1/*
2 * jmemmgr.c
3 *
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1997, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2016, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README.ijg
9 * file.
10 *
11 * This file contains the JPEG system-independent memory management
12 * routines.  This code is usable across a wide variety of machines; most
13 * of the system dependencies have been isolated in a separate file.
14 * The major functions provided here are:
15 *   * pool-based allocation and freeing of memory;
16 *   * policy decisions about how to divide available memory among the
17 *     virtual arrays;
18 *   * control logic for swapping virtual arrays between main memory and
19 *     backing storage.
20 * The separate system-dependent file provides the actual backing-storage
21 * access code, and it contains the policy decision about how much total
22 * main memory to use.
23 * This file is system-dependent in the sense that some of its functions
24 * are unnecessary in some systems.  For example, if there is enough virtual
25 * memory so that backing storage will never be used, much of the virtual
26 * array control logic could be removed.  (Of course, if you have that much
27 * memory then you shouldn't care about a little bit of unused code...)
28 */
29
30#define JPEG_INTERNALS
31#define AM_MEMORY_MANAGER       /* we define jvirt_Xarray_control structs */
32#include "jinclude.h"
33#include "jpeglib.h"
34#include "jmemsys.h"            /* import the system-dependent declarations */
35#ifndef _WIN32
36#include <stdint.h>
37#endif
38#include <limits.h>
39
40#ifndef NO_GETENV
41#ifndef HAVE_STDLIB_H           /* <stdlib.h> should declare getenv() */
42extern char *getenv (const char *name);
43#endif
44#endif
45
46
47LOCAL(size_t)
48round_up_pow2 (size_t a, size_t b)
49/* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
50/* Assumes a >= 0, b > 0, and b is a power of 2 */
51{
52  return ((a + b - 1) & (~(b - 1)));
53}
54
55
56/*
57 * Some important notes:
58 *   The allocation routines provided here must never return NULL.
59 *   They should exit to error_exit if unsuccessful.
60 *
61 *   It's not a good idea to try to merge the sarray and barray routines,
62 *   even though they are textually almost the same, because samples are
63 *   usually stored as bytes while coefficients are shorts or ints.  Thus,
64 *   in machines where byte pointers have a different representation from
65 *   word pointers, the resulting machine code could not be the same.
66 */
67
68
69/*
70 * Many machines require storage alignment: longs must start on 4-byte
71 * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
72 * always returns pointers that are multiples of the worst-case alignment
73 * requirement, and we had better do so too.
74 * There isn't any really portable way to determine the worst-case alignment
75 * requirement.  This module assumes that the alignment requirement is
76 * multiples of ALIGN_SIZE.
77 * By default, we define ALIGN_SIZE as sizeof(double).  This is necessary on
78 * some workstations (where doubles really do need 8-byte alignment) and will
79 * work fine on nearly everything.  If your machine has lesser alignment needs,
80 * you can save a few bytes by making ALIGN_SIZE smaller.
81 * The only place I know of where this will NOT work is certain Macintosh
82 * 680x0 compilers that define double as a 10-byte IEEE extended float.
83 * Doing 10-byte alignment is counterproductive because longwords won't be
84 * aligned well.  Put "#define ALIGN_SIZE 4" in jconfig.h if you have
85 * such a compiler.
86 */
87
88#ifndef ALIGN_SIZE              /* so can override from jconfig.h */
89#ifndef WITH_SIMD
90#define ALIGN_SIZE  sizeof(double)
91#else
92#define ALIGN_SIZE  16 /* Most SIMD implementations require this */
93#endif
94#endif
95
96/*
97 * We allocate objects from "pools", where each pool is gotten with a single
98 * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
99 * overhead within a pool, except for alignment padding.  Each pool has a
100 * header with a link to the next pool of the same class.
101 * Small and large pool headers are identical.
102 */
103
104typedef struct small_pool_struct *small_pool_ptr;
105
106typedef struct small_pool_struct {
107  small_pool_ptr next;  /* next in list of pools */
108  size_t bytes_used;            /* how many bytes already used within pool */
109  size_t bytes_left;            /* bytes still available in this pool */
110} small_pool_hdr;
111
112typedef struct large_pool_struct *large_pool_ptr;
113
114typedef struct large_pool_struct {
115  large_pool_ptr next;  /* next in list of pools */
116  size_t bytes_used;            /* how many bytes already used within pool */
117  size_t bytes_left;            /* bytes still available in this pool */
118} large_pool_hdr;
119
120/*
121 * Here is the full definition of a memory manager object.
122 */
123
124typedef struct {
125  struct jpeg_memory_mgr pub;   /* public fields */
126
127  /* Each pool identifier (lifetime class) names a linked list of pools. */
128  small_pool_ptr small_list[JPOOL_NUMPOOLS];
129  large_pool_ptr large_list[JPOOL_NUMPOOLS];
130
131  /* Since we only have one lifetime class of virtual arrays, only one
132   * linked list is necessary (for each datatype).  Note that the virtual
133   * array control blocks being linked together are actually stored somewhere
134   * in the small-pool list.
135   */
136  jvirt_sarray_ptr virt_sarray_list;
137  jvirt_barray_ptr virt_barray_list;
138
139  /* This counts total space obtained from jpeg_get_small/large */
140  size_t total_space_allocated;
141
142  /* alloc_sarray and alloc_barray set this value for use by virtual
143   * array routines.
