TargetInstrInfo.h revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/ADT/SmallSet.h"
18#include "llvm/CodeGen/DFAPacketizer.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/MC/MCInstrInfo.h"
21
22namespace llvm {
23
24class InstrItineraryData;
25class LiveVariables;
26class MCAsmInfo;
27class MachineMemOperand;
28class MachineRegisterInfo;
29class MDNode;
30class MCInst;
31class MCSchedModel;
32class SDNode;
33class ScheduleHazardRecognizer;
34class SelectionDAG;
35class ScheduleDAG;
36class TargetRegisterClass;
37class TargetRegisterInfo;
38class BranchProbability;
39
40template<class T> class SmallVectorImpl;
41
42
43//---------------------------------------------------------------------------
44///
45/// TargetInstrInfo - Interface to description of machine instruction set
46///
47class TargetInstrInfo : public MCInstrInfo {
48  TargetInstrInfo(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
49  void operator=(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
50public:
51  TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
52    : CallFrameSetupOpcode(CFSetupOpcode),
53      CallFrameDestroyOpcode(CFDestroyOpcode) {
54  }
55
56  virtual ~TargetInstrInfo();
57
58  /// getRegClass - Givem a machine instruction descriptor, returns the register
59  /// class constraint for OpNum, or NULL.
60  const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
61                                         unsigned OpNum,
62                                         const TargetRegisterInfo *TRI,
63                                         const MachineFunction &MF) const;
64
65  /// isTriviallyReMaterializable - Return true if the instruction is trivially
66  /// rematerializable, meaning it has no side effects and requires no operands
67  /// that aren't always available.
68  bool isTriviallyReMaterializable(const MachineInstr *MI,
69                                   AliasAnalysis *AA = nullptr) const {
70    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
71           (MI->getDesc().isRematerializable() &&
72            (isReallyTriviallyReMaterializable(MI, AA) ||
73             isReallyTriviallyReMaterializableGeneric(MI, AA)));
74  }
75
76protected:
77  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
78  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
79  /// specify whether the instruction is actually trivially rematerializable,
80  /// taking into consideration its operands. This predicate must return false
81  /// if the instruction has any side effects other than producing a value, or
82  /// if it requres any address registers that are not always available.
83  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
84                                                 AliasAnalysis *AA) const {
85    return false;
86  }
87
88private:
89  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
90  /// for which the M_REMATERIALIZABLE flag is set and the target hook
91  /// isReallyTriviallyReMaterializable returns false, this function does
92  /// target-independent tests to determine if the instruction is really
93  /// trivially rematerializable.
94  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
95                                                AliasAnalysis *AA) const;
96
97public:
98  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
99  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
100  /// targets use pseudo instructions in order to abstract away the difference
101  /// between operating with a frame pointer and operating without, through the
102  /// use of these two instructions.
103  ///
104  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
105  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
106
107  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
108  /// extension instruction. That is, it's like a copy where it's legal for the
109  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
110  /// true, then it's expected the pre-extension value is available as a subreg
111  /// of the result register. This also returns the sub-register index in
112  /// SubIdx.
113  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
114                                     unsigned &SrcReg, unsigned &DstReg,
115                                     unsigned &SubIdx) const {
116    return false;
117  }
118
119  /// isLoadFromStackSlot - If the specified machine instruction is a direct
120  /// load from a stack slot, return the virtual or physical register number of
121  /// the destination along with the FrameIndex of the loaded stack slot.  If
122  /// not, return 0.  This predicate must return 0 if the instruction has
123  /// any side effects other than loading from the stack slot.
124  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
125                                       int &FrameIndex) const {
126    return 0;
127  }
128
129  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
130  /// stack locations as well.  This uses a heuristic so it isn't
131  /// reliable for correctness.
132  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
133                                             int &FrameIndex) const {
134    return 0;
135  }
136
137  /// hasLoadFromStackSlot - If the specified machine instruction has
138  /// a load from a stack slot, return true along with the FrameIndex
139  /// of the loaded stack slot and the machine mem operand containing
140  /// the reference.  If not, return false.  Unlike
141  /// isLoadFromStackSlot, this returns true for any instructions that
142  /// loads from the stack.  This is just a hint, as some cases may be
143  /// missed.
144  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
145                                    const MachineMemOperand *&MMO,
146                                    int &FrameIndex) const;
147
148  /// isStoreToStackSlot - If the specified machine instruction is a direct
149  /// store to a stack slot, return the virtual or physical register number of
150  /// the source reg along with the FrameIndex of the loaded stack slot.  If
151  /// not, return 0.  This predicate must return 0 if the instruction has
152  /// any side effects other than storing to the stack slot.
153  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
154                                      int &FrameIndex) const {
155    return 0;
156  }
157
158  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
159  /// stack locations as well.  This uses a heuristic so it isn't
160  /// reliable for correctness.
