1//===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// DependenceAnalysis is an LLVM pass that analyses dependences between memory
11// accesses. Currently, it is an implementation of the approach described in
12//
13//            Practical Dependence Testing
14//            Goff, Kennedy, Tseng
15//            PLDI 1991
16//
17// There's a single entry point that analyzes the dependence between a pair
18// of memory references in a function, returning either NULL, for no dependence,
19// or a more-or-less detailed description of the dependence between them.
20//
21// This pass exists to support the DependenceGraph pass. There are two separate
22// passes because there's a useful separation of concerns. A dependence exists
23// if two conditions are met:
24//
25//    1) Two instructions reference the same memory location, and
26//    2) There is a flow of control leading from one instruction to the other.
27//
28// DependenceAnalysis attacks the first condition; DependenceGraph will attack
29// the second (it's not yet ready).
30//
31// Please note that this is work in progress and the interface is subject to
32// change.
33//
34// Plausible changes:
35//    Return a set of more precise dependences instead of just one dependence
36//    summarizing all.
37//
38//===----------------------------------------------------------------------===//
39
40#ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
41#define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
42
43#include "llvm/ADT/SmallBitVector.h"
44#include "llvm/Analysis/AliasAnalysis.h"
45#include "llvm/IR/Instructions.h"
46#include "llvm/Pass.h"
47
48namespace llvm {
49template <typename T> class ArrayRef;
50  class Loop;
51  class LoopInfo;
52  class ScalarEvolution;
53  class SCEV;
54  class SCEVConstant;
55  class raw_ostream;
56
57  /// Dependence - This class represents a dependence between two memory
58  /// memory references in a function. It contains minimal information and
59  /// is used in the very common situation where the compiler is unable to
60  /// determine anything beyond the existence of a dependence; that is, it
61  /// represents a confused dependence (see also FullDependence). In most
62  /// cases (for output, flow, and anti dependences), the dependence implies
63  /// an ordering, where the source must precede the destination; in contrast,
64  /// input dependences are unordered.
65  ///
66  /// When a dependence graph is built, each Dependence will be a member of
67  /// the set of predecessor edges for its destination instruction and a set
68  /// if successor edges for its source instruction. These sets are represented
69  /// as singly-linked lists, with the "next" fields stored in the dependence
70  /// itelf.
71  class Dependence {
72  protected:
73    Dependence(const Dependence &) = default;
74
75    // FIXME: When we move to MSVC 2015 as the base compiler for Visual Studio
76    // support, uncomment this line to allow a defaulted move constructor for
77    // Dependence. Currently, FullDependence relies on the copy constructor, but
78    // that is acceptable given the triviality of the class.
79    // Dependence(Dependence &&) = default;
80
81  public:
82    Dependence(Instruction *Source,
83               Instruction *Destination) :
84      Src(Source),
85      Dst(Destination),
86      NextPredecessor(nullptr),
87      NextSuccessor(nullptr) {}
88    virtual ~Dependence() {}
89
90    /// Dependence::DVEntry - Each level in the distance/direction vector
91    /// has a direction (or perhaps a union of several directions), and
92    /// perhaps a distance.
93    struct DVEntry {
94      enum { NONE = 0,
95             LT = 1,
96             EQ = 2,
97             LE = 3,
98             GT = 4,
99             NE = 5,
100             GE = 6,
101             ALL = 7 };
102      unsigned char Direction : 3; // Init to ALL, then refine.
103      bool Scalar    : 1; // Init to true.
104      bool PeelFirst : 1; // Peeling the first iteration will break dependence.
105      bool PeelLast  : 1; // Peeling the last iteration will break the dependence.
106      bool Splitable : 1; // Splitting the loop will break dependence.
107      const SCEV *Distance; // NULL implies no distance available.
108      DVEntry() : Direction(ALL), Scalar(true), PeelFirst(false),
109                  PeelLast(false), Splitable(false), Distance(nullptr) { }
110    };
111
112    /// getSrc - Returns the source instruction for this dependence.
113    ///
114    Instruction *getSrc() const { return Src; }
115
116    /// getDst - Returns the destination instruction for this dependence.
117    ///
118    Instruction *getDst() const { return Dst; }
119
120    /// isInput - Returns true if this is an input dependence.
121    ///
122    bool isInput() const;
123
124    /// isOutput - Returns true if this is an output dependence.
125    ///
126    bool isOutput() const;
127
128    /// isFlow - Returns true if this is a flow (aka true) dependence.
129    ///
130    bool isFlow() const;
131
132    /// isAnti - Returns true if this is an anti dependence.
133    ///
134    bool isAnti() const;
135
136    /// isOrdered - Returns true if dependence is Output, Flow, or Anti
137    ///
138    bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
139
140    /// isUnordered - Returns true if dependence is Input
141    ///
142    bool isUnordered() const { return isInput(); }
143
144    /// isLoopIndependent - Returns true if this is a loop-independent
145    /// dependence.
