1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/CodeGen/MachineCombinerPattern.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineLoopInfo.h"
22#include "llvm/MC/MCInstrInfo.h"
23#include "llvm/Support/BranchProbability.h"
24#include "llvm/Target/TargetRegisterInfo.h"
25#include "llvm/CodeGen/LiveIntervalAnalysis.h"
26
27namespace llvm {
28
29class InstrItineraryData;
30class LiveVariables;
31class MCAsmInfo;
32class MachineMemOperand;
33class MachineRegisterInfo;
34class MDNode;
35class MCInst;
36struct MCSchedModel;
37class MCSymbolRefExpr;
38class SDNode;
39class ScheduleHazardRecognizer;
40class SelectionDAG;
41class ScheduleDAG;
42class TargetRegisterClass;
43class TargetRegisterInfo;
44class TargetSubtargetInfo;
45class TargetSchedModel;
46class DFAPacketizer;
47
48template<class T> class SmallVectorImpl;
49
50//---------------------------------------------------------------------------
51///
52/// TargetInstrInfo - Interface to description of machine instruction set
53///
54class TargetInstrInfo : public MCInstrInfo {
55  TargetInstrInfo(const TargetInstrInfo &) = delete;
56  void operator=(const TargetInstrInfo &) = delete;
57public:
58  TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
59                  unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
60      : CallFrameSetupOpcode(CFSetupOpcode),
61        CallFrameDestroyOpcode(CFDestroyOpcode),
62        CatchRetOpcode(CatchRetOpcode),
63        ReturnOpcode(ReturnOpcode) {}
64
65  virtual ~TargetInstrInfo();
66
67  static bool isGenericOpcode(unsigned Opc) {
68    return Opc <= TargetOpcode::GENERIC_OP_END;
69  }
70
71  /// Given a machine instruction descriptor, returns the register
72  /// class constraint for OpNum, or NULL.
73  const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
74                                         unsigned OpNum,
75                                         const TargetRegisterInfo *TRI,
76                                         const MachineFunction &MF) const;
77
78  /// Return true if the instruction is trivially rematerializable, meaning it
79  /// has no side effects and requires no operands that aren't always available.
80  /// This means the only allowed uses are constants and unallocatable physical
81  /// registers so that the instructions result is independent of the place
82  /// in the function.
83  bool isTriviallyReMaterializable(const MachineInstr &MI,
84                                   AliasAnalysis *AA = nullptr) const {
85    return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
86           (MI.getDesc().isRematerializable() &&
87            (isReallyTriviallyReMaterializable(MI, AA) ||
88             isReallyTriviallyReMaterializableGeneric(MI, AA)));
89  }
90
91protected:
92  /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
93  /// set, this hook lets the target specify whether the instruction is actually
94  /// trivially rematerializable, taking into consideration its operands. This
95  /// predicate must return false if the instruction has any side effects other
96  /// than producing a value, or if it requres any address registers that are
97  /// not always available.
98  /// Requirements must be check as stated in isTriviallyReMaterializable() .
99  virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
100                                                 AliasAnalysis *AA) const {
101    return false;
102  }
103
104  /// This method commutes the operands of the given machine instruction MI.
105  /// The operands to be commuted are specified by their indices OpIdx1 and
106  /// OpIdx2.
107  ///
108  /// If a target has any instructions that are commutable but require
109  /// converting to different instructions or making non-trivial changes
110  /// to commute them, this method can be overloaded to do that.
111  /// The default implementation simply swaps the commutable operands.
112  ///
113  /// If NewMI is false, MI is modified in place and returned; otherwise, a
114  /// new machine instruction is created and returned.
115  ///
116  /// Do not call this method for a non-commutable instruction.
117  /// Even though the instruction is commutable, the method may still
118  /// fail to commute the operands, null pointer is returned in such cases.
119  virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
120                                               unsigned OpIdx1,
121                                               unsigned OpIdx2) const;
122
123  /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
124  /// operand indices to (ResultIdx1, ResultIdx2).
125  /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
126  /// predefined to some indices or be undefined (designated by the special
127  /// value 'CommuteAnyOperandIndex').
128  /// The predefined result indices cannot be re-defined.
129  /// The function returns true iff after the result pair redefinition
130  /// the fixed result pair is equal to or equivalent to the source pair of
131  /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
132  /// the pairs (x,y) and (y,x) are equivalent.
133  static bool fixCommutedOpIndices(unsigned &ResultIdx1,
134                                   unsigned &ResultIdx2,
135                                   unsigned CommutableOpIdx1,
136                                   unsigned CommutableOpIdx2);
137
138private:
139  /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
140  /// set and the target hook isReallyTriviallyReMaterializable returns false,
141  /// this function does target-independent tests to determine if the
142  /// instruction is really trivially rematerializable.
143  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI,
144                                                AliasAnalysis *AA) const;
145
146public:
147  /// These methods return the opcode of the frame setup/destroy instructions
148  /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
149  /// order to abstract away the difference between operating with a frame
150  /// pointer and operating without, through the use of these two instructions.
151  ///
152  unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
153  unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
154
155  unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
156  unsigned getReturnOpcode() const { return ReturnOpcode; }
157
158  /// Returns the actual stack pointer adjustment made by an instruction
159  /// as part of a call sequence. By default, only call frame setup/destroy
160  /// instructions adjust the stack, but targets may want to override this
161  /// to enable more fine-grained adjustment, or adjust by a different value.
162  virtual int getSPAdjust(const MachineInstr &MI) const;
163
164  /// Return true if the instruction is a "coalescable" extension instruction.
165  /// That is, it's like a copy where it's legal for the source to overlap the
166  /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
167  /// expected the pre-extension value is available as a subreg of the result
168  /// register. This also returns the sub-register index in SubIdx.
169  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
170                                     unsigned &SrcReg, unsigned &DstReg,
171                                     unsigned &SubIdx) const {
172    return false;
173  }
174
175  /// If the specified machine instruction is a direct
176  /// load from a stack slot, return the virtual or physical register number of
177  /// the destination along with the FrameIndex of the loaded stack slot.  If
178  /// not, return 0.  This predicate must return 0 if the instruction has
179  /// any side effects other than loading from the stack slot.
180  virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
181                                       int &FrameIndex) const {
182    return 0;
183  }
184
185  /// Check for post-frame ptr elimination stack locations as well.
186  /// This uses a heuristic so it isn't reliable for correctness.
187  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
188                                             int &FrameIndex) const {
189    return 0;
190  }
191
192  /// If the specified machine instruction has a load from a stack slot,
193  /// return true along with the FrameIndex of the loaded stack slot and the
194  /// machine mem operand containing the reference.
195  /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
196  /// any instructions that loads from the stack.  This is just a hint, as some
197  /// cases may be missed.
198  virtual bool hasLoadFromStackSlot(const MachineInstr &MI,
199                                    const MachineMemOperand *&MMO,
200                                    int &FrameIndex) const;
201
202  /// If the specified machine instruction is a direct
203  /// store to a stack slot, return the virtual or physical register number of
204  /// the source reg along with the FrameIndex of the loaded stack slot.  If
205  /// not, return 0.  This predicate must return 0 if the instruction has
206  /// any side effects other than storing to the stack slot.
207  virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
208                                      int &FrameIndex) const {
209    return 0;
210  }
211
212  /// Check for post-frame ptr elimination stack locations as well.