144   */
145  JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
146} my_memory_mgr;
147
148typedef my_memory_mgr *my_mem_ptr;
149
150
151/*
152 * The control blocks for virtual arrays.
153 * Note that these blocks are allocated in the "small" pool area.
154 * System-dependent info for the associated backing store (if any) is hidden
155 * inside the backing_store_info struct.
156 */
157
158struct jvirt_sarray_control {
159  JSAMPARRAY mem_buffer;        /* => the in-memory buffer */
160  JDIMENSION rows_in_array;     /* total virtual array height */
161  JDIMENSION samplesperrow;     /* width of array (and of memory buffer) */
162  JDIMENSION maxaccess;         /* max rows accessed by access_virt_sarray */
163  JDIMENSION rows_in_mem;       /* height of memory buffer */
164  JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
165  JDIMENSION cur_start_row;     /* first logical row # in the buffer */
166  JDIMENSION first_undef_row;   /* row # of first uninitialized row */
167  boolean pre_zero;             /* pre-zero mode requested? */
168  boolean dirty;                /* do current buffer contents need written? */
169  boolean b_s_open;             /* is backing-store data valid? */
170  jvirt_sarray_ptr next;        /* link to next virtual sarray control block */
171  backing_store_info b_s_info;  /* System-dependent control info */
172};
173
174struct jvirt_barray_control {
175  JBLOCKARRAY mem_buffer;       /* => the in-memory buffer */
176  JDIMENSION rows_in_array;     /* total virtual array height */
177  JDIMENSION blocksperrow;      /* width of array (and of memory buffer) */
178  JDIMENSION maxaccess;         /* max rows accessed by access_virt_barray */
179  JDIMENSION rows_in_mem;       /* height of memory buffer */
180  JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
181  JDIMENSION cur_start_row;     /* first logical row # in the buffer */
182  JDIMENSION first_undef_row;   /* row # of first uninitialized row */
183  boolean pre_zero;             /* pre-zero mode requested? */
184  boolean dirty;                /* do current buffer contents need written? */
185  boolean b_s_open;             /* is backing-store data valid? */
186  jvirt_barray_ptr next;        /* link to next virtual barray control block */
187  backing_store_info b_s_info;  /* System-dependent control info */
188};
189
190
191#ifdef MEM_STATS                /* optional extra stuff for statistics */
192
193LOCAL(void)
194print_mem_stats (j_common_ptr cinfo, int pool_id)
195{
196  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
197  small_pool_ptr shdr_ptr;
198  large_pool_ptr lhdr_ptr;
199
200  /* Since this is only a debugging stub, we can cheat a little by using
201   * fprintf directly rather than going through the trace message code.
202   * This is helpful because message parm array can't handle longs.
203   */
204  fprintf(stderr, "Freeing pool %d, total space = %ld\n",
205          pool_id, mem->total_space_allocated);
206
207  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
208       lhdr_ptr = lhdr_ptr->next) {
209    fprintf(stderr, "  Large chunk used %ld\n",
210            (long) lhdr_ptr->bytes_used);
211  }
212
213  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
214       shdr_ptr = shdr_ptr->next) {
215    fprintf(stderr, "  Small chunk used %ld free %ld\n",
216            (long) shdr_ptr->bytes_used,
217            (long) shdr_ptr->bytes_left);
218  }
219}
220
221#endif /* MEM_STATS */
222
223
224LOCAL(void)
225out_of_memory (j_common_ptr cinfo, int which)
226/* Report an out-of-memory error and stop execution */
227/* If we compiled MEM_STATS support, report alloc requests before dying */
228{
229#ifdef MEM_STATS
230  cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
231#endif
232  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
233}
234
235
236/*
237 * Allocation of "small" objects.
238 *
239 * For these, we use pooled storage.  When a new pool must be created,
240 * we try to get enough space for the current request plus a "slop" factor,
241 * where the slop will be the amount of leftover space in the new pool.
242 * The speed vs. space tradeoff is largely determined by the slop values.
243 * A different slop value is provided for each pool class (lifetime),
244 * and we also distinguish the first pool of a class from later ones.
245 * NOTE: the values given work fairly well on both 16- and 32-bit-int
246 * machines, but may be too small if longs are 64 bits or more.
247 *
248 * Since we do not know what alignment malloc() gives us, we have to
249 * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
250 * adjustment.
251 */
252
253static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
254{
255        1600,                   /* first PERMANENT pool */
256        16000                   /* first IMAGE pool */
257};
258
259static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
260{
261        0,                      /* additional PERMANENT pools */
262        5000                    /* additional IMAGE pools */
263};
264
265#define MIN_SLOP  50            /* greater than 0 to avoid futile looping */
266
267
268METHODDEF(void *)
269alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
270/* Allocate a "small" object */
271{
272  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
273  small_pool_ptr hdr_ptr, prev_hdr_ptr;
274  char *data_ptr;
275  size_t min_request, slop;
276
277  /*
278   * Round up the requested size to a multiple of ALIGN_SIZE in order
279   * to assure alignment for the next object allocated in the same pool
280   * and so that algorithms can straddle outside the proper area up
281   * to the next alignment.
