1// © 2016 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3/*
4*******************************************************************************
5*
6*   Copyright (C) 2005-2016, International Business Machines
7*   Corporation and others.  All Rights Reserved.
8*
9*******************************************************************************
10*   file name:  utext.cpp
11*   encoding:   UTF-8
12*   tab size:   8 (not used)
13*   indentation:4
14*
15*   created on: 2005apr12
16*   created by: Markus W. Scherer
17*/
18
19#include "unicode/utypes.h"
20#include "unicode/ustring.h"
21#include "unicode/unistr.h"
22#include "unicode/chariter.h"
23#include "unicode/utext.h"
24#include "unicode/utf.h"
25#include "unicode/utf8.h"
26#include "unicode/utf16.h"
27#include "ustr_imp.h"
28#include "cmemory.h"
29#include "cstring.h"
30#include "uassert.h"
31#include "putilimp.h"
32
33U_NAMESPACE_USE
34
35#define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex))
36
37
38static UBool
39utext_access(UText *ut, int64_t index, UBool forward) {
40    return ut->pFuncs->access(ut, index, forward);
41}
42
43
44
45U_CAPI UBool U_EXPORT2
46utext_moveIndex32(UText *ut, int32_t delta) {
47    UChar32  c;
48    if (delta > 0) {
49        do {
50            if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, TRUE)) {
51                return FALSE;
52            }
53            c = ut->chunkContents[ut->chunkOffset];
54            if (U16_IS_SURROGATE(c)) {
55                c = utext_next32(ut);
56                if (c == U_SENTINEL) {
57                    return FALSE;
58                }
59            } else {
60                ut->chunkOffset++;
61            }
62        } while(--delta>0);
63
64    } else if (delta<0) {
65        do {
66            if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, FALSE)) {
67                return FALSE;
68            }
69            c = ut->chunkContents[ut->chunkOffset-1];
70            if (U16_IS_SURROGATE(c)) {
71                c = utext_previous32(ut);
72                if (c == U_SENTINEL) {
73                    return FALSE;
74                }
75            } else {
76                ut->chunkOffset--;
77            }
78        } while(++delta<0);
79    }
80
81    return TRUE;
82}
83
84
85U_CAPI int64_t U_EXPORT2
86utext_nativeLength(UText *ut) {
87    return ut->pFuncs->nativeLength(ut);
88}
89
90
91U_CAPI UBool U_EXPORT2
92utext_isLengthExpensive(const UText *ut) {
93    UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0;
94    return r;
95}
96
97
98U_CAPI int64_t U_EXPORT2
99utext_getNativeIndex(const UText *ut) {
100    if(ut->chunkOffset <= ut->nativeIndexingLimit) {
101        return ut->chunkNativeStart+ut->chunkOffset;
102    } else {
103        return ut->pFuncs->mapOffsetToNative(ut);
104    }
105}
106
107
108U_CAPI void U_EXPORT2
109utext_setNativeIndex(UText *ut, int64_t index) {
110    if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
111        // The desired position is outside of the current chunk.
112        // Access the new position.  Assume a forward iteration from here,
113        // which will also be optimimum for a single random access.
114        // Reverse iterations may suffer slightly.
115        ut->pFuncs->access(ut, index, TRUE);
116    } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) {
117        // utf-16 indexing.
118        ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart);
119    } else {
120         ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
121    }
122    // The convention is that the index must always be on a code point boundary.
123    // Adjust the index position if it is in the middle of a surrogate pair.
124    if (ut->chunkOffset<ut->chunkLength) {
125        UChar c= ut->chunkContents[ut->chunkOffset];
126        if (U16_IS_TRAIL(c)) {
127            if (ut->chunkOffset==0) {
128                ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE);
129            }
130            if (ut->chunkOffset>0) {
131                UChar lead = ut->chunkContents[ut->chunkOffset-1];
132                if (U16_IS_LEAD(lead)) {
133                    ut->chunkOffset--;
134                }
135            }
136        }
137    }
138}
139
140
141
142U_CAPI int64_t U_EXPORT2
143utext_getPreviousNativeIndex(UText *ut) {
144    //
145    //  Fast-path the common case.
146    //     Common means current position is not at the beginning of a chunk
147    //     and the preceding character is not supplementary.
148    //
149    int32_t i = ut->chunkOffset - 1;
150    int64_t result;
151    if (i >= 0) {
152        UChar c = ut->chunkContents[i];
153        if (U16_IS_TRAIL(c) == FALSE) {
154            if (i <= ut->nativeIndexingLimit) {
155                result = ut->chunkNativeStart + i;
156            } else {
157                ut->chunkOffset = i;
158                result = ut->pFuncs->mapOffsetToNative(ut);
159                ut->chunkOffset++;
160            }
161            return result;
162        }
163    }
164
165    // If at the start of text, simply return 0.
166    if (ut->chunkOffset==0 && ut->chunkNativeStart==0) {
167        return 0;
168    }
169
170    // Harder, less common cases.  We are at a chunk boundary, or on a surrogate.
171    //    Keep it simple, use other functions to handle the edges.
172    //
173    utext_previous32(ut);
174    result = UTEXT_GETNATIVEINDEX(ut);
175    utext_next32(ut);
176    return result;
177}
178
179
180//
181//  utext_current32.  Get the UChar32 at the current position.
182//                    UText iteration position is always on a code point boundary,
183//                    never on the trail half of a surrogate pair.
184//
185U_CAPI UChar32 U_EXPORT2
186utext_current32(UText *ut) {
187    UChar32  c;
188    if (ut->chunkOffset==ut->chunkLength) {
189        // Current position is just off the end of the chunk.
190        if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
191            // Off the end of the text.
192            return U_SENTINEL;
193        }
194    }
195
196    c = ut->chunkContents[ut->chunkOffset];
197    if (U16_IS_LEAD(c) == FALSE) {
198        // Normal, non-supplementary case.
199        return c;
200    }
201
202    //
203    //  Possible supplementary char.
204    //
205    UChar32   trail = 0;
206    UChar32   supplementaryC = c;
207    if ((ut->chunkOffset+1) < ut->chunkLength) {
208        // The trail surrogate is in the same chunk.
209        trail = ut->chunkContents[ut->chunkOffset+1];
210    } else {
211        //  The trail surrogate is in a different chunk.
212        //     Because we must maintain the iteration position, we need to switch forward
213        //     into the new chunk, get the trail surrogate, then revert the chunk back to the
214        //     original one.
215        //     An edge case to be careful of:  the entire text may end with an unpaired
216        //        leading surrogate.  The attempt to access the trail will fail, but
217        //        the original position before the unpaired lead still needs to be restored.
218        int64_t  nativePosition = ut->chunkNativeLimit;
219        int32_t  originalOffset = ut->chunkOffset;
220        if (ut->pFuncs->access(ut, nativePosition, TRUE)) {
221            trail = ut->chunkContents[ut->chunkOffset];
222        }
223        UBool r = ut->pFuncs->access(ut, nativePosition, FALSE);  // reverse iteration flag loads preceding chunk
224        U_ASSERT(r==TRUE);
225        ut->chunkOffset = originalOffset;
226        if(!r) {
227            return U_SENTINEL;
228        }
229    }
230
231    if (U16_IS_TRAIL(trail)) {
232        supplementaryC = U16_GET_SUPPLEMENTARY(c, trail);
233    }
234    return supplementaryC;
235
236}
237
238
239U_CAPI UChar32 U_EXPORT2
240utext_char32At(UText *ut, int64_t nativeIndex) {
241    UChar32 c = U_SENTINEL;
242
243    // Fast path the common case.
244    if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) {
245        ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart);
246        c = ut->chunkContents[ut->chunkOffset];
247        if (U16_IS_SURROGATE(c) == FALSE) {
248            return c;
249        }
250    }
251
252
253    utext_setNativeIndex(ut, nativeIndex);
254    if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) {
255        c = ut->chunkContents[ut->chunkOffset];
256        if (U16_IS_SURROGATE(c)) {
257            // For surrogates, let current32() deal with the complications
258            //    of supplementaries that may span chunk boundaries.
259            c = utext_current32(ut);
260        }
261    }
262    return c;
263}
264
265
266U_CAPI UChar32 U_EXPORT2
267utext_next32(UText *ut) {
268    UChar32       c;
269
270    if (ut->chunkOffset >= ut->chunkLength) {
271        if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
272            return U_SENTINEL;
273        }
274    }
275
276    c = ut->chunkContents[ut->chunkOffset++];
277    if (U16_IS_LEAD(c) == FALSE) {
278        // Normal case, not supplementary.
279        //   (A trail surrogate seen here is just returned as is, as a surrogate value.
280        //    It cannot be part of a pair.)
281        return c;
282    }
283
284    if (ut->chunkOffset >= ut->chunkLength) {
285        if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
286            // c is an unpaired lead surrogate at the end of the text.
287            // return it as it is.
288            return c;
289        }
290    }
291    UChar32 trail = ut->chunkContents[ut->chunkOffset];
292    if (U16_IS_TRAIL(trail) == FALSE) {
293        // c was an unpaired lead surrogate, not at the end of the text.
294        // return it as it is (unpaired).  Iteration position is on the
295        // following character, possibly in the next chunk, where the
296        //  trail surrogate would have been if it had existed.
297        return c;
298    }
299
300    UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail);
301    ut->chunkOffset++;   // move iteration position over the trail surrogate.
302    return supplementary;
303    }
304
305
306U_CAPI UChar32 U_EXPORT2
307utext_previous32(UText *ut) {
308    UChar32       c;
309
310    if (ut->chunkOffset <= 0) {
311        if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) {
312            return U_SENTINEL;
313        }
314    }
315    ut->chunkOffset--;
316    c = ut->chunkContents[ut->chunkOffset];
317    if (U16_IS_TRAIL(c) == FALSE) {
318        // Normal case, not supplementary.
319        //   (A lead surrogate seen here is just returned as is, as a surrogate value.
320        //    It cannot be part of a pair.)
321        return c;
322    }
323
324    if (ut->chunkOffset <= 0) {
325        if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) {
326            // c is an unpaired trail surrogate at the start of the text.
327            // return it as it is.
328            return c;
329        }
330    }
331
332    UChar32 lead = ut->chunkContents[ut->chunkOffset-1];
333    if (U16_IS_LEAD(lead) == FALSE) {
334        // c was an unpaired trail surrogate, not at the end of the text.
335        // return it as it is (unpaired).  Iteration position is at c
336        return c;
337    }
338
339    UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c);
340    ut->chunkOffset--;   // move iteration position over the lead surrogate.
341    return supplementary;
342}
343
344
345
346U_CAPI UChar32 U_EXPORT2
347utext_next32From(UText *ut, int64_t index) {
348    UChar32       c      = U_SENTINEL;
349
350    if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
351        // Desired position is outside of the current chunk.
352        if(!ut->pFuncs->access(ut, index, TRUE)) {
353            // no chunk available here
354            return U_SENTINEL;
355        }
356    } else if (index - ut->chunkNativeStart  <= (int64_t)ut->nativeIndexingLimit) {
357        // Desired position is in chunk, with direct 1:1 native to UTF16 indexing
358        ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
359    } else {
360        // Desired position is in chunk, with non-UTF16 indexing.
361        ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index);
362    }
363
364    c = ut->chunkContents[ut->chunkOffset++];
365    if (U16_IS_SURROGATE(c)) {
366        // Surrogates.  Many edge cases.  Use other functions that already
367        //              deal with the problems.
368        utext_setNativeIndex(ut, index);
369        c = utext_next32(ut);
370    }
371    return c;
372}
373
374
375U_CAPI UChar32 U_EXPORT2
376utext_previous32From(UText *ut, int64_t index) {
377    //
378    //  Return the character preceding the specified index.
379    //  Leave the iteration position at the start of the character that was returned.
380    //
381    UChar32     cPrev;    // The character preceding cCurr, which is what we will return.
382
383    // Address the chunk containg the position preceding the incoming index
384    // A tricky edge case:
385    //   We try to test the requested native index against the chunkNativeStart to determine
386    //    whether the character preceding the one at the index is in the current chunk.
387    //    BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the
388    //    requested index is on something other than the first position of the first char.
389    //
390    if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) {
391        // Requested native index is outside of the current chunk.