213  /// This uses a heuristic, so it isn't reliable for correctness.
214  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
215                                            int &FrameIndex) const {
216    return 0;
217  }
218
219  /// If the specified machine instruction has a store to a stack slot,
220  /// return true along with the FrameIndex of the loaded stack slot and the
221  /// machine mem operand containing the reference.
222  /// If not, return false.  Unlike isStoreToStackSlot,
223  /// this returns true for any instructions that stores to the
224  /// stack.  This is just a hint, as some cases may be missed.
225  virtual bool hasStoreToStackSlot(const MachineInstr &MI,
226                                   const MachineMemOperand *&MMO,
227                                   int &FrameIndex) const;
228
229  /// Return true if the specified machine instruction
230  /// is a copy of one stack slot to another and has no other effect.
231  /// Provide the identity of the two frame indices.
232  virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
233                               int &SrcFrameIndex) const {
234    return false;
235  }
236
237  /// Compute the size in bytes and offset within a stack slot of a spilled
238  /// register or subregister.
239  ///
240  /// \param [out] Size in bytes of the spilled value.
241  /// \param [out] Offset in bytes within the stack slot.
242  /// \returns true if both Size and Offset are successfully computed.
243  ///
244  /// Not all subregisters have computable spill slots. For example,
245  /// subregisters registers may not be byte-sized, and a pair of discontiguous
246  /// subregisters has no single offset.
247  ///
248  /// Targets with nontrivial bigendian implementations may need to override
249  /// this, particularly to support spilled vector registers.
250  virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
251                                 unsigned &Size, unsigned &Offset,
252                                 const MachineFunction &MF) const;
253
254  /// Return true if the instruction is as cheap as a move instruction.
255  ///
256  /// Targets for different archs need to override this, and different
257  /// micro-architectures can also be finely tuned inside.
258  virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
259    return MI.isAsCheapAsAMove();
260  }
261
262  /// Return true if the instruction should be sunk by MachineSink.
263  ///
264  /// MachineSink determines on its own whether the instruction is safe to sink;
265  /// this gives the target a hook to override the default behavior with regards
266  /// to which instructions should be sunk.
267  /// The default behavior is to not sink insert_subreg, subreg_to_reg, and
268  /// reg_sequence. These are meant to be close to the source to make it easier
269  /// to coalesce.
270  virtual bool shouldSink(const MachineInstr &MI) const {
271    return !MI.isInsertSubreg() && !MI.isSubregToReg() && !MI.isRegSequence();
272  }
273
274  /// Re-issue the specified 'original' instruction at the
275  /// specific location targeting a new destination register.
276  /// The register in Orig->getOperand(0).getReg() will be substituted by
277  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
278  /// SubIdx.
279  virtual void reMaterialize(MachineBasicBlock &MBB,
280                             MachineBasicBlock::iterator MI, unsigned DestReg,
281                             unsigned SubIdx, const MachineInstr &Orig,
282                             const TargetRegisterInfo &TRI) const;
283
284  /// Create a duplicate of the Orig instruction in MF. This is like
285  /// MachineFunction::CloneMachineInstr(), but the target may update operands
286  /// that are required to be unique.
287  ///
288  /// The instruction must be duplicable as indicated by isNotDuplicable().
289  virtual MachineInstr *duplicate(MachineInstr &Orig,
290                                  MachineFunction &MF) const;
291
292  /// This method must be implemented by targets that
293  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
294  /// may be able to convert a two-address instruction into one or more true
295  /// three-address instructions on demand.  This allows the X86 target (for
296  /// example) to convert ADD and SHL instructions into LEA instructions if they
297  /// would require register copies due to two-addressness.
298  ///
299  /// This method returns a null pointer if the transformation cannot be
300  /// performed, otherwise it returns the last new instruction.
301  ///
302  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
303                                              MachineInstr &MI,
304                                              LiveVariables *LV) const {
305    return nullptr;
306  }
307
308  // This constant can be used as an input value of operand index passed to
309  // the method findCommutedOpIndices() to tell the method that the
310  // corresponding operand index is not pre-defined and that the method
311  // can pick any commutable operand.
312  static const unsigned CommuteAnyOperandIndex = ~0U;
313
314  /// This method commutes the operands of the given machine instruction MI.
315  ///
316  /// The operands to be commuted are specified by their indices OpIdx1 and
317  /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
318  /// 'CommuteAnyOperandIndex', which means that the method is free to choose
319  /// any arbitrarily chosen commutable operand. If both arguments are set to
320  /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
321  /// operands; then commutes them if such operands could be found.
322  ///
323  /// If NewMI is false, MI is modified in place and returned; otherwise, a
324  /// new machine instruction is created and returned.
325  ///
326  /// Do not call this method for a non-commutable instruction or
327  /// for non-commuable operands.
328  /// Even though the instruction is commutable, the method may still
329  /// fail to commute the operands, null pointer is returned in such cases.
330  MachineInstr *
331  commuteInstruction(MachineInstr &MI, bool NewMI = false,
332                     unsigned OpIdx1 = CommuteAnyOperandIndex,
333                     unsigned OpIdx2 = CommuteAnyOperandIndex) const;
334
335  /// Returns true iff the routine could find two commutable operands in the
336  /// given machine instruction.
337  /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
338  /// If any of the INPUT values is set to the special value
339  /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
340  /// operand, then returns its index in the corresponding argument.
341  /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
342  /// looks for 2 commutable operands.
343  /// If INPUT values refer to some operands of MI, then the method simply
344  /// returns true if the corresponding operands are commutable and returns
345  /// false otherwise.
346  ///
347  /// For example, calling this method this way:
348  ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
349  ///     findCommutedOpIndices(MI, Op1, Op2);
350  /// can be interpreted as a query asking to find an operand that would be
351  /// commutable with the operand#1.
352  virtual bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
353                                     unsigned &SrcOpIdx2) const;
354
355  /// A pair composed of a register and a sub-register index.
356  /// Used to give some type checking when modeling Reg:SubReg.
357  struct RegSubRegPair {
358    unsigned Reg;
359    unsigned SubReg;
360    RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0)
361        : Reg(Reg), SubReg(SubReg) {}
362  };
363  /// A pair composed of a pair of a register and a sub-register index,
364  /// and another sub-register index.
365  /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
366  struct RegSubRegPairAndIdx : RegSubRegPair {
367    unsigned SubIdx;
368    RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0,
369                        unsigned SubIdx = 0)
370        : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
371  };
372
373  /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
374  /// and \p DefIdx.
375  /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
376  /// the list is modeled as <Reg:SubReg, SubIdx>.
377  /// E.g., REG_SEQUENCE vreg1:sub1, sub0, vreg2, sub1 would produce
378  /// two elements:
379  /// - vreg1:sub1, sub0
380  /// - vreg2<:0>, sub1
381  ///
382  /// \returns true if it is possible to build such an input sequence
383  /// with the pair \p MI, \p DefIdx. False otherwise.
384  ///
385  /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
386  ///
387  /// \note The generic implementation does not provide any support for
388  /// MI.isRegSequenceLike(). In other words, one has to override
389  /// getRegSequenceLikeInputs for target specific instructions.
390  bool
391  getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
392                       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
393
394  /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
395  /// and \p DefIdx.
