1//===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements basic block placement transformations using the CFG
11// structure and branch probability estimates.
12//
13// The pass strives to preserve the structure of the CFG (that is, retain
14// a topological ordering of basic blocks) in the absence of a *strong* signal
15// to the contrary from probabilities. However, within the CFG structure, it
16// attempts to choose an ordering which favors placing more likely sequences of
17// blocks adjacent to each other.
18//
19// The algorithm works from the inner-most loop within a function outward, and
20// at each stage walks through the basic blocks, trying to coalesce them into
21// sequential chains where allowed by the CFG (or demanded by heavy
22// probabilities). Finally, it walks the blocks in topological order, and the
23// first time it reaches a chain of basic blocks, it schedules them in the
24// function in-order.
25//
26//===----------------------------------------------------------------------===//
27
28#include "llvm/CodeGen/Passes.h"
29#include "llvm/CodeGen/TargetPassConfig.h"
30#include "BranchFolding.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/CodeGen/MachineBasicBlock.h"
36#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
37#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
38#include "llvm/CodeGen/MachineDominators.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineFunctionPass.h"
41#include "llvm/CodeGen/MachineLoopInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/Support/Allocator.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Target/TargetInstrInfo.h"
48#include "llvm/Target/TargetLowering.h"
49#include "llvm/Target/TargetSubtargetInfo.h"
50#include <algorithm>
51using namespace llvm;
52
53#define DEBUG_TYPE "block-placement"
54
55STATISTIC(NumCondBranches, "Number of conditional branches");
56STATISTIC(NumUncondBranches, "Number of unconditional branches");
57STATISTIC(CondBranchTakenFreq,
58          "Potential frequency of taking conditional branches");
59STATISTIC(UncondBranchTakenFreq,
60          "Potential frequency of taking unconditional branches");
61
62static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
63                                       cl::desc("Force the alignment of all "
64                                                "blocks in the function."),
65                                       cl::init(0), cl::Hidden);
66
67static cl::opt<unsigned> AlignAllNonFallThruBlocks(
68    "align-all-nofallthru-blocks",
69    cl::desc("Force the alignment of all "
70             "blocks that have no fall-through predecessors (i.e. don't add "
71             "nops that are executed)."),
72    cl::init(0), cl::Hidden);
73
74// FIXME: Find a good default for this flag and remove the flag.
75static cl::opt<unsigned> ExitBlockBias(
76    "block-placement-exit-block-bias",
77    cl::desc("Block frequency percentage a loop exit block needs "
78             "over the original exit to be considered the new exit."),
79    cl::init(0), cl::Hidden);
80
81static cl::opt<bool> OutlineOptionalBranches(
82    "outline-optional-branches",
83    cl::desc("Put completely optional branches, i.e. branches with a common "
84             "post dominator, out of line."),
85    cl::init(false), cl::Hidden);
86
87static cl::opt<unsigned> OutlineOptionalThreshold(
88    "outline-optional-threshold",
89    cl::desc("Don't outline optional branches that are a single block with an "
90             "instruction count below this threshold"),
91    cl::init(4), cl::Hidden);
92
93static cl::opt<unsigned> LoopToColdBlockRatio(
94    "loop-to-cold-block-ratio",
95    cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
96             "(frequency of block) is greater than this ratio"),
97    cl::init(5), cl::Hidden);
98
99static cl::opt<bool>
100    PreciseRotationCost("precise-rotation-cost",
101                        cl::desc("Model the cost of loop rotation more "
102                                 "precisely by using profile data."),
103                        cl::init(false), cl::Hidden);
104static cl::opt<bool>
105    ForcePreciseRotationCost("force-precise-rotation-cost",
106                             cl::desc("Force the use of precise cost "
107                                      "loop rotation strategy."),
108                             cl::init(false), cl::Hidden);
109
110static cl::opt<unsigned> MisfetchCost(
111    "misfetch-cost",
112    cl::desc("Cost that models the probablistic risk of an instruction "
113             "misfetch due to a jump comparing to falling through, whose cost "
114             "is zero."),
115    cl::init(1), cl::Hidden);
116
117static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
118                                      cl::desc("Cost of jump instructions."),
119                                      cl::init(1), cl::Hidden);
120
121static cl::opt<bool>
122BranchFoldPlacement("branch-fold-placement",
123              cl::desc("Perform branch folding during placement. "
124                       "Reduces code size."),
125              cl::init(true), cl::Hidden);
126
127extern cl::opt<unsigned> StaticLikelyProb;
128extern cl::opt<unsigned> ProfileLikelyProb;
129
130namespace {
131class BlockChain;
132/// \brief Type for our function-wide basic block -> block chain mapping.
133typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
134}
135
136namespace {
137/// \brief A chain of blocks which will be laid out contiguously.
138///
139/// This is the datastructure representing a chain of consecutive blocks that
140/// are profitable to layout together in order to maximize fallthrough
141/// probabilities and code locality. We also can use a block chain to represent
142/// a sequence of basic blocks which have some external (correctness)
143/// requirement for sequential layout.
144///
145/// Chains can be built around a single basic block and can be merged to grow
146/// them. They participate in a block-to-chain mapping, which is updated
147/// automatically as chains are merged together.
148class BlockChain {
149  /// \brief The sequence of blocks belonging to this chain.
150  ///
151  /// This is the sequence of blocks for a particular chain. These will be laid
152  /// out in-order within the function.
153  SmallVector<MachineBasicBlock *, 4> Blocks;
154
155  /// \brief A handle to the function-wide basic block to block chain mapping.
156  ///
157  /// This is retained in each block chain to simplify the computation of child
158  /// block chains for SCC-formation and iteration. We store the edges to child
159  /// basic blocks, and map them back to their associated chains using this
160  /// structure.
161  BlockToChainMapType &BlockToChain;
162
163public:
164  /// \brief Construct a new BlockChain.
165  ///
166  /// This builds a new block chain representing a single basic block in the
167  /// function. It also registers itself as the chain that block participates
168  /// in with the BlockToChain mapping.
169  BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
170      : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) {
171    assert(BB && "Cannot create a chain with a null basic block");
172    BlockToChain[BB] = this;
173  }
174
175  /// \brief Iterator over blocks within the chain.
176  typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
177
178  /// \brief Beginning of blocks within the chain.
179  iterator begin() { return Blocks.begin(); }
180
181  /// \brief End of blocks within the chain.
182  iterator end() { return Blocks.end(); }
183
184  /// \brief Merge a block chain into this one.
185  ///
186  /// This routine merges a block chain into this one. It takes care of forming
187  /// a contiguous sequence of basic blocks, updating the edge list, and
188  /// updating the block -> chain mapping. It does not free or tear down the
189  /// old chain, but the old chain's block list is no longer valid.
190  void merge(MachineBasicBlock *BB, BlockChain *Chain) {
191    assert(BB);
192    assert(!Blocks.empty());
193
194    // Fast path in case we don't have a chain already.
195    if (!Chain) {
196      assert(!BlockToChain[BB]);
197      Blocks.push_back(BB);
198      BlockToChain[BB] = this;
199      return;
200    }
201
202    assert(BB == *Chain->begin());
203    assert(Chain->begin() != Chain->end());
204
205    // Update the incoming blocks to point to this chain, and add them to the
206    // chain structure.
207    for (MachineBasicBlock *ChainBB : *Chain) {
208      Blocks.push_back(ChainBB);
209      assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
210      BlockToChain[ChainBB] = this;
211    }
212  }
213
214#ifndef NDEBUG
215  /// \brief Dump the blocks in this chain.
216  LLVM_DUMP_METHOD void dump() {
217    for (MachineBasicBlock *MBB : *this)
218      MBB->dump();
219  }
220#endif // NDEBUG
221
222  /// \brief Count of predecessors of any block within the chain which have not
223  /// yet been scheduled.  In general, we will delay scheduling this chain
224  /// until those predecessors are scheduled (or we find a sufficiently good
225  /// reason to override this heuristic.)  Note that when forming loop chains,
226  /// blocks outside the loop are ignored and treated as if they were already
227  /// scheduled.
228  ///
229  /// Note: This field is reinitialized multiple times - once for each loop,
230  /// and then once for the function as a whole.
