1//===-- ImplicitNullChecks.cpp - Fold null checks into memory accesses ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass turns explicit null checks of the form
11//
12//   test %r10, %r10
13//   je throw_npe
14//   movl (%r10), %esi
15//   ...
16//
17// to
18//
19//   faulting_load_op("movl (%r10), %esi", throw_npe)
20//   ...
21//
22// With the help of a runtime that understands the .fault_maps section,
23// faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
24// a page fault.
25//
26//===----------------------------------------------------------------------===//
27
28#include "llvm/ADT/DenseSet.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Analysis/AliasAnalysis.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineMemOperand.h"
35#include "llvm/CodeGen/MachineOperand.h"
36#include "llvm/CodeGen/MachineFunctionPass.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/IR/BasicBlock.h"
41#include "llvm/IR/Instruction.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Target/TargetSubtargetInfo.h"
46#include "llvm/Target/TargetInstrInfo.h"
47
48using namespace llvm;
49
50static cl::opt<int> PageSize("imp-null-check-page-size",
51                             cl::desc("The page size of the target in bytes"),
52                             cl::init(4096));
53
54#define DEBUG_TYPE "implicit-null-checks"
55
56STATISTIC(NumImplicitNullChecks,
57          "Number of explicit null checks made implicit");
58
59namespace {
60
61class ImplicitNullChecks : public MachineFunctionPass {
62  /// Represents one null check that can be made implicit.
63  class NullCheck {
64    // The memory operation the null check can be folded into.
65    MachineInstr *MemOperation;
66
67    // The instruction actually doing the null check (Ptr != 0).
68    MachineInstr *CheckOperation;
69
70    // The block the check resides in.
71    MachineBasicBlock *CheckBlock;
72
73    // The block branched to if the pointer is non-null.
74    MachineBasicBlock *NotNullSucc;
75
76    // The block branched to if the pointer is null.
77    MachineBasicBlock *NullSucc;
78
79    // If this is non-null, then MemOperation has a dependency on on this
80    // instruction; and it needs to be hoisted to execute before MemOperation.
81    MachineInstr *OnlyDependency;
82
83  public:
84    explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
85                       MachineBasicBlock *checkBlock,
86                       MachineBasicBlock *notNullSucc,
87                       MachineBasicBlock *nullSucc,
88                       MachineInstr *onlyDependency)
89        : MemOperation(memOperation), CheckOperation(checkOperation),
90          CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
91          OnlyDependency(onlyDependency) {}
92
93    MachineInstr *getMemOperation() const { return MemOperation; }
94
95    MachineInstr *getCheckOperation() const { return CheckOperation; }
96
97    MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
98
99    MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
100
101    MachineBasicBlock *getNullSucc() const { return NullSucc; }
102
103    MachineInstr *getOnlyDependency() const { return OnlyDependency; }
104  };
105
106  const TargetInstrInfo *TII = nullptr;
107  const TargetRegisterInfo *TRI = nullptr;
108  AliasAnalysis *AA = nullptr;
109  MachineModuleInfo *MMI = nullptr;
110
111  bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
112                                 SmallVectorImpl<NullCheck> &NullCheckList);
113  MachineInstr *insertFaultingLoad(MachineInstr *LoadMI, MachineBasicBlock *MBB,
114                                   MachineBasicBlock *HandlerMBB);
115  void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
116
117public:
118  static char ID;
119
120  ImplicitNullChecks() : MachineFunctionPass(ID) {
121    initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
122  }
123
124  bool runOnMachineFunction(MachineFunction &MF) override;
125  void getAnalysisUsage(AnalysisUsage &AU) const override {
126    AU.addRequired<AAResultsWrapperPass>();
127    MachineFunctionPass::getAnalysisUsage(AU);
128  }
129
130  MachineFunctionProperties getRequiredProperties() const override {
131    return MachineFunctionProperties().set(
132        MachineFunctionProperties::Property::AllVRegsAllocated);
133  }
134};
135
136/// \brief Detect re-ordering hazards and dependencies.
