1//===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass.  Given some numbering of
11// each the machine instructions (in this implemention depth-first order) an
12// interval [i, j) is said to be a live interval for register v if there is no
13// instruction with number j' > j such that v is live at j' and there is no
14// instruction with number i' < i such that v is live at i'. In this
15// implementation intervals can have holes, i.e. an interval might look like
16// [1,20), [50,65), [1000,1001).
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_CODEGEN_LIVEINTERVALANALYSIS_H
21#define LLVM_CODEGEN_LIVEINTERVALANALYSIS_H
22
23#include "llvm/ADT/IndexedMap.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/CodeGen/LiveInterval.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/SlotIndexes.h"
30#include "llvm/Support/Allocator.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include <cmath>
34
35namespace llvm {
36
37extern cl::opt<bool> UseSegmentSetForPhysRegs;
38
39  class BitVector;
40  class BlockFrequency;
41  class LiveRangeCalc;
42  class LiveVariables;
43  class MachineDominatorTree;
44  class MachineLoopInfo;
45  class TargetRegisterInfo;
46  class MachineRegisterInfo;
47  class TargetInstrInfo;
48  class TargetRegisterClass;
49  class VirtRegMap;
50  class MachineBlockFrequencyInfo;
51
52  class LiveIntervals : public MachineFunctionPass {
53    MachineFunction* MF;
54    MachineRegisterInfo* MRI;
55    const TargetRegisterInfo* TRI;
56    const TargetInstrInfo* TII;
57    AliasAnalysis *AA;
58    SlotIndexes* Indexes;
59    MachineDominatorTree *DomTree;
60    LiveRangeCalc *LRCalc;
61
62    /// Special pool allocator for VNInfo's (LiveInterval val#).
63    ///
64    VNInfo::Allocator VNInfoAllocator;
65
66    /// Live interval pointers for all the virtual registers.
67    IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;
68
69    /// RegMaskSlots - Sorted list of instructions with register mask operands.
70    /// Always use the 'r' slot, RegMasks are normal clobbers, not early
71    /// clobbers.
72    SmallVector<SlotIndex, 8> RegMaskSlots;
73
74    /// RegMaskBits - This vector is parallel to RegMaskSlots, it holds a
75    /// pointer to the corresponding register mask.  This pointer can be
76    /// recomputed as:
77    ///
78    ///   MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
79    ///   unsigned OpNum = findRegMaskOperand(MI);
80    ///   RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
81    ///
82    /// This is kept in a separate vector partly because some standard
83    /// libraries don't support lower_bound() with mixed objects, partly to
84    /// improve locality when searching in RegMaskSlots.
85    /// Also see the comment in LiveInterval::find().
86    SmallVector<const uint32_t*, 8> RegMaskBits;
87
88    /// For each basic block number, keep (begin, size) pairs indexing into the
89    /// RegMaskSlots and RegMaskBits arrays.
90    /// Note that basic block numbers may not be layout contiguous, that's why
91    /// we can't just keep track of the first register mask in each basic
92    /// block.
93    SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
94
95    /// Keeps a live range set for each register unit to track fixed physreg
96    /// interference.
97    SmallVector<LiveRange*, 0> RegUnitRanges;
98
99  public:
100    static char ID; // Pass identification, replacement for typeid
101    LiveIntervals();
102    ~LiveIntervals() override;
103
104    // Calculate the spill weight to assign to a single instruction.
105    static float getSpillWeight(bool isDef, bool isUse,
106                                const MachineBlockFrequencyInfo *MBFI,
107                                const MachineInstr &Instr);
108
109    LiveInterval &getInterval(unsigned Reg) {
110      if (hasInterval(Reg))
111        return *VirtRegIntervals[Reg];
112      else
113        return createAndComputeVirtRegInterval(Reg);
114    }
115
116    const LiveInterval &getInterval(unsigned Reg) const {
117      return const_cast<LiveIntervals*>(this)->getInterval(Reg);
118    }
119
120    bool hasInterval(unsigned Reg) const {
121      return VirtRegIntervals.inBounds(Reg) && VirtRegIntervals[Reg];
122    }
123
124    // Interval creation.