146    virtual bool isLoopIndependent() const { return true; }
147
148    /// isConfused - Returns true if this dependence is confused
149    /// (the compiler understands nothing and makes worst-case
150    /// assumptions).
151    virtual bool isConfused() const { return true; }
152
153    /// isConsistent - Returns true if this dependence is consistent
154    /// (occurs every time the source and destination are executed).
155    virtual bool isConsistent() const { return false; }
156
157    /// getLevels - Returns the number of common loops surrounding the
158    /// source and destination of the dependence.
159    virtual unsigned getLevels() const { return 0; }
160
161    /// getDirection - Returns the direction associated with a particular
162    /// level.
163    virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
164
165    /// getDistance - Returns the distance (or NULL) associated with a
166    /// particular level.
167    virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
168
169    /// isPeelFirst - Returns true if peeling the first iteration from
170    /// this loop will break this dependence.
171    virtual bool isPeelFirst(unsigned Level) const { return false; }
172
173    /// isPeelLast - Returns true if peeling the last iteration from
174    /// this loop will break this dependence.
175    virtual bool isPeelLast(unsigned Level) const { return false; }
176
177    /// isSplitable - Returns true if splitting this loop will break
178    /// the dependence.
179    virtual bool isSplitable(unsigned Level) const { return false; }
180
181    /// isScalar - Returns true if a particular level is scalar; that is,
182    /// if no subscript in the source or destination mention the induction
183    /// variable associated with the loop at this level.
184    virtual bool isScalar(unsigned Level) const;
185
186    /// getNextPredecessor - Returns the value of the NextPredecessor
187    /// field.
188    const Dependence *getNextPredecessor() const { return NextPredecessor; }
189
190    /// getNextSuccessor - Returns the value of the NextSuccessor
191    /// field.
192    const Dependence *getNextSuccessor() const { return NextSuccessor; }
193
194    /// setNextPredecessor - Sets the value of the NextPredecessor
195    /// field.
196    void setNextPredecessor(const Dependence *pred) { NextPredecessor = pred; }
197
198    /// setNextSuccessor - Sets the value of the NextSuccessor
199    /// field.
200    void setNextSuccessor(const Dependence *succ) { NextSuccessor = succ; }
201
202    /// dump - For debugging purposes, dumps a dependence to OS.
203    ///
204    void dump(raw_ostream &OS) const;
205
206  private:
207    Instruction *Src, *Dst;
208    const Dependence *NextPredecessor, *NextSuccessor;
209    friend class DependenceInfo;
210  };
211
212  /// FullDependence - This class represents a dependence between two memory
213  /// references in a function. It contains detailed information about the
214  /// dependence (direction vectors, etc.) and is used when the compiler is
215  /// able to accurately analyze the interaction of the references; that is,
216  /// it is not a confused dependence (see Dependence). In most cases
217  /// (for output, flow, and anti dependences), the dependence implies an
218  /// ordering, where the source must precede the destination; in contrast,
219  /// input dependences are unordered.
220  class FullDependence final : public Dependence {
221  public:
222    FullDependence(Instruction *Src, Instruction *Dst, bool LoopIndependent,
223                   unsigned Levels);
224
225    FullDependence(FullDependence &&RHS)
226        : Dependence(std::move(RHS)), Levels(RHS.Levels),
227          LoopIndependent(RHS.LoopIndependent), Consistent(RHS.Consistent),
228          DV(std::move(RHS.DV)) {}
229
230    /// isLoopIndependent - Returns true if this is a loop-independent
231    /// dependence.
232    bool isLoopIndependent() const override { return LoopIndependent; }
233
234    /// isConfused - Returns true if this dependence is confused
235    /// (the compiler understands nothing and makes worst-case
236    /// assumptions).
237    bool isConfused() const override { return false; }
238
239    /// isConsistent - Returns true if this dependence is consistent
240    /// (occurs every time the source and destination are executed).
241    bool isConsistent() const override { return Consistent; }
242
243    /// getLevels - Returns the number of common loops surrounding the
244    /// source and destination of the dependence.
245    unsigned getLevels() const override { return Levels; }
246
247    /// getDirection - Returns the direction associated with a particular
248    /// level.
249    unsigned getDirection(unsigned Level) const override;
250
251    /// getDistance - Returns the distance (or NULL) associated with a
252    /// particular level.
253    const SCEV *getDistance(unsigned Level) const override;
254
255    /// isPeelFirst - Returns true if peeling the first iteration from
256    /// this loop will break this dependence.
257    bool isPeelFirst(unsigned Level) const override;
258
259    /// isPeelLast - Returns true if peeling the last iteration from
260    /// this loop will break this dependence.