137///
138/// This class keeps track of defs and uses, and can be queried if a given
139/// machine instruction can be re-ordered from after the machine instructions
140/// seen so far to before them.
141class HazardDetector {
142  static MachineInstr *getUnknownMI() {
143    return DenseMapInfo<MachineInstr *>::getTombstoneKey();
144  }
145
146  // Maps physical registers to the instruction defining them.  If there has
147  // been more than one def of an specific register, that register is mapped to
148  // getUnknownMI().
149  DenseMap<unsigned, MachineInstr *> RegDefs;
150  DenseSet<unsigned> RegUses;
151  const TargetRegisterInfo &TRI;
152  bool hasSeenClobber;
153  AliasAnalysis &AA;
154
155public:
156  explicit HazardDetector(const TargetRegisterInfo &TRI, AliasAnalysis &AA)
157      : TRI(TRI), hasSeenClobber(false), AA(AA) {}
158
159  /// \brief Make a note of \p MI for later queries to isSafeToHoist.
160  ///
161  /// May clobber this HazardDetector instance.  \see isClobbered.
162  void rememberInstruction(MachineInstr *MI);
163
164  /// \brief Return true if it is safe to hoist \p MI from after all the
165  /// instructions seen so far (via rememberInstruction) to before it.  If \p MI
166  /// has one and only one transitive dependency, set \p Dependency to that
167  /// instruction.  If there are more dependencies, return false.
168  bool isSafeToHoist(MachineInstr *MI, MachineInstr *&Dependency);
169
170  /// \brief Return true if this instance of HazardDetector has been clobbered
171  /// (i.e. has no more useful information).
172  ///
173  /// A HazardDetecter is clobbered when it sees a construct it cannot
174  /// understand, and it would have to return a conservative answer for all
175  /// future queries.  Having a separate clobbered state lets the client code
176  /// bail early, without making queries about all of the future instructions
177  /// (which would have returned the most conservative answer anyway).
178  ///
179  /// Calling rememberInstruction or isSafeToHoist on a clobbered HazardDetector
180  /// is an error.
181  bool isClobbered() { return hasSeenClobber; }
182};
183}
184
185
186void HazardDetector::rememberInstruction(MachineInstr *MI) {
187  assert(!isClobbered() &&
188         "Don't add instructions to a clobbered hazard detector");
189
190  if (MI->mayStore() || MI->hasUnmodeledSideEffects()) {
191    hasSeenClobber = true;
192    return;
193  }
194
195  for (auto *MMO : MI->memoperands()) {
196    // Right now we don't want to worry about LLVM's memory model.
197    if (!MMO->isUnordered()) {
198      hasSeenClobber = true;
199      return;
200    }
201  }
202
203  for (auto &MO : MI->operands()) {
204    if (!MO.isReg() || !MO.getReg())
205      continue;
206
207    if (MO.isDef()) {
208      auto It = RegDefs.find(MO.getReg());
209      if (It == RegDefs.end())
210        RegDefs.insert({MO.getReg(), MI});
211      else {
212        assert(It->second && "Found null MI?");
213        It->second = getUnknownMI();
214      }
215    } else
216      RegUses.insert(MO.getReg());
217  }
218}
219
220bool HazardDetector::isSafeToHoist(MachineInstr *MI,
221                                   MachineInstr *&Dependency) {
222  assert(!isClobbered() && "isSafeToHoist cannot do anything useful!");
223  Dependency = nullptr;
224
225  // Right now we don't want to worry about LLVM's memory model.  This can be
226  // made more precise later.
227  for (auto *MMO : MI->memoperands())
228    if (!MMO->isUnordered())
229      return false;
230
231  for (auto &MO : MI->operands()) {
232    if (MO.isReg() && MO.getReg()) {
233      for (auto &RegDef : RegDefs) {
234        unsigned Reg = RegDef.first;
235        MachineInstr *MI = RegDef.second;
236        if (!TRI.regsOverlap(Reg, MO.getReg()))
237          continue;
238
239        // We found a write-after-write or read-after-write, see if the
240        // instruction causing this dependency can be hoisted too.