231  unsigned UnscheduledPredecessors;
232};
233}
234
235namespace {
236class MachineBlockPlacement : public MachineFunctionPass {
237  /// \brief A typedef for a block filter set.
238  typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
239
240  /// \brief work lists of blocks that are ready to be laid out
241  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
242  SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
243
244  /// \brief Machine Function
245  MachineFunction *F;
246
247  /// \brief A handle to the branch probability pass.
248  const MachineBranchProbabilityInfo *MBPI;
249
250  /// \brief A handle to the function-wide block frequency pass.
251  std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
252
253  /// \brief A handle to the loop info.
254  MachineLoopInfo *MLI;
255
256  /// \brief A handle to the target's instruction info.
257  const TargetInstrInfo *TII;
258
259  /// \brief A handle to the target's lowering info.
260  const TargetLoweringBase *TLI;
261
262  /// \brief A handle to the post dominator tree.
263  MachineDominatorTree *MDT;
264
265  /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
266  /// all terminators of the MachineFunction.
267  SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
268
269  /// \brief Allocator and owner of BlockChain structures.
270  ///
271  /// We build BlockChains lazily while processing the loop structure of
272  /// a function. To reduce malloc traffic, we allocate them using this
273  /// slab-like allocator, and destroy them after the pass completes. An
274  /// important guarantee is that this allocator produces stable pointers to
275  /// the chains.
276  SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
277
278  /// \brief Function wide BasicBlock to BlockChain mapping.
279  ///
280  /// This mapping allows efficiently moving from any given basic block to the
281  /// BlockChain it participates in, if any. We use it to, among other things,
282  /// allow implicitly defining edges between chains as the existing edges
283  /// between basic blocks.
284  DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
285
286  void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
287                           const BlockFilterSet *BlockFilter = nullptr);
288  BranchProbability
289  collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain,
290                          const BlockFilterSet *BlockFilter,
291                          SmallVector<MachineBasicBlock *, 4> &Successors);
292  bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ,
293                                 BlockChain &Chain,
294                                 const BlockFilterSet *BlockFilter,
295                                 BranchProbability SuccProb,
296                                 BranchProbability HotProb);
297  bool
298  hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ,
299                             BlockChain &SuccChain, BranchProbability SuccProb,
300                             BranchProbability RealSuccProb, BlockChain &Chain,
301                             const BlockFilterSet *BlockFilter);
302  MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
303                                         BlockChain &Chain,
304                                         const BlockFilterSet *BlockFilter);
305  MachineBasicBlock *
306  selectBestCandidateBlock(BlockChain &Chain,
307                           SmallVectorImpl<MachineBasicBlock *> &WorkList);
308  MachineBasicBlock *
309  getFirstUnplacedBlock(const BlockChain &PlacedChain,
310                        MachineFunction::iterator &PrevUnplacedBlockIt,
311                        const BlockFilterSet *BlockFilter);
312
313  /// \brief Add a basic block to the work list if it is apropriate.
314  ///
315  /// If the optional parameter BlockFilter is provided, only MBB
316  /// present in the set will be added to the worklist. If nullptr
317  /// is provided, no filtering occurs.
318  void fillWorkLists(MachineBasicBlock *MBB,
319                     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
320                     const BlockFilterSet *BlockFilter);
321  void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
322                  const BlockFilterSet *BlockFilter = nullptr);
323  MachineBasicBlock *findBestLoopTop(MachineLoop &L,
324                                     const BlockFilterSet &LoopBlockSet);
325  MachineBasicBlock *findBestLoopExit(MachineLoop &L,
326                                      const BlockFilterSet &LoopBlockSet);
327  BlockFilterSet collectLoopBlockSet(MachineLoop &L);
328  void buildLoopChains(MachineLoop &L);
329  void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
330                  const BlockFilterSet &LoopBlockSet);
331  void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L,
332                             const BlockFilterSet &LoopBlockSet);
333  void collectMustExecuteBBs();
334  void buildCFGChains();
335  void optimizeBranches();
336  void alignBlocks();
337
338public:
339  static char ID; // Pass identification, replacement for typeid
340  MachineBlockPlacement() : MachineFunctionPass(ID) {
341    initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
342  }
343
344  bool runOnMachineFunction(MachineFunction &F) override;
345
346  void getAnalysisUsage(AnalysisUsage &AU) const override {
347    AU.addRequired<MachineBranchProbabilityInfo>();
348    AU.addRequired<MachineBlockFrequencyInfo>();
349    AU.addRequired<MachineDominatorTree>();
350    AU.addRequired<MachineLoopInfo>();
351    AU.addRequired<TargetPassConfig>();
352    MachineFunctionPass::getAnalysisUsage(AU);
353  }
354};
355}
356
357char MachineBlockPlacement::ID = 0;
358char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
359INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
360                      "Branch Probability Basic Block Placement", false, false)
361INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
362INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
363INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
364INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
365INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
366                    "Branch Probability Basic Block Placement", false, false)
367
368#ifndef NDEBUG
369/// \brief Helper to print the name of a MBB.
370///
371/// Only used by debug logging.
372static std::string getBlockName(MachineBasicBlock *BB) {
373  std::string Result;
374  raw_string_ostream OS(Result);
375  OS << "BB#" << BB->getNumber();
376  OS << " ('" << BB->getName() << "')";
377  OS.flush();
378  return Result;
379}
380#endif
381
382/// \brief Mark a chain's successors as having one fewer preds.
383///
384/// When a chain is being merged into the "placed" chain, this routine will
385/// quickly walk the successors of each block in the chain and mark them as
386/// having one fewer active predecessor. It also adds any successors of this
387/// chain which reach the zero-predecessor state to the worklist passed in.
388void MachineBlockPlacement::markChainSuccessors(
389    BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
390    const BlockFilterSet *BlockFilter) {
391  // Walk all the blocks in this chain, marking their successors as having
392  // a predecessor placed.
393  for (MachineBasicBlock *MBB : Chain) {
394    // Add any successors for which this is the only un-placed in-loop
395    // predecessor to the worklist as a viable candidate for CFG-neutral
396    // placement. No subsequent placement of this block will violate the CFG
397    // shape, so we get to use heuristics to choose a favorable placement.
398    for (MachineBasicBlock *Succ : MBB->successors()) {
399      if (BlockFilter && !BlockFilter->count(Succ))
400        continue;
401      BlockChain &SuccChain = *BlockToChain[Succ];
402      // Disregard edges within a fixed chain, or edges to the loop header.
403      if (&Chain == &SuccChain || Succ == LoopHeaderBB)
404        continue;
405
406      // This is a cross-chain edge that is within the loop, so decrement the
407      // loop predecessor count of the destination chain.
408      if (SuccChain.UnscheduledPredecessors == 0 ||
409          --SuccChain.UnscheduledPredecessors > 0)
410        continue;
411
412      auto *MBB = *SuccChain.begin();
413      if (MBB->isEHPad())
414        EHPadWorkList.push_back(MBB);
415      else
416        BlockWorkList.push_back(MBB);
417    }
418  }
419}
420
421/// This helper function collects the set of successors of block
422/// \p BB that are allowed to be its layout successors, and return
423/// the total branch probability of edges from \p BB to those
424/// blocks.
425BranchProbability MachineBlockPlacement::collectViableSuccessors(
426    MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter,
427    SmallVector<MachineBasicBlock *, 4> &Successors) {
428  // Adjust edge probabilities by excluding edges pointing to blocks that is
429  // either not in BlockFilter or is already in the current chain. Consider the
430  // following CFG:
431  //
432  //     --->A
433  //     |  / \
434  //     | B   C
435  //     |  \ / \
436  //     ----D   E
437  //
438  // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
439  // A->C is chosen as a fall-through, D won't be selected as a successor of C
440  // due to CFG constraint (the probability of C->D is not greater than
441  // HotProb to break top-oorder). If we exclude E that is not in BlockFilter
442  // when calculating the  probability of C->D, D will be selected and we
443  // will get A C D B as the layout of this loop.
444  auto AdjustedSumProb = BranchProbability::getOne();
445  for (MachineBasicBlock *Succ : BB->successors()) {
446    bool SkipSucc = false;
447    if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
448      SkipSucc = true;
449    } else {
450      BlockChain *SuccChain = BlockToChain[Succ];
451      if (SuccChain == &Chain) {
452        SkipSucc = true;
453      } else if (Succ != *SuccChain->begin()) {
454        DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
455        continue;
456      }
457    }
458    if (SkipSucc)
459      AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
460    else
461      Successors.push_back(Succ);
462  }
463
464  return AdjustedSumProb;
465}
466
467/// The helper function returns the branch probability that is adjusted
468/// or normalized over the new total \p AdjustedSumProb.