161  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
162                                            int &FrameIndex) const {
163    return 0;
164  }
165
166  /// hasStoreToStackSlot - If the specified machine instruction has a
167  /// store to a stack slot, return true along with the FrameIndex of
168  /// the loaded stack slot and the machine mem operand containing the
169  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
170  /// this returns true for any instructions that stores to the
171  /// stack.  This is just a hint, as some cases may be missed.
172  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
173                                   const MachineMemOperand *&MMO,
174                                   int &FrameIndex) const;
175
176  /// isStackSlotCopy - Return true if the specified machine instruction
177  /// is a copy of one stack slot to another and has no other effect.
178  /// Provide the identity of the two frame indices.
179  virtual bool isStackSlotCopy(const MachineInstr *MI, int &DestFrameIndex,
180                               int &SrcFrameIndex) const {
181    return false;
182  }
183
184  /// Compute the size in bytes and offset within a stack slot of a spilled
185  /// register or subregister.
186  ///
187  /// \param [out] Size in bytes of the spilled value.
188  /// \param [out] Offset in bytes within the stack slot.
189  /// \returns true if both Size and Offset are successfully computed.
190  ///
191  /// Not all subregisters have computable spill slots. For example,
192  /// subregisters registers may not be byte-sized, and a pair of discontiguous
193  /// subregisters has no single offset.
194  ///
195  /// Targets with nontrivial bigendian implementations may need to override
196  /// this, particularly to support spilled vector registers.
197  virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
198                                 unsigned &Size, unsigned &Offset,
199                                 const TargetMachine *TM) const;
200
201  /// reMaterialize - Re-issue the specified 'original' instruction at the
202  /// specific location targeting a new destination register.
203  /// The register in Orig->getOperand(0).getReg() will be substituted by
204  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
205  /// SubIdx.
206  virtual void reMaterialize(MachineBasicBlock &MBB,
207                             MachineBasicBlock::iterator MI,
208                             unsigned DestReg, unsigned SubIdx,
209                             const MachineInstr *Orig,
210                             const TargetRegisterInfo &TRI) const;
211
212  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
213  /// MachineFunction::CloneMachineInstr(), but the target may update operands
214  /// that are required to be unique.
215  ///
216  /// The instruction must be duplicable as indicated by isNotDuplicable().
217  virtual MachineInstr *duplicate(MachineInstr *Orig,
218                                  MachineFunction &MF) const;
219
220  /// convertToThreeAddress - This method must be implemented by targets that
221  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
222  /// may be able to convert a two-address instruction into one or more true
223  /// three-address instructions on demand.  This allows the X86 target (for
224  /// example) to convert ADD and SHL instructions into LEA instructions if they
225  /// would require register copies due to two-addressness.
226  ///
227  /// This method returns a null pointer if the transformation cannot be
228  /// performed, otherwise it returns the last new instruction.
229  ///
230  virtual MachineInstr *
231  convertToThreeAddress(MachineFunction::iterator &MFI,
232                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
233    return nullptr;
234  }
235
236  /// commuteInstruction - If a target has any instructions that are
237  /// commutable but require converting to different instructions or making
238  /// non-trivial changes to commute them, this method can overloaded to do
239  /// that.  The default implementation simply swaps the commutable operands.
240  /// If NewMI is false, MI is modified in place and returned; otherwise, a
241  /// new machine instruction is created and returned.  Do not call this
242  /// method for a non-commutable instruction, but there may be some cases
243  /// where this method fails and returns null.
244  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
245                                           bool NewMI = false) const;
246
247  /// findCommutedOpIndices - If specified MI is commutable, return the two
248  /// operand indices that would swap value. Return false if the instruction
249  /// is not in a form which this routine understands.
250  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
251                                     unsigned &SrcOpIdx2) const;
252
253  /// produceSameValue - Return true if two machine instructions would produce
254  /// identical values. By default, this is only true when the two instructions
255  /// are deemed identical except for defs. If this function is called when the
256  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
257  /// aggressive checks.
258  virtual bool produceSameValue(const MachineInstr *MI0,
259                                const MachineInstr *MI1,
260                                const MachineRegisterInfo *MRI = nullptr) const;
261
262  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
263  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
264  /// implemented for a target).  Upon success, this returns false and returns
265  /// with the following information in various cases:
266  ///
267  /// 1. If this block ends with no branches (it just falls through to its succ)
268  ///    just return false, leaving TBB/FBB null.
269  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
270  ///    the destination block.
271  /// 3. If this block ends with a conditional branch and it falls through to a
272  ///    successor block, it sets TBB to be the branch destination block and a
273  ///    list of operands that evaluate the condition. These operands can be
274  ///    passed to other TargetInstrInfo methods to create new branches.