396  /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
397  /// E.g., EXTRACT_SUBREG vreg1:sub1, sub0, sub1 would produce:
398  /// - vreg1:sub1, sub0
399  ///
400  /// \returns true if it is possible to build such an input sequence
401  /// with the pair \p MI, \p DefIdx. False otherwise.
402  ///
403  /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
404  ///
405  /// \note The generic implementation does not provide any support for
406  /// MI.isExtractSubregLike(). In other words, one has to override
407  /// getExtractSubregLikeInputs for target specific instructions.
408  bool
409  getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
410                         RegSubRegPairAndIdx &InputReg) const;
411
412  /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
413  /// and \p DefIdx.
414  /// \p [out] BaseReg and \p [out] InsertedReg contain
415  /// the equivalent inputs of INSERT_SUBREG.
416  /// E.g., INSERT_SUBREG vreg0:sub0, vreg1:sub1, sub3 would produce:
417  /// - BaseReg: vreg0:sub0
418  /// - InsertedReg: vreg1:sub1, sub3
419  ///
420  /// \returns true if it is possible to build such an input sequence
421  /// with the pair \p MI, \p DefIdx. False otherwise.
422  ///
423  /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
424  ///
425  /// \note The generic implementation does not provide any support for
426  /// MI.isInsertSubregLike(). In other words, one has to override
427  /// getInsertSubregLikeInputs for target specific instructions.
428  bool
429  getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
430                        RegSubRegPair &BaseReg,
431                        RegSubRegPairAndIdx &InsertedReg) const;
432
433
434  /// Return true if two machine instructions would produce identical values.
435  /// By default, this is only true when the two instructions
436  /// are deemed identical except for defs. If this function is called when the
437  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
438  /// aggressive checks.
439  virtual bool produceSameValue(const MachineInstr &MI0,
440                                const MachineInstr &MI1,
441                                const MachineRegisterInfo *MRI = nullptr) const;
442
443  /// Analyze the branching code at the end of MBB, returning
444  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
445  /// implemented for a target).  Upon success, this returns false and returns
446  /// with the following information in various cases:
447  ///
448  /// 1. If this block ends with no branches (it just falls through to its succ)
449  ///    just return false, leaving TBB/FBB null.
450  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
451  ///    the destination block.
452  /// 3. If this block ends with a conditional branch and it falls through to a
453  ///    successor block, it sets TBB to be the branch destination block and a
454  ///    list of operands that evaluate the condition. These operands can be
455  ///    passed to other TargetInstrInfo methods to create new branches.
456  /// 4. If this block ends with a conditional branch followed by an
457  ///    unconditional branch, it returns the 'true' destination in TBB, the
458  ///    'false' destination in FBB, and a list of operands that evaluate the
459  ///    condition.  These operands can be passed to other TargetInstrInfo
460  ///    methods to create new branches.
461  ///
462  /// Note that RemoveBranch and InsertBranch must be implemented to support
463  /// cases where this method returns success.
464  ///
465  /// If AllowModify is true, then this routine is allowed to modify the basic
466  /// block (e.g. delete instructions after the unconditional branch).
467  ///
468  /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
469  /// before calling this function.
470  virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
471                             MachineBasicBlock *&FBB,
472                             SmallVectorImpl<MachineOperand> &Cond,
473                             bool AllowModify = false) const {
474    return true;
475  }
476
477  /// Represents a predicate at the MachineFunction level.  The control flow a
478  /// MachineBranchPredicate represents is:
479  ///
480  ///  Reg <def>= LHS `Predicate` RHS         == ConditionDef
481  ///  if Reg then goto TrueDest else goto FalseDest
482  ///
483  struct MachineBranchPredicate {
484    enum ComparePredicate {
485      PRED_EQ,     // True if two values are equal
486      PRED_NE,     // True if two values are not equal
487      PRED_INVALID // Sentinel value
488    };
489
490    ComparePredicate Predicate;
491    MachineOperand LHS;
492    MachineOperand RHS;
493    MachineBasicBlock *TrueDest;
494    MachineBasicBlock *FalseDest;
495    MachineInstr *ConditionDef;
496
497    /// SingleUseCondition is true if ConditionDef is dead except for the
498    /// branch(es) at the end of the basic block.
499    ///
500    bool SingleUseCondition;
501
502    explicit MachineBranchPredicate()
503        : Predicate(PRED_INVALID), LHS(MachineOperand::CreateImm(0)),
504          RHS(MachineOperand::CreateImm(0)), TrueDest(nullptr),
505          FalseDest(nullptr), ConditionDef(nullptr), SingleUseCondition(false) {
506    }
507  };
508
509  /// Analyze the branching code at the end of MBB and parse it into the
510  /// MachineBranchPredicate structure if possible.  Returns false on success
511  /// and true on failure.
512  ///
513  /// If AllowModify is true, then this routine is allowed to modify the basic
514  /// block (e.g. delete instructions after the unconditional branch).
515  ///
516  virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
517                                      MachineBranchPredicate &MBP,
518                                      bool AllowModify = false) const {
519    return true;
520  }
521
522  /// Remove the branching code at the end of the specific MBB.
523  /// This is only invoked in cases where AnalyzeBranch returns success. It
524  /// returns the number of instructions that were removed.
525  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
526    llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
527  }
528
529  /// Insert branch code into the end of the specified MachineBasicBlock.
530  /// The operands to this method are the same as those
531  /// returned by AnalyzeBranch.  This is only invoked in cases where
532  /// AnalyzeBranch returns success. It returns the number of instructions
533  /// inserted.
534  ///
535  /// It is also invoked by tail merging to add unconditional branches in
536  /// cases where AnalyzeBranch doesn't apply because there was no original
537  /// branch to analyze.  At least this much must be implemented, else tail
538  /// merging needs to be disabled.
539  ///
540  /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
541  /// before calling this function.
542  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
543                                MachineBasicBlock *FBB,
544                                ArrayRef<MachineOperand> Cond,
545                                const DebugLoc &DL) const {
546    llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
547  }
548
549  /// Analyze the loop code, return true if it cannot be understoo. Upon
550  /// success, this function returns false and returns information about the
551  /// induction variable and compare instruction used at the end.
552  virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
553                           MachineInstr *&CmpInst) const {
554    return true;
555  }
556
557  /// Generate code to reduce the loop iteration by one and check if the loop is
558  /// finished.  Return the value/register of the the new loop count.  We need
559  /// this function when peeling off one or more iterations of a loop. This
560  /// function assumes the nth iteration is peeled first.
561  virtual unsigned reduceLoopCount(MachineBasicBlock &MBB,
562                                   MachineInstr *IndVar, MachineInstr *Cmp,
563                                   SmallVectorImpl<MachineOperand> &Cond,
564                                   SmallVectorImpl<MachineInstr *> &PrevInsts,
565                                   unsigned Iter, unsigned MaxIter) const {
566    llvm_unreachable("Target didn't implement ReduceLoopCount");
567  }
568
569  /// Delete the instruction OldInst and everything after it, replacing it with
570  /// an unconditional branch to NewDest. This is used by the tail merging pass.
571  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
572                                       MachineBasicBlock *NewDest) const;
573
574  /// Get an instruction that performs an unconditional branch to the given
575  /// symbol.
576  virtual void
577  getUnconditionalBranch(MCInst &MI,
578                         const MCSymbolRefExpr *BranchTarget) const {
579    llvm_unreachable("Target didn't implement "
580                     "TargetInstrInfo::getUnconditionalBranch!");
581  }
582
583  /// Get a machine trap instruction.
