = 2;
43        maxBytes[4] = 0xff;
44    }
45
46    public void initForSecondary() {
47        // We use only the lower 16 bits for secondary weights.
48        middleLength=3;
49        minBytes[1] = 0;
50        maxBytes[1] = 0;
51        minBytes[2] = 0;
52        maxBytes[2] = 0;
53        minBytes[3] = Collation.LEVEL_SEPARATOR_BYTE + 1;
54        maxBytes[3] = 0xff;
55        minBytes[4] = 2;
56        maxBytes[4] = 0xff;
57    }
58
59    public void initForTertiary() {
60        // We use only the lower 16 bits for tertiary weights.
61        middleLength=3;
62        minBytes[1] = 0;
63        maxBytes[1] = 0;
64        minBytes[2] = 0;
65        maxBytes[2] = 0;
66        // We use only 6 bits per byte.
67        // The other bits are used for case & quaternary weights.
68        minBytes[3] = Collation.LEVEL_SEPARATOR_BYTE + 1;
69        maxBytes[3] = 0x3f;
70        minBytes[4] = 2;
71        maxBytes[4] = 0x3f;
72    }
73
74    /**
75     * Determine heuristically
76     * what ranges to use for a given number of weights between (excluding)
77     * two limits.
78     *
79     * @param lowerLimit A collation element weight; the ranges will be filled to cover
80     *                   weights greater than this one.
81     * @param upperLimit A collation element weight; the ranges will be filled to cover
82     *                   weights less than this one.
83     * @param n          The number of collation element weights w necessary such that
84     *                   lowerLimit<w<upperLimit in lexical order.
85     * @return true if it is possible to fit n elements between the limits
86     */
87    public boolean allocWeights(long lowerLimit, long upperLimit, int n) {
88        // Call getWeightRanges() and then determine heuristically
89        // which ranges to use for a given number of weights between (excluding)
90        // two limits.
91        // puts("");
92
93        if(!getWeightRanges(lowerLimit, upperLimit)) {
94            // printf("error: unable to get Weight ranges\n");
95            return false;
96        }
97
98        /* try until we find suitably large ranges */
99        for(;;) {
100            /* get the smallest number of bytes in a range */
101            int minLength=ranges[0].length;
102
103            if(allocWeightsInShortRanges(n, minLength)) { break; }
104
105            if(minLength == 4) {
106                // printf("error: the maximum number of %ld weights is insufficient for n=%ld\n",
107                //       minLengthCount, n);
108                return false;
109            }
110
111            if(allocWeightsInMinLengthRanges(n, minLength)) { break; }
112
113            /* no good match, lengthen all minLength ranges and iterate */
114            // printf("lengthen the short ranges from %ld bytes to %ld and iterate\n", minLength, minLength+1);
115            for (int i = 0; i < rangeCount && ranges[i].length == minLength; ++i) {
116                lengthenRange(ranges[i]);
117            }
118        }
119
120        /* puts("final ranges:");
121        for(int i=0; i<rangeCount; ++i) {
122            printf("ranges[%ld] .start=0x%08lx .end=0x%08lx .length=%ld .count=%ld\n",
123                  i, ranges[i].start, ranges[i].end, ranges[i].length, ranges[i].count);
124        } */
125
126        rangeIndex = 0;
127        if(rangeCount < ranges.length) {
128            ranges[rangeCount] = null;  // force a crash when going out of bounds
129        }
130        return true;
131    }
132
133    /**
134     * Given a set of ranges calculated by allocWeights(),
135     * iterate through the weights.
136     * The ranges are modified to keep the current iteration state.
137     *
138     * @return The next weight in the ranges, or 0xffffffff if there is none left.
