1/*
2 * jchuff.c
3 *
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1997, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2009-2011, 2014-2016, D. R. Commander.
8 * Copyright (C) 2015, Matthieu Darbois.
9 * For conditions of distribution and use, see the accompanying README.ijg
10 * file.
11 *
12 * This file contains Huffman entropy encoding routines.
13 *
14 * Much of the complexity here has to do with supporting output suspension.
15 * If the data destination module demands suspension, we want to be able to
16 * back up to the start of the current MCU.  To do this, we copy state
17 * variables into local working storage, and update them back to the
18 * permanent JPEG objects only upon successful completion of an MCU.
19 */
20
21#define JPEG_INTERNALS
22#include "jinclude.h"
23#include "jpeglib.h"
24#include "jsimd.h"
25#include "jconfigint.h"
26#include <limits.h>
27
28/*
29 * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be
30 * used for bit counting rather than the lookup table.  This will reduce the
31 * memory footprint by 64k, which is important for some mobile applications
32 * that create many isolated instances of libjpeg-turbo (web browsers, for
33 * instance.)  This may improve performance on some mobile platforms as well.
34 * This feature is enabled by default only on ARM processors, because some x86
35 * chips have a slow implementation of bsr, and the use of clz/bsr cannot be
36 * shown to have a significant performance impact even on the x86 chips that
37 * have a fast implementation of it.  When building for ARMv6, you can
38 * explicitly disable the use of clz/bsr by adding -mthumb to the compiler
39 * flags (this defines __thumb__).
40 */
41
42/* NOTE: Both GCC and Clang define __GNUC__ */
43#if defined __GNUC__ && (defined __arm__ || defined __aarch64__)
44#if !defined __thumb__ || defined __thumb2__
45#define USE_CLZ_INTRINSIC
46#endif
47#endif
48
49#ifdef USE_CLZ_INTRINSIC
50#define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x))
51#define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0)
52#else
53#include "jpeg_nbits_table.h"
54#define JPEG_NBITS(x) (jpeg_nbits_table[x])
55#define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x)
56#endif
57
58#ifndef min
59 #define min(a,b) ((a)<(b)?(a):(b))
60#endif
61
62
63/* Expanded entropy encoder object for Huffman encoding.
64 *
65 * The savable_state subrecord contains fields that change within an MCU,
66 * but must not be updated permanently until we complete the MCU.
67 */
68
69typedef struct {
70  size_t put_buffer;            /* current bit-accumulation buffer */
71  int put_bits;                 /* # of bits now in it */
72  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
73} savable_state;
74
75/* This macro is to work around compilers with missing or broken
76 * structure assignment.  You'll need to fix this code if you have
77 * such a compiler and you change MAX_COMPS_IN_SCAN.
78 */
79
80#ifndef NO_STRUCT_ASSIGN
81#define ASSIGN_STATE(dest,src)  ((dest) = (src))
82#else
83#if MAX_COMPS_IN_SCAN == 4
84#define ASSIGN_STATE(dest,src)  \
85        ((dest).put_buffer = (src).put_buffer, \
86         (dest).put_bits = (src).put_bits, \
87         (dest).last_dc_val[0] = (src).last_dc_val[0], \
88         (dest).last_dc_val[1] = (src).last_dc_val[1], \
89         (dest).last_dc_val[2] = (src).last_dc_val[2], \
90         (dest).last_dc_val[3] = (src).last_dc_val[3])
91#endif
92#endif
93
94
95typedef struct {
96  struct jpeg_entropy_encoder pub; /* public fields */
97
98  savable_state saved;          /* Bit buffer & DC state at start of MCU */
99
100  /* These fields are NOT loaded into local working state. */
101  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
102  int next_restart_num;         /* next restart number to write (0-7) */
103
104  /* Pointers to derived tables (these workspaces have image lifespan) */
105  c_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
106  c_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
107
108#ifdef ENTROPY_OPT_SUPPORTED    /* Statistics tables for optimization */
109  long *dc_count_ptrs[NUM_HUFF_TBLS];
110  long *ac_count_ptrs[NUM_HUFF_TBLS];
111#endif
112
113  int simd;
114} huff_entropy_encoder;
115
116typedef huff_entropy_encoder *huff_entropy_ptr;
117
118/* Working state while writing an MCU.
119 * This struct contains all the fields that are needed by subroutines.
