1#include "llvm/Analysis/Passes.h" 2#include "llvm/ExecutionEngine/ExecutionEngine.h" 3#include "llvm/ExecutionEngine/MCJIT.h" 4#include "llvm/ExecutionEngine/SectionMemoryManager.h" 5#include "llvm/IR/DataLayout.h" 6#include "llvm/IR/DerivedTypes.h" 7#include "llvm/IR/IRBuilder.h" 8#include "llvm/IR/LLVMContext.h" 9#include "llvm/IR/LegacyPassManager.h" 10#include "llvm/IR/Module.h" 11#include "llvm/IR/Verifier.h" 12#include "llvm/Support/TargetSelect.h" 13#include "llvm/Transforms/Scalar.h" 14#include <cctype> 15#include <cstdio> 16#include <map> 17#include <string> 18#include <vector> 19using namespace llvm; 20 21//===----------------------------------------------------------------------===// 22// Lexer 23//===----------------------------------------------------------------------===// 24 25// The lexer returns tokens [0-255] if it is an unknown character, otherwise one 26// of these for known things. 27enum Token { 28 tok_eof = -1, 29 30 // commands 31 tok_def = -2, tok_extern = -3, 32 33 // primary 34 tok_identifier = -4, tok_number = -5, 35 36 // control 37 tok_if = -6, tok_then = -7, tok_else = -8, 38 tok_for = -9, tok_in = -10, 39 40 // operators 41 tok_binary = -11, tok_unary = -12, 42 43 // var definition 44 tok_var = -13 45}; 46 47static std::string IdentifierStr; // Filled in if tok_identifier 48static double NumVal; // Filled in if tok_number 49 50/// gettok - Return the next token from standard input. 51static int gettok() { 52 static int LastChar = ' '; 53 54 // Skip any whitespace. 55 while (isspace(LastChar)) 56 LastChar = getchar(); 57 58 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* 59 IdentifierStr = LastChar; 60 while (isalnum((LastChar = getchar()))) 61 IdentifierStr += LastChar; 62 63 if (IdentifierStr == "def") return tok_def; 64 if (IdentifierStr == "extern") return tok_extern; 65 if (IdentifierStr == "if") return tok_if; 66 if (IdentifierStr == "then") return tok_then; 67 if (IdentifierStr == "else") return tok_else; 68 if (IdentifierStr == "for") return tok_for; 69 if (IdentifierStr == "in") return tok_in; 70 if (IdentifierStr == "binary") return tok_binary; 71 if (IdentifierStr == "unary") return tok_unary; 72 if (IdentifierStr == "var") return tok_var; 73 return tok_identifier; 74 } 75 76 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ 77 std::string NumStr; 78 do { 79 NumStr += LastChar; 80 LastChar = getchar(); 81 } while (isdigit(LastChar) || LastChar == '.'); 82 83 NumVal = strtod(NumStr.c_str(), 0); 84 return tok_number; 85 } 86 87 if (LastChar == '#') { 88 // Comment until end of line. 89 do LastChar = getchar(); 90 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); 91 92 if (LastChar != EOF) 93 return gettok(); 94 } 95 96 // Check for end of file. Don't eat the EOF. 97 if (LastChar == EOF) 98 return tok_eof; 99 100 // Otherwise, just return the character as its ascii value. 101 int ThisChar = LastChar; 102 LastChar = getchar(); 103 return ThisChar; 104} 105 106//===----------------------------------------------------------------------===// 107// Abstract Syntax Tree (aka Parse Tree) 108//===----------------------------------------------------------------------===// 109 110/// ExprAST - Base class for all expression nodes. 111class ExprAST { 112public: 113 virtual ~ExprAST() {} 114 virtual Value *Codegen() = 0; 115}; 116 117/// NumberExprAST - Expression class for numeric literals like "1.0". 118class NumberExprAST : public ExprAST { 119 double Val; 120public: 121 NumberExprAST(double val) : Val(val) {} 122 virtual Value *Codegen(); 123}; 124 125/// VariableExprAST - Expression class for referencing a variable, like "a". 126class VariableExprAST : public ExprAST { 127 std::string Name; 128public: 129 VariableExprAST(const std::string &name) : Name(name) {} 130 const std::string &getName() const { return Name; } 131 virtual Value *Codegen(); 132}; 133 134/// UnaryExprAST - Expression class for a unary operator. 135class UnaryExprAST : public ExprAST { 136 char Opcode; 137 ExprAST *Operand; 138public: 139 UnaryExprAST(char opcode, ExprAST *operand) 140 : Opcode(opcode), Operand(operand) {} 141 virtual Value *Codegen(); 142}; 143 144/// BinaryExprAST - Expression class for a binary operator. 145class BinaryExprAST : public ExprAST { 146 char Op; 147 ExprAST *LHS, *RHS; 148public: 149 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 150 : Op(op), LHS(lhs), RHS(rhs) {} 151 virtual Value *Codegen(); 152}; 153 154/// CallExprAST - Expression class for function calls. 