584  virtual void getTrap(MCInst &MI) const {
585    llvm_unreachable("Target didn't implement TargetInstrInfo::getTrap!");
586  }
587
588  /// Get a number of bytes that suffices to hold
589  /// either the instruction returned by getUnconditionalBranch or the
590  /// instruction returned by getTrap. This only makes sense because
591  /// getUnconditionalBranch returns a single, specific instruction. This
592  /// information is needed by the jumptable construction code, since it must
593  /// decide how many bytes to use for a jumptable entry so it can generate the
594  /// right mask.
595  ///
596  /// Note that if the jumptable instruction requires alignment, then that
597  /// alignment should be factored into this required bound so that the
598  /// resulting bound gives the right alignment for the instruction.
599  virtual unsigned getJumpInstrTableEntryBound() const {
600    // This method gets called by LLVMTargetMachine always, so it can't fail
601    // just because there happens to be no implementation for this target.
602    // Any code that tries to use a jumptable annotation without defining
603    // getUnconditionalBranch on the appropriate Target will fail anyway, and
604    // the value returned here won't matter in that case.
605    return 0;
606  }
607
608  /// Return true if it's legal to split the given basic
609  /// block at the specified instruction (i.e. instruction would be the start
610  /// of a new basic block).
611  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
612                                   MachineBasicBlock::iterator MBBI) const {
613    return true;
614  }
615
616  /// Return true if it's profitable to predicate
617  /// instructions with accumulated instruction latency of "NumCycles"
618  /// of the specified basic block, where the probability of the instructions
619  /// being executed is given by Probability, and Confidence is a measure
620  /// of our confidence that it will be properly predicted.
621  virtual
622  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
623                           unsigned ExtraPredCycles,
624                           BranchProbability Probability) const {
625    return false;
626  }
627
628  /// Second variant of isProfitableToIfCvt. This one
629  /// checks for the case where two basic blocks from true and false path
630  /// of a if-then-else (diamond) are predicated on mutally exclusive
631  /// predicates, where the probability of the true path being taken is given
632  /// by Probability, and Confidence is a measure of our confidence that it
633  /// will be properly predicted.
634  virtual bool
635  isProfitableToIfCvt(MachineBasicBlock &TMBB,
636                      unsigned NumTCycles, unsigned ExtraTCycles,
637                      MachineBasicBlock &FMBB,
638                      unsigned NumFCycles, unsigned ExtraFCycles,
639                      BranchProbability Probability) const {
640    return false;
641  }
642
643  /// Return true if it's profitable for if-converter to duplicate instructions
644  /// of specified accumulated instruction latencies in the specified MBB to
645  /// enable if-conversion.
646  /// The probability of the instructions being executed is given by
647  /// Probability, and Confidence is a measure of our confidence that it
648  /// will be properly predicted.
649  virtual bool
650  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
651                            BranchProbability Probability) const {
652    return false;
653  }
654
655  /// Return true if it's profitable to unpredicate
656  /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
657  /// exclusive predicates.
658  /// e.g.
659  ///   subeq  r0, r1, #1
660  ///   addne  r0, r1, #1
661  /// =>
662  ///   sub    r0, r1, #1
663  ///   addne  r0, r1, #1
664  ///
665  /// This may be profitable is conditional instructions are always executed.
666  virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
667                                         MachineBasicBlock &FMBB) const {
668    return false;
669  }
670
671  /// Return true if it is possible to insert a select
672  /// instruction that chooses between TrueReg and FalseReg based on the
673  /// condition code in Cond.
674  ///
675  /// When successful, also return the latency in cycles from TrueReg,
676  /// FalseReg, and Cond to the destination register. In most cases, a select
677  /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
678  ///
679  /// Some x86 implementations have 2-cycle cmov instructions.
680  ///
681  /// @param MBB         Block where select instruction would be inserted.
682  /// @param Cond        Condition returned by AnalyzeBranch.
683  /// @param TrueReg     Virtual register to select when Cond is true.
684  /// @param FalseReg    Virtual register to select when Cond is false.
685  /// @param CondCycles  Latency from Cond+Branch to select output.
686  /// @param TrueCycles  Latency from TrueReg to select output.
687  /// @param FalseCycles Latency from FalseReg to select output.
688  virtual bool canInsertSelect(const MachineBasicBlock &MBB,
689                               ArrayRef<MachineOperand> Cond,
690                               unsigned TrueReg, unsigned FalseReg,
691                               int &CondCycles,
692                               int &TrueCycles, int &FalseCycles) const {
693    return false;
694  }
695
696  /// Insert a select instruction into MBB before I that will copy TrueReg to
697  /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
698  ///
699  /// This function can only be called after canInsertSelect() returned true.
700  /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
701  /// that the same flags or registers required by Cond are available at the
702  /// insertion point.
703  ///
704  /// @param MBB      Block where select instruction should be inserted.
705  /// @param I        Insertion point.
706  /// @param DL       Source location for debugging.
707  /// @param DstReg   Virtual register to be defined by select instruction.
708  /// @param Cond     Condition as computed by AnalyzeBranch.
709  /// @param TrueReg  Virtual register to copy when Cond is true.
710  /// @param FalseReg Virtual register to copy when Cons is false.
711  virtual void insertSelect(MachineBasicBlock &MBB,
712                            MachineBasicBlock::iterator I, const DebugLoc &DL,
713                            unsigned DstReg, ArrayRef<MachineOperand> Cond,
714                            unsigned TrueReg, unsigned FalseReg) const {
715    llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
716  }
717
718  /// Analyze the given select instruction, returning true if
719  /// it cannot be understood. It is assumed that MI->isSelect() is true.
720  ///
721  /// When successful, return the controlling condition and the operands that
722  /// determine the true and false result values.
723  ///
724  ///   Result = SELECT Cond, TrueOp, FalseOp
725  ///
726  /// Some targets can optimize select instructions, for example by predicating
727  /// the instruction defining one of the operands. Such targets should set
728  /// Optimizable.
729  ///
730  /// @param         MI Select instruction to analyze.
731  /// @param Cond    Condition controlling the select.
732  /// @param TrueOp  Operand number of the value selected when Cond is true.
733  /// @param FalseOp Operand number of the value selected when Cond is false.
734  /// @param Optimizable Returned as true if MI is optimizable.
735  /// @returns False on success.
736  virtual bool analyzeSelect(const MachineInstr &MI,
737                             SmallVectorImpl<MachineOperand> &Cond,
738                             unsigned &TrueOp, unsigned &FalseOp,
739                             bool &Optimizable) const {
740    assert(MI.getDesc().isSelect() && "MI must be a select instruction");
741    return true;
742  }
743
744  /// Given a select instruction that was understood by
745  /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
746  /// merging it with one of its operands. Returns NULL on failure.
747  ///
748  /// When successful, returns the new select instruction. The client is
749  /// responsible for deleting MI.
750  ///
751  /// If both sides of the select can be optimized, PreferFalse is used to pick
752  /// a side.
753  ///
754  /// @param MI          Optimizable select instruction.
755  /// @param NewMIs     Set that record all MIs in the basic block up to \p
756  /// MI. Has to be updated with any newly created MI or deleted ones.
757  /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
758  /// @returns Optimized instruction or NULL.