282   */
283  if (sizeofobject > MAX_ALLOC_CHUNK) {
284    /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
285       is close to SIZE_MAX. */
286    out_of_memory(cinfo, 7);
287  }
288  sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
289
290  /* Check for unsatisfiable request (do now to ensure no overflow below) */
291  if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
292      MAX_ALLOC_CHUNK)
293    out_of_memory(cinfo, 1);    /* request exceeds malloc's ability */
294
295  /* See if space is available in any existing pool */
296  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
297    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
298  prev_hdr_ptr = NULL;
299  hdr_ptr = mem->small_list[pool_id];
300  while (hdr_ptr != NULL) {
301    if (hdr_ptr->bytes_left >= sizeofobject)
302      break;                    /* found pool with enough space */
303    prev_hdr_ptr = hdr_ptr;
304    hdr_ptr = hdr_ptr->next;
305  }
306
307  /* Time to make a new pool? */
308  if (hdr_ptr == NULL) {
309    /* min_request is what we need now, slop is what will be leftover */
310    min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
311    if (prev_hdr_ptr == NULL)   /* first pool in class? */
312      slop = first_pool_slop[pool_id];
313    else
314      slop = extra_pool_slop[pool_id];
315    /* Don't ask for more than MAX_ALLOC_CHUNK */
316    if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
317      slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
318    /* Try to get space, if fail reduce slop and try again */
319    for (;;) {
320      hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
321      if (hdr_ptr != NULL)
322        break;
323      slop /= 2;
324      if (slop < MIN_SLOP)      /* give up when it gets real small */
325        out_of_memory(cinfo, 2); /* jpeg_get_small failed */
326    }
327    mem->total_space_allocated += min_request + slop;
328    /* Success, initialize the new pool header and add to end of list */
329    hdr_ptr->next = NULL;
330    hdr_ptr->bytes_used = 0;
331    hdr_ptr->bytes_left = sizeofobject + slop;
332    if (prev_hdr_ptr == NULL)   /* first pool in class? */
333      mem->small_list[pool_id] = hdr_ptr;
334    else
335      prev_hdr_ptr->next = hdr_ptr;
336  }
337
338  /* OK, allocate the object from the current pool */
339  data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
340  data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
341  if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
342    data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
343  data_ptr += hdr_ptr->bytes_used; /* point to place for object */
344  hdr_ptr->bytes_used += sizeofobject;
345  hdr_ptr->bytes_left -= sizeofobject;
346
347  return (void *) data_ptr;
348}
349
350
351/*
352 * Allocation of "large" objects.
353 *
354 * The external semantics of these are the same as "small" objects.  However,
355 * the pool management heuristics are quite different.  We assume that each
356 * request is large enough that it may as well be passed directly to
357 * jpeg_get_large; the pool management just links everything together
358 * so that we can free it all on demand.
359 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
360 * structures.  The routines that create these structures (see below)
361 * deliberately bunch rows together to ensure a large request size.
362 */
363
364METHODDEF(void *)
365alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
366/* Allocate a "large" object */
367{
368  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
369  large_pool_ptr hdr_ptr;
370  char *data_ptr;
371
372  /*
373   * Round up the requested size to a multiple of ALIGN_SIZE so that
374   * algorithms can straddle outside the proper area up to the next
375   * alignment.
376   */
377  if (sizeofobject > MAX_ALLOC_CHUNK) {
378    /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
379       is close to SIZE_MAX. */
380    out_of_memory(cinfo, 8);
381  }
382  sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
383
384  /* Check for unsatisfiable request (do now to ensure no overflow below) */
385  if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
386      MAX_ALLOC_CHUNK)
387    out_of_memory(cinfo, 3);    /* request exceeds malloc's ability */
388
389  /* Always make a new pool */
390  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
391    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
392
393  hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
394                                            sizeof(large_pool_hdr) +
395                                            ALIGN_SIZE - 1);
396  if (hdr_ptr == NULL)
397    out_of_memory(cinfo, 4);    /* jpeg_get_large failed */
398  mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) +
399                                ALIGN_SIZE - 1;
400
401  /* Success, initialize the new pool header and add to list */
402  hdr_ptr->next = mem->large_list[pool_id];
403  /* We maintain space counts in each pool header for statistical purposes,
404   * even though they are not needed for allocation.
405   */
406  hdr_ptr->bytes_used = sizeofobject;
407  hdr_ptr->bytes_left = 0;
408  mem->large_list[pool_id] = hdr_ptr;
409
410  data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
411  data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
412  if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
413    data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
414
415  return (void *) data_ptr;
416}
417
418
419/*
420 * Creation of 2-D sample arrays.
421 *
422 * To minimize allocation overhead and to allow I/O of large contiguous
423 * blocks, we allocate the sample rows in groups of as many rows as possible
424 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
425 * NB: the virtual array control routines, later in this file, know about
426 * this chunking of rows.  The rowsperchunk value is left in the mem manager
427 * object so that it can be saved away if this sarray is the workspace for
428 * a virtual array.
429 *
430 * Since we are often upsampling with a factor 2, we align the size (not
431 * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
432 * to be as careful about size.
