1/*
2 * jcarith.c
3 *
4 * This file was part of the Independent JPEG Group's software:
5 * Developed 1997-2009 by Guido Vollbeding.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2015, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README.ijg
9 * file.
10 *
11 * This file contains portable arithmetic entropy encoding routines for JPEG
12 * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
13 *
14 * Both sequential and progressive modes are supported in this single module.
15 *
16 * Suspension is not currently supported in this module.
17 */
18
19#define JPEG_INTERNALS
20#include "jinclude.h"
21#include "jpeglib.h"
22
23
24/* Expanded entropy encoder object for arithmetic encoding. */
25
26typedef struct {
27  struct jpeg_entropy_encoder pub; /* public fields */
28
29  JLONG c; /* C register, base of coding interval, layout as in sec. D.1.3 */
30  JLONG a;               /* A register, normalized size of coding interval */
31  JLONG sc;        /* counter for stacked 0xFF values which might overflow */
32  JLONG zc;          /* counter for pending 0x00 output values which might *
33                          * be discarded at the end ("Pacman" termination) */
34  int ct;  /* bit shift counter, determines when next byte will be written */
35  int buffer;                /* buffer for most recent output byte != 0xFF */
36
37  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
38  int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
39
40  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
41  int next_restart_num;         /* next restart number to write (0-7) */
42
43  /* Pointers to statistics areas (these workspaces have image lifespan) */
44  unsigned char *dc_stats[NUM_ARITH_TBLS];
45  unsigned char *ac_stats[NUM_ARITH_TBLS];
46
47  /* Statistics bin for coding with fixed probability 0.5 */
48  unsigned char fixed_bin[4];
49} arith_entropy_encoder;
50
51typedef arith_entropy_encoder *arith_entropy_ptr;
52
53/* The following two definitions specify the allocation chunk size
54 * for the statistics area.
55 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
56 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
57 *
58 * We use a compact representation with 1 byte per statistics bin,
59 * thus the numbers directly represent byte sizes.
60 * This 1 byte per statistics bin contains the meaning of the MPS
61 * (more probable symbol) in the highest bit (mask 0x80), and the
62 * index into the probability estimation state machine table
63 * in the lower bits (mask 0x7F).
64 */
65
66#define DC_STAT_BINS 64
67#define AC_STAT_BINS 256
68
69/* NOTE: Uncomment the following #define if you want to use the
70 * given formula for calculating the AC conditioning parameter Kx
71 * for spectral selection progressive coding in section G.1.3.2
72 * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
73 * Although the spec and P&M authors claim that this "has proven
74 * to give good results for 8 bit precision samples", I'm not
75 * convinced yet that this is really beneficial.
76 * Early tests gave only very marginal compression enhancements
77 * (a few - around 5 or so - bytes even for very large files),
78 * which would turn out rather negative if we'd suppress the
79 * DAC (Define Arithmetic Conditioning) marker segments for
80 * the default parameters in the future.
81 * Note that currently the marker writing module emits 12-byte
82 * DAC segments for a full-component scan in a color image.
83 * This is not worth worrying about IMHO. However, since the
84 * spec defines the default values to be used if the tables
85 * are omitted (unlike Huffman tables, which are required
86 * anyway), one might optimize this behaviour in the future,
87 * and then it would be disadvantageous to use custom tables if
88 * they don't provide sufficient gain to exceed the DAC size.
89 *
90 * On the other hand, I'd consider it as a reasonable result
91 * that the conditioning has no significant influence on the
92 * compression performance. This means that the basic
93 * statistical model is already rather stable.
94 *
95 * Thus, at the moment, we use the default conditioning values
96 * anyway, and do not use the custom formula.
97 *
98#define CALCULATE_SPECTRAL_CONDITIONING
99 */
100
101/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than JLONG.
102 * We assume that int right shift is unsigned if JLONG right shift is,
103 * which should be safe.
