1//===-- llvm/BasicBlock.h - Represent a basic block in the VM ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declaration of the BasicBlock class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_BASICBLOCK_H
15#define LLVM_IR_BASICBLOCK_H
16
17#include "llvm/ADT/Twine.h"
18#include "llvm/ADT/ilist.h"
19#include "llvm/IR/Instruction.h"
20#include "llvm/IR/SymbolTableListTraits.h"
21#include "llvm/Support/CBindingWrapping.h"
22#include "llvm/Support/DataTypes.h"
23
24namespace llvm {
25
26class CallInst;
27class LandingPadInst;
28class TerminatorInst;
29class LLVMContext;
30class BlockAddress;
31class Function;
32
33template <>
34struct SymbolTableListSentinelTraits<BasicBlock>
35    : public ilist_half_embedded_sentinel_traits<BasicBlock> {};
36
37/// \brief LLVM Basic Block Representation
38///
39/// This represents a single basic block in LLVM. A basic block is simply a
40/// container of instructions that execute sequentially. Basic blocks are Values
41/// because they are referenced by instructions such as branches and switch
42/// tables. The type of a BasicBlock is "Type::LabelTy" because the basic block
43/// represents a label to which a branch can jump.
44///
45/// A well formed basic block is formed of a list of non-terminating
46/// instructions followed by a single TerminatorInst instruction.
47/// TerminatorInst's may not occur in the middle of basic blocks, and must
48/// terminate the blocks. The BasicBlock class allows malformed basic blocks to
49/// occur because it may be useful in the intermediate stage of constructing or
50/// modifying a program. However, the verifier will ensure that basic blocks
51/// are "well formed".
52class BasicBlock : public Value, // Basic blocks are data objects also
53                   public ilist_node_with_parent<BasicBlock, Function> {
54  friend class BlockAddress;
55public:
56  typedef SymbolTableList<Instruction> InstListType;
57
58private:
59  InstListType InstList;
60  Function *Parent;
61
62  void setParent(Function *parent);
63  friend class SymbolTableListTraits<BasicBlock>;
64
65  BasicBlock(const BasicBlock &) = delete;
66  void operator=(const BasicBlock &) = delete;
67
68  /// \brief Constructor.
69  ///
70  /// If the function parameter is specified, the basic block is automatically
71  /// inserted at either the end of the function (if InsertBefore is null), or
72  /// before the specified basic block.
73  explicit BasicBlock(LLVMContext &C, const Twine &Name = "",
74                      Function *Parent = nullptr,
75                      BasicBlock *InsertBefore = nullptr);
76public:
77  /// \brief Get the context in which this basic block lives.
78  LLVMContext &getContext() const;
79
80  /// Instruction iterators...
81  typedef InstListType::iterator iterator;
82  typedef InstListType::const_iterator const_iterator;
83  typedef InstListType::reverse_iterator reverse_iterator;
84  typedef InstListType::const_reverse_iterator const_reverse_iterator;
85
86  /// \brief Creates a new BasicBlock.
87  ///
88  /// If the Parent parameter is specified, the basic block is automatically
89  /// inserted at either the end of the function (if InsertBefore is 0), or
90  /// before the specified basic block.
91  static BasicBlock *Create(LLVMContext &Context, const Twine &Name = "",
92                            Function *Parent = nullptr,
93                            BasicBlock *InsertBefore = nullptr) {
94    return new BasicBlock(Context, Name, Parent, InsertBefore);
95  }
96  ~BasicBlock() override;
97
98  /// \brief Return the enclosing method, or null if none.
99  const Function *getParent() const { return Parent; }
100        Function *getParent()       { return Parent; }
101
102  /// \brief Return the module owning the function this basic block belongs to,
103  /// or nullptr it the function does not have a module.
104  ///
105  /// Note: this is undefined behavior if the block does not have a parent.
106  const Module *getModule() const;
107  Module *getModule();
108
109  /// \brief Returns the terminator instruction if the block is well formed or
110  /// null if the block is not well formed.
111  TerminatorInst *getTerminator();
112  const TerminatorInst *getTerminator() const;
113
114  /// \brief Returns the call instruction calling @llvm.experimental.deoptimize
115  /// prior to the terminating return instruction of this basic block, if such a
116  /// call is present.  Otherwise, returns null.
117  CallInst *getTerminatingDeoptimizeCall();
118  const CallInst *getTerminatingDeoptimizeCall() const {
119    return const_cast<BasicBlock *>(this)->getTerminatingDeoptimizeCall();
120  }
121
122  /// \brief Returns the call instruction marked 'musttail' prior to the
123  /// terminating return instruction of this basic block, if such a call is
124  /// present.  Otherwise, returns null.
125  CallInst *getTerminatingMustTailCall();
126  const CallInst *getTerminatingMustTailCall() const {
127    return const_cast<BasicBlock *>(this)->getTerminatingMustTailCall();
128  }
129
130  /// \brief Returns a pointer to the first instruction in this block that is
131  /// not a PHINode instruction.