433 */
434
435METHODDEF(JSAMPARRAY)
436alloc_sarray (j_common_ptr cinfo, int pool_id,
437              JDIMENSION samplesperrow, JDIMENSION numrows)
438/* Allocate a 2-D sample array */
439{
440  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
441  JSAMPARRAY result;
442  JSAMPROW workspace;
443  JDIMENSION rowsperchunk, currow, i;
444  long ltemp;
445
446  /* Make sure each row is properly aligned */
447  if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0)
448    out_of_memory(cinfo, 5);    /* safety check */
449
450  if (samplesperrow > MAX_ALLOC_CHUNK) {
451    /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
452       is close to SIZE_MAX. */
453    out_of_memory(cinfo, 9);
454  }
455  samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) /
456                                                           sizeof(JSAMPLE));
457
458  /* Calculate max # of rows allowed in one allocation chunk */
459  ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) /
460          ((long) samplesperrow * sizeof(JSAMPLE));
461  if (ltemp <= 0)
462    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
463  if (ltemp < (long) numrows)
464    rowsperchunk = (JDIMENSION) ltemp;
465  else
466    rowsperchunk = numrows;
467  mem->last_rowsperchunk = rowsperchunk;
468
469  /* Get space for row pointers (small object) */
470  result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
471                                    (size_t) (numrows * sizeof(JSAMPROW)));
472
473  /* Get the rows themselves (large objects) */
474  currow = 0;
475  while (currow < numrows) {
476    rowsperchunk = MIN(rowsperchunk, numrows - currow);
477    workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
478        (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
479                  * sizeof(JSAMPLE)));
480    for (i = rowsperchunk; i > 0; i--) {
481      result[currow++] = workspace;
482      workspace += samplesperrow;
483    }
484  }
485
486  return result;
487}
488
489
490/*
491 * Creation of 2-D coefficient-block arrays.
492 * This is essentially the same as the code for sample arrays, above.
493 */
494
495METHODDEF(JBLOCKARRAY)
496alloc_barray (j_common_ptr cinfo, int pool_id,
497              JDIMENSION blocksperrow, JDIMENSION numrows)
498/* Allocate a 2-D coefficient-block array */
499{
500  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
501  JBLOCKARRAY result;
502  JBLOCKROW workspace;
503  JDIMENSION rowsperchunk, currow, i;
504  long ltemp;
505
506  /* Make sure each row is properly aligned */
507  if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0)
508    out_of_memory(cinfo, 6);    /* safety check */
509
510  /* Calculate max # of rows allowed in one allocation chunk */
511  ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) /
512          ((long) blocksperrow * sizeof(JBLOCK));
513  if (ltemp <= 0)
514    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
515  if (ltemp < (long) numrows)
516    rowsperchunk = (JDIMENSION) ltemp;
517  else
518    rowsperchunk = numrows;
519  mem->last_rowsperchunk = rowsperchunk;
520
521  /* Get space for row pointers (small object) */
522  result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
523                                     (size_t) (numrows * sizeof(JBLOCKROW)));
524
525  /* Get the rows themselves (large objects) */
526  currow = 0;
527  while (currow < numrows) {
528    rowsperchunk = MIN(rowsperchunk, numrows - currow);
529    workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
530        (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
531                  * sizeof(JBLOCK)));
532    for (i = rowsperchunk; i > 0; i--) {
533      result[currow++] = workspace;
534      workspace += blocksperrow;
535    }
536  }
537
538  return result;
539}
540
541
542/*
543 * About virtual array management:
544 *
545 * The above "normal" array routines are only used to allocate strip buffers
546 * (as wide as the image, but just a few rows high).  Full-image-sized buffers
547 * are handled as "virtual" arrays.  The array is still accessed a strip at a
548 * time, but the memory manager must save the whole array for repeated
549 * accesses.  The intended implementation is that there is a strip buffer in
550 * memory (as high as is possible given the desired memory limit), plus a
551 * backing file that holds the rest of the array.
552 *
553 * The request_virt_array routines are told the total size of the image and
554 * the maximum number of rows that will be accessed at once.  The in-memory
555 * buffer must be at least as large as the maxaccess value.
556 *
557 * The request routines create control blocks but not the in-memory buffers.
558 * That is postponed until realize_virt_arrays is called.  At that time the
559 * total amount of space needed is known (approximately, anyway), so free
560 * memory can be divided up fairly.
561 *
562 * The access_virt_array routines are responsible for making a specific strip
563 * area accessible (after reading or writing the backing file, if necessary).
564 * Note that the access routines are told whether the caller intends to modify
565 * the accessed strip; during a read-only pass this saves having to rewrite
566 * data to disk.  The access routines are also responsible for pre-zeroing
567 * any newly accessed rows, if pre-zeroing was requested.
568 *
569 * In current usage, the access requests are usually for nonoverlapping
570 * strips; that is, successive access start_row numbers differ by exactly
571 * num_rows = maxaccess.  This means we can get good performance with simple
572 * buffer dump/reload logic, by making the in-memory buffer be a multiple
573 * of the access height; then there will never be accesses across bufferload
574 * boundaries.  The code will still work with overlapping access requests,
575 * but it doesn't handle bufferload overlaps very efficiently.
