1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/CodeGen/CallingConvLower.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineJumpTableInfo.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/GlobalVariable.h"
26#include "llvm/IR/LLVMContext.h"
27#include "llvm/MC/MCAsmInfo.h"
28#include "llvm/MC/MCExpr.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/Target/TargetLoweringObjectFile.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Target/TargetRegisterInfo.h"
34#include "llvm/Target/TargetSubtargetInfo.h"
35#include <cctype>
36using namespace llvm;
37
38/// NOTE: The TargetMachine owns TLOF.
39TargetLowering::TargetLowering(const TargetMachine &tm)
40  : TargetLoweringBase(tm) {}
41
42const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43  return nullptr;
44}
45
46bool TargetLowering::isPositionIndependent() const {
47  return getTargetMachine().isPositionIndependent();
48}
49
50/// Check whether a given call node is in tail position within its function. If
51/// so, it sets Chain to the input chain of the tail call.
52bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                          SDValue &Chain) const {
54  const Function *F = DAG.getMachineFunction().getFunction();
55
56  // Conservatively require the attributes of the call to match those of
57  // the return. Ignore noalias because it doesn't affect the call sequence.
58  AttributeSet CallerAttrs = F->getAttributes();
59  if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
60      .removeAttribute(Attribute::NoAlias).hasAttributes())
61    return false;
62
63  // It's not safe to eliminate the sign / zero extension of the return value.
64  if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
65      CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
66    return false;
67
68  // Check if the only use is a function return node.
69  return isUsedByReturnOnly(Node, Chain);
70}
71
72bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
73    const uint32_t *CallerPreservedMask,
74    const SmallVectorImpl<CCValAssign> &ArgLocs,
75    const SmallVectorImpl<SDValue> &OutVals) const {
76  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
77    const CCValAssign &ArgLoc = ArgLocs[I];
78    if (!ArgLoc.isRegLoc())
79      continue;
80    unsigned Reg = ArgLoc.getLocReg();
81    // Only look at callee saved registers.
82    if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
83      continue;
84    // Check that we pass the value used for the caller.
85    // (We look for a CopyFromReg reading a virtual register that is used
86    //  for the function live-in value of register Reg)
87    SDValue Value = OutVals[I];
88    if (Value->getOpcode() != ISD::CopyFromReg)
89      return false;
90    unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
91    if (MRI.getLiveInPhysReg(ArgReg) != Reg)
92      return false;
93  }
94  return true;
95}
96
97/// \brief Set CallLoweringInfo attribute flags based on a call instruction
98/// and called function attributes.
99void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS,
100                                                 unsigned AttrIdx) {
101  isSExt     = CS->paramHasAttr(AttrIdx, Attribute::SExt);
102  isZExt     = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
103  isInReg    = CS->paramHasAttr(AttrIdx, Attribute::InReg);
104  isSRet     = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
105  isNest     = CS->paramHasAttr(AttrIdx, Attribute::Nest);
106  isByVal    = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
107  isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
108  isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
109  isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf);
110  isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError);
111  Alignment  = CS->getParamAlignment(AttrIdx);
112}
113
114/// Generate a libcall taking the given operands as arguments and returning a
115/// result of type RetVT.
116std::pair<SDValue, SDValue>
117TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
118                            ArrayRef<SDValue> Ops, bool isSigned,
119                            const SDLoc &dl, bool doesNotReturn,
120                            bool isReturnValueUsed) const {
121  TargetLowering::ArgListTy Args;
122  Args.reserve(Ops.size());
123
124  TargetLowering::ArgListEntry Entry;
125  for (SDValue Op : Ops) {
126    Entry.Node = Op;
127    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
128    Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
129    Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
130    Args.push_back(Entry);
131  }
132
133  if (LC == RTLIB::UNKNOWN_LIBCALL)
134    report_fatal_error("Unsupported library call operation!");
135  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
136                                         getPointerTy(DAG.getDataLayout()));
137
138  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
139  TargetLowering::CallLoweringInfo CLI(DAG);
140  bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
141  CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
142    .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
143    .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed)
144    .setSExtResult(signExtend).setZExtResult(!signExtend);
145  return LowerCallTo(CLI);
146}
147
148/// Soften the operands of a comparison. This code is shared among BR_CC,
149/// SELECT_CC, and SETCC handlers.
