1=======================
2Writing an LLVM Backend
3=======================
4
5.. toctree::
6   :hidden:
7
8   HowToUseInstrMappings
9
10.. contents::
11   :local:
12
13Introduction
14============
15
16This document describes techniques for writing compiler backends that convert
17the LLVM Intermediate Representation (IR) to code for a specified machine or
18other languages.  Code intended for a specific machine can take the form of
19either assembly code or binary code (usable for a JIT compiler).
20
21The backend of LLVM features a target-independent code generator that may
22create output for several types of target CPUs --- including X86, PowerPC,
23ARM, and SPARC.  The backend may also be used to generate code targeted at SPUs
24of the Cell processor or GPUs to support the execution of compute kernels.
25
26The document focuses on existing examples found in subdirectories of
27``llvm/lib/Target`` in a downloaded LLVM release.  In particular, this document
28focuses on the example of creating a static compiler (one that emits text
29assembly) for a SPARC target, because SPARC has fairly standard
30characteristics, such as a RISC instruction set and straightforward calling
31conventions.
32
33Audience
34--------
35
36The audience for this document is anyone who needs to write an LLVM backend to
37generate code for a specific hardware or software target.
38
39Prerequisite Reading
40--------------------
41
42These essential documents must be read before reading this document:
43
44* `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for
45  the LLVM assembly language.
46
47* :doc:`CodeGenerator` --- a guide to the components (classes and code
48  generation algorithms) for translating the LLVM internal representation into
49  machine code for a specified target.  Pay particular attention to the
50  descriptions of code generation stages: Instruction Selection, Scheduling and
51  Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code
52  Insertion, Late Machine Code Optimizations, and Code Emission.
53
54* :doc:`TableGen/index` --- a document that describes the TableGen
55  (``tblgen``) application that manages domain-specific information to support
56  LLVM code generation.  TableGen processes input from a target description
57  file (``.td`` suffix) and generates C++ code that can be used for code
58  generation.
59
60* :doc:`WritingAnLLVMPass` --- The assembly printer is a ``FunctionPass``, as
61  are several ``SelectionDAG`` processing steps.
62
63To follow the SPARC examples in this document, have a copy of `The SPARC
64Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for
65reference.  For details about the ARM instruction set, refer to the `ARM
66Architecture Reference Manual <http://infocenter.arm.com/>`_.  For more about
67the GNU Assembler format (``GAS``), see `Using As
68<http://sourceware.org/binutils/docs/as/index.html>`_, especially for the
69assembly printer.  "Using As" contains a list of target machine dependent
70features.
71
72Basic Steps
73-----------
74
75To write a compiler backend for LLVM that converts the LLVM IR to code for a
76specified target (machine or other language), follow these steps:
77
78* Create a subclass of the ``TargetMachine`` class that describes
79  characteristics of your target machine.  Copy existing examples of specific
80  ``TargetMachine`` class and header files; for example, start with
81  ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file
82  names for your target.  Similarly, change code that references "``Sparc``" to
83  reference your target.
84
85* Describe the register set of the target.  Use TableGen to generate code for
86  register definition, register aliases, and register classes from a
87  target-specific ``RegisterInfo.td`` input file.  You should also write
88  additional code for a subclass of the ``TargetRegisterInfo`` class that
89  represents the class register file data used for register allocation and also
90  describes the interactions between registers.
91
92* Describe the instruction set of the target.  Use TableGen to generate code
93  for target-specific instructions from target-specific versions of
94  ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``.  You should write
95  additional code for a subclass of the ``TargetInstrInfo`` class to represent
96  machine instructions supported by the target machine.
97
98* Describe the selection and conversion of the LLVM IR from a Directed Acyclic
99  Graph (DAG) representation of instructions to native target-specific
100  instructions.  Use TableGen to generate code that matches patterns and
101  selects instructions based on additional information in a target-specific
102  version of ``TargetInstrInfo.td``.  Write code for ``XXXISelDAGToDAG.cpp``,
103  where ``XXX`` identifies the specific target, to perform pattern matching and
104  DAG-to-DAG instruction selection.  Also write code in ``XXXISelLowering.cpp``
105  to replace or remove operations and data types that are not supported
106  natively in a SelectionDAG.
107
108* Write code for an assembly printer that converts LLVM IR to a GAS format for
109  your target machine.  You should add assembly strings to the instructions
110  defined in your target-specific version of ``TargetInstrInfo.td``.  You
111  should also write code for a subclass of ``AsmPrinter`` that performs the
112  LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``.
113
114* Optionally, add support for subtargets (i.e., variants with different
115  capabilities).  You should also write code for a subclass of the
116  ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and
117  ``-mattr=`` command-line options.
118
119* Optionally, add JIT support and create a machine code emitter (subclass of
120  ``TargetJITInfo``) that is used to emit binary code directly into memory.
121
122In the ``.cpp`` and ``.h``. files, initially stub up these methods and then
123implement them later.  Initially, you may not know which private members that
124the class will need and which components will need to be subclassed.
125
126Preliminaries
127-------------
128
129To actually create your compiler backend, you need to create and modify a few
130files.  The absolute minimum is discussed here.  But to actually use the LLVM
131target-independent code generator, you must perform the steps described in the
132:doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document.
133
134First, you should create a subdirectory under ``lib/Target`` to hold all the
135files related to your target.  If your target is called "Dummy", create the
136directory ``lib/Target/Dummy``.
137
138In this new directory, create a ``CMakeLists.txt``.  It is easiest to copy a
139``CMakeLists.txt`` of another target and modify it.  It should at least contain
140the ``LLVM_TARGET_DEFINITIONS`` variable. The library can be named ``LLVMDummy``
141(for example, see the MIPS target).  Alternatively, you can split the library
142into ``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which
143should be implemented in a subdirectory below ``lib/Target/Dummy`` (for example,
144see the PowerPC target).
145
146Note that these two naming schemes are hardcoded into ``llvm-config``.  Using
147any other naming scheme will confuse ``llvm-config`` and produce a lot of
148(seemingly unrelated) linker errors when linking ``llc``.
149
150To make your target actually do something, you need to implement a subclass of
151``TargetMachine``.  This implementation should typically be in the file
152``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target``
153directory will be built and should work.  To use LLVM's target independent code
154generator, you should do what all current machine backends do: create a
155subclass of ``LLVMTargetMachine``.  (To create a target from scratch, create a
156subclass of ``TargetMachine``.)
157
158To get LLVM to actually build and link your target, you need to run ``cmake``
159with ``-DLLVM_EXPERIMENTAL_TARGETS_TO_BUILD=Dummy``. This will build your
160target without needing to add it to the list of all the targets.
161
162Once your target is stable, you can add it to the ``LLVM_ALL_TARGETS`` variable
163located in the main ``CMakeLists.txt``.
164
165Target Machine
166==============
167
168``LLVMTargetMachine`` is designed as a base class for targets implemented with
169the LLVM target-independent code generator.  The ``LLVMTargetMachine`` class
170should be specialized by a concrete target class that implements the various
171virtual methods.  ``LLVMTargetMachine`` is defined as a subclass of
172``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``.  The
173``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes
174numerous command-line options.
175
176To create a concrete target-specific subclass of ``LLVMTargetMachine``, start
177by copying an existing ``TargetMachine`` class and header.  You should name the
178files that you create to reflect your specific target.  For instance, for the
179SPARC target, name the files ``SparcTargetMachine.h`` and
180``SparcTargetMachine.cpp``.
181
182For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must
183have access methods to obtain objects that represent target components.  These
184methods are named ``get*Info``, and are intended to obtain the instruction set
185(``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout
186(``getFrameInfo``), and similar information.  ``XXXTargetMachine`` must also
187implement the ``getDataLayout`` method to access an object with target-specific
188data characteristics, such as data type size and alignment requirements.
189
190For instance, for the SPARC target, the header file ``SparcTargetMachine.h``
191declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that
192simply return a class member.
193
194.. code-block:: c++
195
196  namespace llvm {
197
198  class Module;
199
200  class SparcTargetMachine : public LLVMTargetMachine {
201    const DataLayout DataLayout;       // Calculates type size & alignment
202    SparcSubtarget Subtarget;
203    SparcInstrInfo InstrInfo;
204    TargetFrameInfo FrameInfo;
205
206  protected:
207    virtual const TargetAsmInfo *createTargetAsmInfo() const;
208
209  public:
210    SparcTargetMachine(const Module &M, const std::string &FS);
211
212    virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
213    virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
214    virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
215    virtual const TargetRegisterInfo *getRegisterInfo() const {
216      return &InstrInfo.getRegisterInfo();
217    }
218    virtual const DataLayout *getDataLayout() const { return &DataLayout; }
219    static unsigned getModuleMatchQuality(const Module &M);
220
221    // Pass Pipeline Configuration
222    virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
223    virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);
224  };
225
226  } // end namespace llvm
227
228* ``getInstrInfo()``
229* ``getRegisterInfo()``
230* ``getFrameInfo()``
231* ``getDataLayout()``
232* ``getSubtargetImpl()``
233
234For some targets, you also need to support the following methods:
235
236* ``getTargetLowering()``
237* ``getJITInfo()``
238
239Some architectures, such as GPUs, do not support jumping to an arbitrary
240program location and implement branching using masked execution and loop using
241special instructions around the loop body. In order to avoid CFG modifications
242that introduce irreducible control flow not handled by such hardware, a target
243must call `setRequiresStructuredCFG(true)` when being initialized.