576 */
577
578
579METHODDEF(jvirt_sarray_ptr)
580request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
581                     JDIMENSION samplesperrow, JDIMENSION numrows,
582                     JDIMENSION maxaccess)
583/* Request a virtual 2-D sample array */
584{
585  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
586  jvirt_sarray_ptr result;
587
588  /* Only IMAGE-lifetime virtual arrays are currently supported */
589  if (pool_id != JPOOL_IMAGE)
590    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
591
592  /* get control block */
593  result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
594                                          sizeof(struct jvirt_sarray_control));
595
596  result->mem_buffer = NULL;    /* marks array not yet realized */
597  result->rows_in_array = numrows;
598  result->samplesperrow = samplesperrow;
599  result->maxaccess = maxaccess;
600  result->pre_zero = pre_zero;
601  result->b_s_open = FALSE;     /* no associated backing-store object */
602  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
603  mem->virt_sarray_list = result;
604
605  return result;
606}
607
608
609METHODDEF(jvirt_barray_ptr)
610request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
611                     JDIMENSION blocksperrow, JDIMENSION numrows,
612                     JDIMENSION maxaccess)
613/* Request a virtual 2-D coefficient-block array */
614{
615  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
616  jvirt_barray_ptr result;
617
618  /* Only IMAGE-lifetime virtual arrays are currently supported */
619  if (pool_id != JPOOL_IMAGE)
620    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
621
622  /* get control block */
623  result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
624                                          sizeof(struct jvirt_barray_control));
625
626  result->mem_buffer = NULL;    /* marks array not yet realized */
627  result->rows_in_array = numrows;
628  result->blocksperrow = blocksperrow;
629  result->maxaccess = maxaccess;
630  result->pre_zero = pre_zero;
631  result->b_s_open = FALSE;     /* no associated backing-store object */
632  result->next = mem->virt_barray_list; /* add to list of virtual arrays */
633  mem->virt_barray_list = result;
634
635  return result;
636}
637
638
639METHODDEF(void)
640realize_virt_arrays (j_common_ptr cinfo)
641/* Allocate the in-memory buffers for any unrealized virtual arrays */
642{
643  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
644  size_t space_per_minheight, maximum_space, avail_mem;
645  size_t minheights, max_minheights;
646  jvirt_sarray_ptr sptr;
647  jvirt_barray_ptr bptr;
648
649  /* Compute the minimum space needed (maxaccess rows in each buffer)
650   * and the maximum space needed (full image height in each buffer).
651   * These may be of use to the system-dependent jpeg_mem_available routine.
652   */
653  space_per_minheight = 0;
654  maximum_space = 0;
655  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
656    if (sptr->mem_buffer == NULL) { /* if not realized yet */
657      size_t new_space = (long) sptr->rows_in_array *
658                         (long) sptr->samplesperrow * sizeof(JSAMPLE);
659
660      space_per_minheight += (long) sptr->maxaccess *
661                             (long) sptr->samplesperrow * sizeof(JSAMPLE);
662      if (SIZE_MAX - maximum_space < new_space)
663        out_of_memory(cinfo, 10);
664      maximum_space += new_space;
665    }
666  }
667  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
668    if (bptr->mem_buffer == NULL) { /* if not realized yet */
669      size_t new_space = (long) bptr->rows_in_array *
670                         (long) bptr->blocksperrow * sizeof(JBLOCK);
671
672      space_per_minheight += (long) bptr->maxaccess *
673                             (long) bptr->blocksperrow * sizeof(JBLOCK);
674      if (SIZE_MAX - maximum_space < new_space)
675        out_of_memory(cinfo, 11);
676      maximum_space += new_space;
677    }
678  }
679
680  if (space_per_minheight <= 0)
681    return;                     /* no unrealized arrays, no work */
682
683  /* Determine amount of memory to actually use; this is system-dependent. */
684  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
685                                 mem->total_space_allocated);
686
687  /* If the maximum space needed is available, make all the buffers full
688   * height; otherwise parcel it out with the same number of minheights
689   * in each buffer.
690   */
691  if (avail_mem >= maximum_space)
692    max_minheights = 1000000000L;
693  else {
694    max_minheights = avail_mem / space_per_minheight;
695    /* If there doesn't seem to be enough space, try to get the minimum
696     * anyway.  This allows a "stub" implementation of jpeg_mem_available().