469
470static BranchProbability
471getAdjustedProbability(BranchProbability OrigProb,
472                       BranchProbability AdjustedSumProb) {
473  BranchProbability SuccProb;
474  uint32_t SuccProbN = OrigProb.getNumerator();
475  uint32_t SuccProbD = AdjustedSumProb.getNumerator();
476  if (SuccProbN >= SuccProbD)
477    SuccProb = BranchProbability::getOne();
478  else
479    SuccProb = BranchProbability(SuccProbN, SuccProbD);
480
481  return SuccProb;
482}
483
484/// When the option OutlineOptionalBranches is on, this method
485/// checks if the fallthrough candidate block \p Succ (of block
486/// \p BB) also has other unscheduled predecessor blocks which
487/// are also successors of \p BB (forming triagular shape CFG).
488/// If none of such predecessors are small, it returns true.
489/// The caller can choose to select \p Succ as the layout successors
490/// so that \p Succ's predecessors (optional branches) can be
491/// outlined.
492/// FIXME: fold this with more general layout cost analysis.
493bool MachineBlockPlacement::shouldPredBlockBeOutlined(
494    MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain,
495    const BlockFilterSet *BlockFilter, BranchProbability SuccProb,
496    BranchProbability HotProb) {
497  if (!OutlineOptionalBranches)
498    return false;
499  // If we outline optional branches, look whether Succ is unavoidable, i.e.
500  // dominates all terminators of the MachineFunction. If it does, other
501  // successors must be optional. Don't do this for cold branches.
502  if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) {
503    for (MachineBasicBlock *Pred : Succ->predecessors()) {
504      // Check whether there is an unplaced optional branch.
505      if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
506          BlockToChain[Pred] == &Chain)
507        continue;
508      // Check whether the optional branch has exactly one BB.
509      if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
510        continue;
511      // Check whether the optional branch is small.
512      if (Pred->size() < OutlineOptionalThreshold)
513        return false;
514    }
515    return true;
516  } else
517    return false;
518}
519
520// When profile is not present, return the StaticLikelyProb.
521// When profile is available, we need to handle the triangle-shape CFG.
522static BranchProbability getLayoutSuccessorProbThreshold(
523      MachineBasicBlock *BB) {
524  if (!BB->getParent()->getFunction()->getEntryCount())
525    return BranchProbability(StaticLikelyProb, 100);
526  if (BB->succ_size() == 2) {
527    const MachineBasicBlock *Succ1 = *BB->succ_begin();
528    const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
529    if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
530      /* See case 1 below for the cost analysis. For BB->Succ to
531       * be taken with smaller cost, the following needs to hold:
532       *   Prob(BB->Succ) > 2* Prob(BB->Pred)
533       *   So the threshold T
534       *   T = 2 * (1-Prob(BB->Pred). Since T + Prob(BB->Pred) == 1,
535       * We have  T + T/2 = 1, i.e. T = 2/3. Also adding user specified
536       * branch bias, we have
537       *   T = (2/3)*(ProfileLikelyProb/50)
538       *     = (2*ProfileLikelyProb)/150)
539       */
540      return BranchProbability(2 * ProfileLikelyProb, 150);
541    }
542  }
543  return BranchProbability(ProfileLikelyProb, 100);
544}
545
546/// Checks to see if the layout candidate block \p Succ has a better layout
547/// predecessor than \c BB. If yes, returns true.
548bool MachineBlockPlacement::hasBetterLayoutPredecessor(
549    MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain,
550    BranchProbability SuccProb, BranchProbability RealSuccProb,
551    BlockChain &Chain, const BlockFilterSet *BlockFilter) {
552
553  // This is no global conflict, just return false.
554  if (SuccChain.UnscheduledPredecessors == 0)
555    return false;
556
557  // There are two basic scenarios here:
558  // -------------------------------------
559  // Case 1: triagular shape CFG:
560  //     BB
561  //     | \
562  //     |  \
563  //     |   Pred
564  //     |   /
565  //     Succ
566  // In this case, we are evaluating whether to select edge -> Succ, e.g.
567  // set Succ as the layout successor of BB. Picking Succ as BB's
568  // successor breaks the  CFG constraints. With this layout, Pred BB
569  // is forced to be outlined, so the overall cost will be cost of the
570  // branch taken from BB to Pred, plus the cost of back taken branch
571  // from Pred to Succ, as well as the additional cost asssociated
572  // with the needed unconditional jump instruction from Pred To Succ.
573  // The cost of the topological order layout is the taken branch cost
574  // from BB to Succ, so to make BB->Succ a viable candidate, the following
575  // must hold:
576  //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
577  //      < freq(BB->Succ) *  taken_branch_cost.
578  // Ignoring unconditional jump cost, we get
579  //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
580  //    prob(BB->Succ) > 2 * prob(BB->Pred)
581  //
582  // When real profile data is available, we can precisely compute the the
583  // probabililty threshold that is needed for edge BB->Succ to be considered.
584  // With out profile data, the heuristic requires the branch bias to be
585  // a lot larger to make sure the signal is very strong (e.g. 80% default).
586  // -----------------------------------------------------------------
587  // Case 2: diamond like CFG:
588  //     S
589  //    / \
590  //   |   \
591  //  BB    Pred
592  //   \    /
593  //    Succ
594  //    ..
595  // In this case, edge S->BB has already been selected, and we are evaluating
596  // candidate edge BB->Succ. Edge S->BB is selected because prob(S->BB)
597  // is no less than prob(S->Pred). When real profile data is *available*, if
598  // the condition is true, it will be always better to continue the trace with
599  // edge BB->Succ instead of laying out with topological order (i.e. laying
600  // Pred first).  The cost of S->BB->Succ is 2 * freq (S->Pred), while with
601  // the topo order, the cost is freq(S-> Pred) + Pred(S->BB) which is larger.
602  // When profile data is not available, however, we need to be more
603  // conservative. If the branch prediction is wrong, breaking the topo-order
604  // will actually yield a layout with large cost. For this reason, we need
605  // strong biaaed branch at block S with Prob(S->BB) in order to select
606  // BB->Succ. This is equialant to looking the CFG backward with backward
607  // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
608  // profile data).
609
610  BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
611
612  // Forward checking. For case 2, SuccProb will be 1.
613  if (SuccProb < HotProb) {
614    DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
615                 << " (prob) (CFG conflict)\n");
616    return true;
617  }
618
619  // Make sure that a hot successor doesn't have a globally more
620  // important predecessor.
621  BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
622  bool BadCFGConflict = false;
623
624  for (MachineBasicBlock *Pred : Succ->predecessors()) {
625    if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
626        (BlockFilter && !BlockFilter->count(Pred)) ||
627        BlockToChain[Pred] == &Chain)
628      continue;
629    // Do backward checking. For case 1, it is actually redundant check. For
630    // case 2 above, we need a backward checking to filter out edges that are
631    // not 'strongly' biased. With profile data available, the check is mostly
632    // redundant too (when threshold prob is set at 50%) unless S has more than
633    // two successors.
634    // BB  Pred
635    //  \ /
636    //  Succ
637    // We select edgee BB->Succ if
638    //      freq(BB->Succ) > freq(Succ) * HotProb
639    //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
640    //      HotProb
641    //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
642    BlockFrequency PredEdgeFreq =
643        MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
644    if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
645      BadCFGConflict = true;
646      break;
647    }
648  }
649
650  if (BadCFGConflict) {
651    DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
652                 << " (prob) (non-cold CFG conflict)\n");
653    return true;
654  }
655
656  return false;
657}
658
659/// \brief Select the best successor for a block.
660///
661/// This looks across all successors of a particular block and attempts to
662/// select the "best" one to be the layout successor. It only considers direct
663/// successors which also pass the block filter. It will attempt to avoid
664/// breaking CFG structure, but cave and break such structures in the case of
665/// very hot successor edges.
666///
667/// \returns The best successor block found, or null if none are viable.