244
245In addition, the ``XXXTargetMachine`` constructor should specify a
246``TargetDescription`` string that determines the data layout for the target
247machine, including characteristics such as pointer size, alignment, and
248endianness.  For example, the constructor for ``SparcTargetMachine`` contains
249the following:
250
251.. code-block:: c++
252
253  SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
254    : DataLayout("E-p:32:32-f128:128:128"),
255      Subtarget(M, FS), InstrInfo(Subtarget),
256      FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
257  }
258
259Hyphens separate portions of the ``TargetDescription`` string.
260
261* An upper-case "``E``" in the string indicates a big-endian target data model.
262  A lower-case "``e``" indicates little-endian.
263
264* "``p:``" is followed by pointer information: size, ABI alignment, and
265  preferred alignment.  If only two figures follow "``p:``", then the first
266  value is pointer size, and the second value is both ABI and preferred
267  alignment.
268
269* Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or
270  "``a``" (corresponding to integer, floating point, vector, or aggregate).
271  "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred
272  alignment. "``f``" is followed by three values: the first indicates the size
273  of a long double, then ABI alignment, and then ABI preferred alignment.
274
275Target Registration
276===================
277
278You must also register your target with the ``TargetRegistry``, which is what
279other LLVM tools use to be able to lookup and use your target at runtime.  The
280``TargetRegistry`` can be used directly, but for most targets there are helper
281templates which should take care of the work for you.
282
283All targets should declare a global ``Target`` object which is used to
284represent the target during registration.  Then, in the target's ``TargetInfo``
285library, the target should define that object and use the ``RegisterTarget``
286template to register the target.  For example, the Sparc registration code
287looks like this:
288
289.. code-block:: c++
290
291  Target llvm::TheSparcTarget;
292
293  extern "C" void LLVMInitializeSparcTargetInfo() {
294    RegisterTarget<Triple::sparc, /*HasJIT=*/false>
295      X(TheSparcTarget, "sparc", "Sparc");
296  }
297
298This allows the ``TargetRegistry`` to look up the target by name or by target
299triple.  In addition, most targets will also register additional features which
300are available in separate libraries.  These registration steps are separate,
301because some clients may wish to only link in some parts of the target --- the
302JIT code generator does not require the use of the assembler printer, for
303example.  Here is an example of registering the Sparc assembly printer:
304
305.. code-block:: c++
306
307  extern "C" void LLVMInitializeSparcAsmPrinter() {
308    RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget);
309  }
310
311For more information, see "`llvm/Target/TargetRegistry.h
312</doxygen/TargetRegistry_8h-source.html>`_".
313
314Register Set and Register Classes
315=================================
316
317You should describe a concrete target-specific class that represents the
318register file of a target machine.  This class is called ``XXXRegisterInfo``
319(where ``XXX`` identifies the target) and represents the class register file
320data that is used for register allocation.  It also describes the interactions
321between registers.
322
323You also need to define register classes to categorize related registers.  A
324register class should be added for groups of registers that are all treated the
325same way for some instruction.  Typical examples are register classes for
326integer, floating-point, or vector registers.  A register allocator allows an
327instruction to use any register in a specified register class to perform the
328instruction in a similar manner.  Register classes allocate virtual registers
329to instructions from these sets, and register classes let the
330target-independent register allocator automatically choose the actual
331registers.
332
333Much of the code for registers, including register definition, register
334aliases, and register classes, is generated by TableGen from
335``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc``
336and ``XXXGenRegisterInfo.inc`` output files.  Some of the code in the
337implementation of ``XXXRegisterInfo`` requires hand-coding.
338
339Defining a Register
340-------------------
341
342The ``XXXRegisterInfo.td`` file typically starts with register definitions for
343a target machine.  The ``Register`` class (specified in ``Target.td``) is used
344to define an object for each register.  The specified string ``n`` becomes the
345``Name`` of the register.  The basic ``Register`` object does not have any
346subregisters and does not specify any aliases.
347
348.. code-block:: llvm
349
350  class Register<string n> {
351    string Namespace = "";
352    string AsmName = n;
353    string Name = n;
354    int SpillSize = 0;
355    int SpillAlignment = 0;
356    list<Register> Aliases = [];
357    list<Register> SubRegs = [];
358    list<int> DwarfNumbers = [];
359  }
360
361For example, in the ``X86RegisterInfo.td`` file, there are register definitions
362that utilize the ``Register`` class, such as:
363
364.. code-block:: llvm
365
366  def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>;
367
368This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``)
369that are used by ``gcc``, ``gdb``, or a debug information writer to identify a
370register.  For register ``AL``, ``DwarfRegNum`` takes an array of 3 values
371representing 3 different modes: the first element is for X86-64, the second for
372exception handling (EH) on X86-32, and the third is generic. -1 is a special
373Dwarf number that indicates the gcc number is undefined, and -2 indicates the
374register number is invalid for this mode.
375
376From the previously described line in the ``X86RegisterInfo.td`` file, TableGen
377generates this code in the ``X86GenRegisterInfo.inc`` file:
378
379.. code-block:: c++
380
381  static const unsigned GR8[] = { X86::AL, ... };
382
383  const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
384
385  const TargetRegisterDesc RegisterDescriptors[] = {
386    ...
387  { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
388
389From the register info file, TableGen generates a ``TargetRegisterDesc`` object
390for each register.  ``TargetRegisterDesc`` is defined in
391``include/llvm/Target/TargetRegisterInfo.h`` with the following fields:
392
393.. code-block:: c++
394
395  struct TargetRegisterDesc {
396    const char     *AsmName;      // Assembly language name for the register
397    const char     *Name;         // Printable name for the reg (for debugging)
398    const unsigned *AliasSet;     // Register Alias Set
399    const unsigned *SubRegs;      // Sub-register set
400    const unsigned *ImmSubRegs;   // Immediate sub-register set
401    const unsigned *SuperRegs;    // Super-register set
402  };
403
404TableGen uses the entire target description file (``.td``) to determine text
405names for the register (in the ``AsmName`` and ``Name`` fields of
406``TargetRegisterDesc``) and the relationships of other registers to the defined
407register (in the other ``TargetRegisterDesc`` fields).  In this example, other
408definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as
409aliases for one another, so TableGen generates a null-terminated array
410(``AL_AliasSet``) for this register alias set.
411
412The ``Register`` class is commonly used as a base class for more complex
413classes.  In ``Target.td``, the ``Register`` class is the base for the
414``RegisterWithSubRegs`` class that is used to define registers that need to
415specify subregisters in the ``SubRegs`` list, as shown here:
416
417.. code-block:: llvm
418
419  class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
420    let SubRegs = subregs;
421  }
422
423In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC:
424a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``,
425and ``Rd``.  SPARC registers are identified by 5-bit ID numbers, which is a
426feature common to these subclasses.  Note the use of "``let``" expressions to
427override values that are initially defined in a superclass (such as ``SubRegs``
428field in the ``Rd`` class).
429
430.. code-block:: llvm
431
432  class SparcReg<string n> : Register<n> {
433    field bits<5> Num;
434    let Namespace = "SP";
435  }
436  // Ri - 32-bit integer registers
437  class Ri<bits<5> num, string n> :
438  SparcReg<n> {
439    let Num = num;
440  }
441  // Rf - 32-bit floating-point registers
442  class Rf<bits<5> num, string n> :
443  SparcReg<n> {
444    let Num = num;
445  }
446  // Rd - Slots in the FP register file for 64-bit floating-point values.
447  class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> {
448    let Num = num;
449    let SubRegs = subregs;
450  }
451
452In the ``SparcRegisterInfo.td`` file, there are register definitions that
453utilize these subclasses of ``Register``, such as:
454
455.. code-block:: llvm
456
457  def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>;
458  def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
459  ...
460  def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>;
461  def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>;
462  ...
463  def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>;
464  def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>;
465
466The last two registers shown above (``D0`` and ``D1``) are double-precision
467floating-point registers that are aliases for pairs of single-precision
468floating-point sub-registers.  In addition to aliases, the sub-register and
469super-register relationships of the defined register are in fields of a
470register's ``TargetRegisterDesc``.