759  virtual MachineInstr *optimizeSelect(MachineInstr &MI,
760                                       SmallPtrSetImpl<MachineInstr *> &NewMIs,
761                                       bool PreferFalse = false) const {
762    // This function must be implemented if Optimizable is ever set.
763    llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
764  }
765
766  /// Emit instructions to copy a pair of physical registers.
767  ///
768  /// This function should support copies within any legal register class as
769  /// well as any cross-class copies created during instruction selection.
770  ///
771  /// The source and destination registers may overlap, which may require a
772  /// careful implementation when multiple copy instructions are required for
773  /// large registers. See for example the ARM target.
774  virtual void copyPhysReg(MachineBasicBlock &MBB,
775                           MachineBasicBlock::iterator MI, const DebugLoc &DL,
776                           unsigned DestReg, unsigned SrcReg,
777                           bool KillSrc) const {
778    llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
779  }
780
781  /// Store the specified register of the given register class to the specified
782  /// stack frame index. The store instruction is to be added to the given
783  /// machine basic block before the specified machine instruction. If isKill
784  /// is true, the register operand is the last use and must be marked kill.
785  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
786                                   MachineBasicBlock::iterator MI,
787                                   unsigned SrcReg, bool isKill, int FrameIndex,
788                                   const TargetRegisterClass *RC,
789                                   const TargetRegisterInfo *TRI) const {
790    llvm_unreachable("Target didn't implement "
791                     "TargetInstrInfo::storeRegToStackSlot!");
792  }
793
794  /// Load the specified register of the given register class from the specified
795  /// stack frame index. The load instruction is to be added to the given
796  /// machine basic block before the specified machine instruction.
797  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
798                                    MachineBasicBlock::iterator MI,
799                                    unsigned DestReg, int FrameIndex,
800                                    const TargetRegisterClass *RC,
801                                    const TargetRegisterInfo *TRI) const {
802    llvm_unreachable("Target didn't implement "
803                     "TargetInstrInfo::loadRegFromStackSlot!");
804  }
805
806  /// This function is called for all pseudo instructions
807  /// that remain after register allocation. Many pseudo instructions are
808  /// created to help register allocation. This is the place to convert them
809  /// into real instructions. The target can edit MI in place, or it can insert
810  /// new instructions and erase MI. The function should return true if
811  /// anything was changed.
812  virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
813
814  /// Attempt to fold a load or store of the specified stack
815  /// slot into the specified machine instruction for the specified operand(s).
816  /// If this is possible, a new instruction is returned with the specified
817  /// operand folded, otherwise NULL is returned.
818  /// The new instruction is inserted before MI, and the client is responsible
819  /// for removing the old instruction.
820  MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
821                                  int FrameIndex,
822                                  LiveIntervals *LIS = nullptr) const;
823
824  /// Same as the previous version except it allows folding of any load and
825  /// store from / to any address, not just from a specific stack slot.
826  MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
827                                  MachineInstr &LoadMI,
828                                  LiveIntervals *LIS = nullptr) const;
829
830  /// Return true when there is potentially a faster code sequence
831  /// for an instruction chain ending in \p Root. All potential patterns are
832  /// returned in the \p Pattern vector. Pattern should be sorted in priority
833  /// order since the pattern evaluator stops checking as soon as it finds a
834  /// faster sequence.
835  /// \param Root - Instruction that could be combined with one of its operands
836  /// \param Patterns - Vector of possible combination patterns
837  virtual bool getMachineCombinerPatterns(
838      MachineInstr &Root,
839      SmallVectorImpl<MachineCombinerPattern> &Patterns) const;
840
841  /// Return true when a code sequence can improve throughput. It
842  /// should be called only for instructions in loops.
843  /// \param Pattern - combiner pattern
844  virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
845
846  /// Return true if the input \P Inst is part of a chain of dependent ops
847  /// that are suitable for reassociation, otherwise return false.
848  /// If the instruction's operands must be commuted to have a previous
849  /// instruction of the same type define the first source operand, \P Commuted
850  /// will be set to true.
851  bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
852
853  /// Return true when \P Inst is both associative and commutative.
854  virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
855    return false;
856  }
857
858  /// Return true when \P Inst has reassociable operands in the same \P MBB.
859  virtual bool hasReassociableOperands(const MachineInstr &Inst,
860                                       const MachineBasicBlock *MBB) const;
861
862  /// Return true when \P Inst has reassociable sibling.
863  bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
864
865  /// When getMachineCombinerPatterns() finds patterns, this function generates
866  /// the instructions that could replace the original code sequence. The client
867  /// has to decide whether the actual replacement is beneficial or not.
868  /// \param Root - Instruction that could be combined with one of its operands
869  /// \param Pattern - Combination pattern for Root
870  /// \param InsInstrs - Vector of new instructions that implement P
871  /// \param DelInstrs - Old instructions, including Root, that could be
872  /// replaced by InsInstr
873  /// \param InstrIdxForVirtReg - map of virtual register to instruction in
874  /// InsInstr that defines it
875  virtual void genAlternativeCodeSequence(
876      MachineInstr &Root, MachineCombinerPattern Pattern,
877      SmallVectorImpl<MachineInstr *> &InsInstrs,
878      SmallVectorImpl<MachineInstr *> &DelInstrs,
879      DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
880
881  /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
882  /// reduce critical path length.
883  void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
884                      MachineCombinerPattern Pattern,
885                      SmallVectorImpl<MachineInstr *> &InsInstrs,
886                      SmallVectorImpl<MachineInstr *> &DelInstrs,
887                      DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
888
889  /// This is an architecture-specific helper function of reassociateOps.
890  /// Set special operand attributes for new instructions after reassociation.
891  virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
892                                     MachineInstr &NewMI1,
893                                     MachineInstr &NewMI2) const {
894  }
895
896  /// Return true when a target supports MachineCombiner.
897  virtual bool useMachineCombiner() const { return false; }
898
899protected:
900  /// Target-dependent implementation for foldMemoryOperand.
901  /// Target-independent code in foldMemoryOperand will
902  /// take care of adding a MachineMemOperand to the newly created instruction.
903  /// The instruction and any auxiliary instructions necessary will be inserted
904  /// at InsertPt.
905  virtual MachineInstr *
906  foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
907                        ArrayRef<unsigned> Ops,
908                        MachineBasicBlock::iterator InsertPt, int FrameIndex,
909                        LiveIntervals *LIS = nullptr) const {
910    return nullptr;
911  }
912
913  /// Target-dependent implementation for foldMemoryOperand.
914  /// Target-independent code in foldMemoryOperand will
915  /// take care of adding a MachineMemOperand to the newly created instruction.
916  /// The instruction and any auxiliary instructions necessary will be inserted
917  /// at InsertPt.
918  virtual MachineInstr *foldMemoryOperandImpl(
919      MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
920      MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
921      LiveIntervals *LIS = nullptr) const {
922    return nullptr;
923  }
924
925  /// \brief Target-dependent implementation of getRegSequenceInputs.
926  ///
927  /// \returns true if it is possible to build the equivalent
928  /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
929  ///
930  /// \pre MI.isRegSequenceLike().
931  ///
932  /// \see TargetInstrInfo::getRegSequenceInputs.