668MachineBasicBlock *
669MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
670                                           BlockChain &Chain,
671                                           const BlockFilterSet *BlockFilter) {
672  const BranchProbability HotProb(StaticLikelyProb, 100);
673
674  MachineBasicBlock *BestSucc = nullptr;
675  auto BestProb = BranchProbability::getZero();
676
677  SmallVector<MachineBasicBlock *, 4> Successors;
678  auto AdjustedSumProb =
679      collectViableSuccessors(BB, Chain, BlockFilter, Successors);
680
681  DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
682  for (MachineBasicBlock *Succ : Successors) {
683    auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
684    BranchProbability SuccProb =
685        getAdjustedProbability(RealSuccProb, AdjustedSumProb);
686
687    // This heuristic is off by default.
688    if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb,
689                                  HotProb))
690      return Succ;
691
692    BlockChain &SuccChain = *BlockToChain[Succ];
693    // Skip the edge \c BB->Succ if block \c Succ has a better layout
694    // predecessor that yields lower global cost.
695    if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
696                                   Chain, BlockFilter))
697      continue;
698
699    DEBUG(
700        dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
701               << " (prob)"
702               << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
703               << "\n");
704    if (BestSucc && BestProb >= SuccProb)
705      continue;
706    BestSucc = Succ;
707    BestProb = SuccProb;
708  }
709  return BestSucc;
710}
711
712/// \brief Select the best block from a worklist.
713///
714/// This looks through the provided worklist as a list of candidate basic
715/// blocks and select the most profitable one to place. The definition of
716/// profitable only really makes sense in the context of a loop. This returns
717/// the most frequently visited block in the worklist, which in the case of
718/// a loop, is the one most desirable to be physically close to the rest of the
719/// loop body in order to improve icache behavior.
720///
721/// \returns The best block found, or null if none are viable.
722MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
723    BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
724  // Once we need to walk the worklist looking for a candidate, cleanup the
725  // worklist of already placed entries.
726  // FIXME: If this shows up on profiles, it could be folded (at the cost of
727  // some code complexity) into the loop below.
728  WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
729                                [&](MachineBasicBlock *BB) {
730                                  return BlockToChain.lookup(BB) == &Chain;
731                                }),
732                 WorkList.end());
733
734  if (WorkList.empty())
735    return nullptr;
736
737  bool IsEHPad = WorkList[0]->isEHPad();
738
739  MachineBasicBlock *BestBlock = nullptr;
740  BlockFrequency BestFreq;
741  for (MachineBasicBlock *MBB : WorkList) {
742    assert(MBB->isEHPad() == IsEHPad);
743
744    BlockChain &SuccChain = *BlockToChain[MBB];
745    if (&SuccChain == &Chain)
746      continue;
747
748    assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block");
749
750    BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
751    DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
752          MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
753
754    // For ehpad, we layout the least probable first as to avoid jumping back
755    // from least probable landingpads to more probable ones.
756    //
757    // FIXME: Using probability is probably (!) not the best way to achieve
758    // this. We should probably have a more principled approach to layout
759    // cleanup code.
760    //
761    // The goal is to get:
762    //
763    //                 +--------------------------+
764    //                 |                          V
765    // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
766    //
767    // Rather than:
768    //
769    //                 +-------------------------------------+
770    //                 V                                     |
771    // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
772    if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
773      continue;
774
775    BestBlock = MBB;
776    BestFreq = CandidateFreq;
777  }
778
779  return BestBlock;
780}
781
782/// \brief Retrieve the first unplaced basic block.
783///
784/// This routine is called when we are unable to use the CFG to walk through
785/// all of the basic blocks and form a chain due to unnatural loops in the CFG.
786/// We walk through the function's blocks in order, starting from the
787/// LastUnplacedBlockIt. We update this iterator on each call to avoid
788/// re-scanning the entire sequence on repeated calls to this routine.
789MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
790    const BlockChain &PlacedChain,
791    MachineFunction::iterator &PrevUnplacedBlockIt,
792    const BlockFilterSet *BlockFilter) {
793  for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
794       ++I) {
795    if (BlockFilter && !BlockFilter->count(&*I))
796      continue;
797    if (BlockToChain[&*I] != &PlacedChain) {
798      PrevUnplacedBlockIt = I;
799      // Now select the head of the chain to which the unplaced block belongs
800      // as the block to place. This will force the entire chain to be placed,
801      // and satisfies the requirements of merging chains.
802      return *BlockToChain[&*I]->begin();
803    }
804  }
805  return nullptr;
806}
807
808void MachineBlockPlacement::fillWorkLists(
809    MachineBasicBlock *MBB,
810    SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
811    const BlockFilterSet *BlockFilter = nullptr) {
812  BlockChain &Chain = *BlockToChain[MBB];
813  if (!UpdatedPreds.insert(&Chain).second)
814    return;
815
816  assert(Chain.UnscheduledPredecessors == 0);
817  for (MachineBasicBlock *ChainBB : Chain) {
818    assert(BlockToChain[ChainBB] == &Chain);
819    for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
820      if (BlockFilter && !BlockFilter->count(Pred))
821        continue;
822      if (BlockToChain[Pred] == &Chain)
823        continue;
824      ++Chain.UnscheduledPredecessors;
825    }
826  }
827
828  if (Chain.UnscheduledPredecessors != 0)
829    return;
830
831  MBB = *Chain.begin();
832  if (MBB->isEHPad())
833    EHPadWorkList.push_back(MBB);
834  else
835    BlockWorkList.push_back(MBB);
836}
837
838void MachineBlockPlacement::buildChain(
839    MachineBasicBlock *BB, BlockChain &Chain,
840    const BlockFilterSet *BlockFilter) {
841  assert(BB && "BB must not be null.\n");
842  assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match.\n");
843  MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
844
845  MachineBasicBlock *LoopHeaderBB = BB;
846  markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
847  BB = *std::prev(Chain.end());
848  for (;;) {
849    assert(BB && "null block found at end of chain in loop.");
850    assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
851    assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
852
853
854    // Look for the best viable successor if there is one to place immediately
855    // after this block.
856    MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
857
858    // If an immediate successor isn't available, look for the best viable
859    // block among those we've identified as not violating the loop's CFG at
860    // this point. This won't be a fallthrough, but it will increase locality.
861    if (!BestSucc)
862      BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
863    if (!BestSucc)
864      BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
865
866    if (!BestSucc) {
867      BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
868      if (!BestSucc)
869        break;
870
871      DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
872                      "layout successor until the CFG reduces\n");
873    }
874
875    // Place this block, updating the datastructures to reflect its placement.
876    BlockChain &SuccChain = *BlockToChain[BestSucc];
877    // Zero out UnscheduledPredecessors for the successor we're about to merge in case
878    // we selected a successor that didn't fit naturally into the CFG.
879    SuccChain.UnscheduledPredecessors = 0;
880    DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
881                 << getBlockName(BestSucc) << "\n");
882    markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
883    Chain.merge(BestSucc, &SuccChain);
884    BB = *std::prev(Chain.end());
885  }
886
887  DEBUG(dbgs() << "Finished forming chain for header block "
888               << getBlockName(*Chain.begin()) << "\n");
889}
890
891/// \brief Find the best loop top block for layout.
892///
893/// Look for a block which is strictly better than the loop header for laying
894/// out at the top of the loop. This looks for one and only one pattern:
895/// a latch block with no conditional exit. This block will cause a conditional
896/// jump around it or will be the bottom of the loop if we lay it out in place,
897/// but if it it doesn't end up at the bottom of the loop for any reason,
898/// rotation alone won't fix it. Because such a block will always result in an
899/// unconditional jump (for the backedge) rotating it in front of the loop
900/// header is always profitable.
901MachineBasicBlock *
902MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
903                                       const BlockFilterSet &LoopBlockSet) {
904  // Check that the header hasn't been fused with a preheader block due to
905  // crazy branches. If it has, we need to start with the header at the top to
906  // prevent pulling the preheader into the loop body.