125    LiveInterval &createEmptyInterval(unsigned Reg) {
126      assert(!hasInterval(Reg) && "Interval already exists!");
127      VirtRegIntervals.grow(Reg);
128      VirtRegIntervals[Reg] = createInterval(Reg);
129      return *VirtRegIntervals[Reg];
130    }
131
132    LiveInterval &createAndComputeVirtRegInterval(unsigned Reg) {
133      LiveInterval &LI = createEmptyInterval(Reg);
134      computeVirtRegInterval(LI);
135      return LI;
136    }
137
138    // Interval removal.
139    void removeInterval(unsigned Reg) {
140      delete VirtRegIntervals[Reg];
141      VirtRegIntervals[Reg] = nullptr;
142    }
143
144    /// Given a register and an instruction, adds a live segment from that
145    /// instruction to the end of its MBB.
146    LiveInterval::Segment addSegmentToEndOfBlock(unsigned reg,
147                                                 MachineInstr &startInst);
148
149    /// After removing some uses of a register, shrink its live range to just
150    /// the remaining uses. This method does not compute reaching defs for new
151    /// uses, and it doesn't remove dead defs.
152    /// Dead PHIDef values are marked as unused. New dead machine instructions
153    /// are added to the dead vector. Returns true if the interval may have been
154    /// separated into multiple connected components.
155    bool shrinkToUses(LiveInterval *li,
156                      SmallVectorImpl<MachineInstr*> *dead = nullptr);
157
158    /// Specialized version of
159    /// shrinkToUses(LiveInterval *li, SmallVectorImpl<MachineInstr*> *dead)
160    /// that works on a subregister live range and only looks at uses matching
161    /// the lane mask of the subregister range.
162    /// This may leave the subrange empty which needs to be cleaned up with
163    /// LiveInterval::removeEmptySubranges() afterwards.
164    void shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg);
165
166    /// extendToIndices - Extend the live range of LI to reach all points in
167    /// Indices. The points in the Indices array must be jointly dominated by
168    /// existing defs in LI. PHI-defs are added as needed to maintain SSA form.
169    ///
170    /// If a SlotIndex in Indices is the end index of a basic block, LI will be
171    /// extended to be live out of the basic block.
172    ///
173    /// See also LiveRangeCalc::extend().
174    void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices);
175
176
177    /// If @p LR has a live value at @p Kill, prune its live range by removing
178    /// any liveness reachable from Kill. Add live range end points to
179    /// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
180    /// value's live range.
181    ///
182    /// Calling pruneValue() and extendToIndices() can be used to reconstruct
183    /// SSA form after adding defs to a virtual register.
184    void pruneValue(LiveRange &LR, SlotIndex Kill,
185                    SmallVectorImpl<SlotIndex> *EndPoints);
186
187    SlotIndexes *getSlotIndexes() const {
188      return Indexes;
189    }
190
191    AliasAnalysis *getAliasAnalysis() const {
192      return AA;
193    }
194
195    /// isNotInMIMap - returns true if the specified machine instr has been
196    /// removed or was never entered in the map.
197    bool isNotInMIMap(const MachineInstr &Instr) const {
198      return !Indexes->hasIndex(Instr);
199    }
200
201    /// Returns the base index of the given instruction.
202    SlotIndex getInstructionIndex(const MachineInstr &Instr) const {
203      return Indexes->getInstructionIndex(Instr);
204    }
205
206    /// Returns the instruction associated with the given index.
207    MachineInstr* getInstructionFromIndex(SlotIndex index) const {
208      return Indexes->getInstructionFromIndex(index);
209    }
210
211    /// Return the first index in the given basic block.
212    SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
213      return Indexes->getMBBStartIdx(mbb);
214    }
215
216    /// Return the last index in the given basic block.