155class CallExprAST : public ExprAST { 156 std::string Callee; 157 std::vector<ExprAST*> Args; 158public: 159 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) 160 : Callee(callee), Args(args) {} 161 virtual Value *Codegen(); 162}; 163 164/// IfExprAST - Expression class for if/then/else. 165class IfExprAST : public ExprAST { 166 ExprAST *Cond, *Then, *Else; 167public: 168 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) 169 : Cond(cond), Then(then), Else(_else) {} 170 virtual Value *Codegen(); 171}; 172 173/// ForExprAST - Expression class for for/in. 174class ForExprAST : public ExprAST { 175 std::string VarName; 176 ExprAST *Start, *End, *Step, *Body; 177public: 178 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, 179 ExprAST *step, ExprAST *body) 180 : VarName(varname), Start(start), End(end), Step(step), Body(body) {} 181 virtual Value *Codegen(); 182}; 183 184/// VarExprAST - Expression class for var/in 185class VarExprAST : public ExprAST { 186 std::vector<std::pair<std::string, ExprAST*> > VarNames; 187 ExprAST *Body; 188public: 189 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, 190 ExprAST *body) 191 : VarNames(varnames), Body(body) {} 192 193 virtual Value *Codegen(); 194}; 195 196/// PrototypeAST - This class represents the "prototype" for a function, 197/// which captures its argument names as well as if it is an operator. 198class PrototypeAST { 199 std::string Name; 200 std::vector<std::string> Args; 201 bool isOperator; 202 unsigned Precedence; // Precedence if a binary op. 203public: 204 PrototypeAST(const std::string &name, const std::vector<std::string> &args, 205 bool isoperator = false, unsigned prec = 0) 206 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} 207 208 bool isUnaryOp() const { return isOperator && Args.size() == 1; } 209 bool isBinaryOp() const { return isOperator && Args.size() == 2; } 210 211 char getOperatorName() const { 212 assert(isUnaryOp() || isBinaryOp()); 213 return Name[Name.size()-1]; 214 } 215 216 unsigned getBinaryPrecedence() const { return Precedence; } 217 218 Function *Codegen(); 219 220 void CreateArgumentAllocas(Function *F); 221}; 222 223/// FunctionAST - This class represents a function definition itself. 224class FunctionAST { 225 PrototypeAST *Proto; 226 ExprAST *Body; 227public: 228 FunctionAST(PrototypeAST *proto, ExprAST *body) 229 : Proto(proto), Body(body) {} 230 231 Function *Codegen(); 232}; 233 234//===----------------------------------------------------------------------===// 235// Parser 236//===----------------------------------------------------------------------===// 237 238/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current 239/// token the parser is looking at. getNextToken reads another token from the 240/// lexer and updates CurTok with its results. 241static int CurTok; 242static int getNextToken() { 243 return CurTok = gettok(); 244} 245 246/// BinopPrecedence - This holds the precedence for each binary operator that is 247/// defined. 248static std::map<char, int> BinopPrecedence; 249 250/// GetTokPrecedence - Get the precedence of the pending binary operator token. 251static int GetTokPrecedence() { 252 if (!isascii(CurTok)) 253 return -1; 254 255 // Make sure it's a declared binop. 256 int TokPrec = BinopPrecedence[CurTok]; 257 if (TokPrec <= 0) return -1; 258 return TokPrec; 259} 260 261/// Error* - These are little helper functions for error handling. 262ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} 263PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } 264FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } 265 266static ExprAST *ParseExpression(); 267 268/// identifierexpr 269/// ::= identifier 270/// ::= identifier '(' expression* ')' 271static ExprAST *ParseIdentifierExpr() { 272 std::string IdName = IdentifierStr; 273 274 getNextToken(); // eat identifier. 275 276 if (CurTok != '(') // Simple variable ref. 277 return new VariableExprAST(IdName); 278 279 // Call. 280 getNextToken(); // eat ( 281 std::vector<ExprAST*> Args; 282 if (CurTok != ')') { 283 while (1) { 284 ExprAST *Arg = ParseExpression(); 285 if (!Arg) return 0; 286 Args.push_back(Arg); 287 288 if (CurTok == ')') break; 289 290 if (CurTok != ',') 291 return Error("Expected ')' or ',' in argument list"); 292 getNextToken(); 293 } 294 } 295 296 // Eat the ')'. 297 getNextToken(); 298 299 return new CallExprAST(IdName, Args); 300} 301 302/// numberexpr ::= number 303static ExprAST *ParseNumberExpr() { 304 ExprAST *Result = new NumberExprAST(NumVal); 305 getNextToken(); // consume the number 306 return Result; 307} 308 309/// parenexpr ::= '(' expression ')' 310static ExprAST *ParseParenExpr() { 311 getNextToken(); // eat (. 312 ExprAST *V = ParseExpression(); 313 if (!V) return 0; 314 315 if (CurTok != ')') 316 return Error("expected ')'"); 317 getNextToken(); // eat ). 318 return V; 319} 320 321/// ifexpr ::= 'if' expression 'then' expression 'else' expression 322static ExprAST *ParseIfExpr() { 323 getNextToken(); // eat the if. 324 325 // condition. 326 ExprAST *Cond = ParseExpression(); 327 if (!Cond) return 0; 328 329 if (CurTok != tok_then) 330 return Error("expected then"); 331 getNextToken(); // eat the then 332 333 ExprAST *Then = ParseExpression(); 334 if (Then == 0) return 0; 335 336 if (CurTok != tok_else) 337 return Error("expected else"); 338 339 getNextToken(); 340 341 ExprAST *Else = ParseExpression(); 342 if (!Else) return 0; 343 344 return new IfExprAST(Cond, Then, Else); 345} 346 347/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression 348static ExprAST *ParseForExpr() { 349 getNextToken(); // eat the for. 350 351 if (CurTok != tok_identifier) 352 return Error("expected identifier after for"); 353 354 std::string IdName = IdentifierStr; 355 getNextToken(); // eat identifier. 