275  /// 4. If this block ends with a conditional branch followed by an
276  ///    unconditional branch, it returns the 'true' destination in TBB, the
277  ///    'false' destination in FBB, and a list of operands that evaluate the
278  ///    condition.  These operands can be passed to other TargetInstrInfo
279  ///    methods to create new branches.
280  ///
281  /// Note that RemoveBranch and InsertBranch must be implemented to support
282  /// cases where this method returns success.
283  ///
284  /// If AllowModify is true, then this routine is allowed to modify the basic
285  /// block (e.g. delete instructions after the unconditional branch).
286  ///
287  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
288                             MachineBasicBlock *&FBB,
289                             SmallVectorImpl<MachineOperand> &Cond,
290                             bool AllowModify = false) const {
291    return true;
292  }
293
294  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
295  /// This is only invoked in cases where AnalyzeBranch returns success. It
296  /// returns the number of instructions that were removed.
297  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
298    llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
299  }
300
301  /// InsertBranch - Insert branch code into the end of the specified
302  /// MachineBasicBlock.  The operands to this method are the same as those
303  /// returned by AnalyzeBranch.  This is only invoked in cases where
304  /// AnalyzeBranch returns success. It returns the number of instructions
305  /// inserted.
306  ///
307  /// It is also invoked by tail merging to add unconditional branches in
308  /// cases where AnalyzeBranch doesn't apply because there was no original
309  /// branch to analyze.  At least this much must be implemented, else tail
310  /// merging needs to be disabled.
311  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
312                                MachineBasicBlock *FBB,
313                                const SmallVectorImpl<MachineOperand> &Cond,
314                                DebugLoc DL) const {
315    llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
316  }
317
318  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
319  /// after it, replacing it with an unconditional branch to NewDest. This is
320  /// used by the tail merging pass.
321  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
322                                       MachineBasicBlock *NewDest) const;
323
324  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
325  /// block at the specified instruction (i.e. instruction would be the start
326  /// of a new basic block).
327  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
328                                   MachineBasicBlock::iterator MBBI) const {
329    return true;
330  }
331
332  /// isProfitableToIfCvt - Return true if it's profitable to predicate
333  /// instructions with accumulated instruction latency of "NumCycles"
334  /// of the specified basic block, where the probability of the instructions
335  /// being executed is given by Probability, and Confidence is a measure
336  /// of our confidence that it will be properly predicted.
337  virtual
338  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
339                           unsigned ExtraPredCycles,
340                           const BranchProbability &Probability) const {
341    return false;
342  }
343
344  /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
345  /// checks for the case where two basic blocks from true and false path
346  /// of a if-then-else (diamond) are predicated on mutally exclusive
347  /// predicates, where the probability of the true path being taken is given
348  /// by Probability, and Confidence is a measure of our confidence that it
349  /// will be properly predicted.
350  virtual bool
351  isProfitableToIfCvt(MachineBasicBlock &TMBB,
352                      unsigned NumTCycles, unsigned ExtraTCycles,
353                      MachineBasicBlock &FMBB,
354                      unsigned NumFCycles, unsigned ExtraFCycles,
355                      const BranchProbability &Probability) const {
356    return false;
357  }
358
359  /// isProfitableToDupForIfCvt - Return true if it's profitable for
360  /// if-converter to duplicate instructions of specified accumulated
361  /// instruction latencies in the specified MBB to enable if-conversion.
362  /// The probability of the instructions being executed is given by
363  /// Probability, and Confidence is a measure of our confidence that it
364  /// will be properly predicted.
365  virtual bool
366  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
367                            const BranchProbability &Probability) const {
368    return false;
369  }
370
371  /// isProfitableToUnpredicate - Return true if it's profitable to unpredicate
372  /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
373  /// exclusive predicates.
374  /// e.g.
375  ///   subeq  r0, r1, #1
376  ///   addne  r0, r1, #1
377  /// =>
378  ///   sub    r0, r1, #1
379  ///   addne  r0, r1, #1
380  ///
381  /// This may be profitable is conditional instructions are always executed.
382  virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
383                                         MachineBasicBlock &FMBB) const {
384    return false;
385  }
386
387  /// canInsertSelect - Return true if it is possible to insert a select
388  /// instruction that chooses between TrueReg and FalseReg based on the
389  /// condition code in Cond.
390  ///
391  /// When successful, also return the latency in cycles from TrueReg,
392  /// FalseReg, and Cond to the destination register. In most cases, a select
393  /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
394  ///
395  /// Some x86 implementations have 2-cycle cmov instructions.
396  ///
397  /// @param MBB         Block where select instruction would be inserted.
398  /// @param Cond        Condition returned by AnalyzeBranch.
399  /// @param TrueReg     Virtual register to select when Cond is true.