261    bool isPeelLast(unsigned Level) const override;
262
263    /// isSplitable - Returns true if splitting the loop will break
264    /// the dependence.
265    bool isSplitable(unsigned Level) const override;
266
267    /// isScalar - Returns true if a particular level is scalar; that is,
268    /// if no subscript in the source or destination mention the induction
269    /// variable associated with the loop at this level.
270    bool isScalar(unsigned Level) const override;
271
272  private:
273    unsigned short Levels;
274    bool LoopIndependent;
275    bool Consistent; // Init to true, then refine.
276    std::unique_ptr<DVEntry[]> DV;
277    friend class DependenceInfo;
278  };
279
280  /// DependenceInfo - This class is the main dependence-analysis driver.
281  ///
282  class DependenceInfo {
283  public:
284    DependenceInfo(Function *F, AliasAnalysis *AA, ScalarEvolution *SE,
285                   LoopInfo *LI)
286        : AA(AA), SE(SE), LI(LI), F(F) {}
287
288    /// depends - Tests for a dependence between the Src and Dst instructions.
289    /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
290    /// FullDependence) with as much information as can be gleaned.
291    /// The flag PossiblyLoopIndependent should be set by the caller
292    /// if it appears that control flow can reach from Src to Dst
293    /// without traversing a loop back edge.
294    std::unique_ptr<Dependence> depends(Instruction *Src,
295                                        Instruction *Dst,
296                                        bool PossiblyLoopIndependent);
297
298    /// getSplitIteration - Give a dependence that's splittable at some
299    /// particular level, return the iteration that should be used to split
300    /// the loop.
301    ///
302    /// Generally, the dependence analyzer will be used to build
303    /// a dependence graph for a function (basically a map from instructions
304    /// to dependences). Looking for cycles in the graph shows us loops
305    /// that cannot be trivially vectorized/parallelized.
306    ///
307    /// We can try to improve the situation by examining all the dependences
308    /// that make up the cycle, looking for ones we can break.
309    /// Sometimes, peeling the first or last iteration of a loop will break
310    /// dependences, and there are flags for those possibilities.
311    /// Sometimes, splitting a loop at some other iteration will do the trick,
312    /// and we've got a flag for that case. Rather than waste the space to
313    /// record the exact iteration (since we rarely know), we provide
314    /// a method that calculates the iteration. It's a drag that it must work
315    /// from scratch, but wonderful in that it's possible.
316    ///
317    /// Here's an example:
318    ///
319    ///    for (i = 0; i < 10; i++)
320    ///        A[i] = ...
321    ///        ... = A[11 - i]
322    ///
323    /// There's a loop-carried flow dependence from the store to the load,
324    /// found by the weak-crossing SIV test. The dependence will have a flag,
325    /// indicating that the dependence can be broken by splitting the loop.
326    /// Calling getSplitIteration will return 5.
327    /// Splitting the loop breaks the dependence, like so:
328    ///
329    ///    for (i = 0; i <= 5; i++)
330    ///        A[i] = ...
331    ///        ... = A[11 - i]
332    ///    for (i = 6; i < 10; i++)
333    ///        A[i] = ...
334    ///        ... = A[11 - i]
335    ///
336    /// breaks the dependence and allows us to vectorize/parallelize
337    /// both loops.
338    const SCEV *getSplitIteration(const Dependence &Dep, unsigned Level);
339
340    Function *getFunction() const { return F; }
341
342  private:
343    AliasAnalysis *AA;
344    ScalarEvolution *SE;
345    LoopInfo *LI;
346    Function *F;
347
348    /// Subscript - This private struct represents a pair of subscripts from
349    /// a pair of potentially multi-dimensional array references. We use a
350    /// vector of them to guide subscript partitioning.
351    struct Subscript {
352      const SCEV *Src;
353      const SCEV *Dst;
354      enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
355      SmallBitVector Loops;
356      SmallBitVector GroupLoops;
357      SmallBitVector Group;
358    };
359
360    struct CoefficientInfo {
361      const SCEV *Coeff;
362      const SCEV *PosPart;
363      const SCEV *NegPart;
364      const SCEV *Iterations;
365    };
366
367    struct BoundInfo {
368      const SCEV *Iterations;
369      const SCEV *Upper[8];
370      const SCEV *Lower[8];
371      unsigned char Direction;
372      unsigned char DirSet;
373    };
374
375    /// Constraint - This private class represents a constraint, as defined
376    /// in the paper
377    ///
378    ///           Practical Dependence Testing
379    ///           Goff, Kennedy, Tseng
380    ///           PLDI 1991
381    ///
382    /// There are 5 kinds of constraint, in a hierarchy.
383    ///   1) Any - indicates no constraint, any dependence is possible.
