1/*
2 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include <tmmintrin.h>  // SSSE3
12
13#include <string.h>
14
15#include "./vpx_dsp_rtcd.h"
16#include "vpx_dsp/vpx_filter.h"
17#include "vpx_dsp/x86/convolve.h"
18#include "vpx_dsp/x86/convolve_ssse3.h"
19#include "vpx_dsp/x86/mem_sse2.h"
20#include "vpx_dsp/x86/transpose_sse2.h"
21#include "vpx_mem/vpx_mem.h"
22#include "vpx_ports/mem.h"
23
24// These are reused by the avx2 intrinsics.
25// vpx_filter_block1d8_v8_intrin_ssse3()
26// vpx_filter_block1d8_h8_intrin_ssse3()
27// vpx_filter_block1d4_h8_intrin_ssse3()
28
29static INLINE __m128i shuffle_filter_convolve8_8_ssse3(
30    const __m128i *const s, const int16_t *const filter) {
31  __m128i f[4];
32  shuffle_filter_ssse3(filter, f);
33  return convolve8_8_ssse3(s, f);
34}
35
36void vpx_filter_block1d4_h8_intrin_ssse3(
37    const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
38    ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
39  __m128i firstFilters, secondFilters, shuffle1, shuffle2;
40  __m128i srcRegFilt1, srcRegFilt2;
41  __m128i addFilterReg64, filtersReg, srcReg;
42  unsigned int i;
43
44  // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
45  addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
46  filtersReg = _mm_loadu_si128((const __m128i *)filter);
47  // converting the 16 bit (short) to  8 bit (byte) and have the same data
48  // in both lanes of 128 bit register.
49  filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
50
51  // duplicate only the first 16 bits in the filter into the first lane
52  firstFilters = _mm_shufflelo_epi16(filtersReg, 0);
53  // duplicate only the third 16 bit in the filter into the first lane
54  secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu);
55  // duplicate only the seconds 16 bits in the filter into the second lane
56  // firstFilters: k0 k1 k0 k1 k0 k1 k0 k1 k2 k3 k2 k3 k2 k3 k2 k3
57  firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u);
58  // duplicate only the forth 16 bits in the filter into the second lane
59  // secondFilters: k4 k5 k4 k5 k4 k5 k4 k5 k6 k7 k6 k7 k6 k7 k6 k7
60  secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu);
61
62  // loading the local filters
63  shuffle1 = _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6);
64  shuffle2 = _mm_setr_epi8(4, 5, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 9, 10);
65
66  for (i = 0; i < output_height; i++) {
67    srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
68
69    // filter the source buffer
70    srcRegFilt1 = _mm_shuffle_epi8(srcReg, shuffle1);
71    srcRegFilt2 = _mm_shuffle_epi8(srcReg, shuffle2);
72
73    // multiply 2 adjacent elements with the filter and add the result
74    srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
75    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);
76
77    // sum the results together, saturating only on the final step
78    // the specific order of the additions prevents outranges
79    srcRegFilt1 = _mm_add_epi16(srcRegFilt1, srcRegFilt2);
80
81    // extract the higher half of the register
82    srcRegFilt2 = _mm_srli_si128(srcRegFilt1, 8);
83
84    // add the rounding offset early to avoid another saturated add
85    srcRegFilt1 = _mm_add_epi16(srcRegFilt1, addFilterReg64);
86    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
87
88    // shift by 7 bit each 16 bits
89    srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
90
91    // shrink to 8 bit each 16 bits
92    srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
93    src_ptr += src_pitch;
94
95    // save only 4 bytes
96    *((int *)&output_ptr[0]) = _mm_cvtsi128_si32(srcRegFilt1);
97
98    output_ptr += output_pitch;
99  }
100}
101
102void vpx_filter_block1d8_h8_intrin_ssse3(
103    const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
104    ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