471
472Defining a Register Class
473-------------------------
474
475The ``RegisterClass`` class (specified in ``Target.td``) is used to define an
476object that represents a group of related registers and also defines the
477default allocation order of the registers.  A target description file
478``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes
479using the following class:
480
481.. code-block:: llvm
482
483  class RegisterClass<string namespace,
484  list<ValueType> regTypes, int alignment, dag regList> {
485    string Namespace = namespace;
486    list<ValueType> RegTypes = regTypes;
487    int Size = 0;  // spill size, in bits; zero lets tblgen pick the size
488    int Alignment = alignment;
489
490    // CopyCost is the cost of copying a value between two registers
491    // default value 1 means a single instruction
492    // A negative value means copying is extremely expensive or impossible
493    int CopyCost = 1;
494    dag MemberList = regList;
495
496    // for register classes that are subregisters of this class
497    list<RegisterClass> SubRegClassList = [];
498
499    code MethodProtos = [{}];  // to insert arbitrary code
500    code MethodBodies = [{}];
501  }
502
503To define a ``RegisterClass``, use the following 4 arguments:
504
505* The first argument of the definition is the name of the namespace.
506
507* The second argument is a list of ``ValueType`` register type values that are
508  defined in ``include/llvm/CodeGen/ValueTypes.td``.  Defined values include
509  integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean),
510  floating-point types (``f32``, ``f64``), and vector types (for example,
511  ``v8i16`` for an ``8 x i16`` vector).  All registers in a ``RegisterClass``
512  must have the same ``ValueType``, but some registers may store vector data in
513  different configurations.  For example a register that can process a 128-bit
514  vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4
515  32-bit integers, and so on.
516
517* The third argument of the ``RegisterClass`` definition specifies the
518  alignment required of the registers when they are stored or loaded to
519  memory.
520
521* The final argument, ``regList``, specifies which registers are in this class.
522  If an alternative allocation order method is not specified, then ``regList``
523  also defines the order of allocation used by the register allocator.  Besides
524  simply listing registers with ``(add R0, R1, ...)``, more advanced set
525  operators are available.  See ``include/llvm/Target/Target.td`` for more
526  information.
527
528In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined:
529``FPRegs``, ``DFPRegs``, and ``IntRegs``.  For all three register classes, the
530first argument defines the namespace with the string "``SP``".  ``FPRegs``
531defines a group of 32 single-precision floating-point registers (``F0`` to
532``F31``); ``DFPRegs`` defines a group of 16 double-precision registers
533(``D0-D15``).
534
535.. code-block:: llvm
536
537  // F0, F1, F2, ..., F31
538  def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>;
539
540  def DFPRegs : RegisterClass<"SP", [f64], 64,
541                              (add D0, D1, D2, D3, D4, D5, D6, D7, D8,
542                                   D9, D10, D11, D12, D13, D14, D15)>;
543
544  def IntRegs : RegisterClass<"SP", [i32], 32,
545      (add L0, L1, L2, L3, L4, L5, L6, L7,
546           I0, I1, I2, I3, I4, I5,
547           O0, O1, O2, O3, O4, O5, O7,
548           G1,
549           // Non-allocatable regs:
550           G2, G3, G4,
551           O6,        // stack ptr
552           I6,        // frame ptr
553           I7,        // return address
554           G0,        // constant zero
555           G5, G6, G7 // reserved for kernel
556      )>;
557
558Using ``SparcRegisterInfo.td`` with TableGen generates several output files
559that are intended for inclusion in other source code that you write.
560``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should
561be included in the header file for the implementation of the SPARC register
562implementation that you write (``SparcRegisterInfo.h``).  In
563``SparcGenRegisterInfo.h.inc`` a new structure is defined called
564``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base.  It also
565specifies types, based upon the defined register classes: ``DFPRegsClass``,
566``FPRegsClass``, and ``IntRegsClass``.
567
568``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is
569included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register
570implementation.  The code below shows only the generated integer registers and
571associated register classes.  The order of registers in ``IntRegs`` reflects
572the order in the definition of ``IntRegs`` in the target description file.
573
574.. code-block:: c++
575
576  // IntRegs Register Class...
577  static const unsigned IntRegs[] = {
578    SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
579    SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
580    SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
581    SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
582    SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
583    SP::G6, SP::G7,
584  };
585
586  // IntRegsVTs Register Class Value Types...
587  static const MVT::ValueType IntRegsVTs[] = {
588    MVT::i32, MVT::Other
589  };
590
591  namespace SP {   // Register class instances
592    DFPRegsClass    DFPRegsRegClass;
593    FPRegsClass     FPRegsRegClass;
594    IntRegsClass    IntRegsRegClass;
595  ...
596    // IntRegs Sub-register Classess...
597    static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
598      NULL
599    };
600  ...
601    // IntRegs Super-register Classess...
602    static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
603      NULL
604    };
605  ...
606    // IntRegs Register Class sub-classes...
607    static const TargetRegisterClass* const IntRegsSubclasses [] = {
608      NULL
609    };
610  ...
611    // IntRegs Register Class super-classes...
612    static const TargetRegisterClass* const IntRegsSuperclasses [] = {
613      NULL
614    };
615
616    IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
617      IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
618      IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
619  }
620
621The register allocators will avoid using reserved registers, and callee saved
622registers are not used until all the volatile registers have been used.  That
623is usually good enough, but in some cases it may be necessary to provide custom
624allocation orders.
625
626Implement a subclass of ``TargetRegisterInfo``
627----------------------------------------------
628
629The final step is to hand code portions of ``XXXRegisterInfo``, which
630implements the interface described in ``TargetRegisterInfo.h`` (see
631:ref:`TargetRegisterInfo`).  These functions return ``0``, ``NULL``, or
632``false``, unless overridden.  Here is a list of functions that are overridden
633for the SPARC implementation in ``SparcRegisterInfo.cpp``:
634
635* ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the
636  order of the desired callee-save stack frame offset.
637
638* ``getReservedRegs`` --- Returns a bitset indexed by physical register
639  numbers, indicating if a particular register is unavailable.
640
641* ``hasFP`` --- Return a Boolean indicating if a function should have a
642  dedicated frame pointer register.
643
644* ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo
645  instructions are used, this can be called to eliminate them.
646
647* ``eliminateFrameIndex`` --- Eliminate abstract frame indices from
648  instructions that may use them.
649
650* ``emitPrologue`` --- Insert prologue code into the function.
651
652* ``emitEpilogue`` --- Insert epilogue code into the function.
653
654.. _instruction-set:
655
656Instruction Set
657===============
658
659During the early stages of code generation, the LLVM IR code is converted to a
660``SelectionDAG`` with nodes that are instances of the ``SDNode`` class
661containing target instructions.  An ``SDNode`` has an opcode, operands, type
662requirements, and operation properties.  For example, is an operation
663commutative, does an operation load from memory.  The various operation node
664types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file
665(values of the ``NodeType`` enum in the ``ISD`` namespace).
666
667TableGen uses the following target description (``.td``) input files to
668generate much of the code for instruction definition:
669
670* ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and
671  other fundamental classes are defined.
672
673* ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection
674  generators, contains ``SDTC*`` classes (selection DAG type constraint),
675  definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``,
676  ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``,
677  ``PatFrag``, ``PatLeaf``, ``ComplexPattern``.
678
679* ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific
680  instructions.
681
682* ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates,
683  condition codes, and instructions of an instruction set.  For architecture
684  modifications, a different file name may be used.  For example, for Pentium
685  with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with
686  MMX, this file is ``X86InstrMMX.td``.
687
688There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of
689the target.  The ``XXX.td`` file includes the other ``.td`` input files, but
690its contents are only directly important for subtargets.
691
692You should describe a concrete target-specific class ``XXXInstrInfo`` that
693represents machine instructions supported by a target machine.
694``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of
695which describes one instruction.  An instruction descriptor defines:
696
697* Opcode mnemonic
698* Number of operands
699* List of implicit register definitions and uses
700* Target-independent properties (such as memory access, is commutable)
701* Target-specific flags
702
703The Instruction class (defined in ``Target.td``) is mostly used as a base for
704more complex instruction classes.
705
706.. code-block:: llvm
707
708  class Instruction {
709    string Namespace = "";
710    dag OutOperandList;    // A dag containing the MI def operand list.
711    dag InOperandList;     // A dag containing the MI use operand list.
712    string AsmString = ""; // The .s format to print the instruction with.
713    list<dag> Pattern;     // Set to the DAG pattern for this instruction.
714    list<Register> Uses = [];
715    list<Register> Defs = [];
716    list<Predicate> Predicates = [];  // predicates turned into isel match code
717    ... remainder not shown for space ...
718  }
719
720A ``SelectionDAG`` node (``SDNode``) should contain an object representing a
721target-specific instruction that is defined in ``XXXInstrInfo.td``.  The
722instruction objects should represent instructions from the architecture manual
723of the target machine (such as the SPARC Architecture Manual for the SPARC
724target).
725
726A single instruction from the architecture manual is often modeled as multiple
727target instructions, depending upon its operands.  For example, a manual might
728describe an add instruction that takes a register or an immediate operand.  An
729LLVM target could model this with two instructions named ``ADDri`` and
730``ADDrr``.
731
732You should define a class for each instruction category and define each opcode
733as a subclass of the category with appropriate parameters such as the fixed
734binary encoding of opcodes and extended opcodes.  You should map the register
735bits to the bits of the instruction in which they are encoded (for the JIT).