384    ///   2) Line - A line ax + by = c, where a, b, and c are parameters,
385    ///             representing the dependence equation.
386    ///   3) Distance - The value d of the dependence distance;
387    ///   4) Point - A point <x, y> representing the dependence from
388    ///              iteration x to iteration y.
389    ///   5) Empty - No dependence is possible.
390    class Constraint {
391    private:
392      enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
393      ScalarEvolution *SE;
394      const SCEV *A;
395      const SCEV *B;
396      const SCEV *C;
397      const Loop *AssociatedLoop;
398
399    public:
400      /// isEmpty - Return true if the constraint is of kind Empty.
401      bool isEmpty() const { return Kind == Empty; }
402
403      /// isPoint - Return true if the constraint is of kind Point.
404      bool isPoint() const { return Kind == Point; }
405
406      /// isDistance - Return true if the constraint is of kind Distance.
407      bool isDistance() const { return Kind == Distance; }
408
409      /// isLine - Return true if the constraint is of kind Line.
410      /// Since Distance's can also be represented as Lines, we also return
411      /// true if the constraint is of kind Distance.
412      bool isLine() const { return Kind == Line || Kind == Distance; }
413
414      /// isAny - Return true if the constraint is of kind Any;
415      bool isAny() const { return Kind == Any; }
416
417      /// getX - If constraint is a point <X, Y>, returns X.
418      /// Otherwise assert.
419      const SCEV *getX() const;
420
421      /// getY - If constraint is a point <X, Y>, returns Y.
422      /// Otherwise assert.
423      const SCEV *getY() const;
424
425      /// getA - If constraint is a line AX + BY = C, returns A.
426      /// Otherwise assert.
427      const SCEV *getA() const;
428
429      /// getB - If constraint is a line AX + BY = C, returns B.
430      /// Otherwise assert.
431      const SCEV *getB() const;
432
433      /// getC - If constraint is a line AX + BY = C, returns C.
434      /// Otherwise assert.
435      const SCEV *getC() const;
436
437      /// getD - If constraint is a distance, returns D.
438      /// Otherwise assert.
439      const SCEV *getD() const;
440
441      /// getAssociatedLoop - Returns the loop associated with this constraint.
442      const Loop *getAssociatedLoop() const;
443
444      /// setPoint - Change a constraint to Point.
445      void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);
446
447      /// setLine - Change a constraint to Line.
448      void setLine(const SCEV *A, const SCEV *B,
449                   const SCEV *C, const Loop *CurrentLoop);
450
451      /// setDistance - Change a constraint to Distance.
452      void setDistance(const SCEV *D, const Loop *CurrentLoop);
453
454      /// setEmpty - Change a constraint to Empty.
455      void setEmpty();
456
457      /// setAny - Change a constraint to Any.
458      void setAny(ScalarEvolution *SE);
459
460      /// dump - For debugging purposes. Dumps the constraint
461      /// out to OS.
462      void dump(raw_ostream &OS) const;
463    };
464
465    /// establishNestingLevels - Examines the loop nesting of the Src and Dst
466    /// instructions and establishes their shared loops. Sets the variables
467    /// CommonLevels, SrcLevels, and MaxLevels.
468    /// The source and destination instructions needn't be contained in the same
469    /// loop. The routine establishNestingLevels finds the level of most deeply
470    /// nested loop that contains them both, CommonLevels. An instruction that's
471    /// not contained in a loop is at level = 0. MaxLevels is equal to the level
472    /// of the source plus the level of the destination, minus CommonLevels.
473    /// This lets us allocate vectors MaxLevels in length, with room for every
474    /// distinct loop referenced in both the source and destination subscripts.
475    /// The variable SrcLevels is the nesting depth of the source instruction.
476    /// It's used to help calculate distinct loops referenced by the destination.
477    /// Here's the map from loops to levels:
478    ///            0 - unused
479    ///            1 - outermost common loop
480    ///          ... - other common loops
481    /// CommonLevels - innermost common loop
482    ///          ... - loops containing Src but not Dst
483    ///    SrcLevels - innermost loop containing Src but not Dst
484    ///          ... - loops containing Dst but not Src
485    ///    MaxLevels - innermost loop containing Dst but not Src
486    /// Consider the follow code fragment:
487    ///    for (a = ...) {
488    ///      for (b = ...) {
489    ///        for (c = ...) {
490    ///          for (d = ...) {
491    ///            A[] = ...;
492    ///          }
493    ///        }
494    ///        for (e = ...) {
495    ///          for (f = ...) {
496    ///            for (g = ...) {
497    ///              ... = A[];
498    ///            }
499    ///          }
500    ///        }
501    ///      }
502    ///    }
503    /// If we're looking at the possibility of a dependence between the store
504    /// to A (the Src) and the load from A (the Dst), we'll note that they
505    /// have 2 loops in common, so CommonLevels will equal 2 and the direction
506    /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
507    /// A map from loop names to level indices would look like
508    ///     a - 1
509    ///     b - 2 = CommonLevels
510    ///     c - 3
511    ///     d - 4 = SrcLevels
512    ///     e - 5
513    ///     f - 6
514    ///     g - 7 = MaxLevels
515    void establishNestingLevels(const Instruction *Src,
516                                const Instruction *Dst);
517
518    unsigned CommonLevels, SrcLevels, MaxLevels;
519
520    /// mapSrcLoop - Given one of the loops containing the source, return
521    /// its level index in our numbering scheme.