392        if(!ut->pFuncs->access(ut, index, FALSE)) {
393            // no chunk available here
394            return U_SENTINEL;
395        }
396    } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) {
397        // Direct UTF-16 indexing.
398        ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
399    } else {
400        ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
401        if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, FALSE)) {
402            // no chunk available here
403            return U_SENTINEL;
404        }
405    }
406
407    //
408    // Simple case with no surrogates.
409    //
410    ut->chunkOffset--;
411    cPrev = ut->chunkContents[ut->chunkOffset];
412
413    if (U16_IS_SURROGATE(cPrev)) {
414        // Possible supplementary.  Many edge cases.
415        // Let other functions do the heavy lifting.
416        utext_setNativeIndex(ut, index);
417        cPrev = utext_previous32(ut);
418    }
419    return cPrev;
420}
421
422
423U_CAPI int32_t U_EXPORT2
424utext_extract(UText *ut,
425             int64_t start, int64_t limit,
426             UChar *dest, int32_t destCapacity,
427             UErrorCode *status) {
428                 return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status);
429             }
430
431
432
433U_CAPI UBool U_EXPORT2
434utext_equals(const UText *a, const UText *b) {
435    if (a==NULL || b==NULL ||
436        a->magic != UTEXT_MAGIC ||
437        b->magic != UTEXT_MAGIC) {
438            // Null or invalid arguments don't compare equal to anything.
439            return FALSE;
440    }
441
442    if (a->pFuncs != b->pFuncs) {
443        // Different types of text providers.
444        return FALSE;
445    }
446
447    if (a->context != b->context) {
448        // Different sources (different strings)
449        return FALSE;
450    }
451    if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) {
452        // Different current position in the string.
453        return FALSE;
454    }
455
456    return TRUE;
457}
458
459U_CAPI UBool U_EXPORT2
460utext_isWritable(const UText *ut)
461{
462    UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0;
463    return b;
464}
465
466
467U_CAPI void U_EXPORT2
468utext_freeze(UText *ut) {
469    // Zero out the WRITABLE flag.
470    ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE));
471}
472
473
474U_CAPI UBool U_EXPORT2
475utext_hasMetaData(const UText *ut)
476{
477    UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0;
478    return b;
479}
480
481
482
483U_CAPI int32_t U_EXPORT2
484utext_replace(UText *ut,
485             int64_t nativeStart, int64_t nativeLimit,
486             const UChar *replacementText, int32_t replacementLength,
487             UErrorCode *status)
488{
489    if (U_FAILURE(*status)) {
490        return 0;
491    }
492    if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
493        *status = U_NO_WRITE_PERMISSION;
494        return 0;
495    }
496    int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status);
497    return i;
498}
499
500U_CAPI void U_EXPORT2
501utext_copy(UText *ut,
502          int64_t nativeStart, int64_t nativeLimit,
503          int64_t destIndex,
504          UBool move,
505          UErrorCode *status)
506{
507    if (U_FAILURE(*status)) {
508        return;
509    }
510    if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
511        *status = U_NO_WRITE_PERMISSION;
512        return;
513    }
514    ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status);
515}
516
517
518
519U_CAPI UText * U_EXPORT2
520utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) {
521    if (U_FAILURE(*status)) {
522        return dest;
523    }
524    UText *result = src->pFuncs->clone(dest, src, deep, status);
525    if (U_FAILURE(*status)) {
526        return result;
527    }
528    if (result == NULL) {
529        *status = U_MEMORY_ALLOCATION_ERROR;
530        return result;
531    }
532    if (readOnly) {
533        utext_freeze(result);
534    }
535    return result;
536}
537
538
539
540//------------------------------------------------------------------------------
541//
542//   UText common functions implementation
543//
544//------------------------------------------------------------------------------
545
546//
547//  UText.flags bit definitions
548//
549enum {
550    UTEXT_HEAP_ALLOCATED  = 1,      //  1 if ICU has allocated this UText struct on the heap.
551                                    //  0 if caller provided storage for the UText.
552
553    UTEXT_EXTRA_HEAP_ALLOCATED = 2, //  1 if ICU has allocated extra storage as a separate
554                                    //     heap block.
555                                    //  0 if there is no separate allocation.  Either no extra
556                                    //     storage was requested, or it is appended to the end
557                                    //     of the main UText storage.
558
559    UTEXT_OPEN = 4                  //  1 if this UText is currently open
560                                    //  0 if this UText is not open.
561};
562
563
564//
565//  Extended form of a UText.  The purpose is to aid in computing the total size required
566//    when a provider asks for a UText to be allocated with extra storage.
567
568struct ExtendedUText {
569    UText          ut;
570    UAlignedMemory extension;
571};
572
573static const UText emptyText = UTEXT_INITIALIZER;
574
575U_CAPI UText * U_EXPORT2
576utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) {
577    if (U_FAILURE(*status)) {
578        return ut;
579    }
580
581    if (ut == NULL) {
582        // We need to heap-allocate storage for the new UText
583        int32_t spaceRequired = sizeof(UText);
584        if (extraSpace > 0) {
585            spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(UAlignedMemory);
586        }
587        ut = (UText *)uprv_malloc(spaceRequired);
588        if (ut == NULL) {
589            *status = U_MEMORY_ALLOCATION_ERROR;
590            return NULL;
591        } else {
592            *ut = emptyText;
593            ut->flags |= UTEXT_HEAP_ALLOCATED;
594            if (spaceRequired>0) {
595                ut->extraSize = extraSpace;
596                ut->pExtra    = &((ExtendedUText *)ut)->extension;
597            }
598        }
599    } else {
600        // We have been supplied with an already existing UText.
601        // Verify that it really appears to be a UText.
602        if (ut->magic != UTEXT_MAGIC) {
603            *status = U_ILLEGAL_ARGUMENT_ERROR;
604            return ut;
605        }
606        // If the ut is already open and there's a provider supplied close
607        //   function, call it.
608        if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != NULL)  {
609            ut->pFuncs->close(ut);
610        }
611        ut->flags &= ~UTEXT_OPEN;
612
613        // If extra space was requested by our caller, check whether
614        //   sufficient already exists, and allocate new if needed.
615        if (extraSpace > ut->extraSize) {
616            // Need more space.  If there is existing separately allocated space,
617            //   delete it first, then allocate new space.
618            if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
619                uprv_free(ut->pExtra);
620                ut->extraSize = 0;
621            }
622            ut->pExtra = uprv_malloc(extraSpace);
623            if (ut->pExtra == NULL) {
624                *status = U_MEMORY_ALLOCATION_ERROR;
625            } else {
626                ut->extraSize = extraSpace;
627                ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED;
628            }
629        }
630    }
631    if (U_SUCCESS(*status)) {
632        ut->flags |= UTEXT_OPEN;
633
634        // Initialize all remaining fields of the UText.
635        //
636        ut->context             = NULL;
637        ut->chunkContents       = NULL;
638        ut->p                   = NULL;
639        ut->q                   = NULL;
640        ut->r                   = NULL;
641        ut->a                   = 0;
642        ut->b                   = 0;
643        ut->c                   = 0;
644        ut->chunkOffset         = 0;
645        ut->chunkLength         = 0;
646        ut->chunkNativeStart    = 0;
647        ut->chunkNativeLimit    = 0;
648        ut->nativeIndexingLimit = 0;
649        ut->providerProperties  = 0;
650        ut->privA               = 0;
651        ut->privB               = 0;
652        ut->privC               = 0;
653        ut->privP               = NULL;
654        if (ut->pExtra!=NULL && ut->extraSize>0)
655            uprv_memset(ut->pExtra, 0, ut->extraSize);
656
657    }
658    return ut;
659}
660
661
662U_CAPI UText * U_EXPORT2
663utext_close(UText *ut) {
664    if (ut==NULL ||
665        ut->magic != UTEXT_MAGIC ||
666        (ut->flags & UTEXT_OPEN) == 0)
667    {
668        // The supplied ut is not an open UText.
669        // Do nothing.
670        return ut;
671    }
672
673    // If the provider gave us a close function, call it now.
674    // This will clean up anything allocated specifically by the provider.
675    if (ut->pFuncs->close != NULL) {
676        ut->pFuncs->close(ut);
677    }
678    ut->flags &= ~UTEXT_OPEN;
679
680    // If we (the framework) allocated the UText or subsidiary storage,
681    //   delete it.
682    if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
683        uprv_free(ut->pExtra);
684        ut->pExtra = NULL;
685        ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED;
686        ut->extraSize = 0;
687    }
688
689    // Zero out function table of the closed UText.  This is a defensive move,
690    //   inteded to cause applications that inadvertantly use a closed
691    //   utext to crash with null pointer errors.
692    ut->pFuncs        = NULL;
693
694    if (ut->flags & UTEXT_HEAP_ALLOCATED) {
695        // This UText was allocated by UText setup.  We need to free it.
696        // Clear magic, so we can detect if the user messes up and immediately
697        //  tries to reopen another UText using the deleted storage.
698        ut->magic = 0;
699        uprv_free(ut);
700        ut = NULL;
701    }
702    return ut;
703}
704
705
706
707
708//
709// invalidateChunk   Reset a chunk to have no contents, so that the next call
710//                   to access will cause new data to load.
711//                   This is needed when copy/move/replace operate directly on the
712//                   backing text, potentially putting it out of sync with the
713//                   contents in the chunk.
714//
715static void
716invalidateChunk(UText *ut) {
717    ut->chunkLength = 0;
718    ut->chunkNativeLimit = 0;
719    ut->chunkNativeStart = 0;
720    ut->chunkOffset = 0;
721    ut->nativeIndexingLimit = 0;
722}
723
724//
725// pinIndex        Do range pinning on a native index parameter.
726//                 64 bit pinning is done in place.
727//                 32 bit truncated result is returned as a convenience for
728//                        use in providers that don't need 64 bits.
729static int32_t
730pinIndex(int64_t &index, int64_t limit) {
731    if (index<0) {
732        index = 0;
733    } else if (index > limit) {
734        index = limit;
735    }
736    return (int32_t)index;
737}
738
739
740U_CDECL_BEGIN
741
742//
743// Pointer relocation function,
744//   a utility used by shallow clone.
745//   Adjust a pointer that refers to something within one UText (the source)
746//   to refer to the same relative offset within a another UText (the target)
747//
748static void adjustPointer(UText *dest, const void **destPtr, const UText *src) {
749    // convert all pointers to (char *) so that byte address arithmetic will work.
750    char  *dptr = (char *)*destPtr;
751    char  *dUText = (char *)dest;
752    char  *sUText = (char *)src;
753
754    if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) {
755        // target ptr was to something within the src UText's pExtra storage.
756        //   relocate it into the target UText's pExtra region.
757        *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra);
758    } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) {
759        // target ptr was pointing to somewhere within the source UText itself.
760        //   Move it to the same offset within the target UText.
761        *destPtr = dUText + (dptr-sUText);
762    }
763}
764
765
766//
767//  Clone.  This is a generic copy-the-utext-by-value clone function that can be
768//          used as-is with some utext types, and as a helper by other clones.
769//
770static UText * U_CALLCONV
771shallowTextClone(UText * dest, const UText * src, UErrorCode * status) {
772    if (U_FAILURE(*status)) {
773        return NULL;
774    }
775    int32_t  srcExtraSize = src->extraSize;
776
777    //
778    // Use the generic text_setup to allocate storage if required.
779    //
780    dest = utext_setup(dest, srcExtraSize, status);
781    if (U_FAILURE(*status)) {
782        return dest;
783    }
784
785    //
786    //  flags (how the UText was allocated) and the pointer to the
787    //   extra storage must retain the values in the cloned utext that
788    //   were set up by utext_setup.  Save them separately before
789    //   copying the whole struct.
790    //
791    void *destExtra = dest->pExtra;
792    int32_t flags   = dest->flags;
793
794
795    //
796    //  Copy the whole UText struct by value.
797    //  Any "Extra" storage is copied also.
798    //
799    int sizeToCopy = src->sizeOfStruct;
800    if (sizeToCopy > dest->sizeOfStruct) {
801        sizeToCopy = dest->sizeOfStruct;
802    }
803    uprv_memcpy(dest, src, sizeToCopy);
804    dest->pExtra = destExtra;
805    dest->flags  = flags;
806    if (srcExtraSize > 0) {
807        uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize);
808    }
809
810    //
811    // Relocate any pointers in the target that refer to the UText itself
812    //   to point to the cloned copy rather than the original source.