933  virtual bool getRegSequenceLikeInputs(
934      const MachineInstr &MI, unsigned DefIdx,
935      SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
936    return false;
937  }
938
939  /// \brief Target-dependent implementation of getExtractSubregInputs.
940  ///
941  /// \returns true if it is possible to build the equivalent
942  /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
943  ///
944  /// \pre MI.isExtractSubregLike().
945  ///
946  /// \see TargetInstrInfo::getExtractSubregInputs.
947  virtual bool getExtractSubregLikeInputs(
948      const MachineInstr &MI, unsigned DefIdx,
949      RegSubRegPairAndIdx &InputReg) const {
950    return false;
951  }
952
953  /// \brief Target-dependent implementation of getInsertSubregInputs.
954  ///
955  /// \returns true if it is possible to build the equivalent
956  /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
957  ///
958  /// \pre MI.isInsertSubregLike().
959  ///
960  /// \see TargetInstrInfo::getInsertSubregInputs.
961  virtual bool
962  getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
963                            RegSubRegPair &BaseReg,
964                            RegSubRegPairAndIdx &InsertedReg) const {
965    return false;
966  }
967
968public:
969  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
970  /// a store or a load and a store into two or more instruction. If this is
971  /// possible, returns true as well as the new instructions by reference.
972  virtual bool
973  unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
974                      bool UnfoldLoad, bool UnfoldStore,
975                      SmallVectorImpl<MachineInstr *> &NewMIs) const {
976    return false;
977  }
978
979  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
980                                   SmallVectorImpl<SDNode*> &NewNodes) const {
981    return false;
982  }
983
984  /// Returns the opcode of the would be new
985  /// instruction after load / store are unfolded from an instruction of the
986  /// specified opcode. It returns zero if the specified unfolding is not
987  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
988  /// index of the operand which will hold the register holding the loaded
989  /// value.
990  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
991                                      bool UnfoldLoad, bool UnfoldStore,
992                                      unsigned *LoadRegIndex = nullptr) const {
993    return 0;
994  }
995
996  /// This is used by the pre-regalloc scheduler to determine if two loads are
997  /// loading from the same base address. It should only return true if the base
998  /// pointers are the same and the only differences between the two addresses
999  /// are the offset. It also returns the offsets by reference.
1000  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1001                                    int64_t &Offset1, int64_t &Offset2) const {
1002    return false;
1003  }
1004
1005  /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1006  /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1007  /// On some targets if two loads are loading from
1008  /// addresses in the same cache line, it's better if they are scheduled
1009  /// together. This function takes two integers that represent the load offsets
1010  /// from the common base address. It returns true if it decides it's desirable
1011  /// to schedule the two loads together. "NumLoads" is the number of loads that
1012  /// have already been scheduled after Load1.
1013  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1014                                       int64_t Offset1, int64_t Offset2,
1015                                       unsigned NumLoads) const {
1016    return false;
1017  }
1018
1019  /// Get the base register and byte offset of an instruction that reads/writes
1020  /// memory.
1021  virtual bool getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg,
1022                                     int64_t &Offset,
1023                                     const TargetRegisterInfo *TRI) const {
1024    return false;
1025  }
1026
1027  /// Return true if the instruction contains a base register and offset. If
1028  /// true, the function also sets the operand position in the instruction
1029  /// for the base register and offset.
1030  virtual bool getBaseAndOffsetPosition(const MachineInstr *MI,
1031                                        unsigned &BasePos,
1032                                        unsigned &OffsetPos) const {
1033    return false;
1034  }
1035
1036  /// If the instruction is an increment of a constant value, return the amount.
1037  virtual bool getIncrementValue(const MachineInstr *MI, int &Value) const {
1038    return false;
1039  }
1040
1041  virtual bool enableClusterLoads() const { return false; }
1042
1043  virtual bool enableClusterStores() const { return false; }
1044
1045  virtual bool shouldClusterMemOps(MachineInstr &FirstLdSt,
1046                                   MachineInstr &SecondLdSt,
1047                                   unsigned NumLoads) const {
1048    return false;
1049  }
1050
1051  /// Can this target fuse the given instructions if they are scheduled
1052  /// adjacent.
1053  virtual bool shouldScheduleAdjacent(MachineInstr &First,
1054                                      MachineInstr &Second) const {
1055    return false;
1056  }
1057
1058  /// Reverses the branch condition of the specified condition list,
1059  /// returning false on success and true if it cannot be reversed.
1060  virtual
1061  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1062    return true;
1063  }
1064
1065  /// Insert a noop into the instruction stream at the specified point.
1066  virtual void insertNoop(MachineBasicBlock &MBB,
1067                          MachineBasicBlock::iterator MI) const;
1068
1069
1070  /// Return the noop instruction to use for a noop.
1071  virtual void getNoopForMachoTarget(MCInst &NopInst) const;
1072
1073  /// Return true for post-incremented instructions.
1074  virtual bool isPostIncrement(const MachineInstr* MI) const {
1075    return false;
1076  }
1077
1078  /// Returns true if the instruction is already predicated.
1079  virtual bool isPredicated(const MachineInstr &MI) const {
1080    return false;
1081  }
1082
1083  /// Returns true if the instruction is a
1084  /// terminator instruction that has not been predicated.
1085  virtual bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1086
1087  /// Convert the instruction into a predicated instruction.
1088  /// It returns true if the operation was successful.
1089  virtual bool PredicateInstruction(MachineInstr &MI,
1090                                    ArrayRef<MachineOperand> Pred) const;
1091
1092  /// Returns true if the first specified predicate
1093  /// subsumes the second, e.g. GE subsumes GT.
1094  virtual
1095  bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1096                         ArrayRef<MachineOperand> Pred2) const {
1097    return false;
1098  }
1099
1100  /// If the specified instruction defines any predicate
1101  /// or condition code register(s) used for predication, returns true as well
1102  /// as the definition predicate(s) by reference.
1103  virtual bool DefinesPredicate(MachineInstr &MI,
1104                                std::vector<MachineOperand> &Pred) const {
1105    return false;
1106  }
1107
1108  /// Return true if the specified instruction can be predicated.
1109  /// By default, this returns true for every instruction with a
1110  /// PredicateOperand.
1111  virtual bool isPredicable(MachineInstr &MI) const {
1112    return MI.getDesc().isPredicable();
1113  }
1114
1115  /// Return true if it's safe to move a machine
1116  /// instruction that defines the specified register class.
1117  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1118    return true;
1119  }
1120
1121  /// Test if the given instruction should be considered a scheduling boundary.
1122  /// This primarily includes labels and terminators.
1123  virtual bool isSchedulingBoundary(const MachineInstr &MI,
1124                                    const MachineBasicBlock *MBB,
1125                                    const MachineFunction &MF) const;
1126
1127  /// Measure the specified inline asm to determine an approximation of its
1128  /// length.
1129  virtual unsigned getInlineAsmLength(const char *Str,
1130                                      const MCAsmInfo &MAI) const;
1131
1132  /// Allocate and return a hazard recognizer to use for this target when
1133  /// scheduling the machine instructions before register allocation.
1134  virtual ScheduleHazardRecognizer*
1135  CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1136                               const ScheduleDAG *DAG) const;
1137
1138  /// Allocate and return a hazard recognizer to use for this target when
1139  /// scheduling the machine instructions before register allocation.