522    unsigned mapSrcLoop(const Loop *SrcLoop) const;
523
524    /// mapDstLoop - Given one of the loops containing the destination,
525    /// return its level index in our numbering scheme.
526    unsigned mapDstLoop(const Loop *DstLoop) const;
527
528    /// isLoopInvariant - Returns true if Expression is loop invariant
529    /// in LoopNest.
530    bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
531
532    /// Makes sure all subscript pairs share the same integer type by
533    /// sign-extending as necessary.
534    /// Sign-extending a subscript is safe because getelementptr assumes the
535    /// array subscripts are signed.
536    void unifySubscriptType(ArrayRef<Subscript *> Pairs);
537
538    /// removeMatchingExtensions - Examines a subscript pair.
539    /// If the source and destination are identically sign (or zero)
540    /// extended, it strips off the extension in an effort to
541    /// simplify the actual analysis.
542    void removeMatchingExtensions(Subscript *Pair);
543
544    /// collectCommonLoops - Finds the set of loops from the LoopNest that
545    /// have a level <= CommonLevels and are referred to by the SCEV Expression.
546    void collectCommonLoops(const SCEV *Expression,
547                            const Loop *LoopNest,
548                            SmallBitVector &Loops) const;
549
550    /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
551    /// linear. Collect the set of loops mentioned by Src.
552    bool checkSrcSubscript(const SCEV *Src,
553                           const Loop *LoopNest,
554                           SmallBitVector &Loops);
555
556    /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
557    /// linear. Collect the set of loops mentioned by Dst.
558    bool checkDstSubscript(const SCEV *Dst,
559                           const Loop *LoopNest,
560                           SmallBitVector &Loops);
561
562    /// isKnownPredicate - Compare X and Y using the predicate Pred.
563    /// Basically a wrapper for SCEV::isKnownPredicate,
564    /// but tries harder, especially in the presence of sign and zero
565    /// extensions and symbolics.
566    bool isKnownPredicate(ICmpInst::Predicate Pred,
567                          const SCEV *X,
568                          const SCEV *Y) const;
569
570    /// collectUpperBound - All subscripts are the same type (on my machine,
571    /// an i64). The loop bound may be a smaller type. collectUpperBound
572    /// find the bound, if available, and zero extends it to the Type T.
573    /// (I zero extend since the bound should always be >= 0.)
574    /// If no upper bound is available, return NULL.
575    const SCEV *collectUpperBound(const Loop *l, Type *T) const;
576
577    /// collectConstantUpperBound - Calls collectUpperBound(), then
578    /// attempts to cast it to SCEVConstant. If the cast fails,
579    /// returns NULL.
580    const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
581
582    /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
583    /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
584    /// Collects the associated loops in a set.
585    Subscript::ClassificationKind classifyPair(const SCEV *Src,
586                                           const Loop *SrcLoopNest,
587                                           const SCEV *Dst,
588                                           const Loop *DstLoopNest,
589                                           SmallBitVector &Loops);
590
591    /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
592    /// Returns true if any possible dependence is disproved.
593    /// If there might be a dependence, returns false.
594    /// If the dependence isn't proven to exist,
595    /// marks the Result as inconsistent.
596    bool testZIV(const SCEV *Src,
597                 const SCEV *Dst,
598                 FullDependence &Result) const;
599
600    /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
601    /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
602    /// i and j are induction variables, c1 and c2 are loop invariant,
603    /// and a1 and a2 are constant.
604    /// Returns true if any possible dependence is disproved.
605    /// If there might be a dependence, returns false.
606    /// Sets appropriate direction vector entry and, when possible,
607    /// the distance vector entry.
608    /// If the dependence isn't proven to exist,
609    /// marks the Result as inconsistent.
610    bool testSIV(const SCEV *Src,
611                 const SCEV *Dst,
612                 unsigned &Level,
613                 FullDependence &Result,
614                 Constraint &NewConstraint,
615                 const SCEV *&SplitIter) const;
616
617    /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
618    /// Things of the form [c1 + a1*i] and [c2 + a2*j]
619    /// where i and j are induction variables, c1 and c2 are loop invariant,
620    /// and a1 and a2 are constant.