697     */
698    if (max_minheights <= 0)
699      max_minheights = 1;
700  }
701
702  /* Allocate the in-memory buffers and initialize backing store as needed. */
703
704  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
705    if (sptr->mem_buffer == NULL) { /* if not realized yet */
706      minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
707      if (minheights <= max_minheights) {
708        /* This buffer fits in memory */
709        sptr->rows_in_mem = sptr->rows_in_array;
710      } else {
711        /* It doesn't fit in memory, create backing store. */
712        sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
713        jpeg_open_backing_store(cinfo, & sptr->b_s_info,
714                                (long) sptr->rows_in_array *
715                                (long) sptr->samplesperrow *
716                                (long) sizeof(JSAMPLE));
717        sptr->b_s_open = TRUE;
718      }
719      sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
720                                      sptr->samplesperrow, sptr->rows_in_mem);
721      sptr->rowsperchunk = mem->last_rowsperchunk;
722      sptr->cur_start_row = 0;
723      sptr->first_undef_row = 0;
724      sptr->dirty = FALSE;
725    }
726  }
727
728  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
729    if (bptr->mem_buffer == NULL) { /* if not realized yet */
730      minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
731      if (minheights <= max_minheights) {
732        /* This buffer fits in memory */
733        bptr->rows_in_mem = bptr->rows_in_array;
734      } else {
735        /* It doesn't fit in memory, create backing store. */
736        bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
737        jpeg_open_backing_store(cinfo, & bptr->b_s_info,
738                                (long) bptr->rows_in_array *
739                                (long) bptr->blocksperrow *
740                                (long) sizeof(JBLOCK));
741        bptr->b_s_open = TRUE;
742      }
743      bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
744                                      bptr->blocksperrow, bptr->rows_in_mem);
745      bptr->rowsperchunk = mem->last_rowsperchunk;
746      bptr->cur_start_row = 0;
747      bptr->first_undef_row = 0;
748      bptr->dirty = FALSE;
749    }
750  }
751}
752
753
754LOCAL(void)
755do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
756/* Do backing store read or write of a virtual sample array */
757{
758  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
759
760  bytesperrow = (long) ptr->samplesperrow * sizeof(JSAMPLE);
761  file_offset = ptr->cur_start_row * bytesperrow;
762  /* Loop to read or write each allocation chunk in mem_buffer */
763  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
764    /* One chunk, but check for short chunk at end of buffer */
765    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
766    /* Transfer no more than is currently defined */
767    thisrow = (long) ptr->cur_start_row + i;
768    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
769    /* Transfer no more than fits in file */
770    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
771    if (rows <= 0)              /* this chunk might be past end of file! */
772      break;
773    byte_count = rows * bytesperrow;
774    if (writing)
775      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
776                                            (void *) ptr->mem_buffer[i],
777                                            file_offset, byte_count);
778    else
779      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
780                                           (void *) ptr->mem_buffer[i],
781                                           file_offset, byte_count);
782    file_offset += byte_count;
783  }
784}
785
786
787LOCAL(void)
788do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
789/* Do backing store read or write of a virtual coefficient-block array */
790{
791  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
792
793  bytesperrow = (long) ptr->blocksperrow * sizeof(JBLOCK);
794  file_offset = ptr->cur_start_row * bytesperrow;
795  /* Loop to read or write each allocation chunk in mem_buffer */
796  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
797    /* One chunk, but check for short chunk at end of buffer */
798    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
799    /* Transfer no more than is currently defined */
800    thisrow = (long) ptr->cur_start_row + i;
801    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
802    /* Transfer no more than fits in file */
803    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
804    if (rows <= 0)              /* this chunk might be past end of file! */
805      break;
806    byte_count = rows * bytesperrow;
807    if (writing)
808      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
809                                            (void *) ptr->mem_buffer[i],
810                                            file_offset, byte_count);
811    else
812      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
813                                           (void *) ptr->mem_buffer[i],
814                                           file_offset, byte_count);
815    file_offset += byte_count;
816  }
817}
818
819
820METHODDEF(JSAMPARRAY)
821access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
822                    JDIMENSION start_row, JDIMENSION num_rows,
823                    boolean writable)
824/* Access the part of a virtual sample array starting at start_row */
825/* and extending for num_rows rows.  writable is true if  */
826/* caller intends to modify the accessed area. */
827{
828  JDIMENSION end_row = start_row + num_rows;
829  JDIMENSION undef_row;
830
831  /* debugging check */
832  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
833      ptr->mem_buffer == NULL)
834    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
835
836  /* Make the desired part of the virtual array accessible */
837  if (start_row < ptr->cur_start_row ||
838      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
839    if (! ptr->b_s_open)
840      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
841    /* Flush old buffer contents if necessary */
842    if (ptr->dirty) {
843      do_sarray_io(cinfo, ptr, TRUE);
844      ptr->dirty = FALSE;
845    }
846    /* Decide what part of virtual array to access.
847     * Algorithm: if target address > current window, assume forward scan,
848     * load starting at target address.  If target address < current window,
849     * assume backward scan, load so that target area is top of window.
850     * Note that when switching from forward write to forward read, will have
851     * start_row = 0, so the limiting case applies and we load from 0 anyway.
852     */
853    if (start_row > ptr->cur_start_row) {
854      ptr->cur_start_row = start_row;
855    } else {
856      /* use long arithmetic here to avoid overflow & unsigned problems */
857      long ltemp;
858
859      ltemp = (long) end_row - (long) ptr->rows_in_mem;
860      if (ltemp < 0)
861        ltemp = 0;              /* don't fall off front end of file */
862      ptr->cur_start_row = (JDIMENSION) ltemp;
863    }
864    /* Read in the selected part of the array.
865     * During the initial write pass, we will do no actual read
866     * because the selected part is all undefined.
867     */
868    do_sarray_io(cinfo, ptr, FALSE);
869  }
870  /* Ensure the accessed part of the array is defined; prezero if needed.
871   * To improve locality of access, we only prezero the part of the array
872   * that the caller is about to access, not the entire in-memory array.