813    //
814    adjustPointer(dest, &dest->context, src);
815    adjustPointer(dest, &dest->p, src);
816    adjustPointer(dest, &dest->q, src);
817    adjustPointer(dest, &dest->r, src);
818    adjustPointer(dest, (const void **)&dest->chunkContents, src);
819
820    // The newly shallow-cloned UText does _not_ own the underlying storage for the text.
821    // (The source for the clone may or may not have owned the text.)
822
823    dest->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
824
825    return dest;
826}
827
828
829U_CDECL_END
830
831
832
833//------------------------------------------------------------------------------
834//
835//     UText implementation for UTF-8 char * strings (read-only)
836//     Limitation:  string length must be <= 0x7fffffff in length.
837//                  (length must for in an int32_t variable)
838//
839//         Use of UText data members:
840//              context    pointer to UTF-8 string
841//              utext.b    is the input string length (bytes).
842//              utext.c    Length scanned so far in string
843//                           (for optimizing finding length of zero terminated strings.)
844//              utext.p    pointer to the current buffer
845//              utext.q    pointer to the other buffer.
846//
847//------------------------------------------------------------------------------
848
849// Chunk size.
850//     Must be less than 85 (256/3), because of byte mapping from UChar indexes to native indexes.
851//     Worst case is three native bytes to one UChar.  (Supplemenaries are 4 native bytes
852//     to two UChars.)
853//     The longest illegal byte sequence treated as a single error (and converted to U+FFFD)
854//     is a three-byte sequence (truncated four-byte sequence).
855//
856enum { UTF8_TEXT_CHUNK_SIZE=32 };
857
858//
859// UTF8Buf  Two of these structs will be set up in the UText's extra allocated space.
860//          Each contains the UChar chunk buffer, the to and from native maps, and
861//          header info.
862//
863//     because backwards iteration fills the buffers starting at the end and
864//     working towards the front, the filled part of the buffers may not begin
865//     at the start of the available storage for the buffers.
866//
867//     Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for
868//     the last character added being a supplementary, and thus requiring a surrogate
869//     pair.  Doing this is simpler than checking for the edge case.
870//
871
872struct UTF8Buf {
873    int32_t   bufNativeStart;                        // Native index of first char in UChar buf
874    int32_t   bufNativeLimit;                        // Native index following last char in buf.
875    int32_t   bufStartIdx;                           // First filled position in buf.
876    int32_t   bufLimitIdx;                           // Limit of filled range in buf.
877    int32_t   bufNILimit;                            // Limit of native indexing part of buf
878    int32_t   toUCharsMapStart;                      // Native index corresponding to
879                                                     //   mapToUChars[0].
880                                                     //   Set to bufNativeStart when filling forwards.
881                                                     //   Set to computed value when filling backwards.
882
883    UChar     buf[UTF8_TEXT_CHUNK_SIZE+4];           // The UChar buffer.  Requires one extra position beyond the
884                                                     //   the chunk size, to allow for surrogate at the end.
885                                                     //   Length must be identical to mapToNative array, below,
886                                                     //   because of the way indexing works when the array is
887                                                     //   filled backwards during a reverse iteration.  Thus,
888                                                     //   the additional extra size.
889    uint8_t   mapToNative[UTF8_TEXT_CHUNK_SIZE+4];   // map UChar index in buf to
890                                                     //  native offset from bufNativeStart.
891                                                     //  Requires two extra slots,
892                                                     //    one for a supplementary starting in the last normal position,
893                                                     //    and one for an entry for the buffer limit position.
894    uint8_t   mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from bufNativeStart to
895                                                     //   correspoding offset in filled part of buf.
896    int32_t   align;
897};
898
899U_CDECL_BEGIN
900
901//
902//   utf8TextLength
903//
904//        Get the length of the string.  If we don't already know it,
905//              we'll need to scan for the trailing  nul.
906//
907static int64_t U_CALLCONV
908utf8TextLength(UText *ut) {
909    if (ut->b < 0) {
910        // Zero terminated string, and we haven't scanned to the end yet.
911        // Scan it now.
912        const char *r = (const char *)ut->context + ut->c;
913        while (*r != 0) {
914            r++;
915        }
916        if ((r - (const char *)ut->context) < 0x7fffffff) {
917            ut->b = (int32_t)(r - (const char *)ut->context);
918        } else {
919            // Actual string was bigger (more than 2 gig) than we
920            //   can handle.  Clip it to 2 GB.
921            ut->b = 0x7fffffff;
922        }
923        ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
924    }
925    return ut->b;
926}
927
928
929
930
931
932
933static UBool U_CALLCONV
934utf8TextAccess(UText *ut, int64_t index, UBool forward) {
935    //
936    //  Apologies to those who are allergic to goto statements.
937    //    Consider each goto to a labelled block to be the equivalent of
938    //         call the named block as if it were a function();
939    //         return;
940    //
941    const uint8_t *s8=(const uint8_t *)ut->context;
942    UTF8Buf *u8b = NULL;
943    int32_t  length = ut->b;         // Length of original utf-8
944    int32_t  ix= (int32_t)index;     // Requested index, trimmed to 32 bits.
945    int32_t  mapIndex = 0;
946    if (index<0) {
947        ix=0;
948    } else if (index > 0x7fffffff) {
949        // Strings with 64 bit lengths not supported by this UTF-8 provider.
950        ix = 0x7fffffff;
951    }
952
953    // Pin requested index to the string length.
954    if (ix>length) {
955        if (length>=0) {
956            ix=length;
957        } else if (ix>=ut->c) {
958            // Zero terminated string, and requested index is beyond
959            //   the region that has already been scanned.
960            //   Scan up to either the end of the string or to the
961            //   requested position, whichever comes first.
962            while (ut->c<ix && s8[ut->c]!=0) {
963                ut->c++;
964            }
965            //  TODO:  support for null terminated string length > 32 bits.
966            if (s8[ut->c] == 0) {
967                // We just found the actual length of the string.
968                //  Trim the requested index back to that.
969                ix     = ut->c;
970                ut->b  = ut->c;
971                length = ut->c;
972                ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
973            }
974        }
975    }
976
977    //
978    // Dispatch to the appropriate action for a forward iteration request.
979    //
980    if (forward) {
981        if (ix==ut->chunkNativeLimit) {
982            // Check for normal sequential iteration cases first.
983            if (ix==length) {
984                // Just reached end of string
985                // Don't swap buffers, but do set the
986                //   current buffer position.
987                ut->chunkOffset = ut->chunkLength;
988                return FALSE;
989            } else {
990                // End of current buffer.
991                //   check whether other buffer already has what we need.
992                UTF8Buf *altB = (UTF8Buf *)ut->q;
993                if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) {
994                    goto swapBuffers;
995                }
996            }
997        }
998
999        // A random access.  Desired index could be in either or niether buf.
1000        // For optimizing the order of testing, first check for the index
1001        //    being in the other buffer.  This will be the case for uses that
1002        //    move back and forth over a fairly limited range
1003        {
1004            u8b = (UTF8Buf *)ut->q;   // the alternate buffer
1005            if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) {
1006                // Requested index is in the other buffer.
1007                goto swapBuffers;
1008            }
1009            if (ix == length) {
1010                // Requested index is end-of-string.
1011                //   (this is the case of randomly seeking to the end.
1012                //    The case of iterating off the end is handled earlier.)
1013                if (ix == ut->chunkNativeLimit) {
1014                    // Current buffer extends up to the end of the string.
1015                    //   Leave it as the current buffer.
1016                    ut->chunkOffset = ut->chunkLength;
1017                    return FALSE;
1018                }
1019                if (ix == u8b->bufNativeLimit) {
1020                    // Alternate buffer extends to the end of string.
1021                    //   Swap it in as the current buffer.
1022                    goto swapBuffersAndFail;
1023                }
1024
1025                // Neither existing buffer extends to the end of the string.
1026                goto makeStubBuffer;
1027            }
1028
1029            if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) {
1030                // Requested index is in neither buffer.
1031                goto fillForward;
1032            }
1033
1034            // Requested index is in this buffer.
1035            u8b = (UTF8Buf *)ut->p;   // the current buffer
1036            mapIndex = ix - u8b->toUCharsMapStart;
1037            U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars));
1038            ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1039            return TRUE;
1040
1041        }
1042    }
1043
1044
1045    //
1046    // Dispatch to the appropriate action for a
1047    //   Backwards Diretion iteration request.
1048    //
1049    if (ix==ut->chunkNativeStart) {
1050        // Check for normal sequential iteration cases first.
1051        if (ix==0) {
1052            // Just reached the start of string
1053            // Don't swap buffers, but do set the
1054            //   current buffer position.
1055            ut->chunkOffset = 0;
1056            return FALSE;
1057        } else {
1058            // Start of current buffer.
1059            //   check whether other buffer already has what we need.
1060            UTF8Buf *altB = (UTF8Buf *)ut->q;
1061            if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) {
1062                goto swapBuffers;
1063            }
1064        }
1065    }
1066
1067    // A random access.  Desired index could be in either or niether buf.
1068    // For optimizing the order of testing,
1069    //    Most likely case:  in the other buffer.
1070    //    Second most likely: in neither buffer.
1071    //    Unlikely, but must work:  in the current buffer.
1072    u8b = (UTF8Buf *)ut->q;   // the alternate buffer
1073    if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) {
1074        // Requested index is in the other buffer.
1075        goto swapBuffers;
1076    }
1077    // Requested index is start-of-string.
1078    //   (this is the case of randomly seeking to the start.
1079    //    The case of iterating off the start is handled earlier.)
1080    if (ix==0) {
1081        if (u8b->bufNativeStart==0) {
1082            // Alternate buffer contains the data for the start string.
1083            // Make it be the current buffer.
1084            goto swapBuffersAndFail;
1085        } else {
1086            // Request for data before the start of string,
1087            //   neither buffer is usable.
1088            //   set up a zero-length buffer.
1089            goto makeStubBuffer;
1090        }
1091    }
1092
1093    if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) {
1094        // Requested index is in neither buffer.
1095        goto fillReverse;
1096    }
1097
1098    // Requested index is in this buffer.
1099    //   Set the utf16 buffer index.
1100    u8b = (UTF8Buf *)ut->p;
1101    mapIndex = ix - u8b->toUCharsMapStart;
1102    ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1103    if (ut->chunkOffset==0) {
1104        // This occurs when the first character in the text is
1105        //   a multi-byte UTF-8 char, and the requested index is to
1106        //   one of the trailing bytes.  Because there is no preceding ,
1107        //   character, this access fails.  We can't pick up on the
1108        //   situation sooner because the requested index is not zero.
1109        return FALSE;
1110    } else {
1111        return TRUE;
1112    }
1113
1114
1115
1116swapBuffers:
1117    //  The alternate buffer (ut->q) has the string data that was requested.
1118    //  Swap the primary and alternate buffers, and set the
1119    //   chunk index into the new primary buffer.
1120    {
1121        u8b   = (UTF8Buf *)ut->q;
1122        ut->q = ut->p;
1123        ut->p = u8b;
1124        ut->chunkContents       = &u8b->buf[u8b->bufStartIdx];
1125        ut->chunkLength         = u8b->bufLimitIdx - u8b->bufStartIdx;
1126        ut->chunkNativeStart    = u8b->bufNativeStart;
1127        ut->chunkNativeLimit    = u8b->bufNativeLimit;
1128        ut->nativeIndexingLimit = u8b->bufNILimit;
1129
1130        // Index into the (now current) chunk
1131        // Use the map to set the chunk index.  It's more trouble than it's worth
1132        //    to check whether native indexing can be used.
1133        U_ASSERT(ix>=u8b->bufNativeStart);
1134        U_ASSERT(ix<=u8b->bufNativeLimit);
1135        mapIndex = ix - u8b->toUCharsMapStart;
1136        U_ASSERT(mapIndex>=0);
1137        U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars));
1138        ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1139
1140        return TRUE;
1141    }
1142
1143
1144 swapBuffersAndFail:
1145    // We got a request for either the start or end of the string,
1146    //  with iteration continuing in the out-of-bounds direction.
1147    // The alternate buffer already contains the data up to the
1148    //  start/end.