621    /// With minor algebra, this test can also be used for things like
622    /// [c1 + a1*i + a2*j][c2].
623    /// Returns true if any possible dependence is disproved.
624    /// If there might be a dependence, returns false.
625    /// Marks the Result as inconsistent.
626    bool testRDIV(const SCEV *Src,
627                  const SCEV *Dst,
628                  FullDependence &Result) const;
629
630    /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
631    /// Returns true if dependence disproved.
632    /// Can sometimes refine direction vectors.
633    bool testMIV(const SCEV *Src,
634                 const SCEV *Dst,
635                 const SmallBitVector &Loops,
636                 FullDependence &Result) const;
637
638    /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
639    /// for dependence.
640    /// Things of the form [c1 + a*i] and [c2 + a*i],
641    /// where i is an induction variable, c1 and c2 are loop invariant,
642    /// and a is a constant
643    /// Returns true if any possible dependence is disproved.
644    /// If there might be a dependence, returns false.
645    /// Sets appropriate direction and distance.
646    bool strongSIVtest(const SCEV *Coeff,
647                       const SCEV *SrcConst,
648                       const SCEV *DstConst,
649                       const Loop *CurrentLoop,
650                       unsigned Level,
651                       FullDependence &Result,
652                       Constraint &NewConstraint) const;
653
654    /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
655    /// (Src and Dst) for dependence.
656    /// Things of the form [c1 + a*i] and [c2 - a*i],
657    /// where i is an induction variable, c1 and c2 are loop invariant,
658    /// and a is a constant.
659    /// Returns true if any possible dependence is disproved.
660    /// If there might be a dependence, returns false.
661    /// Sets appropriate direction entry.
662    /// Set consistent to false.
663    /// Marks the dependence as splitable.
664    bool weakCrossingSIVtest(const SCEV *SrcCoeff,
665                             const SCEV *SrcConst,
666                             const SCEV *DstConst,
667                             const Loop *CurrentLoop,
668                             unsigned Level,
669                             FullDependence &Result,
670                             Constraint &NewConstraint,
671                             const SCEV *&SplitIter) const;
672
673    /// ExactSIVtest - Tests the SIV subscript pair
674    /// (Src and Dst) for dependence.
675    /// Things of the form [c1 + a1*i] and [c2 + a2*i],
676    /// where i is an induction variable, c1 and c2 are loop invariant,
677    /// and a1 and a2 are constant.
678    /// Returns true if any possible dependence is disproved.
679    /// If there might be a dependence, returns false.
680    /// Sets appropriate direction entry.
681    /// Set consistent to false.
682    bool exactSIVtest(const SCEV *SrcCoeff,
683                      const SCEV *DstCoeff,
684                      const SCEV *SrcConst,
685                      const SCEV *DstConst,
686                      const Loop *CurrentLoop,
687                      unsigned Level,
688                      FullDependence &Result,
689                      Constraint &NewConstraint) const;
690
691    /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
692    /// (Src and Dst) for dependence.
693    /// Things of the form [c1] and [c2 + a*i],
694    /// where i is an induction variable, c1 and c2 are loop invariant,
695    /// and a is a constant. See also weakZeroDstSIVtest.
696    /// Returns true if any possible dependence is disproved.
697    /// If there might be a dependence, returns false.
698    /// Sets appropriate direction entry.
699    /// Set consistent to false.
700    /// If loop peeling will break the dependence, mark appropriately.
701    bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
702                            const SCEV *SrcConst,
703                            const SCEV *DstConst,
704                            const Loop *CurrentLoop,
705                            unsigned Level,
706                            FullDependence &Result,
707                            Constraint &NewConstraint) const;
708
709    /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
710    /// (Src and Dst) for dependence.
711    /// Things of the form [c1 + a*i] and [c2],
712    /// where i is an induction variable, c1 and c2 are loop invariant,
713    /// and a is a constant. See also weakZeroSrcSIVtest.
714    /// Returns true if any possible dependence is disproved.
715    /// If there might be a dependence, returns false.
716    /// Sets appropriate direction entry.
717    /// Set consistent to false.
718    /// If loop peeling will break the dependence, mark appropriately.
719    bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
720                            const SCEV *SrcConst,
721                            const SCEV *DstConst,
722                            const Loop *CurrentLoop,
723                            unsigned Level,
724                            FullDependence &Result,
725                            Constraint &NewConstraint) const;
726
727    /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
728    /// Things of the form [c1 + a*i] and [c2 + b*j],
729    /// where i and j are induction variable, c1 and c2 are loop invariant,
730    /// and a and b are constants.
731    /// Returns true if any possible dependence is disproved.
732    /// Marks the result as inconsistent.
733    /// Works in some cases that symbolicRDIVtest doesn't,
734    /// and vice versa.