873   */
874  if (ptr->first_undef_row < end_row) {
875    if (ptr->first_undef_row < start_row) {
876      if (writable)             /* writer skipped over a section of array */
877        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
878      undef_row = start_row;    /* but reader is allowed to read ahead */
879    } else {
880      undef_row = ptr->first_undef_row;
881    }
882    if (writable)
883      ptr->first_undef_row = end_row;
884    if (ptr->pre_zero) {
885      size_t bytesperrow = (size_t) ptr->samplesperrow * sizeof(JSAMPLE);
886      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
887      end_row -= ptr->cur_start_row;
888      while (undef_row < end_row) {
889        jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow);
890        undef_row++;
891      }
892    } else {
893      if (! writable)           /* reader looking at undefined data */
894        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
895    }
896  }
897  /* Flag the buffer dirty if caller will write in it */
898  if (writable)
899    ptr->dirty = TRUE;
900  /* Return address of proper part of the buffer */
901  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
902}
903
904
905METHODDEF(JBLOCKARRAY)
906access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
907                    JDIMENSION start_row, JDIMENSION num_rows,
908                    boolean writable)
909/* Access the part of a virtual block array starting at start_row */
910/* and extending for num_rows rows.  writable is true if  */
911/* caller intends to modify the accessed area. */
912{
913  JDIMENSION end_row = start_row + num_rows;
914  JDIMENSION undef_row;
915
916  /* debugging check */
917  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
918      ptr->mem_buffer == NULL)
919    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
920
921  /* Make the desired part of the virtual array accessible */
922  if (start_row < ptr->cur_start_row ||
923      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
924    if (! ptr->b_s_open)
925      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
926    /* Flush old buffer contents if necessary */
927    if (ptr->dirty) {
928      do_barray_io(cinfo, ptr, TRUE);
929      ptr->dirty = FALSE;
930    }
931    /* Decide what part of virtual array to access.
932     * Algorithm: if target address > current window, assume forward scan,
933     * load starting at target address.  If target address < current window,
934     * assume backward scan, load so that target area is top of window.
935     * Note that when switching from forward write to forward read, will have
936     * start_row = 0, so the limiting case applies and we load from 0 anyway.
937     */
938    if (start_row > ptr->cur_start_row) {
939      ptr->cur_start_row = start_row;
940    } else {
941      /* use long arithmetic here to avoid overflow & unsigned problems */
942      long ltemp;
943
944      ltemp = (long) end_row - (long) ptr->rows_in_mem;
945      if (ltemp < 0)
946        ltemp = 0;              /* don't fall off front end of file */
947      ptr->cur_start_row = (JDIMENSION) ltemp;
948    }
949    /* Read in the selected part of the array.
950     * During the initial write pass, we will do no actual read
951     * because the selected part is all undefined.
952     */
953    do_barray_io(cinfo, ptr, FALSE);
954  }
955  /* Ensure the accessed part of the array is defined; prezero if needed.
956   * To improve locality of access, we only prezero the part of the array
957   * that the caller is about to access, not the entire in-memory array.
958   */
959  if (ptr->first_undef_row < end_row) {
960    if (ptr->first_undef_row < start_row) {
961      if (writable)             /* writer skipped over a section of array */
962        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
963      undef_row = start_row;    /* but reader is allowed to read ahead */
964    } else {
965      undef_row = ptr->first_undef_row;
966    }
967    if (writable)
968      ptr->first_undef_row = end_row;
969    if (ptr->pre_zero) {
970      size_t bytesperrow = (size_t) ptr->blocksperrow * sizeof(JBLOCK);
971      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
972      end_row -= ptr->cur_start_row;
973      while (undef_row < end_row) {
974        jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow);
975        undef_row++;
976      }
977    } else {
978      if (! writable)           /* reader looking at undefined data */
979        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
980    }
981  }
982  /* Flag the buffer dirty if caller will write in it */
983  if (writable)
984    ptr->dirty = TRUE;
985  /* Return address of proper part of the buffer */
986  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
987}
988
989
990/*
991 * Release all objects belonging to a specified pool.
992 */
993
994METHODDEF(void)
995free_pool (j_common_ptr cinfo, int pool_id)
996{
997  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
998  small_pool_ptr shdr_ptr;
999  large_pool_ptr lhdr_ptr;
1000  size_t space_freed;
1001
1002  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
1003    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
1004
1005#ifdef MEM_STATS
1006  if (cinfo->err->trace_level > 1)
1007    print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
1008#endif
1009
1010  /* If freeing IMAGE pool, close any virtual arrays first */
1011  if (pool_id == JPOOL_IMAGE) {
1012    jvirt_sarray_ptr sptr;
1013    jvirt_barray_ptr bptr;
1014
1015    for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
1016      if (sptr->b_s_open) {     /* there may be no backing store */
1017        sptr->b_s_open = FALSE; /* prevent recursive close if error */
1018        (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
1019      }
1020    }
1021    mem->virt_sarray_list = NULL;
1022    for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
1023      if (bptr->b_s_open) {     /* there may be no backing store */
1024        bptr->b_s_open = FALSE; /* prevent recursive close if error */
1025        (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
1026      }
1027    }
1028    mem->virt_barray_list = NULL;
1029  }
1030
1031  /* Release large objects */
1032  lhdr_ptr = mem->large_list[pool_id];
1033  mem->large_list[pool_id] = NULL;
1034
1035  while (lhdr_ptr != NULL) {
1036    large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
1037    space_freed = lhdr_ptr->bytes_used +
1038                  lhdr_ptr->bytes_left +
1039                  sizeof(large_pool_hdr);
1040    jpeg_free_large(cinfo, (void *) lhdr_ptr, space_freed);
1041    mem->total_space_allocated -= space_freed;
1042    lhdr_ptr = next_lhdr_ptr;
1043  }
1044
1045  /* Release small objects */
1046  shdr_ptr = mem->small_list[pool_id];
1047  mem->small_list[pool_id] = NULL;
1048
1049  while (shdr_ptr != NULL) {
1050    small_pool_ptr next_shdr_ptr = shdr_ptr->next;
1051    space_freed = shdr_ptr->bytes_used +
1052                  shdr_ptr->bytes_left +
1053                  sizeof(small_pool_hdr);
1054    jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
1055    mem->total_space_allocated -= space_freed;
1056    shdr_ptr = next_shdr_ptr;
1057  }
1058}
1059
1060
1061/*
1062 * Close up shop entirely.