104 */
105
106#ifdef RIGHT_SHIFT_IS_UNSIGNED
107#define ISHIFT_TEMPS    int ishift_temp;
108#define IRIGHT_SHIFT(x,shft)  \
109        ((ishift_temp = (x)) < 0 ? \
110         (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
111         (ishift_temp >> (shft)))
112#else
113#define ISHIFT_TEMPS
114#define IRIGHT_SHIFT(x,shft)    ((x) >> (shft))
115#endif
116
117
118LOCAL(void)
119emit_byte (int val, j_compress_ptr cinfo)
120/* Write next output byte; we do not support suspension in this module. */
121{
122  struct jpeg_destination_mgr *dest = cinfo->dest;
123
124  *dest->next_output_byte++ = (JOCTET) val;
125  if (--dest->free_in_buffer == 0)
126    if (! (*dest->empty_output_buffer) (cinfo))
127      ERREXIT(cinfo, JERR_CANT_SUSPEND);
128}
129
130
131/*
132 * Finish up at the end of an arithmetic-compressed scan.
133 */
134
135METHODDEF(void)
136finish_pass (j_compress_ptr cinfo)
137{
138  arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
139  JLONG temp;
140
141  /* Section D.1.8: Termination of encoding */
142
143  /* Find the e->c in the coding interval with the largest
144   * number of trailing zero bits */
145  if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
146    e->c = temp + 0x8000L;
147  else
148    e->c = temp;
149  /* Send remaining bytes to output */
150  e->c <<= e->ct;
151  if (e->c & 0xF8000000L) {
152    /* One final overflow has to be handled */
153    if (e->buffer >= 0) {
154      if (e->zc)
155        do emit_byte(0x00, cinfo);
156        while (--e->zc);
157      emit_byte(e->buffer + 1, cinfo);
158      if (e->buffer + 1 == 0xFF)
159        emit_byte(0x00, cinfo);
160    }
161    e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
162    e->sc = 0;
163  } else {
164    if (e->buffer == 0)
165      ++e->zc;
166    else if (e->buffer >= 0) {
167      if (e->zc)
168        do emit_byte(0x00, cinfo);
169        while (--e->zc);
170      emit_byte(e->buffer, cinfo);
171    }
172    if (e->sc) {
173      if (e->zc)
174        do emit_byte(0x00, cinfo);
175        while (--e->zc);
176      do {
177        emit_byte(0xFF, cinfo);
178        emit_byte(0x00, cinfo);
179      } while (--e->sc);
180    }
181  }
182  /* Output final bytes only if they are not 0x00 */
183  if (e->c & 0x7FFF800L) {
184    if (e->zc)  /* output final pending zero bytes */
185      do emit_byte(0x00, cinfo);
186      while (--e->zc);
187    emit_byte((e->c >> 19) & 0xFF, cinfo);
188    if (((e->c >> 19) & 0xFF) == 0xFF)
189      emit_byte(0x00, cinfo);
190    if (e->c & 0x7F800L) {
191      emit_byte((e->c >> 11) & 0xFF, cinfo);
192      if (((e->c >> 11) & 0xFF) == 0xFF)
193        emit_byte(0x00, cinfo);
194    }
195  }
196}
197
198
199/*
200 * The core arithmetic encoding routine (common in JPEG and JBIG).
201 * This needs to go as fast as possible.
202 * Machine-dependent optimization facilities
203 * are not utilized in this portable implementation.
204 * However, this code should be fairly efficient and
205 * may be a good base for further optimizations anyway.
206 *
207 * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
208 *
209 * Note: I've added full "Pacman" termination support to the
210 * byte output routines, which is equivalent to the optional
211 * Discard_final_zeros procedure (Figure D.15) in the spec.
212 * Thus, we always produce the shortest possible output
213 * stream compliant to the spec (no trailing zero bytes,
214 * except for FF stuffing).