356 357 if (CurTok != '=') 358 return Error("expected '=' after for"); 359 getNextToken(); // eat '='. 360 361 362 ExprAST *Start = ParseExpression(); 363 if (Start == 0) return 0; 364 if (CurTok != ',') 365 return Error("expected ',' after for start value"); 366 getNextToken(); 367 368 ExprAST *End = ParseExpression(); 369 if (End == 0) return 0; 370 371 // The step value is optional. 372 ExprAST *Step = 0; 373 if (CurTok == ',') { 374 getNextToken(); 375 Step = ParseExpression(); 376 if (Step == 0) return 0; 377 } 378 379 if (CurTok != tok_in) 380 return Error("expected 'in' after for"); 381 getNextToken(); // eat 'in'. 382 383 ExprAST *Body = ParseExpression(); 384 if (Body == 0) return 0; 385 386 return new ForExprAST(IdName, Start, End, Step, Body); 387} 388 389/// varexpr ::= 'var' identifier ('=' expression)? 390// (',' identifier ('=' expression)?)* 'in' expression 391static ExprAST *ParseVarExpr() { 392 getNextToken(); // eat the var. 393 394 std::vector<std::pair<std::string, ExprAST*> > VarNames; 395 396 // At least one variable name is required. 397 if (CurTok != tok_identifier) 398 return Error("expected identifier after var"); 399 400 while (1) { 401 std::string Name = IdentifierStr; 402 getNextToken(); // eat identifier. 403 404 // Read the optional initializer. 405 ExprAST *Init = 0; 406 if (CurTok == '=') { 407 getNextToken(); // eat the '='. 408 409 Init = ParseExpression(); 410 if (Init == 0) return 0; 411 } 412 413 VarNames.push_back(std::make_pair(Name, Init)); 414 415 // End of var list, exit loop. 416 if (CurTok != ',') break; 417 getNextToken(); // eat the ','. 418 419 if (CurTok != tok_identifier) 420 return Error("expected identifier list after var"); 421 } 422 423 // At this point, we have to have 'in'. 424 if (CurTok != tok_in) 425 return Error("expected 'in' keyword after 'var'"); 426 getNextToken(); // eat 'in'. 427 428 ExprAST *Body = ParseExpression(); 429 if (Body == 0) return 0; 430 431 return new VarExprAST(VarNames, Body); 432} 433 434/// primary 435/// ::= identifierexpr 436/// ::= numberexpr 437/// ::= parenexpr 438/// ::= ifexpr 439/// ::= forexpr 440/// ::= varexpr 441static ExprAST *ParsePrimary() { 442 switch (CurTok) { 443 default: return Error("unknown token when expecting an expression"); 444 case tok_identifier: return ParseIdentifierExpr(); 445 case tok_number: return ParseNumberExpr(); 446 case '(': return ParseParenExpr(); 447 case tok_if: return ParseIfExpr(); 448 case tok_for: return ParseForExpr(); 449 case tok_var: return ParseVarExpr(); 450 } 451} 452 453/// unary 454/// ::= primary 455/// ::= '!' unary 456static ExprAST *ParseUnary() { 457 // If the current token is not an operator, it must be a primary expr. 458 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') 459 return ParsePrimary(); 460 461 // If this is a unary operator, read it. 462 int Opc = CurTok; 463 getNextToken(); 464 if (ExprAST *Operand = ParseUnary()) 465 return new UnaryExprAST(Opc, Operand); 466 return 0; 467} 468 469/// binoprhs 470/// ::= ('+' unary)* 471static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { 472 // If this is a binop, find its precedence. 473 while (1) { 474 int TokPrec = GetTokPrecedence(); 475 476 // If this is a binop that binds at least as tightly as the current binop, 477 // consume it, otherwise we are done. 478 if (TokPrec < ExprPrec) 479 return LHS; 480 481 // Okay, we know this is a binop. 482 int BinOp = CurTok; 483 getNextToken(); // eat binop 484 485 // Parse the unary expression after the binary operator. 486 ExprAST *RHS = ParseUnary(); 487 if (!RHS) return 0; 488 489 // If BinOp binds less tightly with RHS than the operator after RHS, let 490 // the pending operator take RHS as its LHS. 491 int NextPrec = GetTokPrecedence(); 492 if (TokPrec < NextPrec) { 493 RHS = ParseBinOpRHS(TokPrec+1, RHS); 494 if (RHS == 0) return 0; 495 } 496 497 // Merge LHS/RHS. 498 LHS = new BinaryExprAST(BinOp, LHS, RHS); 499 } 500} 501 502/// expression 503/// ::= unary binoprhs 504/// 505static ExprAST *ParseExpression() { 506 ExprAST *LHS = ParseUnary(); 507 if (!LHS) return 0; 508 509 return ParseBinOpRHS(0, LHS); 510} 511 512/// prototype 513/// ::= id '(' id* ')' 514/// ::= binary LETTER number? (id, id) 515/// ::= unary LETTER (id) 516static PrototypeAST *ParsePrototype() { 517 std::string FnName; 518 519 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. 520 unsigned BinaryPrecedence = 30; 521 522 switch (CurTok) { 523 default: 524 return ErrorP("Expected function name in prototype"); 525 case tok_identifier: 526 FnName = IdentifierStr; 527 Kind = 0; 528 getNextToken(); 529 break; 530 case tok_unary: 531 getNextToken(); 532 if (!isascii(CurTok)) 533 return ErrorP("Expected unary operator"); 534 FnName = "unary"; 535 FnName += (char)CurTok; 536 Kind = 1; 537 getNextToken(); 538 break; 539 case tok_binary: 540 getNextToken(); 541 if (!isascii(CurTok)) 542 return ErrorP("Expected binary operator"); 543 FnName = "binary"; 544 FnName += (char)CurTok; 545 Kind = 2; 546 getNextToken(); 547 548 // Read the precedence if present. 