241
242        if (MI == getUnknownMI())
243          // We don't have precise dependency information.
244          return false;
245
246        if (Dependency) {
247          if (Dependency == MI)
248            continue;
249          // We already have one dependency, and we can track only one.
250          return false;
251        }
252
253        // Now check if MI is actually a dependency that can be hoisted.
254
255        // We don't want to track transitive dependencies.  We already know that
256        // MI is the only instruction that defines Reg, but we need to be sure
257        // that it does not use any registers that have been defined (trivially
258        // checked below by ensuring that there are no register uses), and that
259        // it is the only def for every register it defines (otherwise we could
260        // violate a write after write hazard).
261        auto IsMIOperandSafe = [&](MachineOperand &MO) {
262          if (!MO.isReg() || !MO.getReg())
263            return true;
264          if (MO.isUse())
265            return false;
266          assert((!MO.isDef() || RegDefs.count(MO.getReg())) &&
267                 "All defs must be tracked in RegDefs by now!");
268          return !MO.isDef() || RegDefs.find(MO.getReg())->second == MI;
269        };
270
271        if (!all_of(MI->operands(), IsMIOperandSafe))
272          return false;
273
274        // Now check for speculation safety:
275        bool SawStore = true;
276        if (!MI->isSafeToMove(&AA, SawStore) || MI->mayLoad())
277          return false;
278
279        Dependency = MI;
280      }
281
282      if (MO.isDef())
283        for (unsigned Reg : RegUses)
284          if (TRI.regsOverlap(Reg, MO.getReg()))
285            return false;  // We found a write-after-read
286    }
287  }
288
289  return true;
290}
291
292bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
293  TII = MF.getSubtarget().getInstrInfo();
294  TRI = MF.getRegInfo().getTargetRegisterInfo();
295  MMI = &MF.getMMI();
296  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
297
298  SmallVector<NullCheck, 16> NullCheckList;
299
300  for (auto &MBB : MF)
301    analyzeBlockForNullChecks(MBB, NullCheckList);
302
303  if (!NullCheckList.empty())
304    rewriteNullChecks(NullCheckList);
305
306  return !NullCheckList.empty();
307}
308
309// Return true if any register aliasing \p Reg is live-in into \p MBB.
310static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
311                           MachineBasicBlock *MBB, unsigned Reg) {
312  for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
313       ++AR)
314    if (MBB->isLiveIn(*AR))
315      return true;
316  return false;
317}
318
319/// Analyze MBB to check if its terminating branch can be turned into an
320/// implicit null check.  If yes, append a description of the said null check to
321/// NullCheckList and return true, else return false.
322bool ImplicitNullChecks::analyzeBlockForNullChecks(
323    MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
324  typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate;
325
326  MDNode *BranchMD = nullptr;
327  if (auto *BB = MBB.getBasicBlock())
328    BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
329
330  if (!BranchMD)
331    return false;
332
333  MachineBranchPredicate MBP;
334
335  if (TII->analyzeBranchPredicate(MBB, MBP, true))
336    return false;
337
338  // Is the predicate comparing an integer to zero?
339  if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
340        (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
341         MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
342    return false;
343
344  // If we cannot erase the test instruction itself, then making the null check
345  // implicit does not buy us much.
346  if (!MBP.SingleUseCondition)
347    return false;
348
349  MachineBasicBlock *NotNullSucc, *NullSucc;
350
351  if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
352    NotNullSucc = MBP.TrueDest;
353    NullSucc = MBP.FalseDest;
354  } else {
355    NotNullSucc = MBP.FalseDest;
356    NullSucc = MBP.TrueDest;
357  }
358
359  // We handle the simplest case for now.  We can potentially do better by using
360  // the machine dominator tree.