1063 * Note that this cannot be called unless cinfo->mem is non-NULL.
1064 */
1065
1066METHODDEF(void)
1067self_destruct (j_common_ptr cinfo)
1068{
1069  int pool;
1070
1071  /* Close all backing store, release all memory.
1072   * Releasing pools in reverse order might help avoid fragmentation
1073   * with some (brain-damaged) malloc libraries.
1074   */
1075  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1076    free_pool(cinfo, pool);
1077  }
1078
1079  /* Release the memory manager control block too. */
1080  jpeg_free_small(cinfo, (void *) cinfo->mem, sizeof(my_memory_mgr));
1081  cinfo->mem = NULL;            /* ensures I will be called only once */
1082
1083  jpeg_mem_term(cinfo);         /* system-dependent cleanup */
1084}
1085
1086
1087/*
1088 * Memory manager initialization.
1089 * When this is called, only the error manager pointer is valid in cinfo!
1090 */
1091
1092GLOBAL(void)
1093jinit_memory_mgr (j_common_ptr cinfo)
1094{
1095  my_mem_ptr mem;
1096  long max_to_use;
1097  int pool;
1098  size_t test_mac;
1099
1100  cinfo->mem = NULL;            /* for safety if init fails */
1101
1102  /* Check for configuration errors.
1103   * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1104   * doesn't reflect any real hardware alignment requirement.
1105   * The test is a little tricky: for X>0, X and X-1 have no one-bits
1106   * in common if and only if X is a power of 2, ie has only one one-bit.
1107   * Some compilers may give an "unreachable code" warning here; ignore it.
1108   */
1109  if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0)
1110    ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1111  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1112   * a multiple of ALIGN_SIZE.
1113   * Again, an "unreachable code" warning may be ignored here.
1114   * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1115   */
1116  test_mac = (size_t) MAX_ALLOC_CHUNK;
1117  if ((long) test_mac != MAX_ALLOC_CHUNK ||
1118      (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
1119    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1120
1121  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1122
1123  /* Attempt to allocate memory manager's control block */
1124  mem = (my_mem_ptr) jpeg_get_small(cinfo, sizeof(my_memory_mgr));
1125
1126  if (mem == NULL) {
1127    jpeg_mem_term(cinfo);       /* system-dependent cleanup */
1128    ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1129  }
1130
1131  /* OK, fill in the method pointers */
1132  mem->pub.alloc_small = alloc_small;
1133  mem->pub.alloc_large = alloc_large;
1134  mem->pub.alloc_sarray = alloc_sarray;
1135  mem->pub.alloc_barray = alloc_barray;
1136  mem->pub.request_virt_sarray = request_virt_sarray;
1137  mem->pub.request_virt_barray = request_virt_barray;
1138  mem->pub.realize_virt_arrays = realize_virt_arrays;
1139  mem->pub.access_virt_sarray = access_virt_sarray;
1140  mem->pub.access_virt_barray = access_virt_barray;
1141  mem->pub.free_pool = free_pool;
1142  mem->pub.self_destruct = self_destruct;
1143
1144  /* Make MAX_ALLOC_CHUNK accessible to other modules */
1145  mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1146
1147  /* Initialize working state */
1148  mem->pub.max_memory_to_use = max_to_use;
1149
1150  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1151    mem->small_list[pool] = NULL;
1152    mem->large_list[pool] = NULL;
1153  }
1154  mem->virt_sarray_list = NULL;
1155  mem->virt_barray_list = NULL;
1156
1157  mem->total_space_allocated = sizeof(my_memory_mgr);
1158
1159  /* Declare ourselves open for business */
1160  cinfo->mem = & mem->pub;
1161
1162  /* Check for an environment variable JPEGMEM; if found, override the
1163   * default max_memory setting from jpeg_mem_init.  Note that the
1164   * surrounding application may again override this value.
1165   * If your system doesn't support getenv(), define NO_GETENV to disable
1166   * this feature.
1167   */
1168#ifndef NO_GETENV
1169  { char *memenv;
1170
1171    if ((memenv = getenv("JPEGMEM")) != NULL) {
1172      char ch = 'x';
1173
1174      if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1175        if (ch == 'm' || ch == 'M')
1176          max_to_use *= 1000L;
1177        mem->pub.max_memory_to_use = max_to_use * 1000L;
1178      }
1179    }
1180  }
1181#endif
1182
1183}
1184