907  BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
908  if (!LoopBlockSet.count(*HeaderChain.begin()))
909    return L.getHeader();
910
911  DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
912               << "\n");
913
914  BlockFrequency BestPredFreq;
915  MachineBasicBlock *BestPred = nullptr;
916  for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
917    if (!LoopBlockSet.count(Pred))
918      continue;
919    DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", "
920                 << Pred->succ_size() << " successors, ";
921          MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
922    if (Pred->succ_size() > 1)
923      continue;
924
925    BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
926    if (!BestPred || PredFreq > BestPredFreq ||
927        (!(PredFreq < BestPredFreq) &&
928         Pred->isLayoutSuccessor(L.getHeader()))) {
929      BestPred = Pred;
930      BestPredFreq = PredFreq;
931    }
932  }
933
934  // If no direct predecessor is fine, just use the loop header.
935  if (!BestPred) {
936    DEBUG(dbgs() << "    final top unchanged\n");
937    return L.getHeader();
938  }
939
940  // Walk backwards through any straight line of predecessors.
941  while (BestPred->pred_size() == 1 &&
942         (*BestPred->pred_begin())->succ_size() == 1 &&
943         *BestPred->pred_begin() != L.getHeader())
944    BestPred = *BestPred->pred_begin();
945
946  DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
947  return BestPred;
948}
949
950/// \brief Find the best loop exiting block for layout.
951///
952/// This routine implements the logic to analyze the loop looking for the best
953/// block to layout at the top of the loop. Typically this is done to maximize
954/// fallthrough opportunities.
955MachineBasicBlock *
956MachineBlockPlacement::findBestLoopExit(MachineLoop &L,
957                                        const BlockFilterSet &LoopBlockSet) {
958  // We don't want to layout the loop linearly in all cases. If the loop header
959  // is just a normal basic block in the loop, we want to look for what block
960  // within the loop is the best one to layout at the top. However, if the loop
961  // header has be pre-merged into a chain due to predecessors not having
962  // analyzable branches, *and* the predecessor it is merged with is *not* part
963  // of the loop, rotating the header into the middle of the loop will create
964  // a non-contiguous range of blocks which is Very Bad. So start with the
965  // header and only rotate if safe.
966  BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
967  if (!LoopBlockSet.count(*HeaderChain.begin()))
968    return nullptr;
969
970  BlockFrequency BestExitEdgeFreq;
971  unsigned BestExitLoopDepth = 0;
972  MachineBasicBlock *ExitingBB = nullptr;
973  // If there are exits to outer loops, loop rotation can severely limit
974  // fallthrough opportunites unless it selects such an exit. Keep a set of
975  // blocks where rotating to exit with that block will reach an outer loop.
976  SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
977
978  DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
979               << "\n");
980  for (MachineBasicBlock *MBB : L.getBlocks()) {
981    BlockChain &Chain = *BlockToChain[MBB];
982    // Ensure that this block is at the end of a chain; otherwise it could be
983    // mid-way through an inner loop or a successor of an unanalyzable branch.
984    if (MBB != *std::prev(Chain.end()))
985      continue;
986
987    // Now walk the successors. We need to establish whether this has a viable
988    // exiting successor and whether it has a viable non-exiting successor.
989    // We store the old exiting state and restore it if a viable looping
990    // successor isn't found.
991    MachineBasicBlock *OldExitingBB = ExitingBB;
992    BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
993    bool HasLoopingSucc = false;
994    for (MachineBasicBlock *Succ : MBB->successors()) {
995      if (Succ->isEHPad())
996        continue;
997      if (Succ == MBB)
998        continue;
999      BlockChain &SuccChain = *BlockToChain[Succ];
1000      // Don't split chains, either this chain or the successor's chain.
1001      if (&Chain == &SuccChain) {
1002        DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1003                     << getBlockName(Succ) << " (chain conflict)\n");
1004        continue;
1005      }
1006
1007      auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
1008      if (LoopBlockSet.count(Succ)) {
1009        DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
1010                     << getBlockName(Succ) << " (" << SuccProb << ")\n");
1011        HasLoopingSucc = true;
1012        continue;
1013      }
1014
1015      unsigned SuccLoopDepth = 0;
1016      if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
1017        SuccLoopDepth = ExitLoop->getLoopDepth();
1018        if (ExitLoop->contains(&L))
1019          BlocksExitingToOuterLoop.insert(MBB);
1020      }
1021
1022      BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
1023      DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1024                   << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
1025            MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
1026      // Note that we bias this toward an existing layout successor to retain
1027      // incoming order in the absence of better information. The exit must have
1028      // a frequency higher than the current exit before we consider breaking
1029      // the layout.
1030      BranchProbability Bias(100 - ExitBlockBias, 100);
1031      if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
1032          ExitEdgeFreq > BestExitEdgeFreq ||
1033          (MBB->isLayoutSuccessor(Succ) &&
1034           !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
1035        BestExitEdgeFreq = ExitEdgeFreq;
1036        ExitingBB = MBB;
1037      }
1038    }
1039
1040    if (!HasLoopingSucc) {
1041      // Restore the old exiting state, no viable looping successor was found.
1042      ExitingBB = OldExitingBB;
1043      BestExitEdgeFreq = OldBestExitEdgeFreq;
1044    }
1045  }
1046  // Without a candidate exiting block or with only a single block in the
1047  // loop, just use the loop header to layout the loop.
1048  if (!ExitingBB || L.getNumBlocks() == 1)
1049    return nullptr;
1050
1051  // Also, if we have exit blocks which lead to outer loops but didn't select
1052  // one of them as the exiting block we are rotating toward, disable loop
1053  // rotation altogether.
1054  if (!BlocksExitingToOuterLoop.empty() &&
1055      !BlocksExitingToOuterLoop.count(ExitingBB))
1056    return nullptr;
1057
1058  DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
1059  return ExitingBB;
1060}
1061
1062/// \brief Attempt to rotate an exiting block to the bottom of the loop.
1063///
1064/// Once we have built a chain, try to rotate it to line up the hot exit block
1065/// with fallthrough out of the loop if doing so doesn't introduce unnecessary
1066/// branches. For example, if the loop has fallthrough into its header and out
1067/// of its bottom already, don't rotate it.
1068void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
1069                                       MachineBasicBlock *ExitingBB,
1070                                       const BlockFilterSet &LoopBlockSet) {
1071  if (!ExitingBB)
1072    return;
1073
1074  MachineBasicBlock *Top = *LoopChain.begin();
1075  bool ViableTopFallthrough = false;
1076  for (MachineBasicBlock *Pred : Top->predecessors()) {
1077    BlockChain *PredChain = BlockToChain[Pred];
1078    if (!LoopBlockSet.count(Pred) &&
1079        (!PredChain || Pred == *std::prev(PredChain->end()))) {
1080      ViableTopFallthrough = true;
1081      break;
1082    }
1083  }
1084
1085  // If the header has viable fallthrough, check whether the current loop
1086  // bottom is a viable exiting block. If so, bail out as rotating will
1087  // introduce an unnecessary branch.
1088  if (ViableTopFallthrough) {
1089    MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
1090    for (MachineBasicBlock *Succ : Bottom->successors()) {
1091      BlockChain *SuccChain = BlockToChain[Succ];
1092      if (!LoopBlockSet.count(Succ) &&
1093          (!SuccChain || Succ == *SuccChain->begin()))
1094        return;
1095    }
1096  }
1097
1098  BlockChain::iterator ExitIt =
1099      std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
1100  if (ExitIt == LoopChain.end())
1101    return;
1102
1103  std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
1104}
1105
1106/// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
1107///
1108/// With profile data, we can determine the cost in terms of missed fall through
1109/// opportunities when rotating a loop chain and select the best rotation.
1110/// Basically, there are three kinds of cost to consider for each rotation:
1111///    1. The possibly missed fall through edge (if it exists) from BB out of
1112///    the loop to the loop header.
1113///    2. The possibly missed fall through edges (if they exist) from the loop
1114///    exits to BB out of the loop.
1115///    3. The missed fall through edge (if it exists) from the last BB to the
1116///    first BB in the loop chain.
1117///  Therefore, the cost for a given rotation is the sum of costs listed above.
1118///  We select the best rotation with the smallest cost.
1119void MachineBlockPlacement::rotateLoopWithProfile(
1120    BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
1121  auto HeaderBB = L.getHeader();
1122  auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB);
1123  auto RotationPos = LoopChain.end();
1124
1125  BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
1126
1127  // A utility lambda that scales up a block frequency by dividing it by a
1128  // branch probability which is the reciprocal of the scale.