105  unsigned int i;
106  __m128i f[4], filt[4], s[4];
107
108  shuffle_filter_ssse3(filter, f);
109  filt[0] = _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8);
110  filt[1] = _mm_setr_epi8(2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10);
111  filt[2] = _mm_setr_epi8(4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12);
112  filt[3] =
113      _mm_setr_epi8(6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14);
114
115  for (i = 0; i < output_height; i++) {
116    const __m128i srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
117
118    // filter the source buffer
119    s[0] = _mm_shuffle_epi8(srcReg, filt[0]);
120    s[1] = _mm_shuffle_epi8(srcReg, filt[1]);
121    s[2] = _mm_shuffle_epi8(srcReg, filt[2]);
122    s[3] = _mm_shuffle_epi8(srcReg, filt[3]);
123    s[0] = convolve8_8_ssse3(s, f);
124
125    // shrink to 8 bit each 16 bits
126    s[0] = _mm_packus_epi16(s[0], s[0]);
127
128    src_ptr += src_pitch;
129
130    // save only 8 bytes
131    _mm_storel_epi64((__m128i *)&output_ptr[0], s[0]);
132
133    output_ptr += output_pitch;
134  }
135}
136
137void vpx_filter_block1d8_v8_intrin_ssse3(
138    const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
139    ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
140  unsigned int i;
141  __m128i f[4], s[8], ss[4];
142
143  shuffle_filter_ssse3(filter, f);
144
145  // load the first 7 rows of 8 bytes
146  s[0] = _mm_loadl_epi64((const __m128i *)(src_ptr + 0 * src_pitch));
147  s[1] = _mm_loadl_epi64((const __m128i *)(src_ptr + 1 * src_pitch));
148  s[2] = _mm_loadl_epi64((const __m128i *)(src_ptr + 2 * src_pitch));
149  s[3] = _mm_loadl_epi64((const __m128i *)(src_ptr + 3 * src_pitch));
150  s[4] = _mm_loadl_epi64((const __m128i *)(src_ptr + 4 * src_pitch));
151  s[5] = _mm_loadl_epi64((const __m128i *)(src_ptr + 5 * src_pitch));
152  s[6] = _mm_loadl_epi64((const __m128i *)(src_ptr + 6 * src_pitch));
153
154  for (i = 0; i < output_height; i++) {
155    // load the last 8 bytes
156    s[7] = _mm_loadl_epi64((const __m128i *)(src_ptr + 7 * src_pitch));
157
158    // merge the result together
159    ss[0] = _mm_unpacklo_epi8(s[0], s[1]);
160    ss[1] = _mm_unpacklo_epi8(s[2], s[3]);
161
162    // merge the result together
163    ss[2] = _mm_unpacklo_epi8(s[4], s[5]);
164    ss[3] = _mm_unpacklo_epi8(s[6], s[7]);
165
166    ss[0] = convolve8_8_ssse3(ss, f);
167    // shrink to 8 bit each 16 bits
168    ss[0] = _mm_packus_epi16(ss[0], ss[0]);
169
170    src_ptr += src_pitch;
171
172    // shift down a row
173    s[0] = s[1];
174    s[1] = s[2];
175    s[2] = s[3];
176    s[3] = s[4];
177    s[4] = s[5];
178    s[5] = s[6];
179    s[6] = s[7];
180
181    // save only 8 bytes convolve result
182    _mm_storel_epi64((__m128i *)&output_ptr[0], ss[0]);
183
184    output_ptr += out_pitch;
185  }
186}
187
188filter8_1dfunction vpx_filter_block1d16_v8_ssse3;
189filter8_1dfunction vpx_filter_block1d16_h8_ssse3;
190filter8_1dfunction vpx_filter_block1d8_v8_ssse3;
191filter8_1dfunction vpx_filter_block1d8_h8_ssse3;
192filter8_1dfunction vpx_filter_block1d4_v8_ssse3;
193filter8_1dfunction vpx_filter_block1d4_h8_ssse3;
194filter8_1dfunction vpx_filter_block1d16_v8_avg_ssse3;
195filter8_1dfunction vpx_filter_block1d16_h8_avg_ssse3;
196filter8_1dfunction vpx_filter_block1d8_v8_avg_ssse3;
197filter8_1dfunction vpx_filter_block1d8_h8_avg_ssse3;
198filter8_1dfunction vpx_filter_block1d4_v8_avg_ssse3;
199filter8_1dfunction vpx_filter_block1d4_h8_avg_ssse3;
200
201filter8_1dfunction vpx_filter_block1d16_v2_ssse3;
202filter8_1dfunction vpx_filter_block1d16_h2_ssse3;
203filter8_1dfunction vpx_filter_block1d8_v2_ssse3;
204filter8_1dfunction vpx_filter_block1d8_h2_ssse3;
205filter8_1dfunction vpx_filter_block1d4_v2_ssse3;
206filter8_1dfunction vpx_filter_block1d4_h2_ssse3;
207filter8_1dfunction vpx_filter_block1d16_v2_avg_ssse3;