400  /// @param FalseReg    Virtual register to select when Cond is false.
401  /// @param CondCycles  Latency from Cond+Branch to select output.
402  /// @param TrueCycles  Latency from TrueReg to select output.
403  /// @param FalseCycles Latency from FalseReg to select output.
404  virtual bool canInsertSelect(const MachineBasicBlock &MBB,
405                               const SmallVectorImpl<MachineOperand> &Cond,
406                               unsigned TrueReg, unsigned FalseReg,
407                               int &CondCycles,
408                               int &TrueCycles, int &FalseCycles) const {
409    return false;
410  }
411
412  /// insertSelect - Insert a select instruction into MBB before I that will
413  /// copy TrueReg to DstReg when Cond is true, and FalseReg to DstReg when
414  /// Cond is false.
415  ///
416  /// This function can only be called after canInsertSelect() returned true.
417  /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
418  /// that the same flags or registers required by Cond are available at the
419  /// insertion point.
420  ///
421  /// @param MBB      Block where select instruction should be inserted.
422  /// @param I        Insertion point.
423  /// @param DL       Source location for debugging.
424  /// @param DstReg   Virtual register to be defined by select instruction.
425  /// @param Cond     Condition as computed by AnalyzeBranch.
426  /// @param TrueReg  Virtual register to copy when Cond is true.
427  /// @param FalseReg Virtual register to copy when Cons is false.
428  virtual void insertSelect(MachineBasicBlock &MBB,
429                            MachineBasicBlock::iterator I, DebugLoc DL,
430                            unsigned DstReg,
431                            const SmallVectorImpl<MachineOperand> &Cond,
432                            unsigned TrueReg, unsigned FalseReg) const {
433    llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
434  }
435
436  /// analyzeSelect - Analyze the given select instruction, returning true if
437  /// it cannot be understood. It is assumed that MI->isSelect() is true.
438  ///
439  /// When successful, return the controlling condition and the operands that
440  /// determine the true and false result values.
441  ///
442  ///   Result = SELECT Cond, TrueOp, FalseOp
443  ///
444  /// Some targets can optimize select instructions, for example by predicating
445  /// the instruction defining one of the operands. Such targets should set
446  /// Optimizable.
447  ///
448  /// @param         MI Select instruction to analyze.
449  /// @param Cond    Condition controlling the select.
450  /// @param TrueOp  Operand number of the value selected when Cond is true.
451  /// @param FalseOp Operand number of the value selected when Cond is false.
452  /// @param Optimizable Returned as true if MI is optimizable.
453  /// @returns False on success.
454  virtual bool analyzeSelect(const MachineInstr *MI,
455                             SmallVectorImpl<MachineOperand> &Cond,
456                             unsigned &TrueOp, unsigned &FalseOp,
457                             bool &Optimizable) const {
458    assert(MI && MI->getDesc().isSelect() && "MI must be a select instruction");
459    return true;
460  }
461
462  /// optimizeSelect - Given a select instruction that was understood by
463  /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
464  /// merging it with one of its operands. Returns NULL on failure.
465  ///
466  /// When successful, returns the new select instruction. The client is
467  /// responsible for deleting MI.
468  ///
469  /// If both sides of the select can be optimized, PreferFalse is used to pick
470  /// a side.
471  ///
472  /// @param MI          Optimizable select instruction.
473  /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
474  /// @returns Optimized instruction or NULL.
475  virtual MachineInstr *optimizeSelect(MachineInstr *MI,
476                                       bool PreferFalse = false) const {
477    // This function must be implemented if Optimizable is ever set.
478    llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
479  }
480
481  /// copyPhysReg - Emit instructions to copy a pair of physical registers.
482  ///
483  /// This function should support copies within any legal register class as
484  /// well as any cross-class copies created during instruction selection.
485  ///
486  /// The source and destination registers may overlap, which may require a
487  /// careful implementation when multiple copy instructions are required for
488  /// large registers. See for example the ARM target.
489  virtual void copyPhysReg(MachineBasicBlock &MBB,
490                           MachineBasicBlock::iterator MI, DebugLoc DL,
491                           unsigned DestReg, unsigned SrcReg,
492                           bool KillSrc) const {
493    llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
494  }
495
496  /// storeRegToStackSlot - Store the specified register of the given register
497  /// class to the specified stack frame index. The store instruction is to be
498  /// added to the given machine basic block before the specified machine
499  /// instruction. If isKill is true, the register operand is the last use and
500  /// must be marked kill.
501  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
502                                   MachineBasicBlock::iterator MI,
503                                   unsigned SrcReg, bool isKill, int FrameIndex,
504                                   const TargetRegisterClass *RC,
505                                   const TargetRegisterInfo *TRI) const {
506    llvm_unreachable("Target didn't implement "
507                     "TargetInstrInfo::storeRegToStackSlot!");
508  }
509
510  /// loadRegFromStackSlot - Load the specified register of the given register
511  /// class from the specified stack frame index. The load instruction is to be
512  /// added to the given machine basic block before the specified machine
513  /// instruction.