736Also you should specify how the instruction should be printed when the
737automatic assembly printer is used.
738
739As is described in the SPARC Architecture Manual, Version 8, there are three
740major 32-bit formats for instructions.  Format 1 is only for the ``CALL``
741instruction.  Format 2 is for branch on condition codes and ``SETHI`` (set high
742bits of a register) instructions.  Format 3 is for other instructions.
743
744Each of these formats has corresponding classes in ``SparcInstrFormat.td``.
745``InstSP`` is a base class for other instruction classes.  Additional base
746classes are specified for more precise formats: for example in
747``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for
748branches.  There are three other base classes: ``F3_1`` for register/register
749operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for
750floating-point operations.  ``SparcInstrInfo.td`` also adds the base class
751``Pseudo`` for synthetic SPARC instructions.
752
753``SparcInstrInfo.td`` largely consists of operand and instruction definitions
754for the SPARC target.  In ``SparcInstrInfo.td``, the following target
755description file entry, ``LDrr``, defines the Load Integer instruction for a
756Word (the ``LD`` SPARC opcode) from a memory address to a register.  The first
757parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this
758category of operation.  The second parameter (``000000``\ :sub:`2`) is the
759specific operation value for ``LD``/Load Word.  The third parameter is the
760output destination, which is a register operand and defined in the ``Register``
761target description file (``IntRegs``).
762
763.. code-block:: llvm
764
765  def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
766                   "ld [$addr], $dst",
767                   [(set i32:$dst, (load ADDRrr:$addr))]>;
768
769The fourth parameter is the input source, which uses the address operand
770``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``:
771
772.. code-block:: llvm
773
774  def MEMrr : Operand<i32> {
775    let PrintMethod = "printMemOperand";
776    let MIOperandInfo = (ops IntRegs, IntRegs);
777  }
778
779The fifth parameter is a string that is used by the assembly printer and can be
780left as an empty string until the assembly printer interface is implemented.
781The sixth and final parameter is the pattern used to match the instruction
782during the SelectionDAG Select Phase described in :doc:`CodeGenerator`.
783This parameter is detailed in the next section, :ref:`instruction-selector`.
784
785Instruction class definitions are not overloaded for different operand types,
786so separate versions of instructions are needed for register, memory, or
787immediate value operands.  For example, to perform a Load Integer instruction
788for a Word from an immediate operand to a register, the following instruction
789class is defined:
790
791.. code-block:: llvm
792
793  def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
794                   "ld [$addr], $dst",
795                   [(set i32:$dst, (load ADDRri:$addr))]>;
796
797Writing these definitions for so many similar instructions can involve a lot of
798cut and paste.  In ``.td`` files, the ``multiclass`` directive enables the
799creation of templates to define several instruction classes at once (using the
800``defm`` directive).  For example in ``SparcInstrInfo.td``, the ``multiclass``
801pattern ``F3_12`` is defined to create 2 instruction classes each time
802``F3_12`` is invoked:
803
804.. code-block:: llvm
805
806  multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
807    def rr  : F3_1 <2, Op3Val,
808                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
809                   !strconcat(OpcStr, " $b, $c, $dst"),
810                   [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
811    def ri  : F3_2 <2, Op3Val,
812                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
813                   !strconcat(OpcStr, " $b, $c, $dst"),
814                   [(set i32:$dst, (OpNode i32:$b, simm13:$c))]>;
815  }
816
817So when the ``defm`` directive is used for the ``XOR`` and ``ADD``
818instructions, as seen below, it creates four instruction objects: ``XORrr``,
819``XORri``, ``ADDrr``, and ``ADDri``.
820
821.. code-block:: llvm
822
823  defm XOR   : F3_12<"xor", 0b000011, xor>;
824  defm ADD   : F3_12<"add", 0b000000, add>;
825
826``SparcInstrInfo.td`` also includes definitions for condition codes that are
827referenced by branch instructions.  The following definitions in
828``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code.
829For example, the 10\ :sup:`th` bit represents the "greater than" condition for
830integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for
831floats.
832
833.. code-block:: llvm
834
835  def ICC_NE  : ICC_VAL< 9>;  // Not Equal
836  def ICC_E   : ICC_VAL< 1>;  // Equal
837  def ICC_G   : ICC_VAL<10>;  // Greater
838  ...
839  def FCC_U   : FCC_VAL<23>;  // Unordered
840  def FCC_G   : FCC_VAL<22>;  // Greater
841  def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
842  ...
843
844(Note that ``Sparc.h`` also defines enums that correspond to the same SPARC
845condition codes.  Care must be taken to ensure the values in ``Sparc.h``
846correspond to the values in ``SparcInstrInfo.td``.  I.e., ``SPCC::ICC_NE = 9``,
847``SPCC::FCC_U = 23`` and so on.)
848
849Instruction Operand Mapping
850---------------------------
851
852The code generator backend maps instruction operands to fields in the
853instruction.  Operands are assigned to unbound fields in the instruction in the
854order they are defined.  Fields are bound when they are assigned a value.  For
855example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1``
856format instruction having three operands.
857
858.. code-block:: llvm
859
860  def XNORrr  : F3_1<2, 0b000111,
861                     (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
862                     "xnor $b, $c, $dst",
863                     [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
864
865The instruction templates in ``SparcInstrFormats.td`` show the base class for
866``F3_1`` is ``InstSP``.
867
868.. code-block:: llvm
869
870  class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction {
871    field bits<32> Inst;
872    let Namespace = "SP";
873    bits<2> op;
874    let Inst{31-30} = op;
875    dag OutOperandList = outs;
876    dag InOperandList = ins;
877    let AsmString   = asmstr;
878    let Pattern = pattern;
879  }
880
881``InstSP`` leaves the ``op`` field unbound.
882
883.. code-block:: llvm
884
885  class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
886      : InstSP<outs, ins, asmstr, pattern> {
887    bits<5> rd;
888    bits<6> op3;
889    bits<5> rs1;
890    let op{1} = 1;   // Op = 2 or 3
891    let Inst{29-25} = rd;
892    let Inst{24-19} = op3;
893    let Inst{18-14} = rs1;
894  }
895
896``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1``
897fields.  ``F3`` format instructions will bind the operands ``rd``, ``op3``, and
898``rs1`` fields.
899
900.. code-block:: llvm
901
902  class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
903             string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
904    bits<8> asi = 0; // asi not currently used
905    bits<5> rs2;
906    let op         = opVal;
907    let op3        = op3val;
908    let Inst{13}   = 0;     // i field = 0
909    let Inst{12-5} = asi;   // address space identifier
910    let Inst{4-0}  = rs2;
911  }
912
913``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields.  ``F3_1``
914format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2``
915fields.  This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``,
916and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively.
917
918Instruction Operand Name Mapping
919^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
920
921TableGen will also generate a function called getNamedOperandIdx() which
922can be used to look up an operand's index in a MachineInstr based on its
923TableGen name.  Setting the UseNamedOperandTable bit in an instruction's
924TableGen definition will add all of its operands to an enumeration in the
925llvm::XXX:OpName namespace and also add an entry for it into the OperandMap
926table, which can be queried using getNamedOperandIdx()
927
928.. code-block:: llvm
929
930  int DstIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::dst); // => 0
931  int BIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::b);     // => 1
932  int CIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::c);     // => 2
933  int DIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::d);     // => -1
934
935  ...
936
937The entries in the OpName enum are taken verbatim from the TableGen definitions,
938so operands with lowercase names will have lower case entries in the enum.
939
940To include the getNamedOperandIdx() function in your backend, you will need
941to define a few preprocessor macros in XXXInstrInfo.cpp and XXXInstrInfo.h.
942For example:
943
944XXXInstrInfo.cpp:
945
946.. code-block:: c++ 
947
948  #define GET_INSTRINFO_NAMED_OPS // For getNamedOperandIdx() function
949  #include "XXXGenInstrInfo.inc"
950
951XXXInstrInfo.h:
952
953.. code-block:: c++
954
955  #define GET_INSTRINFO_OPERAND_ENUM // For OpName enum
956  #include "XXXGenInstrInfo.inc"
957
958  namespace XXX {
959    int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex);
960  } // End namespace XXX
961
962Instruction Operand Types
963^^^^^^^^^^^^^^^^^^^^^^^^^
964
965TableGen will also generate an enumeration consisting of all named Operand
966types defined in the backend, in the llvm::XXX::OpTypes namespace.
967Some common immediate Operand types (for instance i8, i32, i64, f32, f64)
968are defined for all targets in ``include/llvm/Target/Target.td``, and are
969available in each Target's OpTypes enum.  Also, only named Operand types appear
970in the enumeration: anonymous types are ignored.
971For example, the X86 backend defines ``brtarget`` and ``brtarget8``, both
972instances of the TableGen ``Operand`` class, which represent branch target
973operands:
974
975.. code-block:: llvm
976
977  def brtarget : Operand<OtherVT>;
978  def brtarget8 : Operand<OtherVT>;
979
980This results in:
981
982.. code-block:: c++
983
984  namespace X86 {
985  namespace OpTypes {
986  enum OperandType {
987    ...