139     */
140    public long nextWeight() {
141        if(rangeIndex >= rangeCount) {
142            return 0xffffffffL;
143        } else {
144            /* get the next weight */
145            WeightRange range = ranges[rangeIndex];
146            long weight = range.start;
147            if(--range.count == 0) {
148                /* this range is finished */
149                ++rangeIndex;
150            } else {
151                /* increment the weight for the next value */
152                range.start = incWeight(weight, range.length);
153                assert(range.start <= range.end);
154            }
155
156            return weight;
157        }
158    }
159
160    /** @hide draft / provisional / internal are hidden on Android*/
161    private static final class WeightRange implements Comparable<WeightRange> {
162        long start, end;
163        int length, count;
164
165        @Override
166        public int compareTo(WeightRange other) {
167            long l=start;
168            long r=other.start;
169            if(l<r) {
170                return -1;
171            } else if(l>r) {
172                return 1;
173            } else {
174                return 0;
175            }
176        }
177    }
178
179    /* helper functions for CE weights */
180
181    public static int lengthOfWeight(long weight) {
182        if((weight&0xffffff)==0) {
183            return 1;
184        } else if((weight&0xffff)==0) {
185            return 2;
186        } else if((weight&0xff)==0) {
187            return 3;
188        } else {
189            return 4;
190        }
191    }
192
193    private static int getWeightTrail(long weight, int length) {
194        return (int)(weight>>(8*(4-length)))&0xff;
195    }
196
197    private static long setWeightTrail(long weight, int length, int trail) {
198        length=8*(4-length);
199        return (weight&(0xffffff00L<<length))|((long)trail<<length);
200    }
201
202    private static int getWeightByte(long weight, int idx) {
203        return getWeightTrail(weight, idx); /* same calculation */
204    }
205
206    private static long setWeightByte(long weight, int idx, int b) {
207        long mask; /* 0xffffffff except a 00 "hole" for the index-th byte */
208
209        idx*=8;
210        if(idx<32) {
211            mask=0xffffffffL>>idx;
212        } else {
213            // Do not use int>>32 because on some platforms that does not shift at all
214            // while we need it to become 0.
215            // PowerPC: 0xffffffff>>32 = 0           (wanted)
216            // x86:     0xffffffff>>32 = 0xffffffff  (not wanted)
217            //
218            // ANSI C99 6.5.7 Bitwise shift operators:
219            // "If the value of the right operand is negative
220            // or is greater than or equal to the width of the promoted left operand,
221            // the behavior is undefined."
222            mask=0;
223        }
224        idx=32-idx;
225        mask|=0xffffff00L<<idx;
226        return (weight&mask)|((long)b<<idx);
227    }
228
229    private static long truncateWeight(long weight, int length) {
230        return weight&(0xffffffffL<<(8*(4-length)));
231    }
232
233    private static long incWeightTrail(long weight, int length) {
234        return weight+(1L<<(8*(4-length)));
235    }
236
237    private static long decWeightTrail(long weight, int length) {
238        return weight-(1L<<(8*(4-length)));
239    }
240
241    /** @return number of usable byte values for byte idx */
242    private int countBytes(int idx) {
243        return maxBytes[idx] - minBytes[idx] + 1;
244    }
245
246    private long incWeight(long weight, int length) {
247        for(;;) {
248            int b=getWeightByte(weight, length);
249            if(b<maxBytes[length]) {
250                return setWeightByte(weight, length, b+1);
251            } else {
252                // Roll over, set this byte to the minimum and increment the previous one.
253                weight=setWeightByte(weight, length, minBytes[length]);
254                --length;
255                assert(length > 0);
256            }
257        }
258    }
259
260    private long incWeightByOffset(long weight, int length, int offset) {
261        for(;;) {
262            offset += getWeightByte(weight, length);
263            if(offset <= maxBytes[length]) {
264                return setWeightByte(weight, length, offset);
265            } else {
266                // Split the offset between this byte and the previous one.