514  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
515                                    MachineBasicBlock::iterator MI,
516                                    unsigned DestReg, int FrameIndex,
517                                    const TargetRegisterClass *RC,
518                                    const TargetRegisterInfo *TRI) const {
519    llvm_unreachable("Target didn't implement "
520                     "TargetInstrInfo::loadRegFromStackSlot!");
521  }
522
523  /// expandPostRAPseudo - This function is called for all pseudo instructions
524  /// that remain after register allocation. Many pseudo instructions are
525  /// created to help register allocation. This is the place to convert them
526  /// into real instructions. The target can edit MI in place, or it can insert
527  /// new instructions and erase MI. The function should return true if
528  /// anything was changed.
529  virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
530    return false;
531  }
532
533  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
534  /// slot into the specified machine instruction for the specified operand(s).
535  /// If this is possible, a new instruction is returned with the specified
536  /// operand folded, otherwise NULL is returned.
537  /// The new instruction is inserted before MI, and the client is responsible
538  /// for removing the old instruction.
539  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
540                                  const SmallVectorImpl<unsigned> &Ops,
541                                  int FrameIndex) const;
542
543  /// foldMemoryOperand - Same as the previous version except it allows folding
544  /// of any load and store from / to any address, not just from a specific
545  /// stack slot.
546  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
547                                  const SmallVectorImpl<unsigned> &Ops,
548                                  MachineInstr* LoadMI) const;
549
550protected:
551  /// foldMemoryOperandImpl - Target-dependent implementation for
552  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
553  /// take care of adding a MachineMemOperand to the newly created instruction.
554  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
555                                          MachineInstr* MI,
556                                          const SmallVectorImpl<unsigned> &Ops,
557                                          int FrameIndex) const {
558    return nullptr;
559  }
560
561  /// foldMemoryOperandImpl - Target-dependent implementation for
562  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
563  /// take care of adding a MachineMemOperand to the newly created instruction.
564  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
565                                              MachineInstr* MI,
566                                          const SmallVectorImpl<unsigned> &Ops,
567                                              MachineInstr* LoadMI) const {
568    return nullptr;
569  }
570
571public:
572  /// canFoldMemoryOperand - Returns true for the specified load / store if
573  /// folding is possible.
574  virtual
575  bool canFoldMemoryOperand(const MachineInstr *MI,
576                            const SmallVectorImpl<unsigned> &Ops) const;
577
578  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
579  /// a store or a load and a store into two or more instruction. If this is
580  /// possible, returns true as well as the new instructions by reference.
581  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
582                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
583                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
584    return false;
585  }
586
587  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
588                                   SmallVectorImpl<SDNode*> &NewNodes) const {
589    return false;
590  }
591
592  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
593  /// instruction after load / store are unfolded from an instruction of the
594  /// specified opcode. It returns zero if the specified unfolding is not
595  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
596  /// index of the operand which will hold the register holding the loaded
597  /// value.
598  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
599                                      bool UnfoldLoad, bool UnfoldStore,
600                                      unsigned *LoadRegIndex = nullptr) const {
601    return 0;
602  }
603
604  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
605  /// to determine if two loads are loading from the same base address. It
606  /// should only return true if the base pointers are the same and the
607  /// only differences between the two addresses are the offset. It also returns
608  /// the offsets by reference.
609  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
610                                    int64_t &Offset1, int64_t &Offset2) const {
611    return false;
612  }
613
614  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
615  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
616  /// be scheduled togther. On some targets if two loads are loading from
617  /// addresses in the same cache line, it's better if they are scheduled
618  /// together. This function takes two integers that represent the load offsets
619  /// from the common base address. It returns true if it decides it's desirable
620  /// to schedule the two loads together. "NumLoads" is the number of loads that
621  /// have already been scheduled after Load1.
622  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
623                                       int64_t Offset1, int64_t Offset2,
624                                       unsigned NumLoads) const {
625    return false;
626  }
627
628  /// \brief Get the base register and byte offset of a load/store instr.
629  virtual bool getLdStBaseRegImmOfs(MachineInstr *LdSt,
630                                    unsigned &BaseReg, unsigned &Offset,
631                                    const TargetRegisterInfo *TRI) const {
632    return false;
633  }
634
635  virtual bool enableClusterLoads() const { return false; }
636
637  virtual bool shouldClusterLoads(MachineInstr *FirstLdSt,
638                                  MachineInstr *SecondLdSt,
639                                  unsigned NumLoads) const {
640    return false;
641  }
642
643  /// \brief Can this target fuse the given instructions if they are scheduled
644  /// adjacent.