988    brtarget,
989    brtarget8,
990    ...
991    i32imm,
992    i64imm,
993    ...
994    OPERAND_TYPE_LIST_END
995  } // End namespace OpTypes
996  } // End namespace X86
997
998In typical TableGen fashion, to use the enum, you will need to define a
999preprocessor macro:
1000
1001.. code-block:: c++
1002
1003  #define GET_INSTRINFO_OPERAND_TYPES_ENUM // For OpTypes enum
1004  #include "XXXGenInstrInfo.inc"
1005
1006
1007Instruction Scheduling
1008----------------------
1009
1010Instruction itineraries can be queried using MCDesc::getSchedClass(). The
1011value can be named by an enumemation in llvm::XXX::Sched namespace generated
1012by TableGen in XXXGenInstrInfo.inc. The name of the schedule classes are
1013the same as provided in XXXSchedule.td plus a default NoItinerary class.
1014
1015Instruction Relation Mapping
1016----------------------------
1017
1018This TableGen feature is used to relate instructions with each other.  It is
1019particularly useful when you have multiple instruction formats and need to
1020switch between them after instruction selection.  This entire feature is driven
1021by relation models which can be defined in ``XXXInstrInfo.td`` files
1022according to the target-specific instruction set.  Relation models are defined
1023using ``InstrMapping`` class as a base.  TableGen parses all the models
1024and generates instruction relation maps using the specified information.
1025Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file
1026along with the functions to query them.  For the detailed information on how to
1027use this feature, please refer to :doc:`HowToUseInstrMappings`.
1028
1029Implement a subclass of ``TargetInstrInfo``
1030-------------------------------------------
1031
1032The final step is to hand code portions of ``XXXInstrInfo``, which implements
1033the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`).
1034These functions return ``0`` or a Boolean or they assert, unless overridden.
1035Here's a list of functions that are overridden for the SPARC implementation in
1036``SparcInstrInfo.cpp``:
1037
1038* ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct
1039  load from a stack slot, return the register number of the destination and the
1040  ``FrameIndex`` of the stack slot.
1041
1042* ``isStoreToStackSlot`` --- If the specified machine instruction is a direct
1043  store to a stack slot, return the register number of the destination and the
1044  ``FrameIndex`` of the stack slot.
1045
1046* ``copyPhysReg`` --- Copy values between a pair of physical registers.
1047
1048* ``storeRegToStackSlot`` --- Store a register value to a stack slot.
1049
1050* ``loadRegFromStackSlot`` --- Load a register value from a stack slot.
1051
1052* ``storeRegToAddr`` --- Store a register value to memory.
1053
1054* ``loadRegFromAddr`` --- Load a register value from memory.
1055
1056* ``foldMemoryOperand`` --- Attempt to combine instructions of any load or
1057  store instruction for the specified operand(s).
1058
1059Branch Folding and If Conversion
1060--------------------------------
1061
1062Performance can be improved by combining instructions or by eliminating
1063instructions that are never reached.  The ``AnalyzeBranch`` method in
1064``XXXInstrInfo`` may be implemented to examine conditional instructions and
1065remove unnecessary instructions.  ``AnalyzeBranch`` looks at the end of a
1066machine basic block (MBB) for opportunities for improvement, such as branch
1067folding and if conversion.  The ``BranchFolder`` and ``IfConverter`` machine
1068function passes (see the source files ``BranchFolding.cpp`` and
1069``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``AnalyzeBranch``
1070to improve the control flow graph that represents the instructions.
1071
1072Several implementations of ``AnalyzeBranch`` (for ARM, Alpha, and X86) can be
1073examined as models for your own ``AnalyzeBranch`` implementation.  Since SPARC
1074does not implement a useful ``AnalyzeBranch``, the ARM target implementation is
1075shown below.
1076
1077``AnalyzeBranch`` returns a Boolean value and takes four parameters:
1078
1079* ``MachineBasicBlock &MBB`` --- The incoming block to be examined.
1080
1081* ``MachineBasicBlock *&TBB`` --- A destination block that is returned.  For a
1082  conditional branch that evaluates to true, ``TBB`` is the destination.
1083
1084* ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to
1085  false, ``FBB`` is returned as the destination.
1086
1087* ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a
1088  condition for a conditional branch.
1089
1090In the simplest case, if a block ends without a branch, then it falls through
1091to the successor block.  No destination blocks are specified for either ``TBB``
1092or ``FBB``, so both parameters return ``NULL``.  The start of the
1093``AnalyzeBranch`` (see code below for the ARM target) shows the function
1094parameters and the code for the simplest case.
1095
1096.. code-block:: c++
1097
1098  bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1099                                   MachineBasicBlock *&TBB,
1100                                   MachineBasicBlock *&FBB,
1101                                   std::vector<MachineOperand> &Cond) const
1102  {
1103    MachineBasicBlock::iterator I = MBB.end();
1104    if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
1105      return false;
1106
1107If a block ends with a single unconditional branch instruction, then
1108``AnalyzeBranch`` (shown below) should return the destination of that branch in
1109the ``TBB`` parameter.
1110
1111.. code-block:: c++
1112
1113    if (LastOpc == ARM::B || LastOpc == ARM::tB) {
1114      TBB = LastInst->getOperand(0).getMBB();
1115      return false;
1116    }
1117
1118If a block ends with two unconditional branches, then the second branch is
1119never reached.  In that situation, as shown below, remove the last branch
1120instruction and return the penultimate branch in the ``TBB`` parameter.
1121
1122.. code-block:: c++
1123
1124    if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) &&
1125        (LastOpc == ARM::B || LastOpc == ARM::tB)) {
1126      TBB = SecondLastInst->getOperand(0).getMBB();
1127      I = LastInst;
1128      I->eraseFromParent();
1129      return false;
1130    }
1131
1132A block may end with a single conditional branch instruction that falls through
1133to successor block if the condition evaluates to false.  In that case,
1134``AnalyzeBranch`` (shown below) should return the destination of that
1135conditional branch in the ``TBB`` parameter and a list of operands in the
1136``Cond`` parameter to evaluate the condition.
1137
1138.. code-block:: c++
1139
1140    if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
1141      // Block ends with fall-through condbranch.
1142      TBB = LastInst->getOperand(0).getMBB();
1143      Cond.push_back(LastInst->getOperand(1));
1144      Cond.push_back(LastInst->getOperand(2));
1145      return false;
1146    }
1147
1148If a block ends with both a conditional branch and an ensuing unconditional
1149branch, then ``AnalyzeBranch`` (shown below) should return the conditional
1150branch destination (assuming it corresponds to a conditional evaluation of
1151"``true``") in the ``TBB`` parameter and the unconditional branch destination
1152in the ``FBB`` (corresponding to a conditional evaluation of "``false``").  A
1153list of operands to evaluate the condition should be returned in the ``Cond``
1154parameter.
1155
1156.. code-block:: c++
1157
1158    unsigned SecondLastOpc = SecondLastInst->getOpcode();
1159
1160    if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
1161        (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
1162      TBB =  SecondLastInst->getOperand(0).getMBB();
1163      Cond.push_back(SecondLastInst->getOperand(1));
1164      Cond.push_back(SecondLastInst->getOperand(2));
1165      FBB = LastInst->getOperand(0).getMBB();
1166      return false;
1167    }
1168
1169For the last two cases (ending with a single conditional branch or ending with
1170one conditional and one unconditional branch), the operands returned in the
1171``Cond`` parameter can be passed to methods of other instructions to create new
1172branches or perform other operations.  An implementation of ``AnalyzeBranch``
1173requires the helper methods ``RemoveBranch`` and ``InsertBranch`` to manage
1174subsequent operations.
1175
1176``AnalyzeBranch`` should return false indicating success in most circumstances.
1177``AnalyzeBranch`` should only return true when the method is stumped about what
1178to do, for example, if a block has three terminating branches.
1179``AnalyzeBranch`` may return true if it encounters a terminator it cannot
1180handle, such as an indirect branch.
1181
1182.. _instruction-selector:
1183
1184Instruction Selector
1185====================
1186
1187LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of
1188the ``SelectionDAG`` ideally represent native target instructions.  During code
1189generation, instruction selection passes are performed to convert non-native
1190DAG instructions into native target-specific instructions.  The pass described
1191in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG
1192instruction selection.  Optionally, a pass may be defined (in
1193``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch
1194instructions.  Later, the code in ``XXXISelLowering.cpp`` replaces or removes
1195operations and data types not supported natively (legalizes) in a
1196``SelectionDAG``.
1197
1198TableGen generates code for instruction selection using the following target
1199description input files:
1200
1201* ``XXXInstrInfo.td`` --- Contains definitions of instructions in a
1202  target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is
1203  included in ``XXXISelDAGToDAG.cpp``.
1204
1205* ``XXXCallingConv.td`` --- Contains the calling and return value conventions
1206  for the target architecture, and it generates ``XXXGenCallingConv.inc``,
1207  which is included in ``XXXISelLowering.cpp``.