215 *
216 * I've also introduced a new scheme for accessing
217 * the probability estimation state machine table,
218 * derived from Markus Kuhn's JBIG implementation.
219 */
220
221LOCAL(void)
222arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
223{
224  register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
225  register unsigned char nl, nm;
226  register JLONG qe, temp;
227  register int sv;
228
229  /* Fetch values from our compact representation of Table D.2:
230   * Qe values and probability estimation state machine
231   */
232  sv = *st;
233  qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */
234  nl = qe & 0xFF; qe >>= 8;     /* Next_Index_LPS + Switch_MPS */
235  nm = qe & 0xFF; qe >>= 8;     /* Next_Index_MPS */
236
237  /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
238  e->a -= qe;
239  if (val != (sv >> 7)) {
240    /* Encode the less probable symbol */
241    if (e->a >= qe) {
242      /* If the interval size (qe) for the less probable symbol (LPS)
243       * is larger than the interval size for the MPS, then exchange
244       * the two symbols for coding efficiency, otherwise code the LPS
245       * as usual: */
246      e->c += e->a;
247      e->a = qe;
248    }
249    *st = (sv & 0x80) ^ nl;     /* Estimate_after_LPS */
250  } else {
251    /* Encode the more probable symbol */
252    if (e->a >= 0x8000L)
253      return;  /* A >= 0x8000 -> ready, no renormalization required */
254    if (e->a < qe) {
255      /* If the interval size (qe) for the less probable symbol (LPS)
256       * is larger than the interval size for the MPS, then exchange
257       * the two symbols for coding efficiency: */
258      e->c += e->a;
259      e->a = qe;
260    }
261    *st = (sv & 0x80) ^ nm;     /* Estimate_after_MPS */
262  }
263
264  /* Renormalization & data output per section D.1.6 */
265  do {
266    e->a <<= 1;
267    e->c <<= 1;
268    if (--e->ct == 0) {
269      /* Another byte is ready for output */
270      temp = e->c >> 19;
271      if (temp > 0xFF) {
272        /* Handle overflow over all stacked 0xFF bytes */
273        if (e->buffer >= 0) {
274          if (e->zc)
275            do emit_byte(0x00, cinfo);
276            while (--e->zc);
277          emit_byte(e->buffer + 1, cinfo);
278          if (e->buffer + 1 == 0xFF)
279            emit_byte(0x00, cinfo);
280        }
281        e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
282        e->sc = 0;
283        /* Note: The 3 spacer bits in the C register guarantee
284         * that the new buffer byte can't be 0xFF here
285         * (see page 160 in the P&M JPEG book). */
286        e->buffer = temp & 0xFF;  /* new output byte, might overflow later */
287      } else if (temp == 0xFF) {
288        ++e->sc;  /* stack 0xFF byte (which might overflow later) */
289      } else {
290        /* Output all stacked 0xFF bytes, they will not overflow any more */
291        if (e->buffer == 0)
292          ++e->zc;
293        else if (e->buffer >= 0) {
294          if (e->zc)
295            do emit_byte(0x00, cinfo);
296            while (--e->zc);
297          emit_byte(e->buffer, cinfo);
298        }
299        if (e->sc) {
300          if (e->zc)
301            do emit_byte(0x00, cinfo);
302            while (--e->zc);
303          do {
304            emit_byte(0xFF, cinfo);
305            emit_byte(0x00, cinfo);
306          } while (--e->sc);
307        }
308        e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */
309      }
310      e->c &= 0x7FFFFL;
311      e->ct += 8;
312    }
313  } while (e->a < 0x8000L);
314}
315
316
317/*
318 * Emit a restart marker & resynchronize predictions.