645  virtual bool shouldScheduleAdjacent(MachineInstr* First,
646                                      MachineInstr *Second) const {
647    return false;
648  }
649
650  /// ReverseBranchCondition - Reverses the branch condition of the specified
651  /// condition list, returning false on success and true if it cannot be
652  /// reversed.
653  virtual
654  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
655    return true;
656  }
657
658  /// insertNoop - Insert a noop into the instruction stream at the specified
659  /// point.
660  virtual void insertNoop(MachineBasicBlock &MBB,
661                          MachineBasicBlock::iterator MI) const;
662
663
664  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
665  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
666    // Default to just using 'nop' string.
667  }
668
669
670  /// isPredicated - Returns true if the instruction is already predicated.
671  ///
672  virtual bool isPredicated(const MachineInstr *MI) const {
673    return false;
674  }
675
676  /// isUnpredicatedTerminator - Returns true if the instruction is a
677  /// terminator instruction that has not been predicated.
678  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
679
680  /// PredicateInstruction - Convert the instruction into a predicated
681  /// instruction. It returns true if the operation was successful.
682  virtual
683  bool PredicateInstruction(MachineInstr *MI,
684                        const SmallVectorImpl<MachineOperand> &Pred) const;
685
686  /// SubsumesPredicate - Returns true if the first specified predicate
687  /// subsumes the second, e.g. GE subsumes GT.
688  virtual
689  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
690                         const SmallVectorImpl<MachineOperand> &Pred2) const {
691    return false;
692  }
693
694  /// DefinesPredicate - If the specified instruction defines any predicate
695  /// or condition code register(s) used for predication, returns true as well
696  /// as the definition predicate(s) by reference.
697  virtual bool DefinesPredicate(MachineInstr *MI,
698                                std::vector<MachineOperand> &Pred) const {
699    return false;
700  }
701
702  /// isPredicable - Return true if the specified instruction can be predicated.
703  /// By default, this returns true for every instruction with a
704  /// PredicateOperand.
705  virtual bool isPredicable(MachineInstr *MI) const {
706    return MI->getDesc().isPredicable();
707  }
708
709  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
710  /// instruction that defines the specified register class.
711  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
712    return true;
713  }
714
715  /// isSchedulingBoundary - Test if the given instruction should be
716  /// considered a scheduling boundary. This primarily includes labels and
717  /// terminators.
718  virtual bool isSchedulingBoundary(const MachineInstr *MI,
719                                    const MachineBasicBlock *MBB,
720                                    const MachineFunction &MF) const;
721
722  /// Measure the specified inline asm to determine an approximation of its
723  /// length.
724  virtual unsigned getInlineAsmLength(const char *Str,
725                                      const MCAsmInfo &MAI) const;
726
727  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
728  /// use for this target when scheduling the machine instructions before
729  /// register allocation.
730  virtual ScheduleHazardRecognizer*
731  CreateTargetHazardRecognizer(const TargetMachine *TM,
732                               const ScheduleDAG *DAG) const;
733
734  /// CreateTargetMIHazardRecognizer - Allocate and return a hazard recognizer
735  /// to use for this target when scheduling the machine instructions before
736  /// register allocation.
737  virtual ScheduleHazardRecognizer*
738  CreateTargetMIHazardRecognizer(const InstrItineraryData*,
739                                 const ScheduleDAG *DAG) const;
740
741  /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
742  /// recognizer to use for this target when scheduling the machine instructions
743  /// after register allocation.
744  virtual ScheduleHazardRecognizer*
745  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
746                                     const ScheduleDAG *DAG) const;
747
748  /// Provide a global flag for disabling the PreRA hazard recognizer that
749  /// targets may choose to honor.
750  bool usePreRAHazardRecognizer() const;
751
752  /// analyzeCompare - For a comparison instruction, return the source registers
753  /// in SrcReg and SrcReg2 if having two register operands, and the value it
754  /// compares against in CmpValue. Return true if the comparison instruction
755  /// can be analyzed.
756  virtual bool analyzeCompare(const MachineInstr *MI,
757                              unsigned &SrcReg, unsigned &SrcReg2,
758                              int &Mask, int &Value) const {
759    return false;
760  }
761
762  /// optimizeCompareInstr - See if the comparison instruction can be converted
763  /// into something more efficient. E.g., on ARM most instructions can set the
764  /// flags register, obviating the need for a separate CMP.
765  virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
766                                    unsigned SrcReg, unsigned SrcReg2,
767                                    int Mask, int Value,
768                                    const MachineRegisterInfo *MRI) const {
769    return false;
770  }
771
772  /// optimizeLoadInstr - Try to remove the load by folding it to a register
773  /// operand at the use. We fold the load instructions if and only if the
774  /// def and use are in the same BB. We only look at one load and see
775  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
776  /// defined by the load we are trying to fold. DefMI returns the machine
777  /// instruction that defines FoldAsLoadDefReg, and the function returns
778  /// the machine instruction generated due to folding.