1149    // Swap the buffers, then return failure, indicating that we couldn't
1150    //  make things correct for continuing the iteration in the requested
1151    //  direction.  The position & buffer are correct should the
1152    //  user decide to iterate in the opposite direction.
1153    u8b   = (UTF8Buf *)ut->q;
1154    ut->q = ut->p;
1155    ut->p = u8b;
1156    ut->chunkContents       = &u8b->buf[u8b->bufStartIdx];
1157    ut->chunkLength         = u8b->bufLimitIdx - u8b->bufStartIdx;
1158    ut->chunkNativeStart    = u8b->bufNativeStart;
1159    ut->chunkNativeLimit    = u8b->bufNativeLimit;
1160    ut->nativeIndexingLimit = u8b->bufNILimit;
1161
1162    // Index into the (now current) chunk
1163    //  For this function  (swapBuffersAndFail), the requested index
1164    //    will always be at either the start or end of the chunk.
1165    if (ix==u8b->bufNativeLimit) {
1166        ut->chunkOffset = ut->chunkLength;
1167    } else  {
1168        ut->chunkOffset = 0;
1169        U_ASSERT(ix == u8b->bufNativeStart);
1170    }
1171    return FALSE;
1172
1173makeStubBuffer:
1174    //   The user has done a seek/access past the start or end
1175    //   of the string.  Rather than loading data that is likely
1176    //   to never be used, just set up a zero-length buffer at
1177    //   the position.
1178    u8b = (UTF8Buf *)ut->q;
1179    u8b->bufNativeStart   = ix;
1180    u8b->bufNativeLimit   = ix;
1181    u8b->bufStartIdx      = 0;
1182    u8b->bufLimitIdx      = 0;
1183    u8b->bufNILimit       = 0;
1184    u8b->toUCharsMapStart = ix;
1185    u8b->mapToNative[0]   = 0;
1186    u8b->mapToUChars[0]   = 0;
1187    goto swapBuffersAndFail;
1188
1189
1190
1191fillForward:
1192    {
1193        // Move the incoming index to a code point boundary.
1194        U8_SET_CP_START(s8, 0, ix);
1195
1196        // Swap the UText buffers.
1197        //  We want to fill what was previously the alternate buffer,
1198        //  and make what was the current buffer be the new alternate.
1199        UTF8Buf *u8b = (UTF8Buf *)ut->q;
1200        ut->q = ut->p;
1201        ut->p = u8b;
1202
1203        int32_t strLen = ut->b;
1204        UBool   nulTerminated = FALSE;
1205        if (strLen < 0) {
1206            strLen = 0x7fffffff;
1207            nulTerminated = TRUE;
1208        }
1209
1210        UChar   *buf = u8b->buf;
1211        uint8_t *mapToNative  = u8b->mapToNative;
1212        uint8_t *mapToUChars  = u8b->mapToUChars;
1213        int32_t  destIx       = 0;
1214        int32_t  srcIx        = ix;
1215        UBool    seenNonAscii = FALSE;
1216        UChar32  c = 0;
1217
1218        // Fill the chunk buffer and mapping arrays.
1219        while (destIx<UTF8_TEXT_CHUNK_SIZE) {
1220            c = s8[srcIx];
1221            if (c>0 && c<0x80) {
1222                // Special case ASCII range for speed.
1223                //   zero is excluded to simplify bounds checking.
1224                buf[destIx] = (UChar)c;
1225                mapToNative[destIx]    = (uint8_t)(srcIx - ix);
1226                mapToUChars[srcIx-ix]  = (uint8_t)destIx;
1227                srcIx++;
1228                destIx++;
1229            } else {
1230                // General case, handle everything.
1231                if (seenNonAscii == FALSE) {
1232                    seenNonAscii = TRUE;
1233                    u8b->bufNILimit = destIx;
1234                }
1235
1236                int32_t  cIx      = srcIx;
1237                int32_t  dIx      = destIx;
1238                int32_t  dIxSaved = destIx;
1239                U8_NEXT_OR_FFFD(s8, srcIx, strLen, c);
1240                if (c==0 && nulTerminated) {
1241                    srcIx--;
1242                    break;
1243                }
1244
1245                U16_APPEND_UNSAFE(buf, destIx, c);
1246                do {
1247                    mapToNative[dIx++] = (uint8_t)(cIx - ix);
1248                } while (dIx < destIx);
1249
1250                do {
1251                    mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved;
1252                } while (cIx < srcIx);
1253            }
1254            if (srcIx>=strLen) {
1255                break;
1256            }
1257
1258        }
1259
1260        //  store Native <--> Chunk Map entries for the end of the buffer.
1261        //    There is no actual character here, but the index position is valid.
1262        mapToNative[destIx]     = (uint8_t)(srcIx - ix);
1263        mapToUChars[srcIx - ix] = (uint8_t)destIx;
1264
1265        //  fill in Buffer descriptor
1266        u8b->bufNativeStart     = ix;
1267        u8b->bufNativeLimit     = srcIx;
1268        u8b->bufStartIdx        = 0;
1269        u8b->bufLimitIdx        = destIx;
1270        if (seenNonAscii == FALSE) {
1271            u8b->bufNILimit     = destIx;
1272        }
1273        u8b->toUCharsMapStart   = u8b->bufNativeStart;
1274
1275        // Set UText chunk to refer to this buffer.
1276        ut->chunkContents       = buf;
1277        ut->chunkOffset         = 0;
1278        ut->chunkLength         = u8b->bufLimitIdx;
1279        ut->chunkNativeStart    = u8b->bufNativeStart;
1280        ut->chunkNativeLimit    = u8b->bufNativeLimit;
1281        ut->nativeIndexingLimit = u8b->bufNILimit;
1282
1283        // For zero terminated strings, keep track of the maximum point
1284        //   scanned so far.
1285        if (nulTerminated && srcIx>ut->c) {
1286            ut->c = srcIx;
1287            if (c==0) {
1288                // We scanned to the end.
1289                //   Remember the actual length.
1290                ut->b = srcIx;
1291                ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1292            }
1293        }
1294        return TRUE;
1295    }
1296
1297
1298fillReverse:
1299    {
1300        // Move the incoming index to a code point boundary.
1301        // Can only do this if the incoming index is somewhere in the interior of the string.
1302        //   If index is at the end, there is no character there to look at.
1303        if (ix != ut->b) {
1304            // Note: this function will only move the index back if it is on a trail byte
1305            //       and there is a preceding lead byte and the sequence from the lead
1306            //       through this trail could be part of a valid UTF-8 sequence
1307            //       Otherwise the index remains unchanged.
1308            U8_SET_CP_START(s8, 0, ix);
1309        }
1310
1311        // Swap the UText buffers.
1312        //  We want to fill what was previously the alternate buffer,
1313        //  and make what was the current buffer be the new alternate.
1314        UTF8Buf *u8b = (UTF8Buf *)ut->q;
1315        ut->q = ut->p;
1316        ut->p = u8b;
1317
1318        UChar   *buf = u8b->buf;
1319        uint8_t *mapToNative = u8b->mapToNative;
1320        uint8_t *mapToUChars = u8b->mapToUChars;
1321        int32_t  toUCharsMapStart = ix - sizeof(UTF8Buf::mapToUChars) + 1;
1322        // Note that toUCharsMapStart can be negative. Happens when the remaining
1323        // text from current position to the beginning is less than the buffer size.
1324        // + 1 because mapToUChars must have a slot at the end for the bufNativeLimit entry.
1325        int32_t  destIx = UTF8_TEXT_CHUNK_SIZE+2;   // Start in the overflow region
1326                                                    //   at end of buffer to leave room
1327                                                    //   for a surrogate pair at the
1328                                                    //   buffer start.
1329        int32_t  srcIx  = ix;
1330        int32_t  bufNILimit = destIx;
1331        UChar32   c;
1332
1333        // Map to/from Native Indexes, fill in for the position at the end of
1334        //   the buffer.
1335        //
1336        mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1337        mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1338
1339        // Fill the chunk buffer
1340        // Work backwards, filling from the end of the buffer towards the front.
1341        //
1342        while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) {
1343            srcIx--;
1344            destIx--;
1345
1346            // Get last byte of the UTF-8 character
1347            c = s8[srcIx];
1348            if (c<0x80) {
1349                // Special case ASCII range for speed.
1350                buf[destIx] = (UChar)c;
1351                U_ASSERT(toUCharsMapStart <= srcIx);
1352                mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1353                mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1354            } else {
1355                // General case, handle everything non-ASCII.
1356
1357                int32_t  sIx      = srcIx;  // ix of last byte of multi-byte u8 char
1358
1359                // Get the full character from the UTF8 string.
1360                //   use code derived from tbe macros in utf8.h
1361                //   Leaves srcIx pointing at the first byte of the UTF-8 char.
1362                //
1363                c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -3);
1364                // leaves srcIx at first byte of the multi-byte char.
1365
1366                // Store the character in UTF-16 buffer.
1367                if (c<0x10000) {
1368                    buf[destIx] = (UChar)c;
1369                    mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1370                } else {
1371                    buf[destIx]         = U16_TRAIL(c);
1372                    mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1373                    buf[--destIx]       = U16_LEAD(c);
1374                    mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1375                }
1376
1377                // Fill in the map from native indexes to UChars buf index.
1378                do {
1379                    mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx;
1380                } while (sIx >= srcIx);
1381                U_ASSERT(toUCharsMapStart <= (srcIx+1));
1382
1383                // Set native indexing limit to be the current position.
1384                //   We are processing a non-ascii, non-native-indexing char now;
1385                //     the limit will be here if the rest of the chars to be
1386                //     added to this buffer are ascii.
1387                bufNILimit = destIx;
1388            }
1389        }
1390        u8b->bufNativeStart     = srcIx;
1391        u8b->bufNativeLimit     = ix;
1392        u8b->bufStartIdx        = destIx;
1393        u8b->bufLimitIdx        = UTF8_TEXT_CHUNK_SIZE+2;
1394        u8b->bufNILimit         = bufNILimit - u8b->bufStartIdx;
1395        u8b->toUCharsMapStart   = toUCharsMapStart;
1396
1397        ut->chunkContents       = &buf[u8b->bufStartIdx];
1398        ut->chunkLength         = u8b->bufLimitIdx - u8b->bufStartIdx;
1399        ut->chunkOffset         = ut->chunkLength;
1400        ut->chunkNativeStart    = u8b->bufNativeStart;
1401        ut->chunkNativeLimit    = u8b->bufNativeLimit;
1402        ut->nativeIndexingLimit = u8b->bufNILimit;
1403        return TRUE;
1404    }
1405
1406}
1407
1408
1409
1410//
1411//  This is a slightly modified copy of u_strFromUTF8,
1412//     Inserts a Replacement Char rather than failing on invalid UTF-8
1413//     Removes unnecessary features.
1414//
1415static UChar*
1416utext_strFromUTF8(UChar *dest,
1417              int32_t destCapacity,
1418              int32_t *pDestLength,
1419              const char* src,
1420              int32_t srcLength,        // required.  NUL terminated not supported.
1421              UErrorCode *pErrorCode
1422              )
1423{
1424
1425    UChar *pDest = dest;
1426    UChar *pDestLimit = (dest!=NULL)?(dest+destCapacity):NULL;
1427    UChar32 ch=0;
1428    int32_t index = 0;
1429    int32_t reqLength = 0;
1430    uint8_t* pSrc = (uint8_t*) src;
1431
1432
1433    while((index < srcLength)&&(pDest<pDestLimit)){
1434        ch = pSrc[index++];
1435        if(ch <=0x7f){
1436            *pDest++=(UChar)ch;
1437        }else{
1438            ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
1439            if(U_IS_BMP(ch)){
1440                *(pDest++)=(UChar)ch;
1441            }else{
1442                *(pDest++)=U16_LEAD(ch);
1443                if(pDest<pDestLimit){
1444                    *(pDest++)=U16_TRAIL(ch);
1445                }else{
1446                    reqLength++;
1447                    break;
1448                }
1449            }
1450        }
1451    }
1452    /* donot fill the dest buffer just count the UChars needed */
1453    while(index < srcLength){
1454        ch = pSrc[index++];
1455        if(ch <= 0x7f){
1456            reqLength++;
1457        }else{
1458            ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
1459            reqLength+=U16_LENGTH(ch);
1460        }
1461    }
1462
1463    reqLength+=(int32_t)(pDest - dest);
1464
1465    if(pDestLength){
1466        *pDestLength = reqLength;
1467    }
1468
1469    /* Terminate the buffer */
1470    u_terminateUChars(dest,destCapacity,reqLength,pErrorCode);
1471
1472    return dest;
1473}
1474
1475
1476
1477static int32_t U_CALLCONV
1478utf8TextExtract(UText *ut,
1479                int64_t start, int64_t limit,
1480                UChar *dest, int32_t destCapacity,
1481                UErrorCode *pErrorCode) {
1482    if(U_FAILURE(*pErrorCode)) {
1483        return 0;
1484    }
1485    if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
1486        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
1487        return 0;
1488    }
1489    int32_t  length  = ut->b;
1490    int32_t  start32 = pinIndex(start, length);
1491    int32_t  limit32 = pinIndex(limit, length);
1492
1493    if(start32>limit32) {
1494        *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
1495        return 0;
1496    }
1497
1498
1499    // adjust the incoming indexes to land on code point boundaries if needed.