549 if (CurTok == tok_number) { 550 if (NumVal < 1 || NumVal > 100) 551 return ErrorP("Invalid precedecnce: must be 1..100"); 552 BinaryPrecedence = (unsigned)NumVal; 553 getNextToken(); 554 } 555 break; 556 } 557 558 if (CurTok != '(') 559 return ErrorP("Expected '(' in prototype"); 560 561 std::vector<std::string> ArgNames; 562 while (getNextToken() == tok_identifier) 563 ArgNames.push_back(IdentifierStr); 564 if (CurTok != ')') 565 return ErrorP("Expected ')' in prototype"); 566 567 // success. 568 getNextToken(); // eat ')'. 569 570 // Verify right number of names for operator. 571 if (Kind && ArgNames.size() != Kind) 572 return ErrorP("Invalid number of operands for operator"); 573 574 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); 575} 576 577/// definition ::= 'def' prototype expression 578static FunctionAST *ParseDefinition() { 579 getNextToken(); // eat def. 580 PrototypeAST *Proto = ParsePrototype(); 581 if (Proto == 0) return 0; 582 583 if (ExprAST *E = ParseExpression()) 584 return new FunctionAST(Proto, E); 585 return 0; 586} 587 588/// toplevelexpr ::= expression 589static FunctionAST *ParseTopLevelExpr() { 590 if (ExprAST *E = ParseExpression()) { 591 // Make an anonymous proto. 592 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); 593 return new FunctionAST(Proto, E); 594 } 595 return 0; 596} 597 598/// external ::= 'extern' prototype 599static PrototypeAST *ParseExtern() { 600 getNextToken(); // eat extern. 601 return ParsePrototype(); 602} 603 604//===----------------------------------------------------------------------===// 605// Quick and dirty hack 606//===----------------------------------------------------------------------===// 607 608// FIXME: Obviously we can do better than this 609std::string GenerateUniqueName(const char *root) 610{ 611 static int i = 0; 612 char s[16]; 613 sprintf(s, "%s%d", root, i++); 614 std::string S = s; 615 return S; 616} 617 618std::string MakeLegalFunctionName(std::string Name) 619{ 620 std::string NewName; 621 if (!Name.length()) 622 return GenerateUniqueName("anon_func_"); 623 624 // Start with what we have 625 NewName = Name; 626 627 // Look for a numberic first character 628 if (NewName.find_first_of("0123456789") == 0) { 629 NewName.insert(0, 1, 'n'); 630 } 631 632 // Replace illegal characters with their ASCII equivalent 633 std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; 634 size_t pos; 635 while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) { 636 char old_c = NewName.at(pos); 637 char new_str[16]; 638 sprintf(new_str, "%d", (int)old_c); 639 NewName = NewName.replace(pos, 1, new_str); 640 } 641 642 return NewName; 643} 644 645//===----------------------------------------------------------------------===// 646// MCJIT helper class 647//===----------------------------------------------------------------------===// 648 649class MCJITHelper 650{ 651public: 652 MCJITHelper(LLVMContext& C) : Context(C), OpenModule(NULL) {} 653 ~MCJITHelper(); 654 655 Function *getFunction(const std::string FnName); 656 Module *getModuleForNewFunction(); 657 void *getPointerToFunction(Function* F); 658 void *getPointerToNamedFunction(const std::string &Name); 659 void dump(); 660 661private: 662 typedef std::vector<Module*> ModuleVector; 663 typedef std::vector<ExecutionEngine*> EngineVector; 664 665 LLVMContext &Context; 666 Module *OpenModule; 667 ModuleVector Modules; 668 EngineVector Engines; 669}; 670 671class HelpingMemoryManager : public SectionMemoryManager 672{ 673 HelpingMemoryManager(const HelpingMemoryManager&) = delete; 674 void operator=(const HelpingMemoryManager&) = delete; 675 676public: 677 HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {} 678 virtual ~HelpingMemoryManager() {} 679 680 /// This method returns the address of the specified function. 681 /// Our implementation will attempt to find functions in other 682 /// modules associated with the MCJITHelper to cross link functions 683 /// from one generated module to another. 684 /// 685 /// If \p AbortOnFailure is false and no function with the given name is 686 /// found, this function returns a null pointer. Otherwise, it prints a 687 /// message to stderr and aborts. 688 virtual void *getPointerToNamedFunction(const std::string &Name, 689 bool AbortOnFailure = true); 690private: 691 MCJITHelper *MasterHelper; 692}; 693 694void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name, 695 bool AbortOnFailure) 696{ 697 // Try the standard symbol resolution first, but ask it not to abort. 698 void *pfn = SectionMemoryManager::getPointerToNamedFunction(Name, false); 699 if (pfn) 700 return pfn; 701 702 pfn = MasterHelper->getPointerToNamedFunction(Name); 703 if (!pfn && AbortOnFailure) 704 report_fatal_error("Program used external function '" + Name + 705 "' which could not be resolved!"); 706 return pfn; 707} 708 709MCJITHelper::~MCJITHelper() 710{ 711 if (OpenModule) 712 delete OpenModule; 713 EngineVector::iterator begin = Engines.begin(); 714 EngineVector::iterator end = Engines.end(); 715 EngineVector::iterator it; 716 for (it = begin; it != end; ++it) 717 delete *it; 718} 719 720Function *MCJITHelper::getFunction(const std::string FnName) { 721 ModuleVector::iterator begin = Modules.begin(); 722 ModuleVector::iterator end = Modules.end(); 723 ModuleVector::iterator it; 724 for (it = begin; it != end; ++it) { 725 Function *F = (*it)->getFunction(FnName); 726 if (F) { 727 if (*it == OpenModule) 728 return F; 729 730 assert(OpenModule != NULL); 731 732 // This function is in a module that has already been JITed. 