217    SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
218      return Indexes->getMBBEndIdx(mbb);
219    }
220
221    bool isLiveInToMBB(const LiveRange &LR,
222                       const MachineBasicBlock *mbb) const {
223      return LR.liveAt(getMBBStartIdx(mbb));
224    }
225
226    bool isLiveOutOfMBB(const LiveRange &LR,
227                        const MachineBasicBlock *mbb) const {
228      return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot());
229    }
230
231    MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
232      return Indexes->getMBBFromIndex(index);
233    }
234
235    void insertMBBInMaps(MachineBasicBlock *MBB) {
236      Indexes->insertMBBInMaps(MBB);
237      assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
238             "Blocks must be added in order.");
239      RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
240    }
241
242    SlotIndex InsertMachineInstrInMaps(MachineInstr &MI) {
243      return Indexes->insertMachineInstrInMaps(MI);
244    }
245
246    void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,
247                                       MachineBasicBlock::iterator E) {
248      for (MachineBasicBlock::iterator I = B; I != E; ++I)
249        Indexes->insertMachineInstrInMaps(*I);
250    }
251
252    void RemoveMachineInstrFromMaps(MachineInstr &MI) {
253      Indexes->removeMachineInstrFromMaps(MI);
254    }
255
256    void ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) {
257      Indexes->replaceMachineInstrInMaps(MI, NewMI);
258    }
259
260    VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
261
262    void getAnalysisUsage(AnalysisUsage &AU) const override;
263    void releaseMemory() override;
264
265    /// runOnMachineFunction - pass entry point
266    bool runOnMachineFunction(MachineFunction&) override;
267
268    /// print - Implement the dump method.
269    void print(raw_ostream &O, const Module* = nullptr) const override;
270
271    /// intervalIsInOneMBB - If LI is confined to a single basic block, return
272    /// a pointer to that block.  If LI is live in to or out of any block,
273    /// return NULL.
274    MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
275
276    /// Returns true if VNI is killed by any PHI-def values in LI.
277    /// This may conservatively return true to avoid expensive computations.
278    bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;
279
280    /// addKillFlags - Add kill flags to any instruction that kills a virtual
281    /// register.
282    void addKillFlags(const VirtRegMap*);
283
284    /// handleMove - call this method to notify LiveIntervals that
285    /// instruction 'mi' has been moved within a basic block. This will update
286    /// the live intervals for all operands of mi. Moves between basic blocks
287    /// are not supported.
288    ///
289    /// \param UpdateFlags Update live intervals for nonallocatable physregs.
290    void handleMove(MachineInstr &MI, bool UpdateFlags = false);
291
292    /// moveIntoBundle - Update intervals for operands of MI so that they
293    /// begin/end on the SlotIndex for BundleStart.
294    ///
295    /// \param UpdateFlags Update live intervals for nonallocatable physregs.
296    ///
297    /// Requires MI and BundleStart to have SlotIndexes, and assumes
298    /// existing liveness is accurate. BundleStart should be the first
299    /// instruction in the Bundle.
300    void handleMoveIntoBundle(MachineInstr &MI, MachineInstr &BundleStart,
301                              bool UpdateFlags = false);
302
303    /// repairIntervalsInRange - Update live intervals for instructions in a
304    /// range of iterators. It is intended for use after target hooks that may
305    /// insert or remove instructions, and is only efficient for a small number
306    /// of instructions.
307    ///
308    /// OrigRegs is a vector of registers that were originally used by the
309    /// instructions in the range between the two iterators.
310    ///
311    /// Currently, the only only changes that are supported are simple removal
312    /// and addition of uses.
313    void repairIntervalsInRange(MachineBasicBlock *MBB,
314                                MachineBasicBlock::iterator Begin,
315                                MachineBasicBlock::iterator End,
316                                ArrayRef<unsigned> OrigRegs);
317
318    // Register mask functions.
319    //
320    // Machine instructions may use a register mask operand to indicate that a
321    // large number of registers are clobbered by the instruction.  This is
322    // typically used for calls.
323    //
324    // For compile time performance reasons, these clobbers are not recorded in
325    // the live intervals for individual physical registers.  Instead,
326    // LiveIntervalAnalysis maintains a sorted list of instructions with
327    // register mask operands.
328
329    /// getRegMaskSlots - Returns a sorted array of slot indices of all
330    /// instructions with register mask operands.
331    ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
332
333    /// getRegMaskSlotsInBlock - Returns a sorted array of slot indices of all
334    /// instructions with register mask operands in the basic block numbered
335    /// MBBNum.
336    ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
337      std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
338      return getRegMaskSlots().slice(P.first, P.second);
339    }
340
341    /// getRegMaskBits() - Returns an array of register mask pointers
342    /// corresponding to getRegMaskSlots().
343    ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
344
345    /// getRegMaskBitsInBlock - Returns an array of mask pointers corresponding
346    /// to getRegMaskSlotsInBlock(MBBNum).