735    bool exactRDIVtest(const SCEV *SrcCoeff,
736                       const SCEV *DstCoeff,
737                       const SCEV *SrcConst,
738                       const SCEV *DstConst,
739                       const Loop *SrcLoop,
740                       const Loop *DstLoop,
741                       FullDependence &Result) const;
742
743    /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
744    /// Things of the form [c1 + a*i] and [c2 + b*j],
745    /// where i and j are induction variable, c1 and c2 are loop invariant,
746    /// and a and b are constants.
747    /// Returns true if any possible dependence is disproved.
748    /// Marks the result as inconsistent.
749    /// Works in some cases that exactRDIVtest doesn't,
750    /// and vice versa. Can also be used as a backup for
751    /// ordinary SIV tests.
752    bool symbolicRDIVtest(const SCEV *SrcCoeff,
753                          const SCEV *DstCoeff,
754                          const SCEV *SrcConst,
755                          const SCEV *DstConst,
756                          const Loop *SrcLoop,
757                          const Loop *DstLoop) const;
758
759    /// gcdMIVtest - Tests an MIV subscript pair for dependence.
760    /// Returns true if any possible dependence is disproved.
761    /// Marks the result as inconsistent.
762    /// Can sometimes disprove the equal direction for 1 or more loops.
763    //  Can handle some symbolics that even the SIV tests don't get,
764    /// so we use it as a backup for everything.
765    bool gcdMIVtest(const SCEV *Src,
766                    const SCEV *Dst,
767                    FullDependence &Result) const;
768
769    /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
770    /// Returns true if any possible dependence is disproved.
771    /// Marks the result as inconsistent.
772    /// Computes directions.
773    bool banerjeeMIVtest(const SCEV *Src,
774                         const SCEV *Dst,
775                         const SmallBitVector &Loops,
776                         FullDependence &Result) const;
777
778    /// collectCoefficientInfo - Walks through the subscript,
779    /// collecting each coefficient, the associated loop bounds,
780    /// and recording its positive and negative parts for later use.
781    CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
782                                      bool SrcFlag,
783                                      const SCEV *&Constant) const;
784
785    /// getPositivePart - X^+ = max(X, 0).
786    ///
787    const SCEV *getPositivePart(const SCEV *X) const;
788
789    /// getNegativePart - X^- = min(X, 0).
790    ///
791    const SCEV *getNegativePart(const SCEV *X) const;
792
793    /// getLowerBound - Looks through all the bounds info and
794    /// computes the lower bound given the current direction settings
795    /// at each level.
796    const SCEV *getLowerBound(BoundInfo *Bound) const;
797
798    /// getUpperBound - Looks through all the bounds info and
799    /// computes the upper bound given the current direction settings
800    /// at each level.
801    const SCEV *getUpperBound(BoundInfo *Bound) const;
802
803    /// exploreDirections - Hierarchically expands the direction vector
804    /// search space, combining the directions of discovered dependences
805    /// in the DirSet field of Bound. Returns the number of distinct
806    /// dependences discovered. If the dependence is disproved,
807    /// it will return 0.
808    unsigned exploreDirections(unsigned Level,
809                               CoefficientInfo *A,
810                               CoefficientInfo *B,
811                               BoundInfo *Bound,
812                               const SmallBitVector &Loops,
813                               unsigned &DepthExpanded,
814                               const SCEV *Delta) const;
815
816    /// testBounds - Returns true iff the current bounds are plausible.
817    bool testBounds(unsigned char DirKind,
818                    unsigned Level,
819                    BoundInfo *Bound,
820                    const SCEV *Delta) const;
821
822    /// findBoundsALL - Computes the upper and lower bounds for level K
823    /// using the * direction. Records them in Bound.
824    void findBoundsALL(CoefficientInfo *A,
825                       CoefficientInfo *B,
826                       BoundInfo *Bound,
827                       unsigned K) const;
828
829    /// findBoundsLT - Computes the upper and lower bounds for level K
830    /// using the < direction. Records them in Bound.
831    void findBoundsLT(CoefficientInfo *A,
832                      CoefficientInfo *B,
833                      BoundInfo *Bound,
834                      unsigned K) const;
835
836    /// findBoundsGT - Computes the upper and lower bounds for level K
837    /// using the > direction. Records them in Bound.
838    void findBoundsGT(CoefficientInfo *A,
839                      CoefficientInfo *B,
840                      BoundInfo *Bound,
841                      unsigned K) const;
842
843    /// findBoundsEQ - Computes the upper and lower bounds for level K
844    /// using the = direction. Records them in Bound.
845    void findBoundsEQ(CoefficientInfo *A,
846                      CoefficientInfo *B,
847                      BoundInfo *Bound,
848                      unsigned K) const;
849
850    /// intersectConstraints - Updates X with the intersection
851    /// of the Constraints X and Y. Returns true if X has changed.