1140  virtual ScheduleHazardRecognizer*
1141  CreateTargetMIHazardRecognizer(const InstrItineraryData*,
1142                                 const ScheduleDAG *DAG) const;
1143
1144  /// Allocate and return a hazard recognizer to use for this target when
1145  /// scheduling the machine instructions after register allocation.
1146  virtual ScheduleHazardRecognizer*
1147  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
1148                                     const ScheduleDAG *DAG) const;
1149
1150  /// Allocate and return a hazard recognizer to use for by non-scheduling
1151  /// passes.
1152  virtual ScheduleHazardRecognizer*
1153  CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1154    return nullptr;
1155  }
1156
1157  /// Provide a global flag for disabling the PreRA hazard recognizer that
1158  /// targets may choose to honor.
1159  bool usePreRAHazardRecognizer() const;
1160
1161  /// For a comparison instruction, return the source registers
1162  /// in SrcReg and SrcReg2 if having two register operands, and the value it
1163  /// compares against in CmpValue. Return true if the comparison instruction
1164  /// can be analyzed.
1165  virtual bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1166                              unsigned &SrcReg2, int &Mask, int &Value) const {
1167    return false;
1168  }
1169
1170  /// See if the comparison instruction can be converted
1171  /// into something more efficient. E.g., on ARM most instructions can set the
1172  /// flags register, obviating the need for a separate CMP.
1173  virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1174                                    unsigned SrcReg2, int Mask, int Value,
1175                                    const MachineRegisterInfo *MRI) const {
1176    return false;
1177  }
1178  virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1179
1180  /// Try to remove the load by folding it to a register operand at the use.
1181  /// We fold the load instructions if and only if the
1182  /// def and use are in the same BB. We only look at one load and see
1183  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1184  /// defined by the load we are trying to fold. DefMI returns the machine
1185  /// instruction that defines FoldAsLoadDefReg, and the function returns
1186  /// the machine instruction generated due to folding.
1187  virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1188                                          const MachineRegisterInfo *MRI,
1189                                          unsigned &FoldAsLoadDefReg,
1190                                          MachineInstr *&DefMI) const {
1191    return nullptr;
1192  }
1193
1194  /// 'Reg' is known to be defined by a move immediate instruction,
1195  /// try to fold the immediate into the use instruction.
1196  /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1197  /// then the caller may assume that DefMI has been erased from its parent
1198  /// block. The caller may assume that it will not be erased by this
1199  /// function otherwise.
1200  virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1201                             unsigned Reg, MachineRegisterInfo *MRI) const {
1202    return false;
1203  }
1204
1205  /// Return the number of u-operations the given machine
1206  /// instruction will be decoded to on the target cpu. The itinerary's
1207  /// IssueWidth is the number of microops that can be dispatched each
1208  /// cycle. An instruction with zero microops takes no dispatch resources.
1209  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1210                                  const MachineInstr &MI) const;
1211
1212  /// Return true for pseudo instructions that don't consume any
1213  /// machine resources in their current form. These are common cases that the
1214  /// scheduler should consider free, rather than conservatively handling them
1215  /// as instructions with no itinerary.
1216  bool isZeroCost(unsigned Opcode) const {
1217    return Opcode <= TargetOpcode::COPY;
1218  }
1219
1220  virtual int getOperandLatency(const InstrItineraryData *ItinData,
1221                                SDNode *DefNode, unsigned DefIdx,
1222                                SDNode *UseNode, unsigned UseIdx) const;
1223
1224  /// Compute and return the use operand latency of a given pair of def and use.
1225  /// In most cases, the static scheduling itinerary was enough to determine the
1226  /// operand latency. But it may not be possible for instructions with variable
1227  /// number of defs / uses.
1228  ///
1229  /// This is a raw interface to the itinerary that may be directly overridden
1230  /// by a target. Use computeOperandLatency to get the best estimate of
1231  /// latency.
1232  virtual int getOperandLatency(const InstrItineraryData *ItinData,
1233                                const MachineInstr &DefMI, unsigned DefIdx,
1234                                const MachineInstr &UseMI,
1235                                unsigned UseIdx) const;
1236
1237  /// Compute and return the latency of the given data dependent def and use
1238  /// when the operand indices are already known. UseMI may be \c nullptr for
1239  /// an unknown use.
1240  ///
1241  /// FindMin may be set to get the minimum vs. expected latency. Minimum
1242  /// latency is used for scheduling groups, while expected latency is for
1243  /// instruction cost and critical path.
1244  ///
1245  /// Depending on the subtarget's itinerary properties, this may or may not
1246  /// need to call getOperandLatency(). For most subtargets, we don't need
1247  /// DefIdx or UseIdx to compute min latency.
1248  unsigned computeOperandLatency(const InstrItineraryData *ItinData,
1249                                 const MachineInstr &DefMI, unsigned DefIdx,
1250                                 const MachineInstr *UseMI,
1251                                 unsigned UseIdx) const;
1252
1253  /// Compute the instruction latency of a given instruction.
1254  /// If the instruction has higher cost when predicated, it's returned via
1255  /// PredCost.
1256  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1257                                   const MachineInstr &MI,
1258                                   unsigned *PredCost = nullptr) const;
1259
1260  virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1261
1262  virtual int getInstrLatency(const InstrItineraryData *ItinData,
1263                              SDNode *Node) const;
1264
1265  /// Return the default expected latency for a def based on its opcode.
1266  unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1267                             const MachineInstr &DefMI) const;
1268
1269  int computeDefOperandLatency(const InstrItineraryData *ItinData,
1270                               const MachineInstr &DefMI) const;
1271
1272  /// Return true if this opcode has high latency to its result.
1273  virtual bool isHighLatencyDef(int opc) const { return false; }
1274
1275  /// Compute operand latency between a def of 'Reg'
1276  /// and a use in the current loop. Return true if the target considered
1277  /// it 'high'. This is used by optimization passes such as machine LICM to
1278  /// determine whether it makes sense to hoist an instruction out even in a
1279  /// high register pressure situation.
1280  virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1281                                     const MachineRegisterInfo *MRI,
1282                                     const MachineInstr &DefMI, unsigned DefIdx,
1283                                     const MachineInstr &UseMI,
1284                                     unsigned UseIdx) const {
1285    return false;
1286  }
1287
1288  /// Compute operand latency of a def of 'Reg'. Return true
1289  /// if the target considered it 'low'.
1290  virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1291                                const MachineInstr &DefMI,
1292                                unsigned DefIdx) const;
1293
1294  /// Perform target-specific instruction verification.
1295  virtual bool verifyInstruction(const MachineInstr &MI,
1296                                 StringRef &ErrInfo) const {
1297    return true;
1298  }
1299
1300  /// Return the current execution domain and bit mask of
1301  /// possible domains for instruction.
1302  ///
1303  /// Some micro-architectures have multiple execution domains, and multiple
1304  /// opcodes that perform the same operation in different domains.  For
1305  /// example, the x86 architecture provides the por, orps, and orpd
1306  /// instructions that all do the same thing.  There is a latency penalty if a
1307  /// register is written in one domain and read in another.
1308  ///
1309  /// This function returns a pair (domain, mask) containing the execution
1310  /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
1311  /// function can be used to change the opcode to one of the domains in the
1312  /// bit mask.  Instructions whose execution domain can't be changed should
1313  /// return a 0 mask.
1314  ///
1315  /// The execution domain numbers don't have any special meaning except domain
1316  /// 0 is used for instructions that are not associated with any interesting
1317  /// execution domain.