1500    //    adjust by no more than three, because that is the largest number of trail bytes
1501    //    in a well formed UTF8 character.
1502    const uint8_t *buf = (const uint8_t *)ut->context;
1503    int i;
1504    if (start32 < ut->chunkNativeLimit) {
1505        for (i=0; i<3; i++) {
1506            if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) {
1507                break;
1508            }
1509            start32--;
1510        }
1511    }
1512
1513    if (limit32 < ut->chunkNativeLimit) {
1514        for (i=0; i<3; i++) {
1515            if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) {
1516                break;
1517            }
1518            limit32--;
1519        }
1520    }
1521
1522    // Do the actual extract.
1523    int32_t destLength=0;
1524    utext_strFromUTF8(dest, destCapacity, &destLength,
1525                    (const char *)ut->context+start32, limit32-start32,
1526                    pErrorCode);
1527    utf8TextAccess(ut, limit32, TRUE);
1528    return destLength;
1529}
1530
1531//
1532// utf8TextMapOffsetToNative
1533//
1534// Map a chunk (UTF-16) offset to a native index.
1535static int64_t U_CALLCONV
1536utf8TextMapOffsetToNative(const UText *ut) {
1537    //
1538    UTF8Buf *u8b = (UTF8Buf *)ut->p;
1539    U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength);
1540    int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart;
1541    U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit);
1542    return nativeOffset;
1543}
1544
1545//
1546// Map a native index to the corrsponding chunk offset
1547//
1548static int32_t U_CALLCONV
1549utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) {
1550    U_ASSERT(index64 <= 0x7fffffff);
1551    int32_t index = (int32_t)index64;
1552    UTF8Buf *u8b = (UTF8Buf *)ut->p;
1553    U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit);
1554    U_ASSERT(index<=ut->chunkNativeLimit);
1555    int32_t mapIndex = index - u8b->toUCharsMapStart;
1556    U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars));
1557    int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1558    U_ASSERT(offset>=0 && offset<=ut->chunkLength);
1559    return offset;
1560}
1561
1562static UText * U_CALLCONV
1563utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status)
1564{
1565    // First do a generic shallow clone.  Does everything needed for the UText struct itself.
1566    dest = shallowTextClone(dest, src, status);
1567
1568    // For deep clones, make a copy of the string.
1569    //  The copied storage is owned by the newly created clone.
1570    //
1571    // TODO:  There is an isssue with using utext_nativeLength().
1572    //        That function is non-const in cases where the input was NUL terminated
1573    //          and the length has not yet been determined.
1574    //        This function (clone()) is const.
1575    //        There potentially a thread safety issue lurking here.
1576    //
1577    if (deep && U_SUCCESS(*status)) {
1578        int32_t  len = (int32_t)utext_nativeLength((UText *)src);
1579        char *copyStr = (char *)uprv_malloc(len+1);
1580        if (copyStr == NULL) {
1581            *status = U_MEMORY_ALLOCATION_ERROR;
1582        } else {
1583            uprv_memcpy(copyStr, src->context, len+1);
1584            dest->context = copyStr;
1585            dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1586        }
1587    }
1588    return dest;
1589}
1590
1591
1592static void U_CALLCONV
1593utf8TextClose(UText *ut) {
1594    // Most of the work of close is done by the generic UText framework close.
1595    // All that needs to be done here is to delete the UTF8 string if the UText
1596    //  owns it.  This occurs if the UText was created by cloning.
1597    if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1598        char *s = (char *)ut->context;
1599        uprv_free(s);
1600        ut->context = NULL;
1601    }
1602}
1603
1604U_CDECL_END
1605
1606
1607static const struct UTextFuncs utf8Funcs =
1608{
1609    sizeof(UTextFuncs),
1610    0, 0, 0,             // Reserved alignment padding
1611    utf8TextClone,
1612    utf8TextLength,
1613    utf8TextAccess,
1614    utf8TextExtract,
1615    NULL,                /* replace*/
1616    NULL,                /* copy   */
1617    utf8TextMapOffsetToNative,
1618    utf8TextMapIndexToUTF16,
1619    utf8TextClose,
1620    NULL,                // spare 1
1621    NULL,                // spare 2
1622    NULL                 // spare 3
1623};
1624
1625
1626static const char gEmptyString[] = {0};
1627
1628U_CAPI UText * U_EXPORT2
1629utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) {
1630    if(U_FAILURE(*status)) {
1631        return NULL;
1632    }
1633    if(s==NULL && length==0) {
1634        s = gEmptyString;
1635    }
1636
1637    if(s==NULL || length<-1 || length>INT32_MAX) {
1638        *status=U_ILLEGAL_ARGUMENT_ERROR;
1639        return NULL;
1640    }
1641
1642    ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status);
1643    if (U_FAILURE(*status)) {
1644        return ut;
1645    }
1646
1647    ut->pFuncs  = &utf8Funcs;
1648    ut->context = s;
1649    ut->b       = (int32_t)length;
1650    ut->c       = (int32_t)length;
1651    if (ut->c < 0) {
1652        ut->c = 0;
1653        ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1654    }
1655    ut->p = ut->pExtra;
1656    ut->q = (char *)ut->pExtra + sizeof(UTF8Buf);
1657    return ut;
1658
1659}
1660
1661
1662
1663
1664
1665
1666
1667
1668//------------------------------------------------------------------------------
1669//
1670//     UText implementation wrapper for Replaceable (read/write)
1671//
1672//         Use of UText data members:
1673//            context    pointer to Replaceable.
1674//            p          pointer to Replaceable if it is owned by the UText.
1675//
1676//------------------------------------------------------------------------------
1677
1678
1679
1680// minimum chunk size for this implementation: 3
1681// to allow for possible trimming for code point boundaries
1682enum { REP_TEXT_CHUNK_SIZE=10 };
1683
1684struct ReplExtra {
1685    /*
1686     * Chunk UChars.
1687     * +1 to simplify filling with surrogate pair at the end.
1688     */
1689    UChar s[REP_TEXT_CHUNK_SIZE+1];
1690};
1691
1692
1693U_CDECL_BEGIN
1694
1695static UText * U_CALLCONV
1696repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
1697    // First do a generic shallow clone.  Does everything needed for the UText struct itself.
1698    dest = shallowTextClone(dest, src, status);
1699
1700    // For deep clones, make a copy of the Replaceable.
1701    //  The copied Replaceable storage is owned by the newly created UText clone.
1702    //  A non-NULL pointer in UText.p is the signal to the close() function to delete
1703    //    it.
1704    //
1705    if (deep && U_SUCCESS(*status)) {
1706        const Replaceable *replSrc = (const Replaceable *)src->context;
1707        dest->context = replSrc->clone();
1708        dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1709
1710        // with deep clone, the copy is writable, even when the source is not.
1711        dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
1712    }
1713    return dest;
1714}
1715
1716
1717static void U_CALLCONV
1718repTextClose(UText *ut) {
1719    // Most of the work of close is done by the generic UText framework close.
1720    // All that needs to be done here is delete the Replaceable if the UText
1721    //  owns it.  This occurs if the UText was created by cloning.
1722    if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1723        Replaceable *rep = (Replaceable *)ut->context;
1724        delete rep;
1725        ut->context = NULL;
1726    }
1727}
1728
1729
1730static int64_t U_CALLCONV
1731repTextLength(UText *ut) {
1732    const Replaceable *replSrc = (const Replaceable *)ut->context;
1733    int32_t  len = replSrc->length();
1734    return len;
1735}
1736
1737
1738static UBool U_CALLCONV
1739repTextAccess(UText *ut, int64_t index, UBool forward) {
1740    const Replaceable *rep=(const Replaceable *)ut->context;
1741    int32_t length=rep->length();   // Full length of the input text (bigger than a chunk)
1742
1743    // clip the requested index to the limits of the text.
1744    int32_t index32 = pinIndex(index, length);
1745    U_ASSERT(index<=INT32_MAX);
1746
1747
1748    /*
1749     * Compute start/limit boundaries around index, for a segment of text
1750     * to be extracted.
1751     * To allow for the possibility that our user gave an index to the trailing
1752     * half of a surrogate pair, we must request one extra preceding UChar when
1753     * going in the forward direction.  This will ensure that the buffer has the
1754     * entire code point at the specified index.
1755     */
1756    if(forward) {
1757
1758        if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) {
1759            // Buffer already contains the requested position.
1760            ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
1761            return TRUE;
1762        }
1763        if (index32>=length && ut->chunkNativeLimit==length) {
1764            // Request for end of string, and buffer already extends up to it.
1765            // Can't get the data, but don't change the buffer.
1766            ut->chunkOffset = length - (int32_t)ut->chunkNativeStart;
1767            return FALSE;
1768        }
1769
1770        ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1;
1771        // Going forward, so we want to have the buffer with stuff at and beyond
1772        //   the requested index.  The -1 gets us one code point before the
1773        //   requested index also, to handle the case of the index being on
1774        //   a trail surrogate of a surrogate pair.
1775        if(ut->chunkNativeLimit > length) {
1776            ut->chunkNativeLimit = length;
1777        }
1778        // unless buffer ran off end, start is index-1.
1779        ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE;
1780        if(ut->chunkNativeStart < 0) {
1781            ut->chunkNativeStart = 0;
1782        }
1783    } else {
1784        // Reverse iteration.  Fill buffer with data preceding the requested index.
1785        if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) {
1786            // Requested position already in buffer.
1787            ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart;
1788            return TRUE;
1789        }
1790        if (index32==0 && ut->chunkNativeStart==0) {
1791            // Request for start, buffer already begins at start.
1792            //  No data, but keep the buffer as is.
1793            ut->chunkOffset = 0;
1794            return FALSE;
1795        }
1796
1797        // Figure out the bounds of the chunk to extract for reverse iteration.
1798        // Need to worry about chunk not splitting surrogate pairs, and while still
1799        // containing the data we need.
1800        // Fix by requesting a chunk that includes an extra UChar at the end.
1801        // If this turns out to be a lead surrogate, we can lop it off and still have
1802        //   the data we wanted.
1803        ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE;
1804        if (ut->chunkNativeStart < 0) {
1805            ut->chunkNativeStart = 0;
1806        }
1807
1808        ut->chunkNativeLimit = index32 + 1;
1809        if (ut->chunkNativeLimit > length) {
1810            ut->chunkNativeLimit = length;
1811        }
1812    }
1813
1814    // Extract the new chunk of text from the Replaceable source.
1815    ReplExtra *ex = (ReplExtra *)ut->pExtra;
1816    // UnicodeString with its buffer a writable alias to the chunk buffer
1817    UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/);
1818    rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer);
1819
1820    ut->chunkContents  = ex->s;
1821    ut->chunkLength    = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart);
1822    ut->chunkOffset    = (int32_t)(index32 - ut->chunkNativeStart);
1823
1824    // Surrogate pairs from the input text must not span chunk boundaries.
1825    // If end of chunk could be the start of a surrogate, trim it off.
1826    if (ut->chunkNativeLimit < length &&
1827        U16_IS_LEAD(ex->s[ut->chunkLength-1])) {
1828            ut->chunkLength--;
1829            ut->chunkNativeLimit--;
1830            if (ut->chunkOffset > ut->chunkLength) {
1831                ut->chunkOffset = ut->chunkLength;
1832            }
1833        }
1834
1835    // if the first UChar in the chunk could be the trailing half of a surrogate pair,
1836    // trim it off.