1208
1209The implementation of an instruction selection pass must include a header that
1210declares the ``FunctionPass`` class or a subclass of ``FunctionPass``.  In
1211``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction
1212selection pass into the queue of passes to run.
1213
1214The LLVM static compiler (``llc``) is an excellent tool for visualizing the
1215contents of DAGs.  To display the ``SelectionDAG`` before or after specific
1216processing phases, use the command line options for ``llc``, described at
1217:ref:`SelectionDAG-Process`.
1218
1219To describe instruction selector behavior, you should add patterns for lowering
1220LLVM code into a ``SelectionDAG`` as the last parameter of the instruction
1221definitions in ``XXXInstrInfo.td``.  For example, in ``SparcInstrInfo.td``,
1222this entry defines a register store operation, and the last parameter describes
1223a pattern with the store DAG operator.
1224
1225.. code-block:: llvm
1226
1227  def STrr  : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
1228                   "st $src, [$addr]", [(store i32:$src, ADDRrr:$addr)]>;
1229
1230``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``:
1231
1232.. code-block:: llvm
1233
1234  def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
1235
1236The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function
1237defined in an implementation of the Instructor Selector (such as
1238``SparcISelDAGToDAG.cpp``).
1239
1240In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined
1241below:
1242
1243.. code-block:: llvm
1244
1245  def store : PatFrag<(ops node:$val, node:$ptr),
1246                      (st node:$val, node:$ptr), [{
1247    if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
1248      return !ST->isTruncatingStore() &&
1249             ST->getAddressingMode() == ISD::UNINDEXED;
1250    return false;
1251  }]>;
1252
1253``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the
1254``SelectCode`` method that is used to call the appropriate processing method
1255for an instruction.  In this example, ``SelectCode`` calls ``Select_ISD_STORE``
1256for the ``ISD::STORE`` opcode.
1257
1258.. code-block:: c++
1259
1260  SDNode *SelectCode(SDValue N) {
1261    ...
1262    MVT::ValueType NVT = N.getNode()->getValueType(0);
1263    switch (N.getOpcode()) {
1264    case ISD::STORE: {
1265      switch (NVT) {
1266      default:
1267        return Select_ISD_STORE(N);
1268        break;
1269      }
1270      break;
1271    }
1272    ...
1273
1274The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``,
1275code for ``STrr`` is created for ``Select_ISD_STORE``.  The ``Emit_22`` method
1276is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this
1277instruction.
1278
1279.. code-block:: c++
1280
1281  SDNode *Select_ISD_STORE(const SDValue &N) {
1282    SDValue Chain = N.getOperand(0);
1283    if (Predicate_store(N.getNode())) {
1284      SDValue N1 = N.getOperand(1);
1285      SDValue N2 = N.getOperand(2);
1286      SDValue CPTmp0;
1287      SDValue CPTmp1;
1288
1289      // Pattern: (st:void i32:i32:$src,
1290      //           ADDRrr:i32:$addr)<<P:Predicate_store>>
1291      // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
1292      // Pattern complexity = 13  cost = 1  size = 0
1293      if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&
1294          N1.getNode()->getValueType(0) == MVT::i32 &&
1295          N2.getNode()->getValueType(0) == MVT::i32) {
1296        return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
1297      }
1298  ...
1299
1300The SelectionDAG Legalize Phase
1301-------------------------------
1302
1303The Legalize phase converts a DAG to use types and operations that are natively
1304supported by the target.  For natively unsupported types and operations, you
1305need to add code to the target-specific ``XXXTargetLowering`` implementation to
1306convert unsupported types and operations to supported ones.
1307
1308In the constructor for the ``XXXTargetLowering`` class, first use the
1309``addRegisterClass`` method to specify which types are supported and which
1310register classes are associated with them.  The code for the register classes
1311are generated by TableGen from ``XXXRegisterInfo.td`` and placed in
1312``XXXGenRegisterInfo.h.inc``.  For example, the implementation of the
1313constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``)
1314starts with the following code:
1315
1316.. code-block:: c++
1317
1318  addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
1319  addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
1320  addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
1321
1322You should examine the node types in the ``ISD`` namespace
1323(``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations
1324the target natively supports.  For operations that do **not** have native
1325support, add a callback to the constructor for the ``XXXTargetLowering`` class,
1326so the instruction selection process knows what to do.  The ``TargetLowering``
1327class callback methods (declared in ``llvm/Target/TargetLowering.h``) are:
1328
1329* ``setOperationAction`` --- General operation.
1330* ``setLoadExtAction`` --- Load with extension.
1331* ``setTruncStoreAction`` --- Truncating store.
1332* ``setIndexedLoadAction`` --- Indexed load.
1333* ``setIndexedStoreAction`` --- Indexed store.
1334* ``setConvertAction`` --- Type conversion.
1335* ``setCondCodeAction`` --- Support for a given condition code.
1336
1337Note: on older releases, ``setLoadXAction`` is used instead of
1338``setLoadExtAction``.  Also, on older releases, ``setCondCodeAction`` may not
1339be supported.  Examine your release to see what methods are specifically
1340supported.
1341
1342These callbacks are used to determine that an operation does or does not work
1343with a specified type (or types).  And in all cases, the third parameter is a
1344``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or
1345``Legal``.  ``SparcISelLowering.cpp`` contains examples of all four
1346``LegalAction`` values.
1347
1348Promote
1349^^^^^^^
1350
1351For an operation without native support for a given type, the specified type
1352may be promoted to a larger type that is supported.  For example, SPARC does
1353not support a sign-extending load for Boolean values (``i1`` type), so in
1354``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes
1355``i1`` type values to a large type before loading.
1356
1357.. code-block:: c++
1358
1359  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
1360
1361Expand
1362^^^^^^
1363
1364For a type without native support, a value may need to be broken down further,
1365rather than promoted.  For an operation without native support, a combination
1366of other operations may be used to similar effect.  In SPARC, the
1367floating-point sine and cosine trig operations are supported by expansion to
1368other operations, as indicated by the third parameter, ``Expand``, to
1369``setOperationAction``:
1370
1371.. code-block:: c++
1372
1373  setOperationAction(ISD::FSIN, MVT::f32, Expand);
1374  setOperationAction(ISD::FCOS, MVT::f32, Expand);
1375
1376Custom
1377^^^^^^
1378
1379For some operations, simple type promotion or operation expansion may be
1380insufficient.  In some cases, a special intrinsic function must be implemented.
1381
1382For example, a constant value may require special treatment, or an operation
1383may require spilling and restoring registers in the stack and working with
1384register allocators.
1385
1386As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion
1387from a floating point value to a signed integer, first the
1388``setOperationAction`` should be called with ``Custom`` as the third parameter:
1389
1390.. code-block:: c++
1391
1392  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1393
1394In the ``LowerOperation`` method, for each ``Custom`` operation, a case
1395statement should be added to indicate what function to call.  In the following
1396code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method:
1397
1398.. code-block:: c++
1399
1400  SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
1401    switch (Op.getOpcode()) {
1402    case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1403    ...
1404    }
1405  }
1406
1407Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to
1408convert the floating-point value to an integer.
1409
1410.. code-block:: c++
1411
1412  static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
1413    assert(Op.getValueType() == MVT::i32);
1414    Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
1415    return DAG.getNode(ISD::BITCAST, MVT::i32, Op);
1416  }
1417
1418Legal
1419^^^^^
1420
1421The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation
1422**is** natively supported.  ``Legal`` represents the default condition, so it
1423is rarely used.  In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an
1424operation to count the bits set in an integer) is natively supported only for
1425SPARC v9.  The following code enables the ``Expand`` conversion technique for
1426non-v9 SPARC implementations.
1427
1428.. code-block:: c++
1429
1430  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1431  ...
1432  if (TM.getSubtarget<SparcSubtarget>().isV9())
1433    setOperationAction(ISD::CTPOP, MVT::i32, Legal);
1434
1435Calling Conventions
1436-------------------
1437
1438To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses
1439interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in
1440``lib/Target/TargetCallingConv.td``.  TableGen can take the target descriptor
1441file ``XXXGenCallingConv.td`` and generate the header file
1442``XXXGenCallingConv.inc``, which is typically included in
1443``XXXISelLowering.cpp``.  You can use the interfaces in
1444``TargetCallingConv.td`` to specify:
1445
1446* The order of parameter allocation.
1447
1448* Where parameters and return values are placed (that is, on the stack or in
1449  registers).
1450
1451* Which registers may be used.
1452
1453* Whether the caller or callee unwinds the stack.
1454
1455The following example demonstrates the use of the ``CCIfType`` and
1456``CCAssignToReg`` interfaces.  If the ``CCIfType`` predicate is true (that is,
1457if the current argument is of type ``f32`` or ``f64``), then the action is
1458performed.  In this case, the ``CCAssignToReg`` action assigns the argument
1459value to the first available register: either ``R0`` or ``R1``.