1129  auto ScaleBlockFrequency = [](BlockFrequency Freq,
1130                                unsigned Scale) -> BlockFrequency {
1131    if (Scale == 0)
1132      return 0;
1133    // Use operator / between BlockFrequency and BranchProbability to implement
1134    // saturating multiplication.
1135    return Freq / BranchProbability(1, Scale);
1136  };
1137
1138  // Compute the cost of the missed fall-through edge to the loop header if the
1139  // chain head is not the loop header. As we only consider natural loops with
1140  // single header, this computation can be done only once.
1141  BlockFrequency HeaderFallThroughCost(0);
1142  for (auto *Pred : HeaderBB->predecessors()) {
1143    BlockChain *PredChain = BlockToChain[Pred];
1144    if (!LoopBlockSet.count(Pred) &&
1145        (!PredChain || Pred == *std::prev(PredChain->end()))) {
1146      auto EdgeFreq =
1147          MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
1148      auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
1149      // If the predecessor has only an unconditional jump to the header, we
1150      // need to consider the cost of this jump.
1151      if (Pred->succ_size() == 1)
1152        FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
1153      HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
1154    }
1155  }
1156
1157  // Here we collect all exit blocks in the loop, and for each exit we find out
1158  // its hottest exit edge. For each loop rotation, we define the loop exit cost
1159  // as the sum of frequencies of exit edges we collect here, excluding the exit
1160  // edge from the tail of the loop chain.
1161  SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
1162  for (auto BB : LoopChain) {
1163    auto LargestExitEdgeProb = BranchProbability::getZero();
1164    for (auto *Succ : BB->successors()) {
1165      BlockChain *SuccChain = BlockToChain[Succ];
1166      if (!LoopBlockSet.count(Succ) &&
1167          (!SuccChain || Succ == *SuccChain->begin())) {
1168        auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
1169        LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
1170      }
1171    }
1172    if (LargestExitEdgeProb > BranchProbability::getZero()) {
1173      auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
1174      ExitsWithFreq.emplace_back(BB, ExitFreq);
1175    }
1176  }
1177
1178  // In this loop we iterate every block in the loop chain and calculate the
1179  // cost assuming the block is the head of the loop chain. When the loop ends,
1180  // we should have found the best candidate as the loop chain's head.
1181  for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
1182            EndIter = LoopChain.end();
1183       Iter != EndIter; Iter++, TailIter++) {
1184    // TailIter is used to track the tail of the loop chain if the block we are
1185    // checking (pointed by Iter) is the head of the chain.
1186    if (TailIter == LoopChain.end())
1187      TailIter = LoopChain.begin();
1188
1189    auto TailBB = *TailIter;
1190
1191    // Calculate the cost by putting this BB to the top.
1192    BlockFrequency Cost = 0;
1193
1194    // If the current BB is the loop header, we need to take into account the
1195    // cost of the missed fall through edge from outside of the loop to the
1196    // header.
1197    if (Iter != HeaderIter)
1198      Cost += HeaderFallThroughCost;
1199
1200    // Collect the loop exit cost by summing up frequencies of all exit edges
1201    // except the one from the chain tail.
1202    for (auto &ExitWithFreq : ExitsWithFreq)
1203      if (TailBB != ExitWithFreq.first)
1204        Cost += ExitWithFreq.second;
1205
1206    // The cost of breaking the once fall-through edge from the tail to the top
1207    // of the loop chain. Here we need to consider three cases:
1208    // 1. If the tail node has only one successor, then we will get an
1209    //    additional jmp instruction. So the cost here is (MisfetchCost +
1210    //    JumpInstCost) * tail node frequency.
1211    // 2. If the tail node has two successors, then we may still get an
1212    //    additional jmp instruction if the layout successor after the loop
1213    //    chain is not its CFG successor. Note that the more frequently executed
1214    //    jmp instruction will be put ahead of the other one. Assume the
1215    //    frequency of those two branches are x and y, where x is the frequency
1216    //    of the edge to the chain head, then the cost will be
1217    //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
1218    // 3. If the tail node has more than two successors (this rarely happens),
1219    //    we won't consider any additional cost.
1220    if (TailBB->isSuccessor(*Iter)) {
1221      auto TailBBFreq = MBFI->getBlockFreq(TailBB);
1222      if (TailBB->succ_size() == 1)
1223        Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
1224                                    MisfetchCost + JumpInstCost);
1225      else if (TailBB->succ_size() == 2) {
1226        auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
1227        auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
1228        auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
1229                                  ? TailBBFreq * TailToHeadProb.getCompl()
1230                                  : TailToHeadFreq;
1231        Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
1232                ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
1233      }
1234    }
1235
1236    DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter)
1237                 << " to the top: " << Cost.getFrequency() << "\n");
1238
1239    if (Cost < SmallestRotationCost) {
1240      SmallestRotationCost = Cost;
1241      RotationPos = Iter;
1242    }
1243  }
1244
1245  if (RotationPos != LoopChain.end()) {
1246    DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
1247                 << " to the top\n");
1248    std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
1249  }
1250}
1251
1252/// \brief Collect blocks in the given loop that are to be placed.
1253///
1254/// When profile data is available, exclude cold blocks from the returned set;
1255/// otherwise, collect all blocks in the loop.
1256MachineBlockPlacement::BlockFilterSet
1257MachineBlockPlacement::collectLoopBlockSet(MachineLoop &L) {
1258  BlockFilterSet LoopBlockSet;
1259
1260  // Filter cold blocks off from LoopBlockSet when profile data is available.
1261  // Collect the sum of frequencies of incoming edges to the loop header from
1262  // outside. If we treat the loop as a super block, this is the frequency of
1263  // the loop. Then for each block in the loop, we calculate the ratio between
1264  // its frequency and the frequency of the loop block. When it is too small,
1265  // don't add it to the loop chain. If there are outer loops, then this block
1266  // will be merged into the first outer loop chain for which this block is not
1267  // cold anymore. This needs precise profile data and we only do this when
1268  // profile data is available.
1269  if (F->getFunction()->getEntryCount()) {
1270    BlockFrequency LoopFreq(0);
1271    for (auto LoopPred : L.getHeader()->predecessors())
1272      if (!L.contains(LoopPred))
1273        LoopFreq += MBFI->getBlockFreq(LoopPred) *
1274                    MBPI->getEdgeProbability(LoopPred, L.getHeader());
1275
1276    for (MachineBasicBlock *LoopBB : L.getBlocks()) {
1277      auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
1278      if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
1279        continue;
1280      LoopBlockSet.insert(LoopBB);
1281    }
1282  } else
1283    LoopBlockSet.insert(L.block_begin(), L.block_end());
1284
1285  return LoopBlockSet;
1286}
1287
1288/// \brief Forms basic block chains from the natural loop structures.
1289///
1290/// These chains are designed to preserve the existing *structure* of the code
1291/// as much as possible. We can then stitch the chains together in a way which
1292/// both preserves the topological structure and minimizes taken conditional
1293/// branches.
1294void MachineBlockPlacement::buildLoopChains(MachineLoop &L) {
1295  // First recurse through any nested loops, building chains for those inner
1296  // loops.
1297  for (MachineLoop *InnerLoop : L)
1298    buildLoopChains(*InnerLoop);
1299
1300  assert(BlockWorkList.empty());
1301  assert(EHPadWorkList.empty());
1302  BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
1303
1304  // Check if we have profile data for this function. If yes, we will rotate
1305  // this loop by modeling costs more precisely which requires the profile data
1306  // for better layout.
1307  bool RotateLoopWithProfile =
1308      ForcePreciseRotationCost ||
1309      (PreciseRotationCost && F->getFunction()->getEntryCount());
1310
1311  // First check to see if there is an obviously preferable top block for the
1312  // loop. This will default to the header, but may end up as one of the
1313  // predecessors to the header if there is one which will result in strictly
1314  // fewer branches in the loop body.
1315  // When we use profile data to rotate the loop, this is unnecessary.
1316  MachineBasicBlock *LoopTop =
1317      RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
1318
1319  // If we selected just the header for the loop top, look for a potentially
1320  // profitable exit block in the event that rotating the loop can eliminate
1321  // branches by placing an exit edge at the bottom.