120 */
121
122typedef struct {
123  JOCTET *next_output_byte;     /* => next byte to write in buffer */
124  size_t free_in_buffer;        /* # of byte spaces remaining in buffer */
125  savable_state cur;            /* Current bit buffer & DC state */
126  j_compress_ptr cinfo;         /* dump_buffer needs access to this */
127} working_state;
128
129
130/* Forward declarations */
131METHODDEF(boolean) encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data);
132METHODDEF(void) finish_pass_huff (j_compress_ptr cinfo);
133#ifdef ENTROPY_OPT_SUPPORTED
134METHODDEF(boolean) encode_mcu_gather (j_compress_ptr cinfo,
135                                      JBLOCKROW *MCU_data);
136METHODDEF(void) finish_pass_gather (j_compress_ptr cinfo);
137#endif
138
139
140/*
141 * Initialize for a Huffman-compressed scan.
142 * If gather_statistics is TRUE, we do not output anything during the scan,
143 * just count the Huffman symbols used and generate Huffman code tables.
144 */
145
146METHODDEF(void)
147start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
148{
149  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
150  int ci, dctbl, actbl;
151  jpeg_component_info *compptr;
152
153  if (gather_statistics) {
154#ifdef ENTROPY_OPT_SUPPORTED
155    entropy->pub.encode_mcu = encode_mcu_gather;
156    entropy->pub.finish_pass = finish_pass_gather;
157#else
158    ERREXIT(cinfo, JERR_NOT_COMPILED);
159#endif
160  } else {
161    entropy->pub.encode_mcu = encode_mcu_huff;
162    entropy->pub.finish_pass = finish_pass_huff;
163  }
164
165  entropy->simd = jsimd_can_huff_encode_one_block();
166
167  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
168    compptr = cinfo->cur_comp_info[ci];
169    dctbl = compptr->dc_tbl_no;
170    actbl = compptr->ac_tbl_no;
171    if (gather_statistics) {
172#ifdef ENTROPY_OPT_SUPPORTED
173      /* Check for invalid table indexes */
174      /* (make_c_derived_tbl does this in the other path) */
175      if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
176        ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
177      if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
178        ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
179      /* Allocate and zero the statistics tables */
180      /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
181      if (entropy->dc_count_ptrs[dctbl] == NULL)
182        entropy->dc_count_ptrs[dctbl] = (long *)
183          (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
184                                      257 * sizeof(long));
185      MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * sizeof(long));
186      if (entropy->ac_count_ptrs[actbl] == NULL)
187        entropy->ac_count_ptrs[actbl] = (long *)
188          (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
189                                      257 * sizeof(long));
190      MEMZERO(entropy->ac_count_ptrs[actbl], 257 * sizeof(long));
191#endif
192    } else {
193      /* Compute derived values for Huffman tables */
194      /* We may do this more than once for a table, but it's not expensive */
195      jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
196                              & entropy->dc_derived_tbls[dctbl]);
197      jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
198                              & entropy->ac_derived_tbls[actbl]);
199    }
200    /* Initialize DC predictions to 0 */
201    entropy->saved.last_dc_val[ci] = 0;
202  }
203
204  /* Initialize bit buffer to empty */
205  entropy->saved.put_buffer = 0;
206  entropy->saved.put_bits = 0;
207
208  /* Initialize restart stuff */
209  entropy->restarts_to_go = cinfo->restart_interval;
210  entropy->next_restart_num = 0;
211}
212
213
214/*
215 * Compute the derived values for a Huffman table.
216 * This routine also performs some validation checks on the table.
217 *
218 * Note this is also used by jcphuff.c.
219 */
220
221GLOBAL(void)
222jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
223                         c_derived_tbl **pdtbl)
224{
225  JHUFF_TBL *htbl;
226  c_derived_tbl *dtbl;
227  int p, i, l, lastp, si, maxsymbol;
228  char huffsize[257];
229  unsigned int huffcode[257];
230  unsigned int code;
231
232  /* Note that huffsize[] and huffcode[] are filled in code-length order,
233   * paralleling the order of the symbols themselves in htbl->huffval[].
234   */
235
236  /* Find the input Huffman table */
237  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
238    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
239  htbl =
240    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
241  if (htbl == NULL)
242    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
243
244  /* Allocate a workspace if we haven't already done so. */
245  if (*pdtbl == NULL)
246    *pdtbl = (c_derived_tbl *)
247      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
248                                  sizeof(c_derived_tbl));
249  dtbl = *pdtbl;
250
251  /* Figure C.1: make table of Huffman code length for each symbol */
252
253  p = 0;
254  for (l = 1; l <= 16; l++) {
255    i = (int) htbl->bits[l];
256    if (i < 0 || p + i > 256)   /* protect against table overrun */
257      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
258    while (i--)
259      huffsize[p++] = (char) l;
260  }
261  huffsize[p] = 0;
262  lastp = p;
263
264  /* Figure C.2: generate the codes themselves */
265  /* We also validate that the counts represent a legal Huffman code tree. */
266
267  code = 0;
268  si = huffsize[0];
269  p = 0;
270  while (huffsize[p]) {
271    while (((int) huffsize[p]) == si) {
272      huffcode[p++] = code;
273      code++;
274    }
275    /* code is now 1 more than the last code used for codelength si; but
276     * it must still fit in si bits, since no code is allowed to be all ones.