1837    if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) {
1838        ++(ut->chunkContents);
1839        ++(ut->chunkNativeStart);
1840        --(ut->chunkLength);
1841        --(ut->chunkOffset);
1842    }
1843
1844    // adjust the index/chunkOffset to a code point boundary
1845    U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset);
1846
1847    // Use fast indexing for get/setNativeIndex()
1848    ut->nativeIndexingLimit = ut->chunkLength;
1849
1850    return TRUE;
1851}
1852
1853
1854
1855static int32_t U_CALLCONV
1856repTextExtract(UText *ut,
1857               int64_t start, int64_t limit,
1858               UChar *dest, int32_t destCapacity,
1859               UErrorCode *status) {
1860    const Replaceable *rep=(const Replaceable *)ut->context;
1861    int32_t  length=rep->length();
1862
1863    if(U_FAILURE(*status)) {
1864        return 0;
1865    }
1866    if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
1867        *status=U_ILLEGAL_ARGUMENT_ERROR;
1868    }
1869    if(start>limit) {
1870        *status=U_INDEX_OUTOFBOUNDS_ERROR;
1871        return 0;
1872    }
1873
1874    int32_t  start32 = pinIndex(start, length);
1875    int32_t  limit32 = pinIndex(limit, length);
1876
1877    // adjust start, limit if they point to trail half of surrogates
1878    if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) &&
1879        U_IS_SUPPLEMENTARY(rep->char32At(start32))){
1880            start32--;
1881    }
1882    if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) &&
1883        U_IS_SUPPLEMENTARY(rep->char32At(limit32))){
1884            limit32--;
1885    }
1886
1887    length=limit32-start32;
1888    if(length>destCapacity) {
1889        limit32 = start32 + destCapacity;
1890    }
1891    UnicodeString buffer(dest, 0, destCapacity); // writable alias
1892    rep->extractBetween(start32, limit32, buffer);
1893    repTextAccess(ut, limit32, TRUE);
1894
1895    return u_terminateUChars(dest, destCapacity, length, status);
1896}
1897
1898static int32_t U_CALLCONV
1899repTextReplace(UText *ut,
1900               int64_t start, int64_t limit,
1901               const UChar *src, int32_t length,
1902               UErrorCode *status) {
1903    Replaceable *rep=(Replaceable *)ut->context;
1904    int32_t oldLength;
1905
1906    if(U_FAILURE(*status)) {
1907        return 0;
1908    }
1909    if(src==NULL && length!=0) {
1910        *status=U_ILLEGAL_ARGUMENT_ERROR;
1911        return 0;
1912    }
1913    oldLength=rep->length(); // will subtract from new length
1914    if(start>limit ) {
1915        *status=U_INDEX_OUTOFBOUNDS_ERROR;
1916        return 0;
1917    }
1918
1919    int32_t start32 = pinIndex(start, oldLength);
1920    int32_t limit32 = pinIndex(limit, oldLength);
1921
1922    // Snap start & limit to code point boundaries.
1923    if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) &&
1924        start32>0 && U16_IS_LEAD(rep->charAt(start32-1)))
1925    {
1926            start32--;
1927    }
1928    if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) &&
1929        U16_IS_TRAIL(rep->charAt(limit32)))
1930    {
1931            limit32++;
1932    }
1933
1934    // Do the actual replace operation using methods of the Replaceable class
1935    UnicodeString replStr((UBool)(length<0), src, length); // read-only alias
1936    rep->handleReplaceBetween(start32, limit32, replStr);
1937    int32_t newLength = rep->length();
1938    int32_t lengthDelta = newLength - oldLength;
1939
1940    // Is the UText chunk buffer OK?
1941    if (ut->chunkNativeLimit > start32) {
1942        // this replace operation may have impacted the current chunk.
1943        // invalidate it, which will force a reload on the next access.
1944        invalidateChunk(ut);
1945    }
1946
1947    // set the iteration position to the end of the newly inserted replacement text.
1948    int32_t newIndexPos = limit32 + lengthDelta;
1949    repTextAccess(ut, newIndexPos, TRUE);
1950
1951    return lengthDelta;
1952}
1953
1954
1955static void U_CALLCONV
1956repTextCopy(UText *ut,
1957                int64_t start, int64_t limit,
1958                int64_t destIndex,
1959                UBool move,
1960                UErrorCode *status)
1961{
1962    Replaceable *rep=(Replaceable *)ut->context;
1963    int32_t length=rep->length();
1964
1965    if(U_FAILURE(*status)) {
1966        return;
1967    }
1968    if (start>limit || (start<destIndex && destIndex<limit))
1969    {
1970        *status=U_INDEX_OUTOFBOUNDS_ERROR;
1971        return;
1972    }
1973
1974    int32_t start32     = pinIndex(start, length);
1975    int32_t limit32     = pinIndex(limit, length);
1976    int32_t destIndex32 = pinIndex(destIndex, length);
1977
1978    // TODO:  snap input parameters to code point boundaries.
1979
1980    if(move) {
1981        // move: copy to destIndex, then replace original with nothing
1982        int32_t segLength=limit32-start32;
1983        rep->copy(start32, limit32, destIndex32);
1984        if(destIndex32<start32) {
1985            start32+=segLength;
1986            limit32+=segLength;
1987        }
1988        rep->handleReplaceBetween(start32, limit32, UnicodeString());
1989    } else {
1990        // copy
1991        rep->copy(start32, limit32, destIndex32);
1992    }
1993
1994    // If the change to the text touched the region in the chunk buffer,
1995    //  invalidate the buffer.
1996    int32_t firstAffectedIndex = destIndex32;
1997    if (move && start32<firstAffectedIndex) {
1998        firstAffectedIndex = start32;
1999    }
2000    if (firstAffectedIndex < ut->chunkNativeLimit) {
2001        // changes may have affected range covered by the chunk
2002        invalidateChunk(ut);
2003    }
2004
2005    // Put iteration position at the newly inserted (moved) block,
2006    int32_t  nativeIterIndex = destIndex32 + limit32 - start32;
2007    if (move && destIndex32>start32) {
2008        // moved a block of text towards the end of the string.
2009        nativeIterIndex = destIndex32;
2010    }
2011
2012    // Set position, reload chunk if needed.
2013    repTextAccess(ut, nativeIterIndex, TRUE);
2014}
2015
2016static const struct UTextFuncs repFuncs =
2017{
2018    sizeof(UTextFuncs),
2019    0, 0, 0,           // Reserved alignment padding
2020    repTextClone,
2021    repTextLength,
2022    repTextAccess,
2023    repTextExtract,
2024    repTextReplace,
2025    repTextCopy,
2026    NULL,              // MapOffsetToNative,
2027    NULL,              // MapIndexToUTF16,
2028    repTextClose,
2029    NULL,              // spare 1
2030    NULL,              // spare 2
2031    NULL               // spare 3
2032};
2033
2034
2035U_CAPI UText * U_EXPORT2
2036utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status)
2037{
2038    if(U_FAILURE(*status)) {
2039        return NULL;
2040    }
2041    if(rep==NULL) {
2042        *status=U_ILLEGAL_ARGUMENT_ERROR;
2043        return NULL;
2044    }
2045    ut = utext_setup(ut, sizeof(ReplExtra), status);
2046    if(U_FAILURE(*status)) {
2047        return ut;
2048    }
2049
2050    ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2051    if(rep->hasMetaData()) {
2052        ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA);
2053    }
2054
2055    ut->pFuncs  = &repFuncs;
2056    ut->context =  rep;
2057    return ut;
2058}
2059
2060U_CDECL_END
2061
2062
2063
2064
2065
2066
2067
2068
2069//------------------------------------------------------------------------------
2070//
2071//     UText implementation for UnicodeString (read/write)  and
2072//                    for const UnicodeString (read only)
2073//             (same implementation, only the flags are different)
2074//
2075//         Use of UText data members:
2076//            context    pointer to UnicodeString
2077//            p          pointer to UnicodeString IF this UText owns the string
2078//                       and it must be deleted on close().  NULL otherwise.
2079//
2080//------------------------------------------------------------------------------
2081
2082U_CDECL_BEGIN
2083
2084
2085static UText * U_CALLCONV
2086unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
2087    // First do a generic shallow clone.  Does everything needed for the UText struct itself.
2088    dest = shallowTextClone(dest, src, status);
2089
2090    // For deep clones, make a copy of the UnicodeSring.
2091    //  The copied UnicodeString storage is owned by the newly created UText clone.
2092    //  A non-NULL pointer in UText.p is the signal to the close() function to delete
2093    //    the UText.
2094    //
2095    if (deep && U_SUCCESS(*status)) {
2096        const UnicodeString *srcString = (const UnicodeString *)src->context;
2097        dest->context = new UnicodeString(*srcString);
2098        dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2099
2100        // with deep clone, the copy is writable, even when the source is not.
2101        dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2102    }
2103    return dest;
2104}
2105
2106static void U_CALLCONV
2107unistrTextClose(UText *ut) {
2108    // Most of the work of close is done by the generic UText framework close.
2109    // All that needs to be done here is delete the UnicodeString if the UText
2110    //  owns it.  This occurs if the UText was created by cloning.
2111    if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2112        UnicodeString *str = (UnicodeString *)ut->context;
2113        delete str;
2114        ut->context = NULL;
2115    }
2116}
2117
2118
2119static int64_t U_CALLCONV
2120unistrTextLength(UText *t) {
2121    return ((const UnicodeString *)t->context)->length();
2122}
2123
2124
2125static UBool U_CALLCONV
2126unistrTextAccess(UText *ut, int64_t index, UBool  forward) {
2127    int32_t length  = ut->chunkLength;
2128    ut->chunkOffset = pinIndex(index, length);
2129
2130    // Check whether request is at the start or end
2131    UBool retVal = (forward && index<length) || (!forward && index>0);
2132    return retVal;
2133}
2134
2135
2136
2137static int32_t U_CALLCONV
2138unistrTextExtract(UText *t,
2139                  int64_t start, int64_t limit,
2140                  UChar *dest, int32_t destCapacity,
2141                  UErrorCode *pErrorCode) {
2142    const UnicodeString *us=(const UnicodeString *)t->context;
2143    int32_t length=us->length();
2144
2145    if(U_FAILURE(*pErrorCode)) {
2146        return 0;
2147    }
2148    if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
2149        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2150    }
2151    if(start<0 || start>limit) {
2152        *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2153        return 0;
2154    }
2155
2156    int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length;
2157    int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length;
2158
2159    length=limit32-start32;
2160    if (destCapacity>0 && dest!=NULL) {
2161        int32_t trimmedLength = length;
2162        if(trimmedLength>destCapacity) {
2163            trimmedLength=destCapacity;
2164        }
2165        us->extract(start32, trimmedLength, dest);
2166        t->chunkOffset = start32+trimmedLength;
2167    } else {
2168        t->chunkOffset = start32;
2169    }
2170    u_terminateUChars(dest, destCapacity, length, pErrorCode);
2171    return length;
2172}
2173
2174static int32_t U_CALLCONV
2175unistrTextReplace(UText *ut,
2176                  int64_t start, int64_t limit,
2177                  const UChar *src, int32_t length,
2178                  UErrorCode *pErrorCode) {
2179    UnicodeString *us=(UnicodeString *)ut->context;
2180    int32_t oldLength;
2181
2182    if(U_FAILURE(*pErrorCode)) {
2183        return 0;
2184    }
2185    if(src==NULL && length!=0) {
2186        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2187    }
2188    if(start>limit) {
2189        *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2190        return 0;
2191    }
2192    oldLength=us->length();
2193    int32_t start32 = pinIndex(start, oldLength);
2194    int32_t limit32 = pinIndex(limit, oldLength);
2195    if (start32 < oldLength) {
2196        start32 = us->getChar32Start(start32);
2197    }
2198    if (limit32 < oldLength) {
2199        limit32 = us->getChar32Start(limit32);
2200    }
2201
2202    // replace
2203    us->replace(start32, limit32-start32, src, length);
2204    int32_t newLength = us->length();
2205
2206    // Update the chunk description.
2207    ut->chunkContents    = us->getBuffer();
2208    ut->chunkLength      = newLength;
2209    ut->chunkNativeLimit = newLength;
2210    ut->nativeIndexingLimit = newLength;
2211
2212    // Set iteration position to the point just following the newly inserted text.