267                offset -= minBytes[length];
268                weight = setWeightByte(weight, length, minBytes[length] + offset % countBytes(length));
269                offset /= countBytes(length);
270                --length;
271                assert(length > 0);
272            }
273        }
274    }
275
276    private void lengthenRange(WeightRange range) {
277        int length=range.length+1;
278        range.start=setWeightTrail(range.start, length, minBytes[length]);
279        range.end=setWeightTrail(range.end, length, maxBytes[length]);
280        range.count*=countBytes(length);
281        range.length=length;
282    }
283
284    /**
285     * Takes two CE weights and calculates the
286     * possible ranges of weights between the two limits, excluding them.
287     * For weights with up to 4 bytes there are up to 2*4-1=7 ranges.
288     */
289    private boolean getWeightRanges(long lowerLimit, long upperLimit) {
290        assert(lowerLimit != 0);
291        assert(upperLimit != 0);
292
293        /* get the lengths of the limits */
294        int lowerLength=lengthOfWeight(lowerLimit);
295        int upperLength=lengthOfWeight(upperLimit);
296
297        // printf("length of lower limit 0x%08lx is %ld\n", lowerLimit, lowerLength);
298        // printf("length of upper limit 0x%08lx is %ld\n", upperLimit, upperLength);
299        assert(lowerLength>=middleLength);
300        // Permit upperLength<middleLength: The upper limit for secondaries is 0x10000.
301
302        if(lowerLimit>=upperLimit) {
303            // printf("error: no space between lower & upper limits\n");
304            return false;
305        }
306
307        /* check that neither is a prefix of the other */
308        if(lowerLength<upperLength) {
309            if(lowerLimit==truncateWeight(upperLimit, lowerLength)) {
310                // printf("error: lower limit 0x%08lx is a prefix of upper limit 0x%08lx\n", lowerLimit, upperLimit);
311                return false;
312            }
313        }
314        /* if the upper limit is a prefix of the lower limit then the earlier test lowerLimit>=upperLimit has caught it */
315
316        WeightRange[] lower = new WeightRange[5]; /* [0] and [1] are not used - this simplifies indexing */
317        WeightRange middle = new WeightRange();
318        WeightRange[] upper = new WeightRange[5];
319
320        /*
321         * With the limit lengths of 1..4, there are up to 7 ranges for allocation:
322         * range     minimum length
323         * lower[4]  4
324         * lower[3]  3
325         * lower[2]  2
326         * middle    1
327         * upper[2]  2
328         * upper[3]  3
329         * upper[4]  4
330         *
331         * We are now going to calculate up to 7 ranges.
332         * Some of them will typically overlap, so we will then have to merge and eliminate ranges.
333         */
334        long weight=lowerLimit;
335        for(int length=lowerLength; length>middleLength; --length) {
336            int trail=getWeightTrail(weight, length);
337            if(trail<maxBytes[length]) {
338                lower[length] = new WeightRange();
339                lower[length].start=incWeightTrail(weight, length);
340                lower[length].end=setWeightTrail(weight, length, maxBytes[length]);
341                lower[length].length=length;
342                lower[length].count=maxBytes[length]-trail;
343            }
344            weight=truncateWeight(weight, length-1);
345        }
346        if(weight<0xff000000L) {
347            middle.start=incWeightTrail(weight, middleLength);
348        } else {
349            // Prevent overflow for primary lead byte FF
350            // which would yield a middle range starting at 0.
351            middle.start=0xffffffffL;  // no middle range
352        }
353
354        weight=upperLimit;
355        for(int length=upperLength; length>middleLength; --length) {
356            int trail=getWeightTrail(weight, length);
357            if(trail>minBytes[length]) {
358                upper[length] = new WeightRange();
359                upper[length].start=setWeightTrail(weight, length, minBytes[length]);
360                upper[length].end=decWeightTrail(weight, length);
361                upper[length].length=length;
362                upper[length].count=trail-minBytes[length];
363            }
364            weight=truncateWeight(weight, length-1);
365        }
366        middle.end=decWeightTrail(weight, middleLength);
367
368        /* set the middle range */
369        middle.length=middleLength;
370        if(middle.end>=middle.start) {
371            middle.count=(int)((middle.end-middle.start)>>(8*(4-middleLength)))+1;
372        } else {
373            /* no middle range, eliminate overlaps */
374            for(int length=4; length>middleLength; --length) {
375                if(lower[length] != null && upper[length] != null &&
376                        lower[length].count>0 && upper[length].count>0) {
377                    // Note: The lowerEnd and upperStart weights are versions of
378                    // lowerLimit and upperLimit (which are lowerLimit<upperLimit),
379                    // truncated (still less-or-equal)
380                    // and then with their last bytes changed to the
381                    // maxByte (for lowerEnd) or minByte (for upperStart).