132  ///
133  /// When adding instructions to the beginning of the basic block, they should
134  /// be added before the returned value, not before the first instruction,
135  /// which might be PHI. Returns 0 is there's no non-PHI instruction.
136  Instruction* getFirstNonPHI();
137  const Instruction* getFirstNonPHI() const {
138    return const_cast<BasicBlock*>(this)->getFirstNonPHI();
139  }
140
141  /// \brief Returns a pointer to the first instruction in this block that is not
142  /// a PHINode or a debug intrinsic.
143  Instruction* getFirstNonPHIOrDbg();
144  const Instruction* getFirstNonPHIOrDbg() const {
145    return const_cast<BasicBlock*>(this)->getFirstNonPHIOrDbg();
146  }
147
148  /// \brief Returns a pointer to the first instruction in this block that is not
149  /// a PHINode, a debug intrinsic, or a lifetime intrinsic.
150  Instruction* getFirstNonPHIOrDbgOrLifetime();
151  const Instruction* getFirstNonPHIOrDbgOrLifetime() const {
152    return const_cast<BasicBlock*>(this)->getFirstNonPHIOrDbgOrLifetime();
153  }
154
155  /// \brief Returns an iterator to the first instruction in this block that is
156  /// suitable for inserting a non-PHI instruction.
157  ///
158  /// In particular, it skips all PHIs and LandingPad instructions.
159  iterator getFirstInsertionPt();
160  const_iterator getFirstInsertionPt() const {
161    return const_cast<BasicBlock*>(this)->getFirstInsertionPt();
162  }
163
164  /// \brief Unlink 'this' from the containing function, but do not delete it.
165  void removeFromParent();
166
167  /// \brief Unlink 'this' from the containing function and delete it.
168  ///
169  // \returns an iterator pointing to the element after the erased one.
170  SymbolTableList<BasicBlock>::iterator eraseFromParent();
171
172  /// \brief Unlink this basic block from its current function and insert it
173  /// into the function that \p MovePos lives in, right before \p MovePos.
174  void moveBefore(BasicBlock *MovePos);
175
176  /// \brief Unlink this basic block from its current function and insert it
177  /// right after \p MovePos in the function \p MovePos lives in.
178  void moveAfter(BasicBlock *MovePos);
179
180  /// \brief Insert unlinked basic block into a function.
181  ///
182  /// Inserts an unlinked basic block into \c Parent.  If \c InsertBefore is
183  /// provided, inserts before that basic block, otherwise inserts at the end.
184  ///
185  /// \pre \a getParent() is \c nullptr.
186  void insertInto(Function *Parent, BasicBlock *InsertBefore = nullptr);
187
188  /// \brief Return the predecessor of this block if it has a single predecessor
189  /// block. Otherwise return a null pointer.
190  BasicBlock *getSinglePredecessor();
191  const BasicBlock *getSinglePredecessor() const {
192    return const_cast<BasicBlock*>(this)->getSinglePredecessor();
193  }
194
195  /// \brief Return the predecessor of this block if it has a unique predecessor
196  /// block. Otherwise return a null pointer.
197  ///
198  /// Note that unique predecessor doesn't mean single edge, there can be
199  /// multiple edges from the unique predecessor to this block (for example a
200  /// switch statement with multiple cases having the same destination).
201  BasicBlock *getUniquePredecessor();
202  const BasicBlock *getUniquePredecessor() const {
203    return const_cast<BasicBlock*>(this)->getUniquePredecessor();
204  }
205
206  /// \brief Return the successor of this block if it has a single successor.
207  /// Otherwise return a null pointer.
208  ///
209  /// This method is analogous to getSinglePredecessor above.
210  BasicBlock *getSingleSuccessor();
211  const BasicBlock *getSingleSuccessor() const {
212    return const_cast<BasicBlock*>(this)->getSingleSuccessor();
213  }
214
215  /// \brief Return the successor of this block if it has a unique successor.
216  /// Otherwise return a null pointer.
217  ///
218  /// This method is analogous to getUniquePredecessor above.
219  BasicBlock *getUniqueSuccessor();
220  const BasicBlock *getUniqueSuccessor() const {
221    return const_cast<BasicBlock*>(this)->getUniqueSuccessor();
222  }
223
224  //===--------------------------------------------------------------------===//
225  /// Instruction iterator methods
226  ///
227  inline iterator                begin()       { return InstList.begin(); }
228  inline const_iterator          begin() const { return InstList.begin(); }
229  inline iterator                end  ()       { return InstList.end();   }
230  inline const_iterator          end  () const { return InstList.end();   }
231
232  inline reverse_iterator        rbegin()       { return InstList.rbegin(); }
233  inline const_reverse_iterator  rbegin() const { return InstList.rbegin(); }
234  inline reverse_iterator        rend  ()       { return InstList.rend();   }
235  inline const_reverse_iterator  rend  () const { return InstList.rend();   }
236
237  inline size_t                   size() const { return InstList.size();  }
238  inline bool                    empty() const { return InstList.empty(); }
239  inline const Instruction      &front() const { return InstList.front(); }
240  inline       Instruction      &front()       { return InstList.front(); }
241  inline const Instruction       &back() const { return InstList.back();  }
242  inline       Instruction       &back()       { return InstList.back();  }
243
244  /// \brief Return the underlying instruction list container.