733 // We need to generate a new prototype for external linkage. 734 Function *PF = OpenModule->getFunction(FnName); 735 if (PF && !PF->empty()) { 736 ErrorF("redefinition of function across modules"); 737 return 0; 738 } 739 740 // If we don't have a prototype yet, create one. 741 if (!PF) 742 PF = Function::Create(F->getFunctionType(), 743 Function::ExternalLinkage, 744 FnName, 745 OpenModule); 746 return PF; 747 } 748 } 749 return NULL; 750} 751 752Module *MCJITHelper::getModuleForNewFunction() { 753 // If we have a Module that hasn't been JITed, use that. 754 if (OpenModule) 755 return OpenModule; 756 757 // Otherwise create a new Module. 758 std::string ModName = GenerateUniqueName("mcjit_module_"); 759 Module *M = new Module(ModName, Context); 760 Modules.push_back(M); 761 OpenModule = M; 762 return M; 763} 764 765void *MCJITHelper::getPointerToFunction(Function* F) { 766 // See if an existing instance of MCJIT has this function. 767 EngineVector::iterator begin = Engines.begin(); 768 EngineVector::iterator end = Engines.end(); 769 EngineVector::iterator it; 770 for (it = begin; it != end; ++it) { 771 void *P = (*it)->getPointerToFunction(F); 772 if (P) 773 return P; 774 } 775 776 // If we didn't find the function, see if we can generate it. 777 if (OpenModule) { 778 std::string ErrStr; 779 ExecutionEngine *NewEngine = EngineBuilder(OpenModule) 780 .setErrorStr(&ErrStr) 781 .setMCJITMemoryManager(new HelpingMemoryManager(this)) 782 .create(); 783 if (!NewEngine) { 784 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); 785 exit(1); 786 } 787 788 // Create a function pass manager for this engine 789 FunctionPassManager *FPM = new FunctionPassManager(OpenModule); 790 791 // Set up the optimizer pipeline. Start with registering info about how the 792 // target lays out data structures. 793 FPM->add(new DataLayout(*NewEngine->getDataLayout())); 794 // Provide basic AliasAnalysis support for GVN. 795 FPM->add(createBasicAliasAnalysisPass()); 796 // Promote allocas to registers. 797 FPM->add(createPromoteMemoryToRegisterPass()); 798 // Do simple "peephole" optimizations and bit-twiddling optzns. 799 FPM->add(createInstructionCombiningPass()); 800 // Reassociate expressions. 801 FPM->add(createReassociatePass()); 802 // Eliminate Common SubExpressions. 803 FPM->add(createGVNPass()); 804 // Simplify the control flow graph (deleting unreachable blocks, etc). 805 FPM->add(createCFGSimplificationPass()); 806 FPM->doInitialization(); 807 808 // For each function in the module 809 Module::iterator it; 810 Module::iterator end = OpenModule->end(); 811 for (it = OpenModule->begin(); it != end; ++it) { 812 // Run the FPM on this function 813 FPM->run(*it); 814 } 815 816 // We don't need this anymore 817 delete FPM; 818 819 OpenModule = NULL; 820 Engines.push_back(NewEngine); 821 NewEngine->finalizeObject(); 822 return NewEngine->getPointerToFunction(F); 823 } 824 return NULL; 825} 826 827void *MCJITHelper::getPointerToNamedFunction(const std::string &Name) 828{ 829 // Look for the function in each of our execution engines. 830 EngineVector::iterator begin = Engines.begin(); 831 EngineVector::iterator end = Engines.end(); 832 EngineVector::iterator it; 833 for (it = begin; it != end; ++it) { 834 if (Function *F = (*it)->FindFunctionNamed(Name.c_str())) 835 return (*it)->getPointerToFunction(F); 836 } 837 838 return NULL; 839} 840 841void MCJITHelper::dump() 842{ 843 ModuleVector::iterator begin = Modules.begin(); 844 ModuleVector::iterator end = Modules.end(); 845 ModuleVector::iterator it; 846 for (it = begin; it != end; ++it) 847 (*it)->dump(); 848} 849 850//===----------------------------------------------------------------------===// 851// Code Generation 852//===----------------------------------------------------------------------===// 853 854static MCJITHelper *TheHelper; 855static LLVMContext TheContext; 856static IRBuilder<> Builder(TheContext); 857static std::map<std::string, AllocaInst*> NamedValues; 858 859Value *ErrorV(const char *Str) { Error(Str); return 0; } 860 861/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of 862/// the function. This is used for mutable variables etc. 863static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, 864 const std::string &VarName) { 865 IRBuilder<> TmpB(&TheFunction->getEntryBlock(), 866 TheFunction->getEntryBlock().begin()); 867 return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), 0, VarName.c_str()); 868} 869 870Value *NumberExprAST::Codegen() { 871 return ConstantFP::get(TheContext, APFloat(Val)); 872} 873 874Value *VariableExprAST::Codegen() { 875 // Look this variable up in the function. 876 Value *V = NamedValues[Name]; 877 char ErrStr[256]; 878 sprintf(ErrStr, "Unknown variable name %s", Name.c_str()); 879 if (V == 0) return ErrorV(ErrStr); 880 881 // Load the value. 