2213    int32_t lengthDelta = newLength - oldLength;
2214    ut->chunkOffset = limit32 + lengthDelta;
2215
2216    return lengthDelta;
2217}
2218
2219static void U_CALLCONV
2220unistrTextCopy(UText *ut,
2221               int64_t start, int64_t limit,
2222               int64_t destIndex,
2223               UBool move,
2224               UErrorCode *pErrorCode) {
2225    UnicodeString *us=(UnicodeString *)ut->context;
2226    int32_t length=us->length();
2227
2228    if(U_FAILURE(*pErrorCode)) {
2229        return;
2230    }
2231    int32_t start32 = pinIndex(start, length);
2232    int32_t limit32 = pinIndex(limit, length);
2233    int32_t destIndex32 = pinIndex(destIndex, length);
2234
2235    if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) {
2236        *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2237        return;
2238    }
2239
2240    if(move) {
2241        // move: copy to destIndex, then remove original
2242        int32_t segLength=limit32-start32;
2243        us->copy(start32, limit32, destIndex32);
2244        if(destIndex32<start32) {
2245            start32+=segLength;
2246        }
2247        us->remove(start32, segLength);
2248    } else {
2249        // copy
2250        us->copy(start32, limit32, destIndex32);
2251    }
2252
2253    // update chunk description, set iteration position.
2254    ut->chunkContents = us->getBuffer();
2255    if (move==FALSE) {
2256        // copy operation, string length grows
2257        ut->chunkLength += limit32-start32;
2258        ut->chunkNativeLimit = ut->chunkLength;
2259        ut->nativeIndexingLimit = ut->chunkLength;
2260    }
2261
2262    // Iteration position to end of the newly inserted text.
2263    ut->chunkOffset = destIndex32+limit32-start32;
2264    if (move && destIndex32>start32) {
2265        ut->chunkOffset = destIndex32;
2266    }
2267
2268}
2269
2270static const struct UTextFuncs unistrFuncs =
2271{
2272    sizeof(UTextFuncs),
2273    0, 0, 0,             // Reserved alignment padding
2274    unistrTextClone,
2275    unistrTextLength,
2276    unistrTextAccess,
2277    unistrTextExtract,
2278    unistrTextReplace,
2279    unistrTextCopy,
2280    NULL,                // MapOffsetToNative,
2281    NULL,                // MapIndexToUTF16,
2282    unistrTextClose,
2283    NULL,                // spare 1
2284    NULL,                // spare 2
2285    NULL                 // spare 3
2286};
2287
2288
2289
2290U_CDECL_END
2291
2292
2293U_CAPI UText * U_EXPORT2
2294utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
2295    ut = utext_openConstUnicodeString(ut, s, status);
2296    if (U_SUCCESS(*status)) {
2297        ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2298    }
2299    return ut;
2300}
2301
2302
2303
2304U_CAPI UText * U_EXPORT2
2305utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) {
2306    if (U_SUCCESS(*status) && s->isBogus()) {
2307        // The UnicodeString is bogus, but we still need to detach the UText
2308        //   from whatever it was hooked to before, if anything.
2309        utext_openUChars(ut, NULL, 0, status);
2310        *status = U_ILLEGAL_ARGUMENT_ERROR;
2311        return ut;
2312    }
2313    ut = utext_setup(ut, 0, status);
2314    //    note:  use the standard (writable) function table for UnicodeString.
2315    //           The flag settings disable writing, so having the functions in
2316    //           the table is harmless.
2317    if (U_SUCCESS(*status)) {
2318        ut->pFuncs              = &unistrFuncs;
2319        ut->context             = s;
2320        ut->providerProperties  = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2321        ut->chunkContents       = s->getBuffer();
2322        ut->chunkLength         = s->length();
2323        ut->chunkNativeStart    = 0;
2324        ut->chunkNativeLimit    = ut->chunkLength;
2325        ut->nativeIndexingLimit = ut->chunkLength;
2326    }
2327    return ut;
2328}
2329
2330//------------------------------------------------------------------------------
2331//
2332//     UText implementation for const UChar * strings
2333//
2334//         Use of UText data members:
2335//            context    pointer to UnicodeString
2336//            a          length.  -1 if not yet known.
2337//
2338//         TODO:  support 64 bit lengths.
2339//
2340//------------------------------------------------------------------------------
2341
2342U_CDECL_BEGIN
2343
2344
2345static UText * U_CALLCONV
2346ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) {
2347    // First do a generic shallow clone.
2348    dest = shallowTextClone(dest, src, status);
2349
2350    // For deep clones, make a copy of the string.
2351    //  The copied storage is owned by the newly created clone.
2352    //  A non-NULL pointer in UText.p is the signal to the close() function to delete
2353    //    it.
2354    //
2355    if (deep && U_SUCCESS(*status)) {
2356        U_ASSERT(utext_nativeLength(dest) < INT32_MAX);
2357        int32_t  len = (int32_t)utext_nativeLength(dest);
2358
2359        // The cloned string IS going to be NUL terminated, whether or not the original was.
2360        const UChar *srcStr = (const UChar *)src->context;
2361        UChar *copyStr = (UChar *)uprv_malloc((len+1) * sizeof(UChar));
2362        if (copyStr == NULL) {
2363            *status = U_MEMORY_ALLOCATION_ERROR;
2364        } else {
2365            int64_t i;
2366            for (i=0; i<len; i++) {
2367                copyStr[i] = srcStr[i];
2368            }
2369            copyStr[len] = 0;
2370            dest->context = copyStr;
2371            dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2372        }
2373    }
2374    return dest;
2375}
2376
2377
2378static void U_CALLCONV
2379ucstrTextClose(UText *ut) {
2380    // Most of the work of close is done by the generic UText framework close.
2381    // All that needs to be done here is delete the string if the UText
2382    //  owns it.  This occurs if the UText was created by cloning.
2383    if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2384        UChar *s = (UChar *)ut->context;
2385        uprv_free(s);
2386        ut->context = NULL;
2387    }
2388}
2389
2390
2391
2392static int64_t U_CALLCONV
2393ucstrTextLength(UText *ut) {
2394    if (ut->a < 0) {
2395        // null terminated, we don't yet know the length.  Scan for it.
2396        //    Access is not convenient for doing this
2397        //    because the current interation postion can't be changed.
2398        const UChar  *str = (const UChar *)ut->context;
2399        for (;;) {
2400            if (str[ut->chunkNativeLimit] == 0) {
2401                break;
2402            }
2403            ut->chunkNativeLimit++;
2404        }
2405        ut->a = ut->chunkNativeLimit;
2406        ut->chunkLength = (int32_t)ut->chunkNativeLimit;
2407        ut->nativeIndexingLimit = ut->chunkLength;
2408        ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2409    }
2410    return ut->a;
2411}
2412
2413
2414static UBool U_CALLCONV
2415ucstrTextAccess(UText *ut, int64_t index, UBool  forward) {
2416    const UChar *str   = (const UChar *)ut->context;
2417
2418    // pin the requested index to the bounds of the string,
2419    //  and set current iteration position.
2420    if (index<0) {
2421        index = 0;
2422    } else if (index < ut->chunkNativeLimit) {
2423        // The request data is within the chunk as it is known so far.
2424        // Put index on a code point boundary.
2425        U16_SET_CP_START(str, 0, index);
2426    } else if (ut->a >= 0) {
2427        // We know the length of this string, and the user is requesting something
2428        // at or beyond the length.  Pin the requested index to the length.
2429        index = ut->a;
2430    } else {
2431        // Null terminated string, length not yet known, and the requested index
2432        //  is beyond where we have scanned so far.
2433        //  Scan to 32 UChars beyond the requested index.  The strategy here is
2434        //  to avoid fully scanning a long string when the caller only wants to
2435        //  see a few characters at its beginning.
2436        int32_t scanLimit = (int32_t)index + 32;
2437        if ((index + 32)>INT32_MAX || (index + 32)<0 ) {   // note: int64 expression
2438            scanLimit = INT32_MAX;
2439        }
2440
2441        int32_t chunkLimit = (int32_t)ut->chunkNativeLimit;
2442        for (; chunkLimit<scanLimit; chunkLimit++) {
2443            if (str[chunkLimit] == 0) {
2444                // We found the end of the string.  Remember it, pin the requested index to it,
2445                //  and bail out of here.
2446                ut->a = chunkLimit;
2447                ut->chunkLength = chunkLimit;
2448                ut->nativeIndexingLimit = chunkLimit;
2449                if (index >= chunkLimit) {
2450                    index = chunkLimit;
2451                } else {
2452                    U16_SET_CP_START(str, 0, index);
2453                }
2454
2455                ut->chunkNativeLimit = chunkLimit;
2456                ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2457                goto breakout;
2458            }
2459        }
2460        // We scanned through the next batch of UChars without finding the end.
2461        U16_SET_CP_START(str, 0, index);
2462        if (chunkLimit == INT32_MAX) {
2463            // Scanned to the limit of a 32 bit length.
2464            // Forceably trim the overlength string back so length fits in int32
2465            //  TODO:  add support for 64 bit strings.
2466            ut->a = chunkLimit;
2467            ut->chunkLength = chunkLimit;
2468            ut->nativeIndexingLimit = chunkLimit;
2469            if (index > chunkLimit) {
2470                index = chunkLimit;
2471            }
2472            ut->chunkNativeLimit = chunkLimit;
2473            ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2474        } else {
2475            // The endpoint of a chunk must not be left in the middle of a surrogate pair.
2476            // If the current end is on a lead surrogate, back the end up by one.
2477            // It doesn't matter if the end char happens to be an unpaired surrogate,
2478            //    and it's simpler not to worry about it.
2479            if (U16_IS_LEAD(str[chunkLimit-1])) {
2480                --chunkLimit;
2481            }
2482            // Null-terminated chunk with end still unknown.
2483            // Update the chunk length to reflect what has been scanned thus far.
2484            // That the full length is still unknown is (still) flagged by
2485            //    ut->a being < 0.
2486            ut->chunkNativeLimit = chunkLimit;
2487            ut->nativeIndexingLimit = chunkLimit;
2488            ut->chunkLength = chunkLimit;
2489        }
2490
2491    }
2492breakout:
2493    U_ASSERT(index<=INT32_MAX);
2494    ut->chunkOffset = (int32_t)index;
2495
2496    // Check whether request is at the start or end
2497    UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index>0);
2498    return retVal;
2499}
2500
2501
2502
2503static int32_t U_CALLCONV
2504ucstrTextExtract(UText *ut,
2505                  int64_t start, int64_t limit,
2506                  UChar *dest, int32_t destCapacity,
2507                  UErrorCode *pErrorCode)
2508{
2509    if(U_FAILURE(*pErrorCode)) {
2510        return 0;
2511    }
2512    if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) {
2513        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2514        return 0;
2515    }
2516
2517    //const UChar *s=(const UChar *)ut->context;
2518    int32_t si, di;
2519
2520    int32_t start32;
2521    int32_t limit32;
2522
2523    // Access the start.  Does two things we need:
2524    //   Pins 'start' to the length of the string, if it came in out-of-bounds.
2525    //   Snaps 'start' to the beginning of a code point.
2526    ucstrTextAccess(ut, start, TRUE);
2527    const UChar *s=ut->chunkContents;
2528    start32 = ut->chunkOffset;
2529
2530    int32_t strLength=(int32_t)ut->a;
2531    if (strLength >= 0) {
2532        limit32 = pinIndex(limit, strLength);
2533    } else {
2534        limit32 = pinIndex(limit, INT32_MAX);
2535    }
2536    di = 0;
2537    for (si=start32; si<limit32; si++) {
2538        if (strLength<0 && s[si]==0) {
2539            // Just hit the end of a null-terminated string.
2540            ut->a = si;               // set string length for this UText
2541            ut->chunkNativeLimit    = si;
2542            ut->chunkLength         = si;
2543            ut->nativeIndexingLimit = si;
2544            strLength               = si;
2545            limit32                 = si;
2546            break;
2547        }
2548        U_ASSERT(di>=0); /* to ensure di never exceeds INT32_MAX, which must not happen logically */
2549        if (di<destCapacity) {
2550            // only store if there is space.