779  virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
780                        const MachineRegisterInfo *MRI,
781                        unsigned &FoldAsLoadDefReg,
782                        MachineInstr *&DefMI) const {
783    return nullptr;
784  }
785
786  /// FoldImmediate - 'Reg' is known to be defined by a move immediate
787  /// instruction, try to fold the immediate into the use instruction.
788  /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
789  /// then the caller may assume that DefMI has been erased from its parent
790  /// block. The caller may assume that it will not be erased by this
791  /// function otherwise.
792  virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
793                             unsigned Reg, MachineRegisterInfo *MRI) const {
794    return false;
795  }
796
797  /// getNumMicroOps - Return the number of u-operations the given machine
798  /// instruction will be decoded to on the target cpu. The itinerary's
799  /// IssueWidth is the number of microops that can be dispatched each
800  /// cycle. An instruction with zero microops takes no dispatch resources.
801  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
802                                  const MachineInstr *MI) const;
803
804  /// isZeroCost - Return true for pseudo instructions that don't consume any
805  /// machine resources in their current form. These are common cases that the
806  /// scheduler should consider free, rather than conservatively handling them
807  /// as instructions with no itinerary.
808  bool isZeroCost(unsigned Opcode) const {
809    return Opcode <= TargetOpcode::COPY;
810  }
811
812  virtual int getOperandLatency(const InstrItineraryData *ItinData,
813                                SDNode *DefNode, unsigned DefIdx,
814                                SDNode *UseNode, unsigned UseIdx) const;
815
816  /// getOperandLatency - Compute and return the use operand latency of a given
817  /// pair of def and use.
818  /// In most cases, the static scheduling itinerary was enough to determine the
819  /// operand latency. But it may not be possible for instructions with variable
820  /// number of defs / uses.
821  ///
822  /// This is a raw interface to the itinerary that may be directly overriden by
823  /// a target. Use computeOperandLatency to get the best estimate of latency.
824  virtual int getOperandLatency(const InstrItineraryData *ItinData,
825                                const MachineInstr *DefMI, unsigned DefIdx,
826                                const MachineInstr *UseMI,
827                                unsigned UseIdx) const;
828
829  /// computeOperandLatency - Compute and return the latency of the given data
830  /// dependent def and use when the operand indices are already known.
831  unsigned computeOperandLatency(const InstrItineraryData *ItinData,
832                                 const MachineInstr *DefMI, unsigned DefIdx,
833                                 const MachineInstr *UseMI, unsigned UseIdx)
834    const;
835
836  /// getInstrLatency - Compute the instruction latency of a given instruction.
837  /// If the instruction has higher cost when predicated, it's returned via
838  /// PredCost.
839  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
840                                   const MachineInstr *MI,
841                                   unsigned *PredCost = nullptr) const;
842
843  virtual unsigned getPredicationCost(const MachineInstr *MI) const;
844
845  virtual int getInstrLatency(const InstrItineraryData *ItinData,
846                              SDNode *Node) const;
847
848  /// Return the default expected latency for a def based on it's opcode.
849  unsigned defaultDefLatency(const MCSchedModel *SchedModel,
850                             const MachineInstr *DefMI) const;
851
852  int computeDefOperandLatency(const InstrItineraryData *ItinData,
853                               const MachineInstr *DefMI) const;
854
855  /// isHighLatencyDef - Return true if this opcode has high latency to its
856  /// result.
857  virtual bool isHighLatencyDef(int opc) const { return false; }
858
859  /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
860  /// and an use in the current loop, return true if the target considered
861  /// it 'high'. This is used by optimization passes such as machine LICM to
862  /// determine whether it makes sense to hoist an instruction out even in
863  /// high register pressure situation.
864  virtual
865  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
866                             const MachineRegisterInfo *MRI,
867                             const MachineInstr *DefMI, unsigned DefIdx,
868                             const MachineInstr *UseMI, unsigned UseIdx) const {
869    return false;
870  }
871
872  /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
873  /// if the target considered it 'low'.
874  virtual
875  bool hasLowDefLatency(const InstrItineraryData *ItinData,
876                        const MachineInstr *DefMI, unsigned DefIdx) const;
877
878  /// verifyInstruction - Perform target specific instruction verification.
879  virtual
880  bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
881    return true;
882  }
883
884  /// getExecutionDomain - Return the current execution domain and bit mask of
885  /// possible domains for instruction.