882 return Builder.CreateLoad(V, Name.c_str()); 883} 884 885Value *UnaryExprAST::Codegen() { 886 Value *OperandV = Operand->Codegen(); 887 if (OperandV == 0) return 0; 888 889 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode)); 890 if (F == 0) 891 return ErrorV("Unknown unary operator"); 892 893 return Builder.CreateCall(F, OperandV, "unop"); 894} 895 896Value *BinaryExprAST::Codegen() { 897 // Special case '=' because we don't want to emit the LHS as an expression. 898 if (Op == '=') { 899 // Assignment requires the LHS to be an identifier. 900 VariableExprAST *LHSE = static_cast<VariableExprAST*>(LHS); 901 if (!LHSE) 902 return ErrorV("destination of '=' must be a variable"); 903 // Codegen the RHS. 904 Value *Val = RHS->Codegen(); 905 if (Val == 0) return 0; 906 907 // Look up the name. 908 Value *Variable = NamedValues[LHSE->getName()]; 909 if (Variable == 0) return ErrorV("Unknown variable name"); 910 911 Builder.CreateStore(Val, Variable); 912 return Val; 913 } 914 915 Value *L = LHS->Codegen(); 916 Value *R = RHS->Codegen(); 917 if (L == 0 || R == 0) return 0; 918 919 switch (Op) { 920 case '+': return Builder.CreateFAdd(L, R, "addtmp"); 921 case '-': return Builder.CreateFSub(L, R, "subtmp"); 922 case '*': return Builder.CreateFMul(L, R, "multmp"); 923 case '/': return Builder.CreateFDiv(L, R, "divtmp"); 924 case '<': 925 L = Builder.CreateFCmpULT(L, R, "cmptmp"); 926 // Convert bool 0/1 to double 0.0 or 1.0 927 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp"); 928 default: break; 929 } 930 931 // If it wasn't a builtin binary operator, it must be a user defined one. Emit 932 // a call to it. 933 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op)); 934 assert(F && "binary operator not found!"); 935 936 Value *Ops[] = { L, R }; 937 return Builder.CreateCall(F, Ops, "binop"); 938} 939 940Value *CallExprAST::Codegen() { 941 // Look up the name in the global module table. 942 Function *CalleeF = TheHelper->getFunction(Callee); 943 if (CalleeF == 0) 944 return ErrorV("Unknown function referenced"); 945 946 // If argument mismatch error. 947 if (CalleeF->arg_size() != Args.size()) 948 return ErrorV("Incorrect # arguments passed"); 949 950 std::vector<Value*> ArgsV; 951 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 952 ArgsV.push_back(Args[i]->Codegen()); 953 if (ArgsV.back() == 0) return 0; 954 } 955 956 return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); 957} 958 959Value *IfExprAST::Codegen() { 960 Value *CondV = Cond->Codegen(); 961 if (CondV == 0) return 0; 962 963 // Convert condition to a bool by comparing equal to 0.0. 964 CondV = Builder.CreateFCmpONE( 965 CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond"); 966 967 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 968 969 // Create blocks for the then and else cases. Insert the 'then' block at the 970 // end of the function. 971 BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction); 972 BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else"); 973 BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont"); 974 975 Builder.CreateCondBr(CondV, ThenBB, ElseBB); 976 977 // Emit then value. 978 Builder.SetInsertPoint(ThenBB); 979 980 Value *ThenV = Then->Codegen(); 981 if (ThenV == 0) return 0; 982 983 Builder.CreateBr(MergeBB); 984 // Codegen of 'Then' can change the current block, update ThenBB for the PHI. 985 ThenBB = Builder.GetInsertBlock(); 986 987 // Emit else block. 988 TheFunction->getBasicBlockList().push_back(ElseBB); 989 Builder.SetInsertPoint(ElseBB); 990 991 Value *ElseV = Else->Codegen(); 992 if (ElseV == 0) return 0; 993 994 Builder.CreateBr(MergeBB); 995 // Codegen of 'Else' can change the current block, update ElseBB for the PHI. 996 ElseBB = Builder.GetInsertBlock(); 997 998 // Emit merge block. 999 TheFunction->getBasicBlockList().push_back(MergeBB); 1000 Builder.SetInsertPoint(MergeBB); 1001 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp"); 1002 1003 PN->addIncoming(ThenV, ThenBB); 1004 PN->addIncoming(ElseV, ElseBB); 1005 return PN; 1006} 1007 1008Value *ForExprAST::Codegen() { 1009 // Output this as: 1010 // var = alloca double 1011 // ... 1012 // start = startexpr 1013 // store start -> var 1014 // goto loop 1015 // loop: 1016 // ... 1017 // bodyexpr 1018 // ... 1019 // loopend: 1020 // step = stepexpr 1021 // endcond = endexpr 1022 // 1023 // curvar = load var 1024 // nextvar = curvar + step 1025 // store nextvar -> var 1026 // br endcond, loop, endloop 1027 // outloop: 1028 1029 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 1030 1031 // Create an alloca for the variable in the entry block. 1032 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); 1033 1034 // Emit the start code first, without 'variable' in scope. 1035 Value *StartVal = Start->Codegen(); 1036 if (StartVal == 0) return 0; 1037 1038 // Store the value into the alloca. 1039 Builder.CreateStore(StartVal, Alloca); 1040 1041 // Make the new basic block for the loop header, inserting after current 1042 // block. 1043 BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction); 1044 1045 // Insert an explicit fall through from the current block to the LoopBB. 