319 */
320
321LOCAL(void)
322emit_restart (j_compress_ptr cinfo, int restart_num)
323{
324  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
325  int ci;
326  jpeg_component_info *compptr;
327
328  finish_pass(cinfo);
329
330  emit_byte(0xFF, cinfo);
331  emit_byte(JPEG_RST0 + restart_num, cinfo);
332
333  /* Re-initialize statistics areas */
334  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
335    compptr = cinfo->cur_comp_info[ci];
336    /* DC needs no table for refinement scan */
337    if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
338      MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
339      /* Reset DC predictions to 0 */
340      entropy->last_dc_val[ci] = 0;
341      entropy->dc_context[ci] = 0;
342    }
343    /* AC needs no table when not present */
344    if (cinfo->progressive_mode == 0 || cinfo->Se) {
345      MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
346    }
347  }
348
349  /* Reset arithmetic encoding variables */
350  entropy->c = 0;
351  entropy->a = 0x10000L;
352  entropy->sc = 0;
353  entropy->zc = 0;
354  entropy->ct = 11;
355  entropy->buffer = -1;  /* empty */
356}
357
358
359/*
360 * MCU encoding for DC initial scan (either spectral selection,
361 * or first pass of successive approximation).
362 */
363
364METHODDEF(boolean)
365encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
366{
367  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
368  JBLOCKROW block;
369  unsigned char *st;
370  int blkn, ci, tbl;
371  int v, v2, m;
372  ISHIFT_TEMPS
373
374  /* Emit restart marker if needed */
375  if (cinfo->restart_interval) {
376    if (entropy->restarts_to_go == 0) {
377      emit_restart(cinfo, entropy->next_restart_num);
378      entropy->restarts_to_go = cinfo->restart_interval;
379      entropy->next_restart_num++;
380      entropy->next_restart_num &= 7;
381    }
382    entropy->restarts_to_go--;
383  }
384
385  /* Encode the MCU data blocks */
386  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
387    block = MCU_data[blkn];
388    ci = cinfo->MCU_membership[blkn];
389    tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
390
391    /* Compute the DC value after the required point transform by Al.
392     * This is simply an arithmetic right shift.
393     */
394    m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
395
396    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
397
398    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
399    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
400
401    /* Figure F.4: Encode_DC_DIFF */
402    if ((v = m - entropy->last_dc_val[ci]) == 0) {
403      arith_encode(cinfo, st, 0);
404      entropy->dc_context[ci] = 0;      /* zero diff category */
405    } else {
406      entropy->last_dc_val[ci] = m;
407      arith_encode(cinfo, st, 1);
408      /* Figure F.6: Encoding nonzero value v */
409      /* Figure F.7: Encoding the sign of v */
410      if (v > 0) {
411        arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
412        st += 2;                        /* Table F.4: SP = S0 + 2 */
413        entropy->dc_context[ci] = 4;    /* small positive diff category */
414      } else {
415        v = -v;
416        arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
417        st += 3;                        /* Table F.4: SN = S0 + 3 */
418        entropy->dc_context[ci] = 8;    /* small negative diff category */
419      }
420      /* Figure F.8: Encoding the magnitude category of v */
421      m = 0;
422      if (v -= 1) {
423        arith_encode(cinfo, st, 1);
424        m = 1;
425        v2 = v;
426        st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
427        while (v2 >>= 1) {
428          arith_encode(cinfo, st, 1);
429          m <<= 1;
430          st += 1;
431        }
432      }
433      arith_encode(cinfo, st, 0);
434      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
435      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
436        entropy->dc_context[ci] = 0;    /* zero diff category */
437      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
438        entropy->dc_context[ci] += 8;   /* large diff category */
439      /* Figure F.9: Encoding the magnitude bit pattern of v */
440      st += 14;
441      while (m >>= 1)
442        arith_encode(cinfo, st, (m & v) ? 1 : 0);
443    }
444  }
445
446  return TRUE;
447}
448
449
450/*
451 * MCU encoding for AC initial scan (either spectral selection,
452 * or first pass of successive approximation).