886  ///
887  /// Some micro-architectures have multiple execution domains, and multiple
888  /// opcodes that perform the same operation in different domains.  For
889  /// example, the x86 architecture provides the por, orps, and orpd
890  /// instructions that all do the same thing.  There is a latency penalty if a
891  /// register is written in one domain and read in another.
892  ///
893  /// This function returns a pair (domain, mask) containing the execution
894  /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
895  /// function can be used to change the opcode to one of the domains in the
896  /// bit mask.  Instructions whose execution domain can't be changed should
897  /// return a 0 mask.
898  ///
899  /// The execution domain numbers don't have any special meaning except domain
900  /// 0 is used for instructions that are not associated with any interesting
901  /// execution domain.
902  ///
903  virtual std::pair<uint16_t, uint16_t>
904  getExecutionDomain(const MachineInstr *MI) const {
905    return std::make_pair(0, 0);
906  }
907
908  /// setExecutionDomain - Change the opcode of MI to execute in Domain.
909  ///
910  /// The bit (1 << Domain) must be set in the mask returned from
911  /// getExecutionDomain(MI).
912  ///
913  virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
914
915
916  /// getPartialRegUpdateClearance - Returns the preferred minimum clearance
917  /// before an instruction with an unwanted partial register update.
918  ///
919  /// Some instructions only write part of a register, and implicitly need to
920  /// read the other parts of the register.  This may cause unwanted stalls
921  /// preventing otherwise unrelated instructions from executing in parallel in
922  /// an out-of-order CPU.
923  ///
924  /// For example, the x86 instruction cvtsi2ss writes its result to bits
925  /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
926  /// the instruction needs to wait for the old value of the register to become
927  /// available:
928  ///
929  ///   addps %xmm1, %xmm0
930  ///   movaps %xmm0, (%rax)
931  ///   cvtsi2ss %rbx, %xmm0
932  ///
933  /// In the code above, the cvtsi2ss instruction needs to wait for the addps
934  /// instruction before it can issue, even though the high bits of %xmm0
935  /// probably aren't needed.
936  ///
937  /// This hook returns the preferred clearance before MI, measured in
938  /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
939  /// instructions before MI.  It should only return a positive value for
940  /// unwanted dependencies.  If the old bits of the defined register have
941  /// useful values, or if MI is determined to otherwise read the dependency,
942  /// the hook should return 0.
943  ///
944  /// The unwanted dependency may be handled by:
945  ///
946  /// 1. Allocating the same register for an MI def and use.  That makes the
947  ///    unwanted dependency identical to a required dependency.
948  ///
949  /// 2. Allocating a register for the def that has no defs in the previous N
950  ///    instructions.
951  ///
952  /// 3. Calling breakPartialRegDependency() with the same arguments.  This
953  ///    allows the target to insert a dependency breaking instruction.
954  ///
955  virtual unsigned
956  getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
957                               const TargetRegisterInfo *TRI) const {
958    // The default implementation returns 0 for no partial register dependency.
959    return 0;
960  }
961
962  /// \brief Return the minimum clearance before an instruction that reads an
963  /// unused register.
964  ///
965  /// For example, AVX instructions may copy part of an register operand into
966  /// the unused high bits of the destination register.
967  ///
968  /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
969  ///
970  /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
971  /// false dependence on any previous write to %xmm0.
972  ///
973  /// This hook works similarly to getPartialRegUpdateClearance, except that it
974  /// does not take an operand index. Instead sets \p OpNum to the index of the
975  /// unused register.
976  virtual unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
977                                        const TargetRegisterInfo *TRI) const {
978    // The default implementation returns 0 for no undef register dependency.
979    return 0;
980  }
981
982  /// breakPartialRegDependency - Insert a dependency-breaking instruction
983  /// before MI to eliminate an unwanted dependency on OpNum.
984  ///
985  /// If it wasn't possible to avoid a def in the last N instructions before MI
986  /// (see getPartialRegUpdateClearance), this hook will be called to break the
987  /// unwanted dependency.
988  ///
989  /// On x86, an xorps instruction can be used as a dependency breaker:
990  ///
991  ///   addps %xmm1, %xmm0
992  ///   movaps %xmm0, (%rax)
993  ///   xorps %xmm0, %xmm0
994  ///   cvtsi2ss %rbx, %xmm0
995  ///
996  /// An <imp-kill> operand should be added to MI if an instruction was
997  /// inserted.  This ties the instructions together in the post-ra scheduler.
998  ///
999  virtual void
1000  breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
1001                            const TargetRegisterInfo *TRI) const {}
1002
1003  /// Create machine specific model for scheduling.
1004  virtual DFAPacketizer*
1005    CreateTargetScheduleState(const TargetMachine*, const ScheduleDAG*) const {
1006    return nullptr;
1007  }
1008
1009private:
1010  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
1011};
1012
1013} // End llvm namespace
1014
1015#endif
1016