1460
1461.. code-block:: llvm
1462
1463  CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>
1464
1465``SparcCallingConv.td`` contains definitions for a target-specific return-value
1466calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention
1467(``CC_Sparc32``).  The definition of ``RetCC_Sparc32`` (shown below) indicates
1468which registers are used for specified scalar return types.  A single-precision
1469float is returned to register ``F0``, and a double-precision float goes to
1470register ``D0``.  A 32-bit integer is returned in register ``I0`` or ``I1``.
1471
1472.. code-block:: llvm
1473
1474  def RetCC_Sparc32 : CallingConv<[
1475    CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
1476    CCIfType<[f32], CCAssignToReg<[F0]>>,
1477    CCIfType<[f64], CCAssignToReg<[D0]>>
1478  ]>;
1479
1480The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces
1481``CCAssignToStack``, which assigns the value to a stack slot with the specified
1482size and alignment.  In the example below, the first parameter, 4, indicates
1483the size of the slot, and the second parameter, also 4, indicates the stack
1484alignment along 4-byte units.  (Special cases: if size is zero, then the ABI
1485size is used; if alignment is zero, then the ABI alignment is used.)
1486
1487.. code-block:: llvm
1488
1489  def CC_Sparc32 : CallingConv<[
1490    // All arguments get passed in integer registers if there is space.
1491    CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
1492    CCAssignToStack<4, 4>
1493  ]>;
1494
1495``CCDelegateTo`` is another commonly used interface, which tries to find a
1496specified sub-calling convention, and, if a match is found, it is invoked.  In
1497the following example (in ``X86CallingConv.td``), the definition of
1498``RetCC_X86_32_C`` ends with ``CCDelegateTo``.  After the current value is
1499assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is
1500invoked.
1501
1502.. code-block:: llvm
1503
1504  def RetCC_X86_32_C : CallingConv<[
1505    CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
1506    CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
1507    CCDelegateTo<RetCC_X86Common>
1508  ]>;
1509
1510``CCIfCC`` is an interface that attempts to match the given name to the current
1511calling convention.  If the name identifies the current calling convention,
1512then a specified action is invoked.  In the following example (in
1513``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then
1514``RetCC_X86_32_Fast`` is invoked.  If the ``SSECall`` calling convention is in
1515use, then ``RetCC_X86_32_SSE`` is invoked.
1516
1517.. code-block:: llvm
1518
1519  def RetCC_X86_32 : CallingConv<[
1520    CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
1521    CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
1522    CCDelegateTo<RetCC_X86_32_C>
1523  ]>;
1524
1525Other calling convention interfaces include:
1526
1527* ``CCIf <predicate, action>`` --- If the predicate matches, apply the action.
1528
1529* ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``"
1530  attribute, then apply the action.
1531
1532* ``CCIfNest <action>`` --- If the argument is marked with the "``nest``"
1533  attribute, then apply the action.
1534
1535* ``CCIfNotVarArg <action>`` --- If the current function does not take a
1536  variable number of arguments, apply the action.
1537
1538* ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to
1539  ``CCAssignToReg``, but with a shadow list of registers.
1540
1541* ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the
1542  minimum specified size and alignment.
1543
1544* ``CCPromoteToType <type>`` --- Promote the current value to the specified
1545  type.
1546
1547* ``CallingConv <[actions]>`` --- Define each calling convention that is
1548  supported.
1549
1550Assembly Printer
1551================
1552
1553During the code emission stage, the code generator may utilize an LLVM pass to
1554produce assembly output.  To do this, you want to implement the code for a
1555printer that converts LLVM IR to a GAS-format assembly language for your target
1556machine, using the following steps:
1557
1558* Define all the assembly strings for your target, adding them to the
1559  instructions defined in the ``XXXInstrInfo.td`` file.  (See
1560  :ref:`instruction-set`.)  TableGen will produce an output file
1561  (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction``
1562  method for the ``XXXAsmPrinter`` class.
1563
1564* Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of
1565  the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``).
1566
1567* Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for
1568  ``TargetAsmInfo`` properties and sometimes new implementations for methods.
1569
1570* Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that
1571  performs the LLVM-to-assembly conversion.
1572
1573The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the
1574``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``.  Similarly,
1575``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo``
1576replacement values that override the default values in ``TargetAsmInfo.cpp``.
1577For example in ``SparcTargetAsmInfo.cpp``:
1578
1579.. code-block:: c++
1580
1581  SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
1582    Data16bitsDirective = "\t.half\t";
1583    Data32bitsDirective = "\t.word\t";
1584    Data64bitsDirective = 0;  // .xword is only supported by V9.
1585    ZeroDirective = "\t.skip\t";
1586    CommentString = "!";
1587    ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
1588  }
1589
1590The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example
1591where the target specific ``TargetAsmInfo`` class uses an overridden methods:
1592``ExpandInlineAsm``.
1593
1594A target-specific implementation of ``AsmPrinter`` is written in
1595``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts
1596the LLVM to printable assembly.  The implementation must include the following
1597headers that have declarations for the ``AsmPrinter`` and
1598``MachineFunctionPass`` classes.  The ``MachineFunctionPass`` is a subclass of
1599``FunctionPass``.
1600
1601.. code-block:: c++
1602
1603  #include "llvm/CodeGen/AsmPrinter.h"
1604  #include "llvm/CodeGen/MachineFunctionPass.h"
1605
1606As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set
1607up the ``AsmPrinter``.  In ``SparcAsmPrinter``, a ``Mangler`` object is
1608instantiated to process variable names.
1609
1610In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in
1611``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``.  In
1612``MachineFunctionPass``, the ``runOnFunction`` method invokes
1613``runOnMachineFunction``.  Target-specific implementations of
1614``runOnMachineFunction`` differ, but generally do the following to process each
1615machine function:
1616
1617* Call ``SetupMachineFunction`` to perform initialization.
1618
1619* Call ``EmitConstantPool`` to print out (to the output stream) constants which
1620  have been spilled to memory.
1621
1622* Call ``EmitJumpTableInfo`` to print out jump tables used by the current
1623  function.
1624
1625* Print out the label for the current function.
1626
1627* Print out the code for the function, including basic block labels and the
1628  assembly for the instruction (using ``printInstruction``)
1629
1630The ``XXXAsmPrinter`` implementation must also include the code generated by
1631TableGen that is output in the ``XXXGenAsmWriter.inc`` file.  The code in
1632``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction``
1633method that may call these methods:
1634
1635* ``printOperand``
1636* ``printMemOperand``
1637* ``printCCOperand`` (for conditional statements)
1638* ``printDataDirective``
1639* ``printDeclare``
1640* ``printImplicitDef``
1641* ``printInlineAsm``
1642
1643The implementations of ``printDeclare``, ``printImplicitDef``,
1644``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally
1645adequate for printing assembly and do not need to be overridden.
1646
1647The ``printOperand`` method is implemented with a long ``switch``/``case``
1648statement for the type of operand: register, immediate, basic block, external
1649symbol, global address, constant pool index, or jump table index.  For an
1650instruction with a memory address operand, the ``printMemOperand`` method
1651should be implemented to generate the proper output.  Similarly,
1652``printCCOperand`` should be used to print a conditional operand.
1653
1654``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be
1655called to shut down the assembly printer.  During ``doFinalization``, global
1656variables and constants are printed to output.
1657
1658Subtarget Support
1659=================
1660
1661Subtarget support is used to inform the code generation process of instruction
1662set variations for a given chip set.  For example, the LLVM SPARC
1663implementation provided covers three major versions of the SPARC microprocessor
1664architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a
166564-bit architecture), and the UltraSPARC architecture.  V8 has 16
1666double-precision floating-point registers that are also usable as either 32
1667single-precision or 8 quad-precision registers.  V8 is also purely big-endian.
1668V9 has 32 double-precision floating-point registers that are also usable as 16
1669quad-precision registers, but cannot be used as single-precision registers.
1670The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
1671extensions.
1672
1673If subtarget support is needed, you should implement a target-specific
1674``XXXSubtarget`` class for your architecture.  This class should process the
1675command-line options ``-mcpu=`` and ``-mattr=``.
1676
1677TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to
1678generate code in ``SparcGenSubtarget.inc``.  In ``Target.td``, shown below, the
1679``SubtargetFeature`` interface is defined.  The first 4 string parameters of
1680the ``SubtargetFeature`` interface are a feature name, an attribute set by the
1681feature, the value of the attribute, and a description of the feature.  (The
1682fifth parameter is a list of features whose presence is implied, and its
1683default value is an empty array.)
1684
1685.. code-block:: llvm
1686
1687  class SubtargetFeature<string n, string a, string v, string d,
1688                         list<SubtargetFeature> i = []> {
1689    string Name = n;
1690    string Attribute = a;
1691    string Value = v;
1692    string Desc = d;
1693    list<SubtargetFeature> Implies = i;
1694  }
1695
1696In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the
1697following features.
1698
1699.. code-block:: llvm
1700
1701  def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
1702                       "Enable SPARC-V9 instructions">;
1703  def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8",
1704                       "V8DeprecatedInsts", "true",
1705                       "Enable deprecated V8 instructions in V9 mode">;
1706  def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
1707                       "Enable UltraSPARC Visual Instruction Set extensions">;
1708
1709Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to
1710define particular SPARC processor subtypes that may have the previously
1711described features.