453 */
454
455METHODDEF(boolean)
456encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
457{
458  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
459  JBLOCKROW block;
460  unsigned char *st;
461  int tbl, k, ke;
462  int v, v2, m;
463
464  /* Emit restart marker if needed */
465  if (cinfo->restart_interval) {
466    if (entropy->restarts_to_go == 0) {
467      emit_restart(cinfo, entropy->next_restart_num);
468      entropy->restarts_to_go = cinfo->restart_interval;
469      entropy->next_restart_num++;
470      entropy->next_restart_num &= 7;
471    }
472    entropy->restarts_to_go--;
473  }
474
475  /* Encode the MCU data block */
476  block = MCU_data[0];
477  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
478
479  /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
480
481  /* Establish EOB (end-of-block) index */
482  for (ke = cinfo->Se; ke > 0; ke--)
483    /* We must apply the point transform by Al.  For AC coefficients this
484     * is an integer division with rounding towards 0.  To do this portably
485     * in C, we shift after obtaining the absolute value.
486     */
487    if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
488      if (v >>= cinfo->Al) break;
489    } else {
490      v = -v;
491      if (v >>= cinfo->Al) break;
492    }
493
494  /* Figure F.5: Encode_AC_Coefficients */
495  for (k = cinfo->Ss; k <= ke; k++) {
496    st = entropy->ac_stats[tbl] + 3 * (k - 1);
497    arith_encode(cinfo, st, 0);         /* EOB decision */
498    for (;;) {
499      if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
500        if (v >>= cinfo->Al) {
501          arith_encode(cinfo, st + 1, 1);
502          arith_encode(cinfo, entropy->fixed_bin, 0);
503          break;
504        }
505      } else {
506        v = -v;
507        if (v >>= cinfo->Al) {
508          arith_encode(cinfo, st + 1, 1);
509          arith_encode(cinfo, entropy->fixed_bin, 1);
510          break;
511        }
512      }
513      arith_encode(cinfo, st + 1, 0); st += 3; k++;
514    }
515    st += 2;
516    /* Figure F.8: Encoding the magnitude category of v */
517    m = 0;
518    if (v -= 1) {
519      arith_encode(cinfo, st, 1);
520      m = 1;
521      v2 = v;
522      if (v2 >>= 1) {
523        arith_encode(cinfo, st, 1);
524        m <<= 1;
525        st = entropy->ac_stats[tbl] +
526             (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
527        while (v2 >>= 1) {
528          arith_encode(cinfo, st, 1);
529          m <<= 1;
530          st += 1;
531        }
532      }
533    }
534    arith_encode(cinfo, st, 0);
535    /* Figure F.9: Encoding the magnitude bit pattern of v */
536    st += 14;
537    while (m >>= 1)
538      arith_encode(cinfo, st, (m & v) ? 1 : 0);
539  }
540  /* Encode EOB decision only if k <= cinfo->Se */
541  if (k <= cinfo->Se) {
542    st = entropy->ac_stats[tbl] + 3 * (k - 1);
543    arith_encode(cinfo, st, 1);
544  }
545
546  return TRUE;
547}
548
549
550/*
551 * MCU encoding for DC successive approximation refinement scan.
552 */
553
554METHODDEF(boolean)
555encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
556{
557  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
558  unsigned char *st;
559  int Al, blkn;
560
561  /* Emit restart marker if needed */
562  if (cinfo->restart_interval) {
563    if (entropy->restarts_to_go == 0) {
564      emit_restart(cinfo, entropy->next_restart_num);
565      entropy->restarts_to_go = cinfo->restart_interval;
566      entropy->next_restart_num++;
567      entropy->next_restart_num &= 7;
568    }
569    entropy->restarts_to_go--;
570  }
571
572  st = entropy->fixed_bin;      /* use fixed probability estimation */
573  Al = cinfo->Al;
574
575  /* Encode the MCU data blocks */
576  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
577    /* We simply emit the Al'th bit of the DC coefficient value. */
578    arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
579  }
580
581  return TRUE;
582}
583
584
585/*
586 * MCU encoding for AC successive approximation refinement scan.