277     */
278    if (((JLONG) code) >= (((JLONG) 1) << si))
279      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
280    code <<= 1;
281    si++;
282  }
283
284  /* Figure C.3: generate encoding tables */
285  /* These are code and size indexed by symbol value */
286
287  /* Set all codeless symbols to have code length 0;
288   * this lets us detect duplicate VAL entries here, and later
289   * allows emit_bits to detect any attempt to emit such symbols.
290   */
291  MEMZERO(dtbl->ehufsi, sizeof(dtbl->ehufsi));
292
293  /* This is also a convenient place to check for out-of-range
294   * and duplicated VAL entries.  We allow 0..255 for AC symbols
295   * but only 0..15 for DC.  (We could constrain them further
296   * based on data depth and mode, but this seems enough.)
297   */
298  maxsymbol = isDC ? 15 : 255;
299
300  for (p = 0; p < lastp; p++) {
301    i = htbl->huffval[p];
302    if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
303      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
304    dtbl->ehufco[i] = huffcode[p];
305    dtbl->ehufsi[i] = huffsize[p];
306  }
307}
308
309
310/* Outputting bytes to the file */
311
312/* Emit a byte, taking 'action' if must suspend. */
313#define emit_byte(state,val,action)  \
314        { *(state)->next_output_byte++ = (JOCTET) (val);  \
315          if (--(state)->free_in_buffer == 0)  \
316            if (! dump_buffer(state))  \
317              { action; } }
318
319
320LOCAL(boolean)
321dump_buffer (working_state *state)
322/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
323{
324  struct jpeg_destination_mgr *dest = state->cinfo->dest;
325
326  if (! (*dest->empty_output_buffer) (state->cinfo))
327    return FALSE;
328  /* After a successful buffer dump, must reset buffer pointers */
329  state->next_output_byte = dest->next_output_byte;
330  state->free_in_buffer = dest->free_in_buffer;
331  return TRUE;
332}
333
334
335/* Outputting bits to the file */
336
337/* These macros perform the same task as the emit_bits() function in the
338 * original libjpeg code.  In addition to reducing overhead by explicitly
339 * inlining the code, additional performance is achieved by taking into
340 * account the size of the bit buffer and waiting until it is almost full
341 * before emptying it.  This mostly benefits 64-bit platforms, since 6
342 * bytes can be stored in a 64-bit bit buffer before it has to be emptied.
343 */
344
345#define EMIT_BYTE() { \
346  JOCTET c; \
347  put_bits -= 8; \
348  c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \
349  *buffer++ = c; \
350  if (c == 0xFF)  /* need to stuff a zero byte? */ \
351    *buffer++ = 0; \
352 }
353
354#define PUT_BITS(code, size) { \
355  put_bits += size; \
356  put_buffer = (put_buffer << size) | code; \
357}
358
359#define CHECKBUF15() { \
360  if (put_bits > 15) { \
361    EMIT_BYTE() \
362    EMIT_BYTE() \
363  } \
364}
365
366#define CHECKBUF31() { \
367  if (put_bits > 31) { \
368    EMIT_BYTE() \
369    EMIT_BYTE() \
370    EMIT_BYTE() \
371    EMIT_BYTE() \
372  } \
373}
374
375#define CHECKBUF47() { \
376  if (put_bits > 47) { \
377    EMIT_BYTE() \
378    EMIT_BYTE() \
379    EMIT_BYTE() \
380    EMIT_BYTE() \
381    EMIT_BYTE() \
382    EMIT_BYTE() \
383  } \
384}
385
386#if !defined(_WIN32) && !defined(SIZEOF_SIZE_T)
387#error Cannot determine word size
388#endif
389
390#if SIZEOF_SIZE_T==8 || defined(_WIN64)
391
392#define EMIT_BITS(code, size) { \
393  CHECKBUF47() \
394  PUT_BITS(code, size) \
395}
396
397#define EMIT_CODE(code, size) { \
398  temp2 &= (((JLONG) 1)<<nbits) - 1; \
399  CHECKBUF31() \
400  PUT_BITS(code, size) \
401  PUT_BITS(temp2, nbits) \
402 }
403
404#else
405
406#define EMIT_BITS(code, size) { \
407  PUT_BITS(code, size) \
408  CHECKBUF15() \
409}
410
411#define EMIT_CODE(code, size) { \
412  temp2 &= (((JLONG) 1)<<nbits) - 1; \
413  PUT_BITS(code, size) \
414  CHECKBUF15() \
415  PUT_BITS(temp2, nbits) \
416  CHECKBUF15() \
417 }
418
419#endif
420
421
422/* Although it is exceedingly rare, it is possible for a Huffman-encoded
423 * coefficient block to be larger than the 128-byte unencoded block.  For each
424 * of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can
425 * theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per
426 * encoded block.)  If, for instance, one artificially sets the AC
427 * coefficients to alternating values of 32767 and -32768 (using the JPEG
428 * scanning order-- 1, 8, 16, etc.), then this will produce an encoded block
429 * larger than 200 bytes.