208filter8_1dfunction vpx_filter_block1d16_h2_avg_ssse3;
209filter8_1dfunction vpx_filter_block1d8_v2_avg_ssse3;
210filter8_1dfunction vpx_filter_block1d8_h2_avg_ssse3;
211filter8_1dfunction vpx_filter_block1d4_v2_avg_ssse3;
212filter8_1dfunction vpx_filter_block1d4_h2_avg_ssse3;
213
214// void vpx_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
215//                                uint8_t *dst, ptrdiff_t dst_stride,
216//                                const InterpKernel *filter, int x0_q4,
217//                                int32_t x_step_q4, int y0_q4, int y_step_q4,
218//                                int w, int h);
219// void vpx_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
220//                               uint8_t *dst, ptrdiff_t dst_stride,
221//                               const InterpKernel *filter, int x0_q4,
222//                               int32_t x_step_q4, int y0_q4, int y_step_q4,
223//                               int w, int h);
224// void vpx_convolve8_avg_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
225//                                    uint8_t *dst, ptrdiff_t dst_stride,
226//                                    const InterpKernel *filter, int x0_q4,
227//                                    int32_t x_step_q4, int y0_q4,
228//                                    int y_step_q4, int w, int h);
229// void vpx_convolve8_avg_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
230//                                   uint8_t *dst, ptrdiff_t dst_stride,
231//                                   const InterpKernel *filter, int x0_q4,
232//                                   int32_t x_step_q4, int y0_q4,
233//                                   int y_step_q4, int w, int h);
234FUN_CONV_1D(horiz, x0_q4, x_step_q4, h, src, , ssse3);
235FUN_CONV_1D(vert, y0_q4, y_step_q4, v, src - src_stride * 3, , ssse3);
236FUN_CONV_1D(avg_horiz, x0_q4, x_step_q4, h, src, avg_, ssse3);
237FUN_CONV_1D(avg_vert, y0_q4, y_step_q4, v, src - src_stride * 3, avg_, ssse3);
238
239static void filter_horiz_w8_ssse3(const uint8_t *const src,
240                                  const ptrdiff_t src_stride,
241                                  uint8_t *const dst,
242                                  const int16_t *const x_filter) {
243  __m128i s[8], ss[4], temp;
244
245  load_8bit_8x8(src, src_stride, s);
246  // 00 01 10 11 20 21 30 31  40 41 50 51 60 61 70 71
247  // 02 03 12 13 22 23 32 33  42 43 52 53 62 63 72 73
248  // 04 05 14 15 24 25 34 35  44 45 54 55 64 65 74 75
249  // 06 07 16 17 26 27 36 37  46 47 56 57 66 67 76 77
250  transpose_16bit_4x8(s, ss);
251  temp = shuffle_filter_convolve8_8_ssse3(ss, x_filter);
252  // shrink to 8 bit each 16 bits
253  temp = _mm_packus_epi16(temp, temp);
254  // save only 8 bytes convolve result
255  _mm_storel_epi64((__m128i *)dst, temp);
256}
257
258static void transpose8x8_to_dst(const uint8_t *const src,
259                                const ptrdiff_t src_stride, uint8_t *const dst,
260                                const ptrdiff_t dst_stride) {
261  __m128i s[8];
262
263  load_8bit_8x8(src, src_stride, s);
264  transpose_8bit_8x8(s, s);
265  store_8bit_8x8(s, dst, dst_stride);
266}
267
268static void scaledconvolve_horiz_w8(const uint8_t *src,
269                                    const ptrdiff_t src_stride, uint8_t *dst,
270                                    const ptrdiff_t dst_stride,
271                                    const InterpKernel *const x_filters,
272                                    const int x0_q4, const int x_step_q4,
273                                    const int w, const int h) {
274  DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]);
275  int x, y, z;
276  src -= SUBPEL_TAPS / 2 - 1;
277
278  // This function processes 8x8 areas. The intermediate height is not always
279  // a multiple of 8, so force it to be a multiple of 8 here.