852    bool intersectConstraints(Constraint *X,
853                              const Constraint *Y);
854
855    /// propagate - Review the constraints, looking for opportunities
856    /// to simplify a subscript pair (Src and Dst).
857    /// Return true if some simplification occurs.
858    /// If the simplification isn't exact (that is, if it is conservative
859    /// in terms of dependence), set consistent to false.
860    bool propagate(const SCEV *&Src,
861                   const SCEV *&Dst,
862                   SmallBitVector &Loops,
863                   SmallVectorImpl<Constraint> &Constraints,
864                   bool &Consistent);
865
866    /// propagateDistance - Attempt to propagate a distance
867    /// constraint into a subscript pair (Src and Dst).
868    /// Return true if some simplification occurs.
869    /// If the simplification isn't exact (that is, if it is conservative
870    /// in terms of dependence), set consistent to false.
871    bool propagateDistance(const SCEV *&Src,
872                           const SCEV *&Dst,
873                           Constraint &CurConstraint,
874                           bool &Consistent);
875
876    /// propagatePoint - Attempt to propagate a point
877    /// constraint into a subscript pair (Src and Dst).
878    /// Return true if some simplification occurs.
879    bool propagatePoint(const SCEV *&Src,
880                        const SCEV *&Dst,
881                        Constraint &CurConstraint);
882
883    /// propagateLine - Attempt to propagate a line
884    /// constraint into a subscript pair (Src and Dst).
885    /// Return true if some simplification occurs.
886    /// If the simplification isn't exact (that is, if it is conservative
887    /// in terms of dependence), set consistent to false.
888    bool propagateLine(const SCEV *&Src,
889                       const SCEV *&Dst,
890                       Constraint &CurConstraint,
891                       bool &Consistent);
892
893    /// findCoefficient - Given a linear SCEV,
894    /// return the coefficient corresponding to specified loop.
895    /// If there isn't one, return the SCEV constant 0.
896    /// For example, given a*i + b*j + c*k, returning the coefficient
897    /// corresponding to the j loop would yield b.
898    const SCEV *findCoefficient(const SCEV *Expr,
899                                const Loop *TargetLoop) const;
900
901    /// zeroCoefficient - Given a linear SCEV,
902    /// return the SCEV given by zeroing out the coefficient
903    /// corresponding to the specified loop.
904    /// For example, given a*i + b*j + c*k, zeroing the coefficient
905    /// corresponding to the j loop would yield a*i + c*k.
906    const SCEV *zeroCoefficient(const SCEV *Expr,
907                                const Loop *TargetLoop) const;
908
909    /// addToCoefficient - Given a linear SCEV Expr,
910    /// return the SCEV given by adding some Value to the
911    /// coefficient corresponding to the specified TargetLoop.
912    /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
913    /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
914    const SCEV *addToCoefficient(const SCEV *Expr,
915                                 const Loop *TargetLoop,
916                                 const SCEV *Value)  const;
917
918    /// updateDirection - Update direction vector entry
919    /// based on the current constraint.
920    void updateDirection(Dependence::DVEntry &Level,
921                         const Constraint &CurConstraint) const;
922
923    bool tryDelinearize(Instruction *Src, Instruction *Dst,
924                        SmallVectorImpl<Subscript> &Pair);
925  }; // class DependenceInfo
926
927  /// \brief AnalysisPass to compute dependence information in a function
928  class DependenceAnalysis : public AnalysisInfoMixin<DependenceAnalysis> {
929  public:
930    typedef DependenceInfo Result;
931    Result run(Function &F, FunctionAnalysisManager &FAM);
932
933  private:
934    static char PassID;
935    friend struct AnalysisInfoMixin<DependenceAnalysis>;
936  }; // class DependenceAnalysis
937
938  /// \brief Legacy pass manager pass to access dependence information
939  class DependenceAnalysisWrapperPass : public FunctionPass {
940  public:
941    static char ID; // Class identification, replacement for typeinfo
942    DependenceAnalysisWrapperPass() : FunctionPass(ID) {
943      initializeDependenceAnalysisWrapperPassPass(
944          *PassRegistry::getPassRegistry());
945    }
946
947    bool runOnFunction(Function &F) override;
948    void releaseMemory() override;
949    void getAnalysisUsage(AnalysisUsage &) const override;
950    void print(raw_ostream &, const Module * = nullptr) const override;
951    DependenceInfo &getDI() const;
952
953  private:
954    std::unique_ptr<DependenceInfo> info;
955  }; // class DependenceAnalysisWrapperPass
956
957  /// createDependenceAnalysisPass - This creates an instance of the
958  /// DependenceAnalysis wrapper pass.
959  FunctionPass *createDependenceAnalysisWrapperPass();
960
961} // namespace llvm
962
963#endif
964