361  if (NotNullSucc->pred_size() != 1)
362    return false;
363
364  // Starting with a code fragment like:
365  //
366  //   test %RAX, %RAX
367  //   jne LblNotNull
368  //
369  //  LblNull:
370  //   callq throw_NullPointerException
371  //
372  //  LblNotNull:
373  //   Inst0
374  //   Inst1
375  //   ...
376  //   Def = Load (%RAX + <offset>)
377  //   ...
378  //
379  //
380  // we want to end up with
381  //
382  //   Def = FaultingLoad (%RAX + <offset>), LblNull
383  //   jmp LblNotNull ;; explicit or fallthrough
384  //
385  //  LblNotNull:
386  //   Inst0
387  //   Inst1
388  //   ...
389  //
390  //  LblNull:
391  //   callq throw_NullPointerException
392  //
393  //
394  // To see why this is legal, consider the two possibilities:
395  //
396  //  1. %RAX is null: since we constrain <offset> to be less than PageSize, the
397  //     load instruction dereferences the null page, causing a segmentation
398  //     fault.
399  //
400  //  2. %RAX is not null: in this case we know that the load cannot fault, as
401  //     otherwise the load would've faulted in the original program too and the
402  //     original program would've been undefined.
403  //
404  // This reasoning cannot be extended to justify hoisting through arbitrary
405  // control flow.  For instance, in the example below (in pseudo-C)
406  //
407  //    if (ptr == null) { throw_npe(); unreachable; }
408  //    if (some_cond) { return 42; }
409  //    v = ptr->field;  // LD
410  //    ...
411  //
412  // we cannot (without code duplication) use the load marked "LD" to null check
413  // ptr -- clause (2) above does not apply in this case.  In the above program
414  // the safety of ptr->field can be dependent on some_cond; and, for instance,
415  // ptr could be some non-null invalid reference that never gets loaded from
416  // because some_cond is always true.
417
418  unsigned PointerReg = MBP.LHS.getReg();
419
420  HazardDetector HD(*TRI, *AA);
421
422  for (auto MII = NotNullSucc->begin(), MIE = NotNullSucc->end(); MII != MIE;
423       ++MII) {
424    MachineInstr &MI = *MII;
425    unsigned BaseReg;
426    int64_t Offset;
427    MachineInstr *Dependency = nullptr;
428    if (TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
429      if (MI.mayLoad() && !MI.isPredicable() && BaseReg == PointerReg &&
430          Offset < PageSize && MI.getDesc().getNumDefs() <= 1 &&
431          HD.isSafeToHoist(&MI, Dependency)) {
432
433        auto DependencyOperandIsOk = [&](MachineOperand &MO) {
434          assert(!(MO.isReg() && MO.isUse()) &&
435                 "No transitive dependendencies please!");
436          if (!MO.isReg() || !MO.getReg() || !MO.isDef())
437            return true;
438
439          // Make sure that we won't clobber any live ins to the sibling block
440          // by hoisting Dependency.  For instance, we can't hoist INST to
441          // before the null check (even if it safe, and does not violate any
442          // dependencies in the non_null_block) if %rdx is live in to
443          // _null_block.
444          //
445          //    test %rcx, %rcx
446          //    je _null_block
447          //  _non_null_block:
448          //    %rdx<def> = INST
449          //    ...
450          if (AnyAliasLiveIn(TRI, NullSucc, MO.getReg()))
451            return false;
452
453          // Make sure Dependency isn't re-defining the base register.  Then we
454          // won't get the memory operation on the address we want.
455          if (TRI->regsOverlap(MO.getReg(), BaseReg))
456            return false;
457
458          return true;
459        };
460
461        bool DependencyOperandsAreOk =
462            !Dependency ||
463            all_of(Dependency->operands(), DependencyOperandIsOk);
464
465        if (DependencyOperandsAreOk) {
466          NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
467                                     NullSucc, Dependency);
468          return true;
469        }
470      }
471
472    HD.rememberInstruction(&MI);
473    if (HD.isClobbered())
474      return false;
475  }
476
477  return false;
478}
479
480/// Wrap a machine load instruction, LoadMI, into a FAULTING_LOAD_OP machine
481/// instruction.  The FAULTING_LOAD_OP instruction does the same load as LoadMI
482/// (defining the same register), and branches to HandlerMBB if the load
483/// faults.  The FAULTING_LOAD_OP instruction is inserted at the end of MBB.