1046 Builder.CreateBr(LoopBB); 1047 1048 // Start insertion in LoopBB. 1049 Builder.SetInsertPoint(LoopBB); 1050 1051 // Within the loop, the variable is defined equal to the PHI node. If it 1052 // shadows an existing variable, we have to restore it, so save it now. 1053 AllocaInst *OldVal = NamedValues[VarName]; 1054 NamedValues[VarName] = Alloca; 1055 1056 // Emit the body of the loop. This, like any other expr, can change the 1057 // current BB. Note that we ignore the value computed by the body, but don't 1058 // allow an error. 1059 if (Body->Codegen() == 0) 1060 return 0; 1061 1062 // Emit the step value. 1063 Value *StepVal; 1064 if (Step) { 1065 StepVal = Step->Codegen(); 1066 if (StepVal == 0) return 0; 1067 } else { 1068 // If not specified, use 1.0. 1069 StepVal = ConstantFP::get(TheContext, APFloat(1.0)); 1070 } 1071 1072 // Compute the end condition. 1073 Value *EndCond = End->Codegen(); 1074 if (EndCond == 0) return EndCond; 1075 1076 // Reload, increment, and restore the alloca. This handles the case where 1077 // the body of the loop mutates the variable. 1078 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); 1079 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); 1080 Builder.CreateStore(NextVar, Alloca); 1081 1082 // Convert condition to a bool by comparing equal to 0.0. 1083 EndCond = Builder.CreateFCmpONE( 1084 EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond"); 1085 1086 // Create the "after loop" block and insert it. 1087 BasicBlock *AfterBB = 1088 BasicBlock::Create(TheContext, "afterloop", TheFunction); 1089 1090 // Insert the conditional branch into the end of LoopEndBB. 1091 Builder.CreateCondBr(EndCond, LoopBB, AfterBB); 1092 1093 // Any new code will be inserted in AfterBB. 1094 Builder.SetInsertPoint(AfterBB); 1095 1096 // Restore the unshadowed variable. 1097 if (OldVal) 1098 NamedValues[VarName] = OldVal; 1099 else 1100 NamedValues.erase(VarName); 1101 1102 1103 // for expr always returns 0.0. 1104 return Constant::getNullValue(Type::getDoubleTy(TheContext)); 1105} 1106 1107Value *VarExprAST::Codegen() { 1108 std::vector<AllocaInst *> OldBindings; 1109 1110 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 1111 1112 // Register all variables and emit their initializer. 1113 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { 1114 const std::string &VarName = VarNames[i].first; 1115 ExprAST *Init = VarNames[i].second; 1116 1117 // Emit the initializer before adding the variable to scope, this prevents 1118 // the initializer from referencing the variable itself, and permits stuff 1119 // like this: 1120 // var a = 1 in 1121 // var a = a in ... # refers to outer 'a'. 1122 Value *InitVal; 1123 if (Init) { 1124 InitVal = Init->Codegen(); 1125 if (InitVal == 0) return 0; 1126 } else { // If not specified, use 0.0. 1127 InitVal = ConstantFP::get(TheContext, APFloat(0.0)); 1128 } 1129 1130 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); 1131 Builder.CreateStore(InitVal, Alloca); 1132 1133 // Remember the old variable binding so that we can restore the binding when 1134 // we unrecurse. 1135 OldBindings.push_back(NamedValues[VarName]); 1136 1137 // Remember this binding. 1138 NamedValues[VarName] = Alloca; 1139 } 1140 1141 // Codegen the body, now that all vars are in scope. 1142 Value *BodyVal = Body->Codegen(); 1143 if (BodyVal == 0) return 0; 1144 1145 // Pop all our variables from scope. 1146 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) 1147 NamedValues[VarNames[i].first] = OldBindings[i]; 1148 1149 // Return the body computation. 1150 return BodyVal; 1151} 1152 1153Function *PrototypeAST::Codegen() { 1154 // Make the function type: double(double,double) etc. 1155 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext)); 1156 FunctionType *FT = 1157 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false); 1158 1159 std::string FnName = MakeLegalFunctionName(Name); 1160 1161 Module* M = TheHelper->getModuleForNewFunction(); 1162 1163 Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M); 1164 1165 // If F conflicted, there was already something named 'FnName'. If it has a 1166 // body, don't allow redefinition or reextern. 1167 if (F->getName() != FnName) { 1168 // Delete the one we just made and get the existing one. 1169 F->eraseFromParent(); 1170 F = M->getFunction(Name); 1171 1172 // If F already has a body, reject this. 1173 if (!F->empty()) { 1174 ErrorF("redefinition of function"); 1175 return 0; 1176 } 1177 1178 // If F took a different number of args, reject. 1179 if (F->arg_size() != Args.size()) { 1180 ErrorF("redefinition of function with different # args"); 1181 return 0; 1182 } 1183 } 1184 1185 // Set names for all arguments. 1186 unsigned Idx = 0; 1187 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); 1188 ++AI, ++Idx) 1189 AI->setName(Args[Idx]); 1190 1191 return F; 1192} 1193 1194/// CreateArgumentAllocas - Create an alloca for each argument and register the 1195/// argument in the symbol table so that references to it will succeed. 1196void PrototypeAST::CreateArgumentAllocas(Function *F) { 1197 Function::arg_iterator AI = F->arg_begin(); 1198 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { 1199 // Create an alloca for this variable. 