430 */
431#define BUFSIZE (DCTSIZE2 * 4)
432
433#define LOAD_BUFFER() { \
434  if (state->free_in_buffer < BUFSIZE) { \
435    localbuf = 1; \
436    buffer = _buffer; \
437  } \
438  else buffer = state->next_output_byte; \
439 }
440
441#define STORE_BUFFER() { \
442  if (localbuf) { \
443    bytes = buffer - _buffer; \
444    buffer = _buffer; \
445    while (bytes > 0) { \
446      bytestocopy = min(bytes, state->free_in_buffer); \
447      MEMCOPY(state->next_output_byte, buffer, bytestocopy); \
448      state->next_output_byte += bytestocopy; \
449      buffer += bytestocopy; \
450      state->free_in_buffer -= bytestocopy; \
451      if (state->free_in_buffer == 0) \
452        if (! dump_buffer(state)) return FALSE; \
453      bytes -= bytestocopy; \
454    } \
455  } \
456  else { \
457    state->free_in_buffer -= (buffer - state->next_output_byte); \
458    state->next_output_byte = buffer; \
459  } \
460 }
461
462
463LOCAL(boolean)
464flush_bits (working_state *state)
465{
466  JOCTET _buffer[BUFSIZE], *buffer;
467  size_t put_buffer;  int put_bits;
468  size_t bytes, bytestocopy;  int localbuf = 0;
469
470  put_buffer = state->cur.put_buffer;
471  put_bits = state->cur.put_bits;
472  LOAD_BUFFER()
473
474  /* fill any partial byte with ones */
475  PUT_BITS(0x7F, 7)
476  while (put_bits >= 8) EMIT_BYTE()
477
478  state->cur.put_buffer = 0;    /* and reset bit-buffer to empty */
479  state->cur.put_bits = 0;
480  STORE_BUFFER()
481
482  return TRUE;
483}
484
485
486/* Encode a single block's worth of coefficients */
487
488LOCAL(boolean)
489encode_one_block_simd (working_state *state, JCOEFPTR block, int last_dc_val,
490                       c_derived_tbl *dctbl, c_derived_tbl *actbl)
491{
492  JOCTET _buffer[BUFSIZE], *buffer;
493  size_t bytes, bytestocopy;  int localbuf = 0;
494
495  LOAD_BUFFER()
496
497  buffer = jsimd_huff_encode_one_block(state, buffer, block, last_dc_val,
498                                       dctbl, actbl);
499
500  STORE_BUFFER()
501
502  return TRUE;
503}
504
505LOCAL(boolean)
506encode_one_block (working_state *state, JCOEFPTR block, int last_dc_val,
507                  c_derived_tbl *dctbl, c_derived_tbl *actbl)
508{
509  int temp, temp2, temp3;
510  int nbits;
511  int r, code, size;
512  JOCTET _buffer[BUFSIZE], *buffer;
513  size_t put_buffer;  int put_bits;
514  int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0];
515  size_t bytes, bytestocopy;  int localbuf = 0;
516
517  put_buffer = state->cur.put_buffer;
518  put_bits = state->cur.put_bits;
519  LOAD_BUFFER()
520
521  /* Encode the DC coefficient difference per section F.1.2.1 */
522
523  temp = temp2 = block[0] - last_dc_val;
524
525 /* This is a well-known technique for obtaining the absolute value without a
526  * branch.  It is derived from an assembly language technique presented in
527  * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
528  * Agner Fog.
529  */
530  temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
531  temp ^= temp3;
532  temp -= temp3;
533
534  /* For a negative input, want temp2 = bitwise complement of abs(input) */
535  /* This code assumes we are on a two's complement machine */
536  temp2 += temp3;
537
538  /* Find the number of bits needed for the magnitude of the coefficient */
539  nbits = JPEG_NBITS(temp);
540
541  /* Emit the Huffman-coded symbol for the number of bits */
542  code = dctbl->ehufco[nbits];
543  size = dctbl->ehufsi[nbits];
544  EMIT_BITS(code, size)
545
546  /* Mask off any extra bits in code */
547  temp2 &= (((JLONG) 1)<<nbits) - 1;
548
549  /* Emit that number of bits of the value, if positive, */
550  /* or the complement of its magnitude, if negative. */
551  EMIT_BITS(temp2, nbits)
552
553  /* Encode the AC coefficients per section F.1.2.2 */
554
555  r = 0;                        /* r = run length of zeros */
556
557/* Manually unroll the k loop to eliminate the counter variable.  This
558 * improves performance greatly on systems with a limited number of
559 * registers (such as x86.)