484MachineInstr *
485ImplicitNullChecks::insertFaultingLoad(MachineInstr *LoadMI,
486                                       MachineBasicBlock *MBB,
487                                       MachineBasicBlock *HandlerMBB) {
488  const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
489                                 // all targets.
490
491  DebugLoc DL;
492  unsigned NumDefs = LoadMI->getDesc().getNumDefs();
493  assert(NumDefs <= 1 && "other cases unhandled!");
494
495  unsigned DefReg = NoRegister;
496  if (NumDefs != 0) {
497    DefReg = LoadMI->defs().begin()->getReg();
498    assert(std::distance(LoadMI->defs().begin(), LoadMI->defs().end()) == 1 &&
499           "expected exactly one def!");
500  }
501
502  auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_LOAD_OP), DefReg)
503                 .addMBB(HandlerMBB)
504                 .addImm(LoadMI->getOpcode());
505
506  for (auto &MO : LoadMI->uses())
507    MIB.addOperand(MO);
508
509  MIB.setMemRefs(LoadMI->memoperands_begin(), LoadMI->memoperands_end());
510
511  return MIB;
512}
513
514/// Rewrite the null checks in NullCheckList into implicit null checks.
515void ImplicitNullChecks::rewriteNullChecks(
516    ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
517  DebugLoc DL;
518
519  for (auto &NC : NullCheckList) {
520    // Remove the conditional branch dependent on the null check.
521    unsigned BranchesRemoved = TII->RemoveBranch(*NC.getCheckBlock());
522    (void)BranchesRemoved;
523    assert(BranchesRemoved > 0 && "expected at least one branch!");
524
525    if (auto *DepMI = NC.getOnlyDependency()) {
526      DepMI->removeFromParent();
527      NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
528    }
529
530    // Insert a faulting load where the conditional branch was originally.  We
531    // check earlier ensures that this bit of code motion is legal.  We do not
532    // touch the successors list for any basic block since we haven't changed
533    // control flow, we've just made it implicit.
534    MachineInstr *FaultingLoad = insertFaultingLoad(
535        NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
536    // Now the values defined by MemOperation, if any, are live-in of
537    // the block of MemOperation.
538    // The original load operation may define implicit-defs alongside
539    // the loaded value.
540    MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
541    for (const MachineOperand &MO : FaultingLoad->operands()) {
542      if (!MO.isReg() || !MO.isDef())
543        continue;
544      unsigned Reg = MO.getReg();
545      if (!Reg || MBB->isLiveIn(Reg))
546        continue;
547      MBB->addLiveIn(Reg);
548    }
549
550    if (auto *DepMI = NC.getOnlyDependency()) {
551      for (auto &MO : DepMI->operands()) {
552        if (!MO.isReg() || !MO.getReg() || !MO.isDef())
553          continue;
554        if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
555          NC.getNotNullSucc()->addLiveIn(MO.getReg());
556      }
557    }
558
559    NC.getMemOperation()->eraseFromParent();
560    NC.getCheckOperation()->eraseFromParent();
561
562    // Insert an *unconditional* branch to not-null successor.
563    TII->InsertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
564                      /*Cond=*/None, DL);
565
566    NumImplicitNullChecks++;
567  }
568}
569
570char ImplicitNullChecks::ID = 0;
571char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
572INITIALIZE_PASS_BEGIN(ImplicitNullChecks, "implicit-null-checks",
573                      "Implicit null checks", false, false)
574INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
575INITIALIZE_PASS_END(ImplicitNullChecks, "implicit-null-checks",
576                    "Implicit null checks", false, false)
577