587 */
588
589METHODDEF(boolean)
590encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
591{
592  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
593  JBLOCKROW block;
594  unsigned char *st;
595  int tbl, k, ke, kex;
596  int v;
597
598  /* Emit restart marker if needed */
599  if (cinfo->restart_interval) {
600    if (entropy->restarts_to_go == 0) {
601      emit_restart(cinfo, entropy->next_restart_num);
602      entropy->restarts_to_go = cinfo->restart_interval;
603      entropy->next_restart_num++;
604      entropy->next_restart_num &= 7;
605    }
606    entropy->restarts_to_go--;
607  }
608
609  /* Encode the MCU data block */
610  block = MCU_data[0];
611  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
612
613  /* Section G.1.3.3: Encoding of AC coefficients */
614
615  /* Establish EOB (end-of-block) index */
616  for (ke = cinfo->Se; ke > 0; ke--)
617    /* We must apply the point transform by Al.  For AC coefficients this
618     * is an integer division with rounding towards 0.  To do this portably
619     * in C, we shift after obtaining the absolute value.
620     */
621    if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
622      if (v >>= cinfo->Al) break;
623    } else {
624      v = -v;
625      if (v >>= cinfo->Al) break;
626    }
627
628  /* Establish EOBx (previous stage end-of-block) index */
629  for (kex = ke; kex > 0; kex--)
630    if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) {
631      if (v >>= cinfo->Ah) break;
632    } else {
633      v = -v;
634      if (v >>= cinfo->Ah) break;
635    }
636
637  /* Figure G.10: Encode_AC_Coefficients_SA */
638  for (k = cinfo->Ss; k <= ke; k++) {
639    st = entropy->ac_stats[tbl] + 3 * (k - 1);
640    if (k > kex)
641      arith_encode(cinfo, st, 0);       /* EOB decision */
642    for (;;) {
643      if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
644        if (v >>= cinfo->Al) {
645          if (v >> 1)                   /* previously nonzero coef */
646            arith_encode(cinfo, st + 2, (v & 1));
647          else {                        /* newly nonzero coef */
648            arith_encode(cinfo, st + 1, 1);
649            arith_encode(cinfo, entropy->fixed_bin, 0);
650          }
651          break;
652        }
653      } else {
654        v = -v;
655        if (v >>= cinfo->Al) {
656          if (v >> 1)                   /* previously nonzero coef */
657            arith_encode(cinfo, st + 2, (v & 1));
658          else {                        /* newly nonzero coef */
659            arith_encode(cinfo, st + 1, 1);
660            arith_encode(cinfo, entropy->fixed_bin, 1);
661          }
662          break;
663        }
664      }
665      arith_encode(cinfo, st + 1, 0); st += 3; k++;
666    }
667  }
668  /* Encode EOB decision only if k <= cinfo->Se */
669  if (k <= cinfo->Se) {
670    st = entropy->ac_stats[tbl] + 3 * (k - 1);
671    arith_encode(cinfo, st, 1);
672  }
673
674  return TRUE;
675}
676
677
678/*
679 * Encode and output one MCU's worth of arithmetic-compressed coefficients.