1322  MachineBasicBlock *ExitingBB = nullptr;
1323  if (!RotateLoopWithProfile && LoopTop == L.getHeader())
1324    ExitingBB = findBestLoopExit(L, LoopBlockSet);
1325
1326  BlockChain &LoopChain = *BlockToChain[LoopTop];
1327
1328  // FIXME: This is a really lame way of walking the chains in the loop: we
1329  // walk the blocks, and use a set to prevent visiting a particular chain
1330  // twice.
1331  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1332  assert(LoopChain.UnscheduledPredecessors == 0);
1333  UpdatedPreds.insert(&LoopChain);
1334
1335  for (MachineBasicBlock *LoopBB : LoopBlockSet)
1336    fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
1337
1338  buildChain(LoopTop, LoopChain, &LoopBlockSet);
1339
1340  if (RotateLoopWithProfile)
1341    rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
1342  else
1343    rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
1344
1345  DEBUG({
1346    // Crash at the end so we get all of the debugging output first.
1347    bool BadLoop = false;
1348    if (LoopChain.UnscheduledPredecessors) {
1349      BadLoop = true;
1350      dbgs() << "Loop chain contains a block without its preds placed!\n"
1351             << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1352             << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
1353    }
1354    for (MachineBasicBlock *ChainBB : LoopChain) {
1355      dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
1356      if (!LoopBlockSet.erase(ChainBB)) {
1357        // We don't mark the loop as bad here because there are real situations
1358        // where this can occur. For example, with an unanalyzable fallthrough
1359        // from a loop block to a non-loop block or vice versa.
1360        dbgs() << "Loop chain contains a block not contained by the loop!\n"
1361               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1362               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1363               << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1364      }
1365    }
1366
1367    if (!LoopBlockSet.empty()) {
1368      BadLoop = true;
1369      for (MachineBasicBlock *LoopBB : LoopBlockSet)
1370        dbgs() << "Loop contains blocks never placed into a chain!\n"
1371               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1372               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1373               << "  Bad block:    " << getBlockName(LoopBB) << "\n";
1374    }
1375    assert(!BadLoop && "Detected problems with the placement of this loop.");
1376  });
1377
1378  BlockWorkList.clear();
1379  EHPadWorkList.clear();
1380}
1381
1382/// When OutlineOpitonalBranches is on, this method colects BBs that
1383/// dominates all terminator blocks of the function \p F.
1384void MachineBlockPlacement::collectMustExecuteBBs() {
1385  if (OutlineOptionalBranches) {
1386    // Find the nearest common dominator of all of F's terminators.
1387    MachineBasicBlock *Terminator = nullptr;
1388    for (MachineBasicBlock &MBB : *F) {
1389      if (MBB.succ_size() == 0) {
1390        if (Terminator == nullptr)
1391          Terminator = &MBB;
1392        else
1393          Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
1394      }
1395    }
1396
1397    // MBBs dominating this common dominator are unavoidable.
1398    UnavoidableBlocks.clear();
1399    for (MachineBasicBlock &MBB : *F) {
1400      if (MDT->dominates(&MBB, Terminator)) {
1401        UnavoidableBlocks.insert(&MBB);
1402      }
1403    }
1404  }
1405}
1406
1407void MachineBlockPlacement::buildCFGChains() {
1408  // Ensure that every BB in the function has an associated chain to simplify
1409  // the assumptions of the remaining algorithm.
1410  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1411  for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
1412       ++FI) {
1413    MachineBasicBlock *BB = &*FI;
1414    BlockChain *Chain =
1415        new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
1416    // Also, merge any blocks which we cannot reason about and must preserve
1417    // the exact fallthrough behavior for.
1418    for (;;) {
1419      Cond.clear();
1420      MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1421      if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
1422        break;
1423
1424      MachineFunction::iterator NextFI = std::next(FI);
1425      MachineBasicBlock *NextBB = &*NextFI;
1426      // Ensure that the layout successor is a viable block, as we know that
1427      // fallthrough is a possibility.
1428      assert(NextFI != FE && "Can't fallthrough past the last block.");
1429      DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
1430                   << getBlockName(BB) << " -> " << getBlockName(NextBB)
1431                   << "\n");
1432      Chain->merge(NextBB, nullptr);
1433      FI = NextFI;
1434      BB = NextBB;
1435    }
1436  }
1437
1438  // Turned on with OutlineOptionalBranches option
1439  collectMustExecuteBBs();
1440
1441  // Build any loop-based chains.
1442  for (MachineLoop *L : *MLI)
1443    buildLoopChains(*L);
1444
1445  assert(BlockWorkList.empty());
1446  assert(EHPadWorkList.empty());
1447
1448  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1449  for (MachineBasicBlock &MBB : *F)
1450    fillWorkLists(&MBB, UpdatedPreds);
1451
1452  BlockChain &FunctionChain = *BlockToChain[&F->front()];
1453  buildChain(&F->front(), FunctionChain);
1454
1455#ifndef NDEBUG
1456  typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
1457#endif
1458  DEBUG({
1459    // Crash at the end so we get all of the debugging output first.
1460    bool BadFunc = false;
1461    FunctionBlockSetType FunctionBlockSet;
1462    for (MachineBasicBlock &MBB : *F)
1463      FunctionBlockSet.insert(&MBB);
1464
1465    for (MachineBasicBlock *ChainBB : FunctionChain)
1466      if (!FunctionBlockSet.erase(ChainBB)) {
1467        BadFunc = true;
1468        dbgs() << "Function chain contains a block not in the function!\n"
1469               << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1470      }
1471
1472    if (!FunctionBlockSet.empty()) {
1473      BadFunc = true;
1474      for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
1475        dbgs() << "Function contains blocks never placed into a chain!\n"
1476               << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
1477    }
1478    assert(!BadFunc && "Detected problems with the block placement.");
1479  });
1480
1481  // Splice the blocks into place.
1482  MachineFunction::iterator InsertPos = F->begin();
1483  DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n");
1484  for (MachineBasicBlock *ChainBB : FunctionChain) {
1485    DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
1486                                                       : "          ... ")
1487                 << getBlockName(ChainBB) << "\n");
1488    if (InsertPos != MachineFunction::iterator(ChainBB))
1489      F->splice(InsertPos, ChainBB);
1490    else
1491      ++InsertPos;
1492
1493    // Update the terminator of the previous block.
1494    if (ChainBB == *FunctionChain.begin())
1495      continue;
1496    MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
1497
1498    // FIXME: It would be awesome of updateTerminator would just return rather
1499    // than assert when the branch cannot be analyzed in order to remove this
1500    // boiler plate.
1501    Cond.clear();
1502    MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1503
1504    // The "PrevBB" is not yet updated to reflect current code layout, so,
1505    //   o. it may fall-through to a block without explict "goto" instruction
1506    //      before layout, and no longer fall-through it after layout; or
1507    //   o. just opposite.
1508    //
1509    // analyzeBranch() may return erroneous value for FBB when these two
1510    // situations take place. For the first scenario FBB is mistakenly set NULL;
1511    // for the 2nd scenario, the FBB, which is expected to be NULL, is
1512    // mistakenly pointing to "*BI".
1513    // Thus, if the future change needs to use FBB before the layout is set, it
1514    // has to correct FBB first by using the code similar to the following:
1515    //
1516    // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
1517    //   PrevBB->updateTerminator();
1518    //   Cond.clear();
1519    //   TBB = FBB = nullptr;
1520    //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1521    //     // FIXME: This should never take place.
1522    //     TBB = FBB = nullptr;
1523    //   }
1524    // }
1525    if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
1526      PrevBB->updateTerminator();
1527  }
1528
1529  // Fixup the last block.
1530  Cond.clear();
1531  MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1532  if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
1533    F->back().updateTerminator();
1534
1535  BlockWorkList.clear();
1536  EHPadWorkList.clear();
1537}
1538
1539void MachineBlockPlacement::optimizeBranches() {
1540  BlockChain &FunctionChain = *BlockToChain[&F->front()];
1541  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1542
1543  // Now that all the basic blocks in the chain have the proper layout,
1544  // make a final call to AnalyzeBranch with AllowModify set.
1545  // Indeed, the target may be able to optimize the branches in a way we
1546  // cannot because all branches may not be analyzable.
1547  // E.g., the target may be able to remove an unconditional branch to
1548  // a fallthrough when it occurs after predicated terminators.