560 */
561#define kloop(jpeg_natural_order_of_k) {  \
562  if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
563    r++; \
564  } else { \
565    temp2 = temp; \
566    /* Branch-less absolute value, bitwise complement, etc., same as above */ \
567    temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); \
568    temp ^= temp3; \
569    temp -= temp3; \
570    temp2 += temp3; \
571    nbits = JPEG_NBITS_NONZERO(temp); \
572    /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
573    while (r > 15) { \
574      EMIT_BITS(code_0xf0, size_0xf0) \
575      r -= 16; \
576    } \
577    /* Emit Huffman symbol for run length / number of bits */ \
578    temp3 = (r << 4) + nbits;  \
579    code = actbl->ehufco[temp3]; \
580    size = actbl->ehufsi[temp3]; \
581    EMIT_CODE(code, size) \
582    r = 0;  \
583  } \
584}
585
586  /* One iteration for each value in jpeg_natural_order[] */
587  kloop(1);   kloop(8);   kloop(16);  kloop(9);   kloop(2);   kloop(3);
588  kloop(10);  kloop(17);  kloop(24);  kloop(32);  kloop(25);  kloop(18);
589  kloop(11);  kloop(4);   kloop(5);   kloop(12);  kloop(19);  kloop(26);
590  kloop(33);  kloop(40);  kloop(48);  kloop(41);  kloop(34);  kloop(27);
591  kloop(20);  kloop(13);  kloop(6);   kloop(7);   kloop(14);  kloop(21);
592  kloop(28);  kloop(35);  kloop(42);  kloop(49);  kloop(56);  kloop(57);
593  kloop(50);  kloop(43);  kloop(36);  kloop(29);  kloop(22);  kloop(15);
594  kloop(23);  kloop(30);  kloop(37);  kloop(44);  kloop(51);  kloop(58);
595  kloop(59);  kloop(52);  kloop(45);  kloop(38);  kloop(31);  kloop(39);
596  kloop(46);  kloop(53);  kloop(60);  kloop(61);  kloop(54);  kloop(47);
597  kloop(55);  kloop(62);  kloop(63);
598
599  /* If the last coef(s) were zero, emit an end-of-block code */
600  if (r > 0) {
601    code = actbl->ehufco[0];
602    size = actbl->ehufsi[0];
603    EMIT_BITS(code, size)
604  }
605
606  state->cur.put_buffer = put_buffer;
607  state->cur.put_bits = put_bits;
608  STORE_BUFFER()
609
610  return TRUE;
611}
612
613
614/*
615 * Emit a restart marker & resynchronize predictions.
616 */
617
618LOCAL(boolean)
619emit_restart (working_state *state, int restart_num)
620{
621  int ci;
622
623  if (! flush_bits(state))
624    return FALSE;
625
626  emit_byte(state, 0xFF, return FALSE);
627  emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
628
629  /* Re-initialize DC predictions to 0 */
630  for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
631    state->cur.last_dc_val[ci] = 0;
632
633  /* The restart counter is not updated until we successfully write the MCU. */
634
635  return TRUE;
636}
637
638
639/*
640 * Encode and output one MCU's worth of Huffman-compressed coefficients.
641 */
642
643METHODDEF(boolean)
644encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
645{
646  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
647  working_state state;
648  int blkn, ci;
649  jpeg_component_info *compptr;
650
651  /* Load up working state */
652  state.next_output_byte = cinfo->dest->next_output_byte;
653  state.free_in_buffer = cinfo->dest->free_in_buffer;
654  ASSIGN_STATE(state.cur, entropy->saved);
655  state.cinfo = cinfo;
656
657  /* Emit restart marker if needed */
658  if (cinfo->restart_interval) {
659    if (entropy->restarts_to_go == 0)
660      if (! emit_restart(&state, entropy->next_restart_num))
661        return FALSE;
662  }
663
664  /* Encode the MCU data blocks */
665  if (entropy->simd) {
666    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
667      ci = cinfo->MCU_membership[blkn];
668      compptr = cinfo->cur_comp_info[ci];
669      if (! encode_one_block_simd(&state,
670                                  MCU_data[blkn][0], state.cur.last_dc_val[ci],
671                                  entropy->dc_derived_tbls[compptr->dc_tbl_no],
672                                  entropy->ac_derived_tbls[compptr->ac_tbl_no]))
673        return FALSE;
674      /* Update last_dc_val */
675      state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
676    }
677  } else {
678    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
679      ci = cinfo->MCU_membership[blkn];
680      compptr = cinfo->cur_comp_info[ci];
681      if (! encode_one_block(&state,
682                             MCU_data[blkn][0], state.cur.last_dc_val[ci],
683                             entropy->dc_derived_tbls[compptr->dc_tbl_no],
684                             entropy->ac_derived_tbls[compptr->ac_tbl_no]))
685        return FALSE;
686      /* Update last_dc_val */
687      state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
688    }
689  }
690
691  /* Completed MCU, so update state */
692  cinfo->dest->next_output_byte = state.next_output_byte;
693  cinfo->dest->free_in_buffer = state.free_in_buffer;
694  ASSIGN_STATE(entropy->saved, state.cur);
695
696  /* Update restart-interval state too */
697  if (cinfo->restart_interval) {
698    if (entropy->restarts_to_go == 0) {
699      entropy->restarts_to_go = cinfo->restart_interval;
700      entropy->next_restart_num++;
701      entropy->next_restart_num &= 7;
702    }
703    entropy->restarts_to_go--;
704  }
705
706  return TRUE;
707}
708
709
710/*
711 * Finish up at the end of a Huffman-compressed scan.