347    ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
348      std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
349      return getRegMaskBits().slice(P.first, P.second);
350    }
351
352    /// checkRegMaskInterference - Test if LI is live across any register mask
353    /// instructions, and compute a bit mask of physical registers that are not
354    /// clobbered by any of them.
355    ///
356    /// Returns false if LI doesn't cross any register mask instructions. In
357    /// that case, the bit vector is not filled in.
358    bool checkRegMaskInterference(LiveInterval &LI,
359                                  BitVector &UsableRegs);
360
361    // Register unit functions.
362    //
363    // Fixed interference occurs when MachineInstrs use physregs directly
364    // instead of virtual registers. This typically happens when passing
365    // arguments to a function call, or when instructions require operands in
366    // fixed registers.
367    //
368    // Each physreg has one or more register units, see MCRegisterInfo. We
369    // track liveness per register unit to handle aliasing registers more
370    // efficiently.
371
372    /// getRegUnit - Return the live range for Unit.
373    /// It will be computed if it doesn't exist.
374    LiveRange &getRegUnit(unsigned Unit) {
375      LiveRange *LR = RegUnitRanges[Unit];
376      if (!LR) {
377        // Compute missing ranges on demand.
378        // Use segment set to speed-up initial computation of the live range.
379        RegUnitRanges[Unit] = LR = new LiveRange(UseSegmentSetForPhysRegs);
380        computeRegUnitRange(*LR, Unit);
381      }
382      return *LR;
383    }
384
385    /// getCachedRegUnit - Return the live range for Unit if it has already
386    /// been computed, or NULL if it hasn't been computed yet.
387    LiveRange *getCachedRegUnit(unsigned Unit) {
388      return RegUnitRanges[Unit];
389    }
390
391    const LiveRange *getCachedRegUnit(unsigned Unit) const {
392      return RegUnitRanges[Unit];
393    }
394
395    /// Remove value numbers and related live segments starting at position
396    /// @p Pos that are part of any liverange of physical register @p Reg or one
397    /// of its subregisters.
398    void removePhysRegDefAt(unsigned Reg, SlotIndex Pos);
399
400    /// Remove value number and related live segments of @p LI and its subranges
401    /// that start at position @p Pos.
402    void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos);
403
404    /// Split separate components in LiveInterval \p LI into separate intervals.
405    void splitSeparateComponents(LiveInterval &LI,
406                                 SmallVectorImpl<LiveInterval*> &SplitLIs);
407
408    /// For live interval \p LI with correct SubRanges construct matching
409    /// information for the main live range. Expects the main live range to not
410    /// have any segments or value numbers.
411    void constructMainRangeFromSubranges(LiveInterval &LI);
412
413  private:
414    /// Compute live intervals for all virtual registers.
415    void computeVirtRegs();
416
417    /// Compute RegMaskSlots and RegMaskBits.
418    void computeRegMasks();
419
420    /// Walk the values in @p LI and check for dead values:
421    /// - Dead PHIDef values are marked as unused.
422    /// - Dead operands are marked as such.
423    /// - Completely dead machine instructions are added to the @p dead vector
424    ///   if it is not nullptr.
425    /// Returns true if any PHI value numbers have been removed which may
426    /// have separated the interval into multiple connected components.
427    bool computeDeadValues(LiveInterval &LI,
428                           SmallVectorImpl<MachineInstr*> *dead);
429
430    static LiveInterval* createInterval(unsigned Reg);
431
432    void printInstrs(raw_ostream &O) const;
433    void dumpInstrs() const;
434
435    void computeLiveInRegUnits();
436    void computeRegUnitRange(LiveRange&, unsigned Unit);
437    void computeVirtRegInterval(LiveInterval&);
438
439
440    /// Helper function for repairIntervalsInRange(), walks backwards and
441    /// creates/modifies live segments in @p LR to match the operands found.
442    /// Only full operands or operands with subregisters matching @p LaneMask
443    /// are considered.
444    void repairOldRegInRange(MachineBasicBlock::iterator Begin,
445                             MachineBasicBlock::iterator End,
446                             const SlotIndex endIdx, LiveRange &LR,
447                             unsigned Reg, LaneBitmask LaneMask = ~0u);
448
449    class HMEditor;
450  };
451} // End llvm namespace
452
453#endif
454