280  y = h + (8 - (h & 0x7));
281
282  do {
283    int x_q4 = x0_q4;
284    for (x = 0; x < w; x += 8) {
285      // process 8 src_x steps
286      for (z = 0; z < 8; ++z) {
287        const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
288        const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
289        if (x_q4 & SUBPEL_MASK) {
290          filter_horiz_w8_ssse3(src_x, src_stride, temp + (z * 8), x_filter);
291        } else {
292          int i;
293          for (i = 0; i < 8; ++i) {
294            temp[z * 8 + i] = src_x[i * src_stride + 3];
295          }
296        }
297        x_q4 += x_step_q4;
298      }
299
300      // transpose the 8x8 filters values back to dst
301      transpose8x8_to_dst(temp, 8, dst + x, dst_stride);
302    }
303
304    src += src_stride * 8;
305    dst += dst_stride * 8;
306  } while (y -= 8);
307}
308
309static void filter_horiz_w4_ssse3(const uint8_t *const src,
310                                  const ptrdiff_t src_stride,
311                                  uint8_t *const dst,
312                                  const int16_t *const filter) {
313  __m128i s[4], ss[2];
314  __m128i temp;
315
316  load_8bit_8x4(src, src_stride, s);
317  transpose_16bit_4x4(s, ss);
318  // 00 01 10 11 20 21 30 31
319  s[0] = ss[0];
320  // 02 03 12 13 22 23 32 33
321  s[1] = _mm_srli_si128(ss[0], 8);
322  // 04 05 14 15 24 25 34 35
323  s[2] = ss[1];
324  // 06 07 16 17 26 27 36 37
325  s[3] = _mm_srli_si128(ss[1], 8);
326
327  temp = shuffle_filter_convolve8_8_ssse3(s, filter);
328  // shrink to 8 bit each 16 bits
329  temp = _mm_packus_epi16(temp, temp);
330  // save only 4 bytes
331  *(int *)dst = _mm_cvtsi128_si32(temp);
332}
333
334static void transpose4x4_to_dst(const uint8_t *const src,
335                                const ptrdiff_t src_stride, uint8_t *const dst,
336                                const ptrdiff_t dst_stride) {
337  __m128i s[4];
338
339  load_8bit_4x4(src, src_stride, s);
340  s[0] = transpose_8bit_4x4(s);
341  s[1] = _mm_srli_si128(s[0], 4);
342  s[2] = _mm_srli_si128(s[0], 8);
343  s[3] = _mm_srli_si128(s[0], 12);
344  store_8bit_4x4(s, dst, dst_stride);
345}
346
347static void scaledconvolve_horiz_w4(const uint8_t *src,
348                                    const ptrdiff_t src_stride, uint8_t *dst,
349                                    const ptrdiff_t dst_stride,
350                                    const InterpKernel *const x_filters,
351                                    const int x0_q4, const int x_step_q4,
352                                    const int w, const int h) {
353  DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]);
354  int x, y, z;
355  src -= SUBPEL_TAPS / 2 - 1;
356
357  for (y = 0; y < h; y += 4) {
358    int x_q4 = x0_q4;
359    for (x = 0; x < w; x += 4) {
360      // process 4 src_x steps
361      for (z = 0; z < 4; ++z) {
362        const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
363        const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
364        if (x_q4 & SUBPEL_MASK) {
365          filter_horiz_w4_ssse3(src_x, src_stride, temp + (z * 4), x_filter);
366        } else {
367          int i;
368          for (i = 0; i < 4; ++i) {
369            temp[z * 4 + i] = src_x[i * src_stride + 3];
370          }
371        }
372        x_q4 += x_step_q4;
373      }
374
375      // transpose the 4x4 filters values back to dst
376      transpose4x4_to_dst(temp, 4, dst + x, dst_stride);
377    }
378
379    src += src_stride * 4;
380    dst += dst_stride * 4;
381  }
382}
383
384static __m128i filter_vert_kernel(const __m128i *const s,
385                                  const int16_t *const filter) {
386  __m128i ss[4];
387  __m128i temp;
388
389  // 00 10 01 11 02 12 03 13
390  ss[0] = _mm_unpacklo_epi8(s[0], s[1]);
391  // 20 30 21 31 22 32 23 33
392  ss[1] = _mm_unpacklo_epi8(s[2], s[3]);
393  // 40 50 41 51 42 52 43 53
394  ss[2] = _mm_unpacklo_epi8(s[4], s[5]);