712 */
713
714METHODDEF(void)
715finish_pass_huff (j_compress_ptr cinfo)
716{
717  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
718  working_state state;
719
720  /* Load up working state ... flush_bits needs it */
721  state.next_output_byte = cinfo->dest->next_output_byte;
722  state.free_in_buffer = cinfo->dest->free_in_buffer;
723  ASSIGN_STATE(state.cur, entropy->saved);
724  state.cinfo = cinfo;
725
726  /* Flush out the last data */
727  if (! flush_bits(&state))
728    ERREXIT(cinfo, JERR_CANT_SUSPEND);
729
730  /* Update state */
731  cinfo->dest->next_output_byte = state.next_output_byte;
732  cinfo->dest->free_in_buffer = state.free_in_buffer;
733  ASSIGN_STATE(entropy->saved, state.cur);
734}
735
736
737/*
738 * Huffman coding optimization.
739 *
740 * We first scan the supplied data and count the number of uses of each symbol
741 * that is to be Huffman-coded. (This process MUST agree with the code above.)
742 * Then we build a Huffman coding tree for the observed counts.
743 * Symbols which are not needed at all for the particular image are not
744 * assigned any code, which saves space in the DHT marker as well as in
745 * the compressed data.
746 */
747
748#ifdef ENTROPY_OPT_SUPPORTED
749
750
751/* Process a single block's worth of coefficients */
752
753LOCAL(void)
754htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
755                 long dc_counts[], long ac_counts[])
756{
757  register int temp;
758  register int nbits;
759  register int k, r;
760
761  /* Encode the DC coefficient difference per section F.1.2.1 */
762
763  temp = block[0] - last_dc_val;
764  if (temp < 0)
765    temp = -temp;
766
767  /* Find the number of bits needed for the magnitude of the coefficient */
768  nbits = 0;
769  while (temp) {
770    nbits++;
771    temp >>= 1;
772  }
773  /* Check for out-of-range coefficient values.
774   * Since we're encoding a difference, the range limit is twice as much.
775   */
776  if (nbits > MAX_COEF_BITS+1)
777    ERREXIT(cinfo, JERR_BAD_DCT_COEF);
778
779  /* Count the Huffman symbol for the number of bits */
780  dc_counts[nbits]++;
781
782  /* Encode the AC coefficients per section F.1.2.2 */
783
784  r = 0;                        /* r = run length of zeros */
785
786  for (k = 1; k < DCTSIZE2; k++) {
787    if ((temp = block[jpeg_natural_order[k]]) == 0) {
788      r++;
789    } else {
790      /* if run length > 15, must emit special run-length-16 codes (0xF0) */
791      while (r > 15) {
792        ac_counts[0xF0]++;
793        r -= 16;
794      }
795
796      /* Find the number of bits needed for the magnitude of the coefficient */
797      if (temp < 0)
798        temp = -temp;
799
800      /* Find the number of bits needed for the magnitude of the coefficient */
801      nbits = 1;                /* there must be at least one 1 bit */
802      while ((temp >>= 1))
803        nbits++;
804      /* Check for out-of-range coefficient values */
805      if (nbits > MAX_COEF_BITS)
806        ERREXIT(cinfo, JERR_BAD_DCT_COEF);
807
808      /* Count Huffman symbol for run length / number of bits */
809      ac_counts[(r << 4) + nbits]++;
810
811      r = 0;
812    }
813  }
814
815  /* If the last coef(s) were zero, emit an end-of-block code */
816  if (r > 0)
817    ac_counts[0]++;
818}
819
820
821/*
822 * Trial-encode one MCU's worth of Huffman-compressed coefficients.