382                    final long lowerEnd=lower[length].end;
383                    final long upperStart=upper[length].start;
384                    boolean merged=false;
385
386                    if(lowerEnd>upperStart) {
387                        // These two lower and upper ranges collide.
388                        // Since lowerLimit<upperLimit and lowerEnd and upperStart
389                        // are versions with only their last bytes modified
390                        // (and following ones removed/reset to 0),
391                        // lowerEnd>upperStart is only possible
392                        // if the leading bytes are equal
393                        // and lastByte(lowerEnd)>lastByte(upperStart).
394                        assert(truncateWeight(lowerEnd, length-1)==
395                                truncateWeight(upperStart, length-1));
396                        // Intersect these two ranges.
397                        lower[length].end=upper[length].end;
398                        lower[length].count=
399                                getWeightTrail(lower[length].end, length)-
400                                getWeightTrail(lower[length].start, length)+1;
401                        // count might be <=0 in which case there is no room,
402                        // and the range-collecting code below will ignore this range.
403                        merged=true;
404                    } else if(lowerEnd==upperStart) {
405                        // Not possible, unless minByte==maxByte which is not allowed.
406                        assert(minBytes[length]<maxBytes[length]);
407                    } else /* lowerEnd<upperStart */ {
408                        if(incWeight(lowerEnd, length)==upperStart) {
409                            // Merge adjacent ranges.
410                            lower[length].end=upper[length].end;
411                            lower[length].count+=upper[length].count;  // might be >countBytes
412                            merged=true;
413                        }
414                    }
415                    if(merged) {
416                        // Remove all shorter ranges.
417                        // There was no room available for them between the ranges we just merged.
418                        upper[length].count=0;
419                        while(--length>middleLength) {
420                            lower[length]=upper[length]=null;
421                        }
422                        break;
423                    }
424                }
425            }
426        }
427
428        /* print ranges
429        for(int length=4; length>=2; --length) {
430            if(lower[length].count>0) {
431                printf("lower[%ld] .start=0x%08lx .end=0x%08lx .count=%ld\n", length, lower[length].start, lower[length].end, lower[length].count);
432            }
433        }
434        if(middle.count>0) {
435            printf("middle   .start=0x%08lx .end=0x%08lx .count=%ld\n", middle.start, middle.end, middle.count);
436        }
437        for(int length=2; length<=4; ++length) {
438            if(upper[length].count>0) {
439                printf("upper[%ld] .start=0x%08lx .end=0x%08lx .count=%ld\n", length, upper[length].start, upper[length].end, upper[length].count);
440            }
441        } */
442
443        /* copy the ranges, shortest first, into the result array */
444        rangeCount=0;
445        if(middle.count>0) {
446            ranges[0] = middle;
447            rangeCount=1;
448        }
449        for(int length=middleLength+1; length<=4; ++length) {
450            /* copy upper first so that later the middle range is more likely the first one to use */
451            if(upper[length] != null && upper[length].count>0) {
452                ranges[rangeCount++]=upper[length];
453            }
454            if(lower[length] != null && lower[length].count>0) {
455                ranges[rangeCount++]=lower[length];
456            }
457        }
458        return rangeCount>0;
459    }
460
461    private boolean allocWeightsInShortRanges(int n, int minLength) {
462        // See if the first few minLength and minLength+1 ranges have enough weights.