150void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
151                                         SDValue &NewLHS, SDValue &NewRHS,
152                                         ISD::CondCode &CCCode,
153                                         const SDLoc &dl) const {
154  assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
155         && "Unsupported setcc type!");
156
157  // Expand into one or more soft-fp libcall(s).
158  RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
159  bool ShouldInvertCC = false;
160  switch (CCCode) {
161  case ISD::SETEQ:
162  case ISD::SETOEQ:
163    LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
164          (VT == MVT::f64) ? RTLIB::OEQ_F64 :
165          (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
166    break;
167  case ISD::SETNE:
168  case ISD::SETUNE:
169    LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
170          (VT == MVT::f64) ? RTLIB::UNE_F64 :
171          (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
172    break;
173  case ISD::SETGE:
174  case ISD::SETOGE:
175    LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
176          (VT == MVT::f64) ? RTLIB::OGE_F64 :
177          (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
178    break;
179  case ISD::SETLT:
180  case ISD::SETOLT:
181    LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
182          (VT == MVT::f64) ? RTLIB::OLT_F64 :
183          (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
184    break;
185  case ISD::SETLE:
186  case ISD::SETOLE:
187    LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
188          (VT == MVT::f64) ? RTLIB::OLE_F64 :
189          (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
190    break;
191  case ISD::SETGT:
192  case ISD::SETOGT:
193    LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
194          (VT == MVT::f64) ? RTLIB::OGT_F64 :
195          (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
196    break;
197  case ISD::SETUO:
198    LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
199          (VT == MVT::f64) ? RTLIB::UO_F64 :
200          (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
201    break;
202  case ISD::SETO:
203    LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
204          (VT == MVT::f64) ? RTLIB::O_F64 :
205          (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
206    break;
207  case ISD::SETONE:
208    // SETONE = SETOLT | SETOGT
209    LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
210          (VT == MVT::f64) ? RTLIB::OLT_F64 :
211          (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
212    LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
213          (VT == MVT::f64) ? RTLIB::OGT_F64 :
214          (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
215    break;
216  case ISD::SETUEQ:
217    LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
218          (VT == MVT::f64) ? RTLIB::UO_F64 :
219          (VT == MVT::f128) ? RTLIB::UO_F64 : RTLIB::UO_PPCF128;
220    LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
221          (VT == MVT::f64) ? RTLIB::OEQ_F64 :
222          (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
223    break;
224  default:
225    // Invert CC for unordered comparisons
226    ShouldInvertCC = true;
227    switch (CCCode) {
228    case ISD::SETULT:
229      LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
230            (VT == MVT::f64) ? RTLIB::OGE_F64 :
231            (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
232      break;
233    case ISD::SETULE:
234      LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
235            (VT == MVT::f64) ? RTLIB::OGT_F64 :
236            (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
237      break;
238    case ISD::SETUGT:
239      LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
240            (VT == MVT::f64) ? RTLIB::OLE_F64 :
241            (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
242      break;
243    case ISD::SETUGE:
244      LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
245            (VT == MVT::f64) ? RTLIB::OLT_F64 :
246            (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
247      break;
248    default: llvm_unreachable("Do not know how to soften this setcc!");
249    }
250  }
251
252  // Use the target specific return value for comparions lib calls.