1200 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); 1201 1202 // Store the initial value into the alloca. 1203 Builder.CreateStore(AI, Alloca); 1204 1205 // Add arguments to variable symbol table. 1206 NamedValues[Args[Idx]] = Alloca; 1207 } 1208} 1209 1210Function *FunctionAST::Codegen() { 1211 NamedValues.clear(); 1212 1213 Function *TheFunction = Proto->Codegen(); 1214 if (TheFunction == 0) 1215 return 0; 1216 1217 // If this is an operator, install it. 1218 if (Proto->isBinaryOp()) 1219 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); 1220 1221 // Create a new basic block to start insertion into. 1222 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction); 1223 Builder.SetInsertPoint(BB); 1224 1225 // Add all arguments to the symbol table and create their allocas. 1226 Proto->CreateArgumentAllocas(TheFunction); 1227 1228 if (Value *RetVal = Body->Codegen()) { 1229 // Finish off the function. 1230 Builder.CreateRet(RetVal); 1231 1232 // Validate the generated code, checking for consistency. 1233 verifyFunction(*TheFunction); 1234 1235 return TheFunction; 1236 } 1237 1238 // Error reading body, remove function. 1239 TheFunction->eraseFromParent(); 1240 1241 if (Proto->isBinaryOp()) 1242 BinopPrecedence.erase(Proto->getOperatorName()); 1243 return 0; 1244} 1245 1246//===----------------------------------------------------------------------===// 1247// Top-Level parsing and JIT Driver 1248//===----------------------------------------------------------------------===// 1249 1250static void HandleDefinition() { 1251 if (FunctionAST *F = ParseDefinition()) { 1252 if (Function *LF = F->Codegen()) { 1253#ifndef MINIMAL_STDERR_OUTPUT 1254 fprintf(stderr, "Read function definition:"); 1255 LF->dump(); 1256#endif 1257 } 1258 } else { 1259 // Skip token for error recovery. 1260 getNextToken(); 1261 } 1262} 1263 1264static void HandleExtern() { 1265 if (PrototypeAST *P = ParseExtern()) { 1266 if (Function *F = P->Codegen()) { 1267#ifndef MINIMAL_STDERR_OUTPUT 1268 fprintf(stderr, "Read extern: "); 1269 F->dump(); 1270#endif 1271 } 1272 } else { 1273 // Skip token for error recovery. 1274 getNextToken(); 1275 } 1276} 1277 1278static void HandleTopLevelExpression() { 1279 // Evaluate a top-level expression into an anonymous function. 1280 if (FunctionAST *F = ParseTopLevelExpr()) { 1281 if (Function *LF = F->Codegen()) { 1282 // JIT the function, returning a function pointer. 1283 void *FPtr = TheHelper->getPointerToFunction(LF); 1284 1285 // Cast it to the right type (takes no arguments, returns a double) so we 1286 // can call it as a native function. 1287 double (*FP)() = (double (*)())(intptr_t)FPtr; 1288#ifdef MINIMAL_STDERR_OUTPUT 1289 FP(); 1290#else 1291 fprintf(stderr, "Evaluated to %f\n", FP()); 1292#endif 1293 } 1294 } else { 1295 // Skip token for error recovery. 1296 getNextToken(); 1297 } 1298} 1299 1300/// top ::= definition | external | expression | ';' 1301static void MainLoop() { 1302 while (1) { 1303#ifndef MINIMAL_STDERR_OUTPUT 1304 fprintf(stderr, "ready> "); 1305#endif 1306 switch (CurTok) { 1307 case tok_eof: return; 1308 case ';': getNextToken(); break; // ignore top-level semicolons. 1309 case tok_def: HandleDefinition(); break; 1310 case tok_extern: HandleExtern(); break; 1311 default: HandleTopLevelExpression(); break; 1312 } 1313 } 1314} 1315 1316//===----------------------------------------------------------------------===// 1317// "Library" functions that can be "extern'd" from user code. 1318//===----------------------------------------------------------------------===// 1319 1320/// putchard - putchar that takes a double and returns 0. 1321extern "C" 1322double putchard(double X) { 1323 putchar((char)X); 1324 return 0; 1325} 1326 1327/// printd - printf that takes a double prints it as "%f\n", returning 0. 1328extern "C" 1329double printd(double X) { 1330 printf("%f", X); 1331 return 0; 1332} 1333 1334extern "C" 1335double printlf() { 1336 printf("\n"); 1337 return 0; 1338} 1339 1340//===----------------------------------------------------------------------===// 1341// Main driver code. 1342//===----------------------------------------------------------------------===// 1343 1344int main() { 1345 InitializeNativeTarget(); 1346 InitializeNativeTargetAsmPrinter(); 1347 InitializeNativeTargetAsmParser(); 1348 LLVMContext &Context = TheContext; 1349 1350 // Install standard binary operators. 1351 // 1 is lowest precedence. 1352 BinopPrecedence['='] = 2; 1353 BinopPrecedence['<'] = 10; 1354 BinopPrecedence['+'] = 20; 1355 BinopPrecedence['-'] = 20; 1356 BinopPrecedence['/'] = 40; 1357 BinopPrecedence['*'] = 40; // highest. 1358 1359 // Prime the first token. 1360#ifndef MINIMAL_STDERR_OUTPUT 1361 fprintf(stderr, "ready> "); 1362#endif 1363 getNextToken(); 1364 1365 // Make the helper, which holds all the code. 1366 TheHelper = new MCJITHelper(Context); 1367 1368 // Run the main "interpreter loop" now. 1369 MainLoop(); 1370 1371#ifndef MINIMAL_STDERR_OUTPUT 1372 // Print out all of the generated code. 1373 TheHelper->dump(); 1374#endif 1375 1376 return 0; 1377} 1378