823 * No data is actually output, so no suspension return is possible.
824 */
825
826METHODDEF(boolean)
827encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
828{
829  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
830  int blkn, ci;
831  jpeg_component_info *compptr;
832
833  /* Take care of restart intervals if needed */
834  if (cinfo->restart_interval) {
835    if (entropy->restarts_to_go == 0) {
836      /* Re-initialize DC predictions to 0 */
837      for (ci = 0; ci < cinfo->comps_in_scan; ci++)
838        entropy->saved.last_dc_val[ci] = 0;
839      /* Update restart state */
840      entropy->restarts_to_go = cinfo->restart_interval;
841    }
842    entropy->restarts_to_go--;
843  }
844
845  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
846    ci = cinfo->MCU_membership[blkn];
847    compptr = cinfo->cur_comp_info[ci];
848    htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
849                    entropy->dc_count_ptrs[compptr->dc_tbl_no],
850                    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
851    entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
852  }
853
854  return TRUE;
855}
856
857
858/*
859 * Generate the best Huffman code table for the given counts, fill htbl.
860 * Note this is also used by jcphuff.c.
861 *
862 * The JPEG standard requires that no symbol be assigned a codeword of all
863 * one bits (so that padding bits added at the end of a compressed segment
864 * can't look like a valid code).  Because of the canonical ordering of
865 * codewords, this just means that there must be an unused slot in the
866 * longest codeword length category.  Section K.2 of the JPEG spec suggests
867 * reserving such a slot by pretending that symbol 256 is a valid symbol
868 * with count 1.  In theory that's not optimal; giving it count zero but
869 * including it in the symbol set anyway should give a better Huffman code.
870 * But the theoretically better code actually seems to come out worse in
871 * practice, because it produces more all-ones bytes (which incur stuffed
872 * zero bytes in the final file).  In any case the difference is tiny.
873 *
874 * The JPEG standard requires Huffman codes to be no more than 16 bits long.
875 * If some symbols have a very small but nonzero probability, the Huffman tree
876 * must be adjusted to meet the code length restriction.  We currently use
877 * the adjustment method suggested in JPEG section K.2.  This method is *not*
878 * optimal; it may not choose the best possible limited-length code.  But
879 * typically only very-low-frequency symbols will be given less-than-optimal
880 * lengths, so the code is almost optimal.  Experimental comparisons against
881 * an optimal limited-length-code algorithm indicate that the difference is
882 * microscopic --- usually less than a hundredth of a percent of total size.
883 * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
884 */
885
886GLOBAL(void)
887jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[])
888{
889#define MAX_CLEN 32             /* assumed maximum initial code length */
890  UINT8 bits[MAX_CLEN+1];       /* bits[k] = # of symbols with code length k */
891  int codesize[257];            /* codesize[k] = code length of symbol k */
892  int others[257];              /* next symbol in current branch of tree */
893  int c1, c2;
894  int p, i, j;
895  long v;
896
897  /* This algorithm is explained in section K.2 of the JPEG standard */
898
899  MEMZERO(bits, sizeof(bits));
900  MEMZERO(codesize, sizeof(codesize));
901  for (i = 0; i < 257; i++)
902    others[i] = -1;             /* init links to empty */
903
904  freq[256] = 1;                /* make sure 256 has a nonzero count */
905  /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
906   * that no real symbol is given code-value of all ones, because 256
907   * will be placed last in the largest codeword category.
908   */
909
910  /* Huffman's basic algorithm to assign optimal code lengths to symbols */
911
912  for (;;) {
913    /* Find the smallest nonzero frequency, set c1 = its symbol */
914    /* In case of ties, take the larger symbol number */
915    c1 = -1;
916    v = 1000000000L;
917    for (i = 0; i <= 256; i++) {
918      if (freq[i] && freq[i] <= v) {
919        v = freq[i];
920        c1 = i;
921      }
922    }
923
924    /* Find the next smallest nonzero frequency, set c2 = its symbol */
925    /* In case of ties, take the larger symbol number */
926    c2 = -1;
927    v = 1000000000L;
928    for (i = 0; i <= 256; i++) {
929      if (freq[i] && freq[i] <= v && i != c1) {
930        v = freq[i];
931        c2 = i;
932      }
933    }
934
935    /* Done if we've merged everything into one frequency */
936    if (c2 < 0)
937      break;
938
939    /* Else merge the two counts/trees */
940    freq[c1] += freq[c2];
941    freq[c2] = 0;
942
943    /* Increment the codesize of everything in c1's tree branch */
944    codesize[c1]++;
945    while (others[c1] >= 0) {
946      c1 = others[c1];
947      codesize[c1]++;
948    }
949
950    others[c1] = c2;            /* chain c2 onto c1's tree branch */
951
952    /* Increment the codesize of everything in c2's tree branch */
953    codesize[c2]++;
954    while (others[c2] >= 0) {
955      c2 = others[c2];
956      codesize[c2]++;
957    }
958  }
959
960  /* Now count the number of symbols of each code length */
961  for (i = 0; i <= 256; i++) {
962    if (codesize[i]) {
963      /* The JPEG standard seems to think that this can't happen, */
964      /* but I'm paranoid... */
965      if (codesize[i] > MAX_CLEN)
966        ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
967
968      bits[codesize[i]]++;
969    }
970  }
971
972  /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
973   * Huffman procedure assigned any such lengths, we must adjust the coding.