680 */
681
682METHODDEF(boolean)
683encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
684{
685  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
686  jpeg_component_info *compptr;
687  JBLOCKROW block;
688  unsigned char *st;
689  int blkn, ci, tbl, k, ke;
690  int v, v2, m;
691
692  /* Emit restart marker if needed */
693  if (cinfo->restart_interval) {
694    if (entropy->restarts_to_go == 0) {
695      emit_restart(cinfo, entropy->next_restart_num);
696      entropy->restarts_to_go = cinfo->restart_interval;
697      entropy->next_restart_num++;
698      entropy->next_restart_num &= 7;
699    }
700    entropy->restarts_to_go--;
701  }
702
703  /* Encode the MCU data blocks */
704  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
705    block = MCU_data[blkn];
706    ci = cinfo->MCU_membership[blkn];
707    compptr = cinfo->cur_comp_info[ci];
708
709    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
710
711    tbl = compptr->dc_tbl_no;
712
713    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
714    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
715
716    /* Figure F.4: Encode_DC_DIFF */
717    if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
718      arith_encode(cinfo, st, 0);
719      entropy->dc_context[ci] = 0;      /* zero diff category */
720    } else {
721      entropy->last_dc_val[ci] = (*block)[0];
722      arith_encode(cinfo, st, 1);
723      /* Figure F.6: Encoding nonzero value v */
724      /* Figure F.7: Encoding the sign of v */
725      if (v > 0) {
726        arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
727        st += 2;                        /* Table F.4: SP = S0 + 2 */
728        entropy->dc_context[ci] = 4;    /* small positive diff category */
729      } else {
730        v = -v;
731        arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
732        st += 3;                        /* Table F.4: SN = S0 + 3 */
733        entropy->dc_context[ci] = 8;    /* small negative diff category */
734      }
735      /* Figure F.8: Encoding the magnitude category of v */
736      m = 0;
737      if (v -= 1) {
738        arith_encode(cinfo, st, 1);
739        m = 1;
740        v2 = v;
741        st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
742        while (v2 >>= 1) {
743          arith_encode(cinfo, st, 1);
744          m <<= 1;
745          st += 1;
746        }
747      }
748      arith_encode(cinfo, st, 0);
749      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
750      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
751        entropy->dc_context[ci] = 0;    /* zero diff category */
752      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
753        entropy->dc_context[ci] += 8;   /* large diff category */
754      /* Figure F.9: Encoding the magnitude bit pattern of v */
755      st += 14;
756      while (m >>= 1)
757        arith_encode(cinfo, st, (m & v) ? 1 : 0);
758    }
759
760    /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
761
762    tbl = compptr->ac_tbl_no;
763
764    /* Establish EOB (end-of-block) index */
765    for (ke = DCTSIZE2 - 1; ke > 0; ke--)
766      if ((*block)[jpeg_natural_order[ke]]) break;
767
768    /* Figure F.5: Encode_AC_Coefficients */
769    for (k = 1; k <= ke; k++) {
770      st = entropy->ac_stats[tbl] + 3 * (k - 1);
771      arith_encode(cinfo, st, 0);       /* EOB decision */
772      while ((v = (*block)[jpeg_natural_order[k]]) == 0) {
773        arith_encode(cinfo, st + 1, 0); st += 3; k++;
774      }
775      arith_encode(cinfo, st + 1, 1);
776      /* Figure F.6: Encoding nonzero value v */
777      /* Figure F.7: Encoding the sign of v */
778      if (v > 0) {
779        arith_encode(cinfo, entropy->fixed_bin, 0);
780      } else {
781        v = -v;
782        arith_encode(cinfo, entropy->fixed_bin, 1);
783      }
784      st += 2;
785      /* Figure F.8: Encoding the magnitude category of v */
786      m = 0;
787      if (v -= 1) {
788        arith_encode(cinfo, st, 1);
789        m = 1;
790        v2 = v;
791        if (v2 >>= 1) {
792          arith_encode(cinfo, st, 1);
793          m <<= 1;
794          st = entropy->ac_stats[tbl] +
795               (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
796          while (v2 >>= 1) {
797            arith_encode(cinfo, st, 1);
798            m <<= 1;
799            st += 1;
800          }
801        }
802      }
803      arith_encode(cinfo, st, 0);
804      /* Figure F.9: Encoding the magnitude bit pattern of v */
805      st += 14;
806      while (m >>= 1)
807        arith_encode(cinfo, st, (m & v) ? 1 : 0);
808    }
809    /* Encode EOB decision only if k <= DCTSIZE2 - 1 */
810    if (k <= DCTSIZE2 - 1) {
811      st = entropy->ac_stats[tbl] + 3 * (k - 1);
812      arith_encode(cinfo, st, 1);
813    }
814  }
815
816  return TRUE;
817}
818
819
820/*
821 * Initialize for an arithmetic-compressed scan.