253  EVT RetVT = getCmpLibcallReturnType();
254  SDValue Ops[2] = {NewLHS, NewRHS};
255  NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
256                       dl).first;
257  NewRHS = DAG.getConstant(0, dl, RetVT);
258
259  CCCode = getCmpLibcallCC(LC1);
260  if (ShouldInvertCC)
261    CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
262
263  if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
264    SDValue Tmp = DAG.getNode(
265        ISD::SETCC, dl,
266        getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
267        NewLHS, NewRHS, DAG.getCondCode(CCCode));
268    NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
269                         dl).first;
270    NewLHS = DAG.getNode(
271        ISD::SETCC, dl,
272        getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
273        NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
274    NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
275    NewRHS = SDValue();
276  }
277}
278
279/// Return the entry encoding for a jump table in the current function. The
280/// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
281unsigned TargetLowering::getJumpTableEncoding() const {
282  // In non-pic modes, just use the address of a block.
283  if (!isPositionIndependent())
284    return MachineJumpTableInfo::EK_BlockAddress;
285
286  // In PIC mode, if the target supports a GPRel32 directive, use it.
287  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
288    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
289
290  // Otherwise, use a label difference.
291  return MachineJumpTableInfo::EK_LabelDifference32;
292}
293
294SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
295                                                 SelectionDAG &DAG) const {
296  // If our PIC model is GP relative, use the global offset table as the base.
297  unsigned JTEncoding = getJumpTableEncoding();
298
299  if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
300      (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
301    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
302
303  return Table;
304}
305
306/// This returns the relocation base for the given PIC jumptable, the same as
307/// getPICJumpTableRelocBase, but as an MCExpr.
308const MCExpr *
309TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
310                                             unsigned JTI,MCContext &Ctx) const{
311  // The normal PIC reloc base is the label at the start of the jump table.
312  return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
313}
314
315bool
316TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
317  const TargetMachine &TM = getTargetMachine();
318  const GlobalValue *GV = GA->getGlobal();
319
320  // If the address is not even local to this DSO we will have to load it from
321  // a got and then add the offset.
322  if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
323    return false;
324
325  // If the code is position independent we will have to add a base register.
326  if (isPositionIndependent())
327    return false;
328
329  // Otherwise we can do it.
330  return true;
331}
332
333//===----------------------------------------------------------------------===//
334//  Optimization Methods
335//===----------------------------------------------------------------------===//
336
337/// Check to see if the specified operand of the specified instruction is a
338/// constant integer. If so, check to see if there are any bits set in the
339/// constant that are not demanded. If so, shrink the constant and return true.
340bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
341                                                        const APInt &Demanded) {
342  SDLoc dl(Op);
343
344  // FIXME: ISD::SELECT, ISD::SELECT_CC
345  switch (Op.getOpcode()) {
346  default: break;
347  case ISD::XOR:
348  case ISD::AND:
349  case ISD::OR: {
350    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
351    if (!C) return false;
352
353    if (Op.getOpcode() == ISD::XOR &&
354        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
355      return false;
356
357    // if we can expand it to have all bits set, do it
358    if (C->getAPIntValue().intersects(~Demanded)) {
359      EVT VT = Op.getValueType();
360      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
361                                DAG.getConstant(Demanded &
362                                                C->getAPIntValue(),
363                                                dl, VT));
364      return CombineTo(Op, New);
365    }
366
367    break;
368  }
369  }
370
371  return false;
372}
373
374/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
375/// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
376/// generalized for targets with other types of implicit widening casts.
377bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
378                                                         unsigned BitWidth,
379                                                         const APInt &Demanded,
380                                                         const SDLoc &dl) {
381  assert(Op.getNumOperands() == 2 &&
382         "ShrinkDemandedOp only supports binary operators!");
383  assert(Op.getNode()->getNumValues() == 1 &&
384         "ShrinkDemandedOp only supports nodes with one result!");
385
386  // Early return, as this function cannot handle vector types.
387  if (Op.getValueType().isVector())
388    return false;
389
390  // Don't do this if the node has another user, which may require the
391  // full value.
392  if (!Op.getNode()->hasOneUse())
393    return false;
394
395  // Search for the smallest integer type with free casts to and from
396  // Op's type. For expedience, just check power-of-2 integer types.