1318  ///
1319  virtual std::pair<uint16_t, uint16_t>
1320  getExecutionDomain(const MachineInstr &MI) const {
1321    return std::make_pair(0, 0);
1322  }
1323
1324  /// Change the opcode of MI to execute in Domain.
1325  ///
1326  /// The bit (1 << Domain) must be set in the mask returned from
1327  /// getExecutionDomain(MI).
1328  virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1329
1330  /// Returns the preferred minimum clearance
1331  /// before an instruction with an unwanted partial register update.
1332  ///
1333  /// Some instructions only write part of a register, and implicitly need to
1334  /// read the other parts of the register.  This may cause unwanted stalls
1335  /// preventing otherwise unrelated instructions from executing in parallel in
1336  /// an out-of-order CPU.
1337  ///
1338  /// For example, the x86 instruction cvtsi2ss writes its result to bits
1339  /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1340  /// the instruction needs to wait for the old value of the register to become
1341  /// available:
1342  ///
1343  ///   addps %xmm1, %xmm0
1344  ///   movaps %xmm0, (%rax)
1345  ///   cvtsi2ss %rbx, %xmm0
1346  ///
1347  /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1348  /// instruction before it can issue, even though the high bits of %xmm0
1349  /// probably aren't needed.
1350  ///
1351  /// This hook returns the preferred clearance before MI, measured in
1352  /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
1353  /// instructions before MI.  It should only return a positive value for
1354  /// unwanted dependencies.  If the old bits of the defined register have
1355  /// useful values, or if MI is determined to otherwise read the dependency,
1356  /// the hook should return 0.
1357  ///
1358  /// The unwanted dependency may be handled by:
1359  ///
1360  /// 1. Allocating the same register for an MI def and use.  That makes the
1361  ///    unwanted dependency identical to a required dependency.
1362  ///
1363  /// 2. Allocating a register for the def that has no defs in the previous N
1364  ///    instructions.
1365  ///
1366  /// 3. Calling breakPartialRegDependency() with the same arguments.  This
1367  ///    allows the target to insert a dependency breaking instruction.
1368  ///
1369  virtual unsigned
1370  getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1371                               const TargetRegisterInfo *TRI) const {
1372    // The default implementation returns 0 for no partial register dependency.
1373    return 0;
1374  }
1375
1376  /// \brief Return the minimum clearance before an instruction that reads an
1377  /// unused register.
1378  ///
1379  /// For example, AVX instructions may copy part of a register operand into
1380  /// the unused high bits of the destination register.
1381  ///
1382  /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
1383  ///
1384  /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1385  /// false dependence on any previous write to %xmm0.
1386  ///
1387  /// This hook works similarly to getPartialRegUpdateClearance, except that it
1388  /// does not take an operand index. Instead sets \p OpNum to the index of the
1389  /// unused register.
1390  virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
1391                                        const TargetRegisterInfo *TRI) const {
1392    // The default implementation returns 0 for no undef register dependency.
1393    return 0;
1394  }
1395
1396  /// Insert a dependency-breaking instruction
1397  /// before MI to eliminate an unwanted dependency on OpNum.
1398  ///
1399  /// If it wasn't possible to avoid a def in the last N instructions before MI
1400  /// (see getPartialRegUpdateClearance), this hook will be called to break the
1401  /// unwanted dependency.
1402  ///
1403  /// On x86, an xorps instruction can be used as a dependency breaker:
1404  ///
1405  ///   addps %xmm1, %xmm0
1406  ///   movaps %xmm0, (%rax)
1407  ///   xorps %xmm0, %xmm0
1408  ///   cvtsi2ss %rbx, %xmm0
1409  ///
1410  /// An <imp-kill> operand should be added to MI if an instruction was
1411  /// inserted.  This ties the instructions together in the post-ra scheduler.
1412  ///
1413  virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1414                                         const TargetRegisterInfo *TRI) const {}
1415
1416  /// Create machine specific model for scheduling.
1417  virtual DFAPacketizer *
1418  CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1419    return nullptr;
1420  }
1421
1422  // Sometimes, it is possible for the target
1423  // to tell, even without aliasing information, that two MIs access different
1424  // memory addresses. This function returns true if two MIs access different
1425  // memory addresses and false otherwise.
1426  virtual bool
1427  areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
1428                                  AliasAnalysis *AA = nullptr) const {
1429    assert((MIa.mayLoad() || MIa.mayStore()) &&
1430           "MIa must load from or modify a memory location");
1431    assert((MIb.mayLoad() || MIb.mayStore()) &&
1432           "MIb must load from or modify a memory location");
1433    return false;
1434  }
1435
1436  /// \brief Return the value to use for the MachineCSE's LookAheadLimit,
1437  /// which is a heuristic used for CSE'ing phys reg defs.
1438  virtual unsigned getMachineCSELookAheadLimit () const {
1439    // The default lookahead is small to prevent unprofitable quadratic
1440    // behavior.
1441    return 5;
1442  }
1443
1444  /// Return an array that contains the ids of the target indices (used for the
1445  /// TargetIndex machine operand) and their names.
1446  ///
1447  /// MIR Serialization is able to serialize only the target indices that are
1448  /// defined by this method.
1449  virtual ArrayRef<std::pair<int, const char *>>
1450  getSerializableTargetIndices() const {
1451    return None;
1452  }
1453
1454  /// Decompose the machine operand's target flags into two values - the direct
1455  /// target flag value and any of bit flags that are applied.
1456  virtual std::pair<unsigned, unsigned>
1457  decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1458    return std::make_pair(0u, 0u);
1459  }
1460
1461  /// Return an array that contains the direct target flag values and their
1462  /// names.
1463  ///
1464  /// MIR Serialization is able to serialize only the target flags that are
1465  /// defined by this method.
1466  virtual ArrayRef<std::pair<unsigned, const char *>>
1467  getSerializableDirectMachineOperandTargetFlags() const {
1468    return None;
1469  }
1470
1471  /// Return an array that contains the bitmask target flag values and their
1472  /// names.
1473  ///
1474  /// MIR Serialization is able to serialize only the target flags that are
1475  /// defined by this method.
1476  virtual ArrayRef<std::pair<unsigned, const char *>>
1477  getSerializableBitmaskMachineOperandTargetFlags() const {
1478    return None;
1479  }
1480
1481private:
1482  unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
1483  unsigned CatchRetOpcode;
1484  unsigned ReturnOpcode;
1485};
1486
1487/// \brief Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
1488template<>
1489struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
1490  typedef DenseMapInfo<unsigned> RegInfo;
1491
1492  static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
1493    return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
1494                         RegInfo::getEmptyKey());
1495  }
1496  static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
1497    return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
1498                         RegInfo::getTombstoneKey());
1499  }
1500  /// \brief Reuse getHashValue implementation from
1501  /// std::pair<unsigned, unsigned>.
1502  static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
1503    std::pair<unsigned, unsigned> PairVal =
1504        std::make_pair(Val.Reg, Val.SubReg);
1505    return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
1506  }
1507  static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
1508                      const TargetInstrInfo::RegSubRegPair &RHS) {
1509    return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
1510           RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
1511  }
1512};
1513
1514} // end namespace llvm
1515
1516#endif // LLVM_TARGET_TARGETINSTRINFO_H
1517