463        for(int i = 0; i < rangeCount && ranges[i].length <= (minLength + 1); ++i) {
464            if(n <= ranges[i].count) {
465                // Use the first few minLength and minLength+1 ranges.
466                if(ranges[i].length > minLength) {
467                    // Reduce the number of weights from the last minLength+1 range
468                    // which might sort before some minLength ranges,
469                    // so that we use all weights in the minLength ranges.
470                    ranges[i].count = n;
471                }
472                rangeCount = i + 1;
473                // printf("take first %ld ranges\n", rangeCount);
474
475                if(rangeCount>1) {
476                    /* sort the ranges by weight values */
477                    Arrays.sort(ranges, 0, rangeCount);
478                }
479                return true;
480            }
481            n -= ranges[i].count;  // still >0
482        }
483        return false;
484    }
485
486    private boolean allocWeightsInMinLengthRanges(int n, int minLength) {
487        // See if the minLength ranges have enough weights
488        // when we split one and lengthen the following ones.
489        int count = 0;
490        int minLengthRangeCount;
491        for(minLengthRangeCount = 0;
492                minLengthRangeCount < rangeCount &&
493                    ranges[minLengthRangeCount].length == minLength;
494                ++minLengthRangeCount) {
495            count += ranges[minLengthRangeCount].count;
496        }
497
498        int nextCountBytes = countBytes(minLength + 1);
499        if(n > count * nextCountBytes) { return false; }
500
501        // Use the minLength ranges. Merge them, and then split again as necessary.
502        long start = ranges[0].start;
503        long end = ranges[0].end;
504        for(int i = 1; i < minLengthRangeCount; ++i) {
505            if(ranges[i].start < start) { start = ranges[i].start; }
506            if(ranges[i].end > end) { end = ranges[i].end; }
507        }
508
509        // Calculate how to split the range between minLength (count1) and minLength+1 (count2).
510        // Goal:
511        //   count1 + count2 * nextCountBytes = n
512        //   count1 + count2 = count
513        // These turn into
514        //   (count - count2) + count2 * nextCountBytes = n
515        // and then into the following count1 & count2 computations.
516        int count2 = (n - count) / (nextCountBytes - 1);  // number of weights to be lengthened
517        int count1 = count - count2;  // number of minLength weights
518        if(count2 == 0 || (count1 + count2 * nextCountBytes) < n) {
519            // round up
520            ++count2;
521            --count1;
522            assert((count1 + count2 * nextCountBytes) >= n);
523        }
524
525        ranges[0].start = start;
526
527        if(count1 == 0) {
528            // Make one long range.
529            ranges[0].end = end;
530            ranges[0].count = count;
531            lengthenRange(ranges[0]);
532            rangeCount = 1;
533        } else {
534            // Split the range, lengthen the second part.
535            // printf("split the range number %ld (out of %ld minLength ranges) by %ld:%ld\n",
536            //       splitRange, rangeCount, count1, count2);
537
538            // Next start = start + count1. First end = 1 before that.
539            ranges[0].end = incWeightByOffset(start, minLength, count1 - 1);
540            ranges[0].count = count1;
541
542            if(ranges[1] == null) {
543                ranges[1] = new WeightRange();
544            }
545            ranges[1].start = incWeight(ranges[0].end, minLength);
546            ranges[1].end = end;
547            ranges[1].length = minLength;  // +1 when lengthened
548            ranges[1].count = count2;  // *countBytes when lengthened
549            lengthenRange(ranges[1]);
550            rangeCount = 2;
551        }
552        return true;
553    }
554
555    private int middleLength;
556    private int[] minBytes = new int[5];  // for byte 1, 2, 3, 4
557    private int[] maxBytes = new int[5];
558    private WeightRange[] ranges = new WeightRange[7];
559    private int rangeIndex;
560    private int rangeCount;
561}
562