397  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
398  unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
399  unsigned SmallVTBits = DemandedSize;
400  if (!isPowerOf2_32(SmallVTBits))
401    SmallVTBits = NextPowerOf2(SmallVTBits);
402  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
403    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
404    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
405        TLI.isZExtFree(SmallVT, Op.getValueType())) {
406      // We found a type with free casts.
407      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
408                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
409                                          Op.getNode()->getOperand(0)),
410                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
411                                          Op.getNode()->getOperand(1)));
412      bool NeedZext = DemandedSize > SmallVTBits;
413      SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
414                              dl, Op.getValueType(), X);
415      return CombineTo(Op, Z);
416    }
417  }
418  return false;
419}
420
421/// Look at Op. At this point, we know that only the DemandedMask bits of the
422/// result of Op are ever used downstream. If we can use this information to
423/// simplify Op, create a new simplified DAG node and return true, returning the
424/// original and new nodes in Old and New. Otherwise, analyze the expression and
425/// return a mask of KnownOne and KnownZero bits for the expression (used to
426/// simplify the caller).  The KnownZero/One bits may only be accurate for those
427/// bits in the DemandedMask.
428bool TargetLowering::SimplifyDemandedBits(SDValue Op,
429                                          const APInt &DemandedMask,
430                                          APInt &KnownZero,
431                                          APInt &KnownOne,
432                                          TargetLoweringOpt &TLO,
433                                          unsigned Depth) const {
434  unsigned BitWidth = DemandedMask.getBitWidth();
435  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
436         "Mask size mismatches value type size!");
437  APInt NewMask = DemandedMask;
438  SDLoc dl(Op);
439  auto &DL = TLO.DAG.getDataLayout();
440
441  // Don't know anything.
442  KnownZero = KnownOne = APInt(BitWidth, 0);
443
444  // Other users may use these bits.
445  if (!Op.getNode()->hasOneUse()) {
446    if (Depth != 0) {
447      // If not at the root, Just compute the KnownZero/KnownOne bits to
448      // simplify things downstream.
449      TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
450      return false;
451    }
452    // If this is the root being simplified, allow it to have multiple uses,
453    // just set the NewMask to all bits.
454    NewMask = APInt::getAllOnesValue(BitWidth);
455  } else if (DemandedMask == 0) {
456    // Not demanding any bits from Op.
457    if (!Op.isUndef())
458      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
459    return false;
460  } else if (Depth == 6) {        // Limit search depth.
461    return false;
462  }
463
464  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
465  switch (Op.getOpcode()) {
466  case ISD::Constant:
467    // We know all of the bits for a constant!
468    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
469    KnownZero = ~KnownOne;
470    return false;   // Don't fall through, will infinitely loop.
471  case ISD::AND:
472    // If the RHS is a constant, check to see if the LHS would be zero without
473    // using the bits from the RHS.  Below, we use knowledge about the RHS to
474    // simplify the LHS, here we're using information from the LHS to simplify
475    // the RHS.
476    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
477      APInt LHSZero, LHSOne;
478      // Do not increment Depth here; that can cause an infinite loop.
479      TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
480      // If the LHS already has zeros where RHSC does, this and is dead.
481      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
482        return TLO.CombineTo(Op, Op.getOperand(0));
483      // If any of the set bits in the RHS are known zero on the LHS, shrink
484      // the constant.
485      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
486        return true;
487    }
488
489    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
490                             KnownOne, TLO, Depth+1))
491      return true;
492    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
493    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
494                             KnownZero2, KnownOne2, TLO, Depth+1))
495      return true;
496    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
497
498    // If all of the demanded bits are known one on one side, return the other.
499    // These bits cannot contribute to the result of the 'and'.
500    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
501      return TLO.CombineTo(Op, Op.getOperand(0));
502    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
503      return TLO.CombineTo(Op, Op.getOperand(1));
504    // If all of the demanded bits in the inputs are known zeros, return zero.