1549  for (MachineBasicBlock *ChainBB : FunctionChain) {
1550    Cond.clear();
1551    MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1552    if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
1553      // If PrevBB has a two-way branch, try to re-order the branches
1554      // such that we branch to the successor with higher probability first.
1555      if (TBB && !Cond.empty() && FBB &&
1556          MBPI->getEdgeProbability(ChainBB, FBB) >
1557              MBPI->getEdgeProbability(ChainBB, TBB) &&
1558          !TII->ReverseBranchCondition(Cond)) {
1559        DEBUG(dbgs() << "Reverse order of the two branches: "
1560                     << getBlockName(ChainBB) << "\n");
1561        DEBUG(dbgs() << "    Edge probability: "
1562                     << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
1563                     << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
1564        DebugLoc dl; // FIXME: this is nowhere
1565        TII->RemoveBranch(*ChainBB);
1566        TII->InsertBranch(*ChainBB, FBB, TBB, Cond, dl);
1567        ChainBB->updateTerminator();
1568      }
1569    }
1570  }
1571}
1572
1573void MachineBlockPlacement::alignBlocks() {
1574  // Walk through the backedges of the function now that we have fully laid out
1575  // the basic blocks and align the destination of each backedge. We don't rely
1576  // exclusively on the loop info here so that we can align backedges in
1577  // unnatural CFGs and backedges that were introduced purely because of the
1578  // loop rotations done during this layout pass.
1579  if (F->getFunction()->optForSize())
1580    return;
1581  BlockChain &FunctionChain = *BlockToChain[&F->front()];
1582  if (FunctionChain.begin() == FunctionChain.end())
1583    return; // Empty chain.
1584
1585  const BranchProbability ColdProb(1, 5); // 20%
1586  BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
1587  BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1588  for (MachineBasicBlock *ChainBB : FunctionChain) {
1589    if (ChainBB == *FunctionChain.begin())
1590      continue;
1591
1592    // Don't align non-looping basic blocks. These are unlikely to execute
1593    // enough times to matter in practice. Note that we'll still handle
1594    // unnatural CFGs inside of a natural outer loop (the common case) and
1595    // rotated loops.
1596    MachineLoop *L = MLI->getLoopFor(ChainBB);
1597    if (!L)
1598      continue;
1599
1600    unsigned Align = TLI->getPrefLoopAlignment(L);
1601    if (!Align)
1602      continue; // Don't care about loop alignment.
1603
1604    // If the block is cold relative to the function entry don't waste space
1605    // aligning it.
1606    BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
1607    if (Freq < WeightedEntryFreq)
1608      continue;
1609
1610    // If the block is cold relative to its loop header, don't align it
1611    // regardless of what edges into the block exist.
1612    MachineBasicBlock *LoopHeader = L->getHeader();
1613    BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1614    if (Freq < (LoopHeaderFreq * ColdProb))
1615      continue;
1616
1617    // Check for the existence of a non-layout predecessor which would benefit
1618    // from aligning this block.
1619    MachineBasicBlock *LayoutPred =
1620        &*std::prev(MachineFunction::iterator(ChainBB));
1621
1622    // Force alignment if all the predecessors are jumps. We already checked
1623    // that the block isn't cold above.
1624    if (!LayoutPred->isSuccessor(ChainBB)) {
1625      ChainBB->setAlignment(Align);
1626      continue;
1627    }
1628
1629    // Align this block if the layout predecessor's edge into this block is
1630    // cold relative to the block. When this is true, other predecessors make up
1631    // all of the hot entries into the block and thus alignment is likely to be
1632    // important.
1633    BranchProbability LayoutProb =
1634        MBPI->getEdgeProbability(LayoutPred, ChainBB);
1635    BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1636    if (LayoutEdgeFreq <= (Freq * ColdProb))
1637      ChainBB->setAlignment(Align);
1638  }
1639}
1640
1641bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
1642  if (skipFunction(*MF.getFunction()))
1643    return false;
1644
1645  // Check for single-block functions and skip them.
1646  if (std::next(MF.begin()) == MF.end())
1647    return false;
1648
1649  F = &MF;
1650  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1651  MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>(
1652      getAnalysis<MachineBlockFrequencyInfo>());
1653  MLI = &getAnalysis<MachineLoopInfo>();
1654  TII = MF.getSubtarget().getInstrInfo();
1655  TLI = MF.getSubtarget().getTargetLowering();
1656  MDT = &getAnalysis<MachineDominatorTree>();
1657  assert(BlockToChain.empty());
1658
1659  buildCFGChains();
1660
1661  // Changing the layout can create new tail merging opportunities.
1662  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
1663  // TailMerge can create jump into if branches that make CFG irreducible for
1664  // HW that requires structurized CFG.
1665  bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
1666                         PassConfig->getEnableTailMerge() &&
1667                         BranchFoldPlacement;
1668  // No tail merging opportunities if the block number is less than four.
1669  if (MF.size() > 3 && EnableTailMerge) {
1670    BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
1671                    *MBPI);
1672
1673    if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
1674                            getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
1675                            /*AfterBlockPlacement=*/true)) {
1676      // Redo the layout if tail merging creates/removes/moves blocks.
1677      BlockToChain.clear();
1678      ChainAllocator.DestroyAll();
1679      buildCFGChains();
1680    }
1681  }
1682
1683  optimizeBranches();
1684  alignBlocks();
1685
1686  BlockToChain.clear();
1687  ChainAllocator.DestroyAll();
1688
1689  if (AlignAllBlock)
1690    // Align all of the blocks in the function to a specific alignment.
1691    for (MachineBasicBlock &MBB : MF)
1692      MBB.setAlignment(AlignAllBlock);
1693  else if (AlignAllNonFallThruBlocks) {
1694    // Align all of the blocks that have no fall-through predecessors to a
1695    // specific alignment.
1696    for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
1697      auto LayoutPred = std::prev(MBI);
1698      if (!LayoutPred->isSuccessor(&*MBI))
1699        MBI->setAlignment(AlignAllNonFallThruBlocks);
1700    }
1701  }
1702
1703  // We always return true as we have no way to track whether the final order
1704  // differs from the original order.
1705  return true;
1706}
1707
1708namespace {
1709/// \brief A pass to compute block placement statistics.
1710///
1711/// A separate pass to compute interesting statistics for evaluating block
1712/// placement. This is separate from the actual placement pass so that they can
1713/// be computed in the absence of any placement transformations or when using
1714/// alternative placement strategies.
1715class MachineBlockPlacementStats : public MachineFunctionPass {
1716  /// \brief A handle to the branch probability pass.
1717  const MachineBranchProbabilityInfo *MBPI;
1718
1719  /// \brief A handle to the function-wide block frequency pass.
1720  const MachineBlockFrequencyInfo *MBFI;
1721
1722public:
1723  static char ID; // Pass identification, replacement for typeid
1724  MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1725    initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1726  }
1727
1728  bool runOnMachineFunction(MachineFunction &F) override;
1729
1730  void getAnalysisUsage(AnalysisUsage &AU) const override {
1731    AU.addRequired<MachineBranchProbabilityInfo>();
1732    AU.addRequired<MachineBlockFrequencyInfo>();
1733    AU.setPreservesAll();
1734    MachineFunctionPass::getAnalysisUsage(AU);
1735  }
1736};
1737}
1738
1739char MachineBlockPlacementStats::ID = 0;
1740char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1741INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1742                      "Basic Block Placement Stats", false, false)
1743INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1744INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1745INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1746                    "Basic Block Placement Stats", false, false)
1747
1748bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1749  // Check for single-block functions and skip them.
1750  if (std::next(F.begin()) == F.end())
1751    return false;
1752
1753  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1754  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1755
1756  for (MachineBasicBlock &MBB : F) {
1757    BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
1758    Statistic &NumBranches =
1759        (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
1760    Statistic &BranchTakenFreq =
1761        (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
1762    for (MachineBasicBlock *Succ : MBB.successors()) {
1763      // Skip if this successor is a fallthrough.
1764      if (MBB.isLayoutSuccessor(Succ))
1765        continue;
1766
1767      BlockFrequency EdgeFreq =
1768          BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
1769      ++NumBranches;
1770      BranchTakenFreq += EdgeFreq.getFrequency();
1771    }
1772  }
1773
1774  return false;
1775}
1776