822 */
823
824METHODDEF(void)
825start_pass (j_compress_ptr cinfo, boolean gather_statistics)
826{
827  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
828  int ci, tbl;
829  jpeg_component_info *compptr;
830
831  if (gather_statistics)
832    /* Make sure to avoid that in the master control logic!
833     * We are fully adaptive here and need no extra
834     * statistics gathering pass!
835     */
836    ERREXIT(cinfo, JERR_NOT_COMPILED);
837
838  /* We assume jcmaster.c already validated the progressive scan parameters. */
839
840  /* Select execution routines */
841  if (cinfo->progressive_mode) {
842    if (cinfo->Ah == 0) {
843      if (cinfo->Ss == 0)
844        entropy->pub.encode_mcu = encode_mcu_DC_first;
845      else
846        entropy->pub.encode_mcu = encode_mcu_AC_first;
847    } else {
848      if (cinfo->Ss == 0)
849        entropy->pub.encode_mcu = encode_mcu_DC_refine;
850      else
851        entropy->pub.encode_mcu = encode_mcu_AC_refine;
852    }
853  } else
854    entropy->pub.encode_mcu = encode_mcu;
855
856  /* Allocate & initialize requested statistics areas */
857  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
858    compptr = cinfo->cur_comp_info[ci];
859    /* DC needs no table for refinement scan */
860    if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
861      tbl = compptr->dc_tbl_no;
862      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
863        ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
864      if (entropy->dc_stats[tbl] == NULL)
865        entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
866          ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
867      MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
868      /* Initialize DC predictions to 0 */
869      entropy->last_dc_val[ci] = 0;
870      entropy->dc_context[ci] = 0;
871    }
872    /* AC needs no table when not present */
873    if (cinfo->progressive_mode == 0 || cinfo->Se) {
874      tbl = compptr->ac_tbl_no;
875      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
876        ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
877      if (entropy->ac_stats[tbl] == NULL)
878        entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
879          ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
880      MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
881#ifdef CALCULATE_SPECTRAL_CONDITIONING
882      if (cinfo->progressive_mode)
883        /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
884        cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
885#endif
886    }
887  }
888
889  /* Initialize arithmetic encoding variables */
890  entropy->c = 0;
891  entropy->a = 0x10000L;
892  entropy->sc = 0;
893  entropy->zc = 0;
894  entropy->ct = 11;
895  entropy->buffer = -1;  /* empty */
896
897  /* Initialize restart stuff */
898  entropy->restarts_to_go = cinfo->restart_interval;
899  entropy->next_restart_num = 0;
900}
901
902
903/*
904 * Module initialization routine for arithmetic entropy encoding.
905 */
906
907GLOBAL(void)
908jinit_arith_encoder (j_compress_ptr cinfo)
909{
910  arith_entropy_ptr entropy;
911  int i;
912
913  entropy = (arith_entropy_ptr)
914    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
915                                sizeof(arith_entropy_encoder));
916  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
917  entropy->pub.start_pass = start_pass;
918  entropy->pub.finish_pass = finish_pass;
919
920  /* Mark tables unallocated */
921  for (i = 0; i < NUM_ARITH_TBLS; i++) {
922    entropy->dc_stats[i] = NULL;
923    entropy->ac_stats[i] = NULL;
924  }
925
926  /* Initialize index for fixed probability estimation */
927  entropy->fixed_bin[0] = 113;
928}
929