974   * Here is what the JPEG spec says about how this next bit works:
975   * Since symbols are paired for the longest Huffman code, the symbols are
976   * removed from this length category two at a time.  The prefix for the pair
977   * (which is one bit shorter) is allocated to one of the pair; then,
978   * skipping the BITS entry for that prefix length, a code word from the next
979   * shortest nonzero BITS entry is converted into a prefix for two code words
980   * one bit longer.
981   */
982
983  for (i = MAX_CLEN; i > 16; i--) {
984    while (bits[i] > 0) {
985      j = i - 2;                /* find length of new prefix to be used */
986      while (bits[j] == 0)
987        j--;
988
989      bits[i] -= 2;             /* remove two symbols */
990      bits[i-1]++;              /* one goes in this length */
991      bits[j+1] += 2;           /* two new symbols in this length */
992      bits[j]--;                /* symbol of this length is now a prefix */
993    }
994  }
995
996  /* Remove the count for the pseudo-symbol 256 from the largest codelength */
997  while (bits[i] == 0)          /* find largest codelength still in use */
998    i--;
999  bits[i]--;
1000
1001  /* Return final symbol counts (only for lengths 0..16) */
1002  MEMCOPY(htbl->bits, bits, sizeof(htbl->bits));
1003
1004  /* Return a list of the symbols sorted by code length */
1005  /* It's not real clear to me why we don't need to consider the codelength
1006   * changes made above, but the JPEG spec seems to think this works.
1007   */
1008  p = 0;
1009  for (i = 1; i <= MAX_CLEN; i++) {
1010    for (j = 0; j <= 255; j++) {
1011      if (codesize[j] == i) {
1012        htbl->huffval[p] = (UINT8) j;
1013        p++;
1014      }
1015    }
1016  }
1017
1018  /* Set sent_table FALSE so updated table will be written to JPEG file. */
1019  htbl->sent_table = FALSE;
1020}
1021
1022
1023/*
1024 * Finish up a statistics-gathering pass and create the new Huffman tables.
1025 */
1026
1027METHODDEF(void)
1028finish_pass_gather (j_compress_ptr cinfo)
1029{
1030  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1031  int ci, dctbl, actbl;
1032  jpeg_component_info *compptr;
1033  JHUFF_TBL **htblptr;
1034  boolean did_dc[NUM_HUFF_TBLS];
1035  boolean did_ac[NUM_HUFF_TBLS];
1036
1037  /* It's important not to apply jpeg_gen_optimal_table more than once
1038   * per table, because it clobbers the input frequency counts!
1039   */
1040  MEMZERO(did_dc, sizeof(did_dc));
1041  MEMZERO(did_ac, sizeof(did_ac));
1042
1043  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1044    compptr = cinfo->cur_comp_info[ci];
1045    dctbl = compptr->dc_tbl_no;
1046    actbl = compptr->ac_tbl_no;
1047    if (! did_dc[dctbl]) {
1048      htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
1049      if (*htblptr == NULL)
1050        *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1051      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
1052      did_dc[dctbl] = TRUE;
1053    }
1054    if (! did_ac[actbl]) {
1055      htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
1056      if (*htblptr == NULL)
1057        *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1058      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
1059      did_ac[actbl] = TRUE;
1060    }
1061  }
1062}
1063
1064
1065#endif /* ENTROPY_OPT_SUPPORTED */
1066
1067
1068/*
1069 * Module initialization routine for Huffman entropy encoding.
1070 */
1071
1072GLOBAL(void)
1073jinit_huff_encoder (j_compress_ptr cinfo)
1074{
1075  huff_entropy_ptr entropy;
1076  int i;
1077
1078  entropy = (huff_entropy_ptr)
1079    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1080                                sizeof(huff_entropy_encoder));
1081  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
1082  entropy->pub.start_pass = start_pass_huff;
1083
1084  /* Mark tables unallocated */
1085  for (i = 0; i < NUM_HUFF_TBLS; i++) {
1086    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1087#ifdef ENTROPY_OPT_SUPPORTED
1088    entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
1089#endif
1090  }
1091}
1092