395  // 60 70 61 71 62 72 63 73
396  ss[3] = _mm_unpacklo_epi8(s[6], s[7]);
397
398  temp = shuffle_filter_convolve8_8_ssse3(ss, filter);
399  // shrink to 8 bit each 16 bits
400  return _mm_packus_epi16(temp, temp);
401}
402
403static void filter_vert_w4_ssse3(const uint8_t *const src,
404                                 const ptrdiff_t src_stride, uint8_t *const dst,
405                                 const int16_t *const filter) {
406  __m128i s[8];
407  __m128i temp;
408
409  load_8bit_4x8(src, src_stride, s);
410  temp = filter_vert_kernel(s, filter);
411  // save only 4 bytes
412  *(int *)dst = _mm_cvtsi128_si32(temp);
413}
414
415static void scaledconvolve_vert_w4(
416    const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
417    const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
418    const int y0_q4, const int y_step_q4, const int w, const int h) {
419  int y;
420  int y_q4 = y0_q4;
421
422  src -= src_stride * (SUBPEL_TAPS / 2 - 1);
423  for (y = 0; y < h; ++y) {
424    const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
425    const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
426
427    if (y_q4 & SUBPEL_MASK) {
428      filter_vert_w4_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter);
429    } else {
430      memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
431    }
432
433    y_q4 += y_step_q4;
434  }
435}
436
437static void filter_vert_w8_ssse3(const uint8_t *const src,
438                                 const ptrdiff_t src_stride, uint8_t *const dst,
439                                 const int16_t *const filter) {
440  __m128i s[8], temp;
441
442  load_8bit_8x8(src, src_stride, s);
443  temp = filter_vert_kernel(s, filter);
444  // save only 8 bytes convolve result
445  _mm_storel_epi64((__m128i *)dst, temp);
446}
447
448static void scaledconvolve_vert_w8(
449    const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
450    const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
451    const int y0_q4, const int y_step_q4, const int w, const int h) {
452  int y;
453  int y_q4 = y0_q4;
454
455  src -= src_stride * (SUBPEL_TAPS / 2 - 1);
456  for (y = 0; y < h; ++y) {
457    const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
458    const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
459    if (y_q4 & SUBPEL_MASK) {
460      filter_vert_w8_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter);
461    } else {
462      memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
463    }
464    y_q4 += y_step_q4;
465  }
466}
467
468static void filter_vert_w16_ssse3(const uint8_t *src,
469                                  const ptrdiff_t src_stride,
470                                  uint8_t *const dst,
471                                  const int16_t *const filter, const int w) {
472  int i;
473  __m128i f[4];
474  shuffle_filter_ssse3(filter, f);
475
476  for (i = 0; i < w; i += 16) {
477    __m128i s[8], s_lo[4], s_hi[4], temp_lo, temp_hi;
478
479    loadu_8bit_16x8(src, src_stride, s);
480
481    // merge the result together
482    s_lo[0] = _mm_unpacklo_epi8(s[0], s[1]);
483    s_hi[0] = _mm_unpackhi_epi8(s[0], s[1]);
484    s_lo[1] = _mm_unpacklo_epi8(s[2], s[3]);
485    s_hi[1] = _mm_unpackhi_epi8(s[2], s[3]);
486    s_lo[2] = _mm_unpacklo_epi8(s[4], s[5]);
487    s_hi[2] = _mm_unpackhi_epi8(s[4], s[5]);
488    s_lo[3] = _mm_unpacklo_epi8(s[6], s[7]);
489    s_hi[3] = _mm_unpackhi_epi8(s[6], s[7]);
490    temp_lo = convolve8_8_ssse3(s_lo, f);
491    temp_hi = convolve8_8_ssse3(s_hi, f);
492
493    // shrink to 8 bit each 16 bits, the first lane contain the first convolve
494    // result and the second lane contain the second convolve result
495    temp_hi = _mm_packus_epi16(temp_lo, temp_hi);
496    src += 16;
497    // save 16 bytes convolve result
498    _mm_store_si128((__m128i *)&dst[i], temp_hi);
499  }
500}
501
502static void scaledconvolve_vert_w16(
503    const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