505    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
506      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType()));
507    // If the RHS is a constant, see if we can simplify it.
508    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
509      return true;
510    // If the operation can be done in a smaller type, do so.
511    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
512      return true;
513
514    // Output known-1 bits are only known if set in both the LHS & RHS.
515    KnownOne &= KnownOne2;
516    // Output known-0 are known to be clear if zero in either the LHS | RHS.
517    KnownZero |= KnownZero2;
518    break;
519  case ISD::OR:
520    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
521                             KnownOne, TLO, Depth+1))
522      return true;
523    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
524    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
525                             KnownZero2, KnownOne2, TLO, Depth+1))
526      return true;
527    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
528
529    // If all of the demanded bits are known zero on one side, return the other.
530    // These bits cannot contribute to the result of the 'or'.
531    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
532      return TLO.CombineTo(Op, Op.getOperand(0));
533    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
534      return TLO.CombineTo(Op, Op.getOperand(1));
535    // If all of the potentially set bits on one side are known to be set on
536    // the other side, just use the 'other' side.
537    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
538      return TLO.CombineTo(Op, Op.getOperand(0));
539    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
540      return TLO.CombineTo(Op, Op.getOperand(1));
541    // If the RHS is a constant, see if we can simplify it.
542    if (TLO.ShrinkDemandedConstant(Op, NewMask))
543      return true;
544    // If the operation can be done in a smaller type, do so.
545    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
546      return true;
547
548    // Output known-0 bits are only known if clear in both the LHS & RHS.
549    KnownZero &= KnownZero2;
550    // Output known-1 are known to be set if set in either the LHS | RHS.
551    KnownOne |= KnownOne2;
552    break;
553  case ISD::XOR:
554    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
555                             KnownOne, TLO, Depth+1))
556      return true;
557    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
558    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
559                             KnownOne2, TLO, Depth+1))
560      return true;
561    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
562
563    // If all of the demanded bits are known zero on one side, return the other.
564    // These bits cannot contribute to the result of the 'xor'.
565    if ((KnownZero & NewMask) == NewMask)
566      return TLO.CombineTo(Op, Op.getOperand(0));
567    if ((KnownZero2 & NewMask) == NewMask)
568      return TLO.CombineTo(Op, Op.getOperand(1));
569    // If the operation can be done in a smaller type, do so.
570    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
571      return true;
572
573    // If all of the unknown bits are known to be zero on one side or the other
574    // (but not both) turn this into an *inclusive* or.
575    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
576    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
577      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
578                                               Op.getOperand(0),
579                                               Op.getOperand(1)));
580
581    // Output known-0 bits are known if clear or set in both the LHS & RHS.
582    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
583    // Output known-1 are known to be set if set in only one of the LHS, RHS.
584    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
585
586    // If all of the demanded bits on one side are known, and all of the set
587    // bits on that side are also known to be set on the other side, turn this
588    // into an AND, as we know the bits will be cleared.
589    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
590    // NB: it is okay if more bits are known than are requested
591    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
592      if (KnownOne == KnownOne2) { // set bits are the same on both sides
593        EVT VT = Op.getValueType();
594        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT);
595        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
596                                                 Op.getOperand(0), ANDC));
597      }
598    }
599
600    // If the RHS is a constant, see if we can simplify it.
601    // for XOR, we prefer to force bits to 1 if they will make a -1.
602    // if we can't force bits, try to shrink constant
603    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
604      APInt Expanded = C->getAPIntValue() | (~NewMask);
605      // if we can expand it to have all bits set, do it
606      if (Expanded.isAllOnesValue()) {
607        if (Expanded != C->getAPIntValue()) {
608          EVT VT = Op.getValueType();
609          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
610                                        TLO.DAG.getConstant(Expanded, dl, VT));
611          return TLO.CombineTo(Op, New);
612        }
613        // if it already has all the bits set, nothing to change
614        // but don't shrink either!