2551            dest[di] = s[si];
2552        } else {
2553            if (strLength>=0) {
2554                // We have filled the destination buffer, and the string length is known.
2555                //  Cut the loop short.  There is no need to scan string termination.
2556                di = limit32 - start32;
2557                si = limit32;
2558                break;
2559            }
2560        }
2561        di++;
2562    }
2563
2564    // If the limit index points to a lead surrogate of a pair,
2565    //   add the corresponding trail surrogate to the destination.
2566    if (si>0 && U16_IS_LEAD(s[si-1]) &&
2567            ((si<strLength || strLength<0)  && U16_IS_TRAIL(s[si])))
2568    {
2569        if (di<destCapacity) {
2570            // store only if there is space in the output buffer.
2571            dest[di++] = s[si];
2572        }
2573        si++;
2574    }
2575
2576    // Put iteration position at the point just following the extracted text
2577    if (si <= ut->chunkNativeLimit) {
2578        ut->chunkOffset = si;
2579    } else {
2580        ucstrTextAccess(ut, si, TRUE);
2581    }
2582
2583    // Add a terminating NUL if space in the buffer permits,
2584    // and set the error status as required.
2585    u_terminateUChars(dest, destCapacity, di, pErrorCode);
2586    return di;
2587}
2588
2589static const struct UTextFuncs ucstrFuncs =
2590{
2591    sizeof(UTextFuncs),
2592    0, 0, 0,           // Reserved alignment padding
2593    ucstrTextClone,
2594    ucstrTextLength,
2595    ucstrTextAccess,
2596    ucstrTextExtract,
2597    NULL,              // Replace
2598    NULL,              // Copy
2599    NULL,              // MapOffsetToNative,
2600    NULL,              // MapIndexToUTF16,
2601    ucstrTextClose,
2602    NULL,              // spare 1
2603    NULL,              // spare 2
2604    NULL,              // spare 3
2605};
2606
2607U_CDECL_END
2608
2609static const UChar gEmptyUString[] = {0};
2610
2611U_CAPI UText * U_EXPORT2
2612utext_openUChars(UText *ut, const UChar *s, int64_t length, UErrorCode *status) {
2613    if (U_FAILURE(*status)) {
2614        return NULL;
2615    }
2616    if(s==NULL && length==0) {
2617        s = gEmptyUString;
2618    }
2619    if (s==NULL || length < -1 || length>INT32_MAX) {
2620        *status = U_ILLEGAL_ARGUMENT_ERROR;
2621        return NULL;
2622    }
2623    ut = utext_setup(ut, 0, status);
2624    if (U_SUCCESS(*status)) {
2625        ut->pFuncs               = &ucstrFuncs;
2626        ut->context              = s;
2627        ut->providerProperties   = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2628        if (length==-1) {
2629            ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2630        }
2631        ut->a                    = length;
2632        ut->chunkContents        = s;
2633        ut->chunkNativeStart     = 0;
2634        ut->chunkNativeLimit     = length>=0? length : 0;
2635        ut->chunkLength          = (int32_t)ut->chunkNativeLimit;
2636        ut->chunkOffset          = 0;
2637        ut->nativeIndexingLimit  = ut->chunkLength;
2638    }
2639    return ut;
2640}
2641
2642
2643//------------------------------------------------------------------------------
2644//
2645//     UText implementation for text from ICU CharacterIterators
2646//
2647//         Use of UText data members:
2648//            context    pointer to the CharacterIterator
2649//            a          length of the full text.
2650//            p          pointer to  buffer 1
2651//            b          start index of local buffer 1 contents
2652//            q          pointer to buffer 2
2653//            c          start index of local buffer 2 contents
2654//            r          pointer to the character iterator if the UText owns it.
2655//                       Null otherwise.
2656//
2657//------------------------------------------------------------------------------
2658#define CIBufSize 16
2659
2660U_CDECL_BEGIN
2661static void U_CALLCONV
2662charIterTextClose(UText *ut) {
2663    // Most of the work of close is done by the generic UText framework close.
2664    // All that needs to be done here is delete the CharacterIterator if the UText
2665    //  owns it.  This occurs if the UText was created by cloning.
2666    CharacterIterator *ci = (CharacterIterator *)ut->r;
2667    delete ci;
2668    ut->r = NULL;
2669}
2670
2671static int64_t U_CALLCONV
2672charIterTextLength(UText *ut) {
2673    return (int32_t)ut->a;
2674}
2675
2676static UBool U_CALLCONV
2677charIterTextAccess(UText *ut, int64_t index, UBool  forward) {
2678    CharacterIterator *ci   = (CharacterIterator *)ut->context;
2679
2680    int32_t clippedIndex = (int32_t)index;
2681    if (clippedIndex<0) {
2682        clippedIndex=0;
2683    } else if (clippedIndex>=ut->a) {
2684        clippedIndex=(int32_t)ut->a;
2685    }
2686    int32_t neededIndex = clippedIndex;
2687    if (!forward && neededIndex>0) {
2688        // reverse iteration, want the position just before what was asked for.
2689        neededIndex--;
2690    } else if (forward && neededIndex==ut->a && neededIndex>0) {
2691        // Forward iteration, don't ask for something past the end of the text.
2692        neededIndex--;
2693    }
2694
2695    // Find the native index of the start of the buffer containing what we want.
2696    neededIndex -= neededIndex % CIBufSize;
2697
2698    UChar *buf = NULL;
2699    UBool  needChunkSetup = TRUE;
2700    int    i;
2701    if (ut->chunkNativeStart == neededIndex) {
2702        // The buffer we want is already the current chunk.
2703        needChunkSetup = FALSE;
2704    } else if (ut->b == neededIndex) {
2705        // The first buffer (buffer p) has what we need.
2706        buf = (UChar *)ut->p;
2707    } else if (ut->c == neededIndex) {
2708        // The second buffer (buffer q) has what we need.
2709        buf = (UChar *)ut->q;
2710    } else {
2711        // Neither buffer already has what we need.
2712        // Load new data from the character iterator.
2713        // Use the buf that is not the current buffer.
2714        buf = (UChar *)ut->p;
2715        if (ut->p == ut->chunkContents) {
2716            buf = (UChar *)ut->q;
2717        }
2718        ci->setIndex(neededIndex);
2719        for (i=0; i<CIBufSize; i++) {
2720            buf[i] = ci->nextPostInc();
2721            if (i+neededIndex > ut->a) {
2722                break;
2723            }
2724        }
2725    }
2726
2727    // We have a buffer with the data we need.
2728    // Set it up as the current chunk, if it wasn't already.
2729    if (needChunkSetup) {
2730        ut->chunkContents = buf;
2731        ut->chunkLength   = CIBufSize;
2732        ut->chunkNativeStart = neededIndex;
2733        ut->chunkNativeLimit = neededIndex + CIBufSize;
2734        if (ut->chunkNativeLimit > ut->a) {
2735            ut->chunkNativeLimit = ut->a;
2736            ut->chunkLength  = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chunkNativeStart);
2737        }
2738        ut->nativeIndexingLimit = ut->chunkLength;
2739        U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize);
2740    }
2741    ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart;
2742    UBool success = (forward? ut->chunkOffset<ut->chunkLength : ut->chunkOffset>0);
2743    return success;
2744}
2745
2746static UText * U_CALLCONV
2747charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status) {
2748    if (U_FAILURE(*status)) {
2749        return NULL;
2750    }
2751
2752    if (deep) {
2753        // There is no CharacterIterator API for cloning the underlying text storage.
2754        *status = U_UNSUPPORTED_ERROR;
2755        return NULL;
2756    } else {
2757        CharacterIterator *srcCI =(CharacterIterator *)src->context;
2758        srcCI = srcCI->clone();
2759        dest = utext_openCharacterIterator(dest, srcCI, status);
2760        if (U_FAILURE(*status)) {
2761            return dest;
2762        }
2763        // cast off const on getNativeIndex.
2764        //   For CharacterIterator based UTexts, this is safe, the operation is const.
2765        int64_t  ix = utext_getNativeIndex((UText *)src);
2766        utext_setNativeIndex(dest, ix);
2767        dest->r = srcCI;    // flags that this UText owns the CharacterIterator
2768    }
2769    return dest;
2770}
2771
2772static int32_t U_CALLCONV
2773charIterTextExtract(UText *ut,
2774                  int64_t start, int64_t limit,
2775                  UChar *dest, int32_t destCapacity,
2776                  UErrorCode *status)
2777{
2778    if(U_FAILURE(*status)) {
2779        return 0;
2780    }
2781    if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) {
2782        *status=U_ILLEGAL_ARGUMENT_ERROR;
2783        return 0;
2784    }
2785    int32_t  length  = (int32_t)ut->a;
2786    int32_t  start32 = pinIndex(start, length);
2787    int32_t  limit32 = pinIndex(limit, length);
2788    int32_t  desti   = 0;
2789    int32_t  srci;
2790    int32_t  copyLimit;
2791
2792    CharacterIterator *ci = (CharacterIterator *)ut->context;
2793    ci->setIndex32(start32);   // Moves ix to lead of surrogate pair, if needed.
2794    srci = ci->getIndex();
2795    copyLimit = srci;
2796    while (srci<limit32) {
2797        UChar32 c = ci->next32PostInc();
2798        int32_t  len = U16_LENGTH(c);
2799        U_ASSERT(desti+len>0); /* to ensure desti+len never exceeds MAX_INT32, which must not happen logically */
2800        if (desti+len <= destCapacity) {
2801            U16_APPEND_UNSAFE(dest, desti, c);
2802            copyLimit = srci+len;
2803        } else {
2804            desti += len;
2805            *status = U_BUFFER_OVERFLOW_ERROR;
2806        }
2807        srci += len;
2808    }
2809
2810    charIterTextAccess(ut, copyLimit, TRUE);
2811
2812    u_terminateUChars(dest, destCapacity, desti, status);
2813    return desti;
2814}
2815
2816static const struct UTextFuncs charIterFuncs =
2817{
2818    sizeof(UTextFuncs),
2819    0, 0, 0,             // Reserved alignment padding
2820    charIterTextClone,
2821    charIterTextLength,
2822    charIterTextAccess,
2823    charIterTextExtract,
2824    NULL,                // Replace
2825    NULL,                // Copy
2826    NULL,                // MapOffsetToNative,
2827    NULL,                // MapIndexToUTF16,
2828    charIterTextClose,
2829    NULL,                // spare 1
2830    NULL,                // spare 2
2831    NULL                 // spare 3
2832};
2833U_CDECL_END
2834
2835
2836U_CAPI UText * U_EXPORT2
2837utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status) {
2838    if (U_FAILURE(*status)) {
2839        return NULL;
2840    }
2841
2842    if (ci->startIndex() > 0) {
2843        // No support for CharacterIterators that do not start indexing from zero.
2844        *status = U_UNSUPPORTED_ERROR;
2845        return NULL;
2846    }
2847
2848    // Extra space in UText for 2 buffers of CIBufSize UChars each.
2849    int32_t  extraSpace = 2 * CIBufSize * sizeof(UChar);
2850    ut = utext_setup(ut, extraSpace, status);
2851    if (U_SUCCESS(*status)) {
2852        ut->pFuncs                = &charIterFuncs;
2853        ut->context              = ci;
2854        ut->providerProperties   = 0;
2855        ut->a                    = ci->endIndex();        // Length of text
2856        ut->p                    = ut->pExtra;            // First buffer
2857        ut->b                    = -1;                    // Native index of first buffer contents
2858        ut->q                    = (UChar*)ut->pExtra+CIBufSize;  // Second buffer
2859        ut->c                    = -1;                    // Native index of second buffer contents
2860
2861        // Initialize current chunk contents to be empty.
2862        //   First access will fault something in.
2863        //   Note:  The initial nativeStart and chunkOffset must sum to zero
2864        //          so that getNativeIndex() will correctly compute to zero
2865        //          if no call to Access() has ever been made.  They can't be both
2866        //          zero without Access() thinking that the chunk is valid.
2867        ut->chunkContents        = (UChar *)ut->p;
2868        ut->chunkNativeStart     = -1;
2869        ut->chunkOffset          = 1;
2870        ut->chunkNativeLimit     = 0;
2871        ut->chunkLength          = 0;
2872        ut->nativeIndexingLimit  = ut->chunkOffset;  // enables native indexing
2873    }
2874    return ut;
2875}
2876