1712
1713.. code-block:: llvm
1714
1715  class Proc<string Name, list<SubtargetFeature> Features>
1716    : Processor<Name, NoItineraries, Features>;
1717
1718  def : Proc<"generic",         []>;
1719  def : Proc<"v8",              []>;
1720  def : Proc<"supersparc",      []>;
1721  def : Proc<"sparclite",       []>;
1722  def : Proc<"f934",            []>;
1723  def : Proc<"hypersparc",      []>;
1724  def : Proc<"sparclite86x",    []>;
1725  def : Proc<"sparclet",        []>;
1726  def : Proc<"tsc701",          []>;
1727  def : Proc<"v9",              [FeatureV9]>;
1728  def : Proc<"ultrasparc",      [FeatureV9, FeatureV8Deprecated]>;
1729  def : Proc<"ultrasparc3",     [FeatureV9, FeatureV8Deprecated]>;
1730  def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;
1731
1732From ``Target.td`` and ``Sparc.td`` files, the resulting
1733``SparcGenSubtarget.inc`` specifies enum values to identify the features,
1734arrays of constants to represent the CPU features and CPU subtypes, and the
1735``ParseSubtargetFeatures`` method that parses the features string that sets
1736specified subtarget options.  The generated ``SparcGenSubtarget.inc`` file
1737should be included in the ``SparcSubtarget.cpp``.  The target-specific
1738implementation of the ``XXXSubtarget`` method should follow this pseudocode:
1739
1740.. code-block:: c++
1741
1742  XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
1743    // Set the default features
1744    // Determine default and user specified characteristics of the CPU
1745    // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
1746    // Perform any additional operations
1747  }
1748
1749JIT Support
1750===========
1751
1752The implementation of a target machine optionally includes a Just-In-Time (JIT)
1753code generator that emits machine code and auxiliary structures as binary
1754output that can be written directly to memory.  To do this, implement JIT code
1755generation by performing the following steps:
1756
1757* Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass
1758  that transforms target-machine instructions into relocatable machine
1759  code.
1760
1761* Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for
1762  target-specific code-generation activities, such as emitting machine code and
1763  stubs.
1764
1765* Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object
1766  through its ``getJITInfo`` method.
1767
1768There are several different approaches to writing the JIT support code.  For
1769instance, TableGen and target descriptor files may be used for creating a JIT
1770code generator, but are not mandatory.  For the Alpha and PowerPC target
1771machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which
1772contains the binary coding of machine instructions and the
1773``getBinaryCodeForInstr`` method to access those codes.  Other JIT
1774implementations do not.
1775
1776Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the
1777``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the
1778``MachineCodeEmitter`` class containing code for several callback functions
1779that write data (in bytes, words, strings, etc.) to the output stream.
1780
1781Machine Code Emitter
1782--------------------
1783
1784In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is
1785implemented as a function pass (subclass of ``MachineFunctionPass``).  The
1786target-specific implementation of ``runOnMachineFunction`` (invoked by
1787``runOnFunction`` in ``MachineFunctionPass``) iterates through the
1788``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and
1789emit binary code.  ``emitInstruction`` is largely implemented with case
1790statements on the instruction types defined in ``XXXInstrInfo.h``.  For
1791example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built
1792around the following ``switch``/``case`` statements:
1793
1794.. code-block:: c++
1795
1796  switch (Desc->TSFlags & X86::FormMask) {
1797  case X86II::Pseudo:  // for not yet implemented instructions
1798     ...               // or pseudo-instructions
1799     break;
1800  case X86II::RawFrm:  // for instructions with a fixed opcode value
1801     ...
1802     break;
1803  case X86II::AddRegFrm: // for instructions that have one register operand
1804     ...                 // added to their opcode
1805     break;
1806  case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
1807     ...                 // to specify a destination (register)
1808     break;
1809  case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
1810     ...                 // to specify a destination (memory)
1811     break;
1812  case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
1813     ...                 // to specify a source (register)
1814     break;
1815  case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
1816     ...                 // to specify a source (memory)
1817     break;
1818  case X86II::MRM0r: case X86II::MRM1r:  // for instructions that operate on
1819  case X86II::MRM2r: case X86II::MRM3r:  // a REGISTER r/m operand and
1820  case X86II::MRM4r: case X86II::MRM5r:  // use the Mod/RM byte and a field
1821  case X86II::MRM6r: case X86II::MRM7r:  // to hold extended opcode data
1822     ...
1823     break;
1824  case X86II::MRM0m: case X86II::MRM1m:  // for instructions that operate on
1825  case X86II::MRM2m: case X86II::MRM3m:  // a MEMORY r/m operand and
1826  case X86II::MRM4m: case X86II::MRM5m:  // use the Mod/RM byte and a field
1827  case X86II::MRM6m: case X86II::MRM7m:  // to hold extended opcode data
1828     ...
1829     break;
1830  case X86II::MRMInitReg: // for instructions whose source and
1831     ...                  // destination are the same register
1832     break;
1833  }
1834
1835The implementations of these case statements often first emit the opcode and
1836then get the operand(s).  Then depending upon the operand, helper methods may
1837be called to process the operand(s).  For example, in ``X86CodeEmitter.cpp``,
1838for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is
1839the opcode added to the register operand.  Then an object representing the
1840machine operand, ``MO1``, is extracted.  The helper methods such as
1841``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``,
1842``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type.
1843(``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``,
1844``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``,
1845and ``emitJumpTableAddress`` that emit the data into the output stream.)
1846
1847.. code-block:: c++
1848
1849  case X86II::AddRegFrm:
1850    MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
1851
1852    if (CurOp != NumOps) {
1853      const MachineOperand &MO1 = MI.getOperand(CurOp++);
1854      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
1855      if (MO1.isImmediate())
1856        emitConstant(MO1.getImm(), Size);
1857      else {
1858        unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
1859          : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
1860        if (Opcode == X86::MOV64ri)
1861          rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
1862        if (MO1.isGlobalAddress()) {
1863          bool NeedStub = isa<Function>(MO1.getGlobal());
1864          bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
1865          emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
1866                            NeedStub, isLazy);
1867        } else if (MO1.isExternalSymbol())
1868          emitExternalSymbolAddress(MO1.getSymbolName(), rt);
1869        else if (MO1.isConstantPoolIndex())
1870          emitConstPoolAddress(MO1.getIndex(), rt);
1871        else if (MO1.isJumpTableIndex())
1872          emitJumpTableAddress(MO1.getIndex(), rt);
1873      }
1874    }
1875    break;
1876
1877In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which
1878is a ``RelocationType`` enum that may be used to relocate addresses (for
1879example, a global address with a PIC base offset).  The ``RelocationType`` enum
1880for that target is defined in the short target-specific ``XXXRelocations.h``
1881file.  The ``RelocationType`` is used by the ``relocate`` method defined in
1882``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols.
1883
1884For example, ``X86Relocations.h`` specifies the following relocation types for
1885the X86 addresses.  In all four cases, the relocated value is added to the
1886value already in memory.  For ``reloc_pcrel_word`` and ``reloc_picrel_word``,
1887there is an additional initial adjustment.
1888
1889.. code-block:: c++
1890
1891  enum RelocationType {
1892    reloc_pcrel_word = 0,    // add reloc value after adjusting for the PC loc
1893    reloc_picrel_word = 1,   // add reloc value after adjusting for the PIC base
1894    reloc_absolute_word = 2, // absolute relocation; no additional adjustment
1895    reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
1896  };
1897
1898Target JIT Info
1899---------------
1900
1901``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific
1902code-generation activities, such as emitting machine code and stubs.  At
1903minimum, a target-specific version of ``XXXJITInfo`` implements the following:
1904
1905* ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a
1906  function that is used for compilation.
1907
1908* ``emitFunctionStub`` --- Returns a native function with a specified address
1909  for a callback function.
1910
1911* ``relocate`` --- Changes the addresses of referenced globals, based on
1912  relocation types.
1913
1914* Callback function that are wrappers to a function stub that is used when the
1915  real target is not initially known.
1916
1917``getLazyResolverFunction`` is generally trivial to implement.  It makes the
1918incoming parameter as the global ``JITCompilerFunction`` and returns the
1919callback function that will be used a function wrapper.  For the Alpha target
1920(in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is
1921simply:
1922
1923.. code-block:: c++
1924
1925  TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
1926                                              JITCompilerFn F) {
1927    JITCompilerFunction = F;
1928    return AlphaCompilationCallback;
1929  }
1930
1931For the X86 target, the ``getLazyResolverFunction`` implementation is a little
1932more complicated, because it returns a different callback function for
1933processors with SSE instructions and XMM registers.
1934
1935The callback function initially saves and later restores the callee register
1936values, incoming arguments, and frame and return address.  The callback
1937function needs low-level access to the registers or stack, so it is typically
1938implemented with assembler.
1939
1940