615      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
616        return true;
617      }
618    }
619
620    KnownZero = KnownZeroOut;
621    KnownOne  = KnownOneOut;
622    break;
623  case ISD::SELECT:
624    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
625                             KnownOne, TLO, Depth+1))
626      return true;
627    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
628                             KnownOne2, TLO, Depth+1))
629      return true;
630    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
631    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
632
633    // If the operands are constants, see if we can simplify them.
634    if (TLO.ShrinkDemandedConstant(Op, NewMask))
635      return true;
636
637    // Only known if known in both the LHS and RHS.
638    KnownOne &= KnownOne2;
639    KnownZero &= KnownZero2;
640    break;
641  case ISD::SELECT_CC:
642    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
643                             KnownOne, TLO, Depth+1))
644      return true;
645    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
646                             KnownOne2, TLO, Depth+1))
647      return true;
648    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
649    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
650
651    // If the operands are constants, see if we can simplify them.
652    if (TLO.ShrinkDemandedConstant(Op, NewMask))
653      return true;
654
655    // Only known if known in both the LHS and RHS.
656    KnownOne &= KnownOne2;
657    KnownZero &= KnownZero2;
658    break;
659  case ISD::SHL:
660    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
661      unsigned ShAmt = SA->getZExtValue();
662      SDValue InOp = Op.getOperand(0);
663
664      // If the shift count is an invalid immediate, don't do anything.
665      if (ShAmt >= BitWidth)
666        break;
667
668      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
669      // single shift.  We can do this if the bottom bits (which are shifted
670      // out) are never demanded.
671      if (InOp.getOpcode() == ISD::SRL &&
672          isa<ConstantSDNode>(InOp.getOperand(1))) {
673        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
674          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
675          unsigned Opc = ISD::SHL;
676          int Diff = ShAmt-C1;
677          if (Diff < 0) {
678            Diff = -Diff;
679            Opc = ISD::SRL;
680          }
681
682          SDValue NewSA =
683            TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
684          EVT VT = Op.getValueType();
685          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
686                                                   InOp.getOperand(0), NewSA));
687        }
688      }
689
690      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
691                               KnownZero, KnownOne, TLO, Depth+1))
692        return true;
693
694      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
695      // are not demanded. This will likely allow the anyext to be folded away.
696      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
697        SDValue InnerOp = InOp.getNode()->getOperand(0);
698        EVT InnerVT = InnerOp.getValueType();
699        unsigned InnerBits = InnerVT.getSizeInBits();
700        if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
701            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
702          EVT ShTy = getShiftAmountTy(InnerVT, DL);
703          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
704            ShTy = InnerVT;
705          SDValue NarrowShl =
706            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
707                            TLO.DAG.getConstant(ShAmt, dl, ShTy));
708          return
709            TLO.CombineTo(Op,
710                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
711                                          NarrowShl));
712        }
713        // Repeat the SHL optimization above in cases where an extension
714        // intervenes: (shl (anyext (shr x, c1)), c2) to
715        // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
716        // aren't demanded (as above) and that the shifted upper c1 bits of
717        // x aren't demanded.
718        if (InOp.hasOneUse() &&
719            InnerOp.getOpcode() == ISD::SRL &&
720            InnerOp.hasOneUse() &&
721            isa<ConstantSDNode>(InnerOp.getOperand(1))) {
722          uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
723            ->getZExtValue();
724          if (InnerShAmt < ShAmt &&
725              InnerShAmt < InnerBits &&
726              NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
727              NewMask.trunc(ShAmt) == 0) {
728            SDValue NewSA =
729              TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
730                                  Op.getOperand(1).getValueType());
731            EVT VT = Op.getValueType();
732            SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
733                                             InnerOp.getOperand(0));
734            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
735                                                     NewExt, NewSA));
736          }
737        }
738      }
739
740      KnownZero <<= SA->getZExtValue();
741      KnownOne  <<= SA->getZExtValue();
742      // low bits known zero.