245  ///
246  /// Currently you need to access the underlying instruction list container
247  /// directly if you want to modify it.
248  const InstListType &getInstList() const { return InstList; }
249        InstListType &getInstList()       { return InstList; }
250
251  /// \brief Returns a pointer to a member of the instruction list.
252  static InstListType BasicBlock::*getSublistAccess(Instruction*) {
253    return &BasicBlock::InstList;
254  }
255
256  /// \brief Returns a pointer to the symbol table if one exists.
257  ValueSymbolTable *getValueSymbolTable();
258
259  /// \brief Methods for support type inquiry through isa, cast, and dyn_cast.
260  static inline bool classof(const Value *V) {
261    return V->getValueID() == Value::BasicBlockVal;
262  }
263
264  /// \brief Cause all subinstructions to "let go" of all the references that
265  /// said subinstructions are maintaining.
266  ///
267  /// This allows one to 'delete' a whole class at a time, even though there may
268  /// be circular references... first all references are dropped, and all use
269  /// counts go to zero.  Then everything is delete'd for real.  Note that no
270  /// operations are valid on an object that has "dropped all references",
271  /// except operator delete.
272  void dropAllReferences();
273
274  /// \brief Notify the BasicBlock that the predecessor \p Pred is no longer
275  /// able to reach it.
276  ///
277  /// This is actually not used to update the Predecessor list, but is actually
278  /// used to update the PHI nodes that reside in the block.  Note that this
279  /// should be called while the predecessor still refers to this block.
280  void removePredecessor(BasicBlock *Pred, bool DontDeleteUselessPHIs = false);
281
282  bool canSplitPredecessors() const;
283
284  /// \brief Split the basic block into two basic blocks at the specified
285  /// instruction.
286  ///
287  /// Note that all instructions BEFORE the specified iterator stay as part of
288  /// the original basic block, an unconditional branch is added to the original
289  /// BB, and the rest of the instructions in the BB are moved to the new BB,
290  /// including the old terminator.  The newly formed BasicBlock is returned.
291  /// This function invalidates the specified iterator.
292  ///
293  /// Note that this only works on well formed basic blocks (must have a
294  /// terminator), and 'I' must not be the end of instruction list (which would
295  /// cause a degenerate basic block to be formed, having a terminator inside of
296  /// the basic block).
297  ///
298  /// Also note that this doesn't preserve any passes. To split blocks while
299  /// keeping loop information consistent, use the SplitBlock utility function.
300  BasicBlock *splitBasicBlock(iterator I, const Twine &BBName = "");
301  BasicBlock *splitBasicBlock(Instruction *I, const Twine &BBName = "") {
302    return splitBasicBlock(I->getIterator(), BBName);
303  }
304
305  /// \brief Returns true if there are any uses of this basic block other than
306  /// direct branches, switches, etc. to it.
307  bool hasAddressTaken() const { return getSubclassDataFromValue() != 0; }
308
309  /// \brief Update all phi nodes in this basic block's successors to refer to
310  /// basic block \p New instead of to it.
311  void replaceSuccessorsPhiUsesWith(BasicBlock *New);
312
313  /// \brief Return true if this basic block is an exception handling block.
314  bool isEHPad() const { return getFirstNonPHI()->isEHPad(); }
315
316  /// \brief Return true if this basic block is a landing pad.
317  ///
318  /// Being a ``landing pad'' means that the basic block is the destination of
319  /// the 'unwind' edge of an invoke instruction.
320  bool isLandingPad() const;
321
322  /// \brief Return the landingpad instruction associated with the landing pad.
323  LandingPadInst *getLandingPadInst();
324  const LandingPadInst *getLandingPadInst() const;
325
326private:
327  /// \brief Increment the internal refcount of the number of BlockAddresses
328  /// referencing this BasicBlock by \p Amt.
329  ///
330  /// This is almost always 0, sometimes one possibly, but almost never 2, and
331  /// inconceivably 3 or more.
332  void AdjustBlockAddressRefCount(int Amt) {
333    setValueSubclassData(getSubclassDataFromValue()+Amt);
334    assert((int)(signed char)getSubclassDataFromValue() >= 0 &&
335           "Refcount wrap-around");
336  }
337  /// \brief Shadow Value::setValueSubclassData with a private forwarding method
338  /// so that any future subclasses cannot accidentally use it.
339  void setValueSubclassData(unsigned short D) {
340    Value::setValueSubclassData(D);
341  }
342};
343
344// Create wrappers for C Binding types (see CBindingWrapping.h).
345DEFINE_SIMPLE_CONVERSION_FUNCTIONS(BasicBlock, LLVMBasicBlockRef)
346
347} // End llvm namespace
348
349#endif
350