504    const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
505    const int y0_q4, const int y_step_q4, const int w, const int h) {
506  int y;
507  int y_q4 = y0_q4;
508
509  src -= src_stride * (SUBPEL_TAPS / 2 - 1);
510  for (y = 0; y < h; ++y) {
511    const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
512    const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
513    if (y_q4 & SUBPEL_MASK) {
514      filter_vert_w16_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter,
515                            w);
516    } else {
517      memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
518    }
519    y_q4 += y_step_q4;
520  }
521}
522
523void vpx_scaled_2d_ssse3(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
524                         ptrdiff_t dst_stride, const InterpKernel *filter,
525                         int x0_q4, int x_step_q4, int y0_q4, int y_step_q4,
526                         int w, int h) {
527  // Note: Fixed size intermediate buffer, temp, places limits on parameters.
528  // 2d filtering proceeds in 2 steps:
529  //   (1) Interpolate horizontally into an intermediate buffer, temp.
530  //   (2) Interpolate temp vertically to derive the sub-pixel result.
531  // Deriving the maximum number of rows in the temp buffer (135):
532  // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
533  // --Largest block size is 64x64 pixels.
534  // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
535  //   original frame (in 1/16th pixel units).
536  // --Must round-up because block may be located at sub-pixel position.
537  // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
538  // --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
539  // --Require an additional 8 rows for the horiz_w8 transpose tail.
540  // When calling in frame scaling function, the smallest scaling factor is x1/4
541  // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still
542  // big enough.
543  DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]);
544  const int intermediate_height =
545      (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
546
547  assert(w <= 64);
548  assert(h <= 64);
549  assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32));
550  assert(x_step_q4 <= 64);
551
552  if (w >= 8) {
553    scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1),
554                            src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
555                            intermediate_height);
556  } else {
557    scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1),
558                            src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
559                            intermediate_height);
560  }
561
562  if (w >= 16) {
563    scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
564                            dst_stride, filter, y0_q4, y_step_q4, w, h);
565  } else if (w == 8) {
566    scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
567                           dst_stride, filter, y0_q4, y_step_q4, w, h);
568  } else {
569    scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
570                           dst_stride, filter, y0_q4, y_step_q4, w, h);
571  }
572}
573
574// void vp9_convolve8_ssse3(const uint8_t *src, ptrdiff_t src_stride,
575//                          uint8_t *dst, ptrdiff_t dst_stride,
576//                          const InterpKernel *filter, int x0_q4,
577//                          int32_t x_step_q4, int y0_q4, int y_step_q4,
578//                          int w, int h);
579// void vpx_convolve8_avg_ssse3(const uint8_t *src, ptrdiff_t src_stride,
580//                              uint8_t *dst, ptrdiff_t dst_stride,
581//                              const InterpKernel *filter, int x0_q4,
582//                              int32_t x_step_q4, int y0_q4, int y_step_q4,
583//                              int w, int h);
584FUN_CONV_2D(, ssse3);
585FUN_CONV_2D(avg_, ssse3);
586