743      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
744    }
745    break;
746  case ISD::SRL:
747    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
748      EVT VT = Op.getValueType();
749      unsigned ShAmt = SA->getZExtValue();
750      unsigned VTSize = VT.getSizeInBits();
751      SDValue InOp = Op.getOperand(0);
752
753      // If the shift count is an invalid immediate, don't do anything.
754      if (ShAmt >= BitWidth)
755        break;
756
757      APInt InDemandedMask = (NewMask << ShAmt);
758
759      // If the shift is exact, then it does demand the low bits (and knows that
760      // they are zero).
761      if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
762        InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt);
763
764      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
765      // single shift.  We can do this if the top bits (which are shifted out)
766      // are never demanded.
767      if (InOp.getOpcode() == ISD::SHL &&
768          isa<ConstantSDNode>(InOp.getOperand(1))) {
769        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
770          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
771          unsigned Opc = ISD::SRL;
772          int Diff = ShAmt-C1;
773          if (Diff < 0) {
774            Diff = -Diff;
775            Opc = ISD::SHL;
776          }
777
778          SDValue NewSA =
779            TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
780          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
781                                                   InOp.getOperand(0), NewSA));
782        }
783      }
784
785      // Compute the new bits that are at the top now.
786      if (SimplifyDemandedBits(InOp, InDemandedMask,
787                               KnownZero, KnownOne, TLO, Depth+1))
788        return true;
789      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
790      KnownZero = KnownZero.lshr(ShAmt);
791      KnownOne  = KnownOne.lshr(ShAmt);
792
793      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
794      KnownZero |= HighBits;  // High bits known zero.
795    }
796    break;
797  case ISD::SRA:
798    // If this is an arithmetic shift right and only the low-bit is set, we can
799    // always convert this into a logical shr, even if the shift amount is
800    // variable.  The low bit of the shift cannot be an input sign bit unless
801    // the shift amount is >= the size of the datatype, which is undefined.
802    if (NewMask == 1)
803      return TLO.CombineTo(Op,
804                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
805                                           Op.getOperand(0), Op.getOperand(1)));
806
807    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
808      EVT VT = Op.getValueType();
809      unsigned ShAmt = SA->getZExtValue();
810
811      // If the shift count is an invalid immediate, don't do anything.
812      if (ShAmt >= BitWidth)
813        break;
814
815      APInt InDemandedMask = (NewMask << ShAmt);
816
817      // If the shift is exact, then it does demand the low bits (and knows that
818      // they are zero).
819      if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
820        InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt);
821
822      // If any of the demanded bits are produced by the sign extension, we also
823      // demand the input sign bit.
824      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
825      if (HighBits.intersects(NewMask))
826        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
827
828      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
829                               KnownZero, KnownOne, TLO, Depth+1))
830        return true;
831      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
832      KnownZero = KnownZero.lshr(ShAmt);
833      KnownOne  = KnownOne.lshr(ShAmt);
834
835      // Handle the sign bit, adjusted to where it is now in the mask.
836      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
837
838      // If the input sign bit is known to be zero, or if none of the top bits
839      // are demanded, turn this into an unsigned shift right.
840      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
841        SDNodeFlags Flags;
842        Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact());
843        return TLO.CombineTo(Op,
844                             TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
845                                             Op.getOperand(1), &Flags));
846      }
847
848      int Log2 = NewMask.exactLogBase2();
849      if (Log2 >= 0) {
850        // The bit must come from the sign.
851        SDValue NewSA =
852          TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
853                              Op.getOperand(1).getValueType());
854        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
855                                                 Op.getOperand(0), NewSA));
856      }
857
858      if (KnownOne.intersects(SignBit))
859        // New bits are known one.
860        KnownOne |= HighBits;
861    }
862    break;
863  case ISD::SIGN_EXTEND_INREG: {
864    EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
865
866    APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
867    // If we only care about the highest bit, don't bother shifting right.
868    if (MsbMask == NewMask) {
869      unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
870      SDValue InOp = Op.getOperand(0);
871      unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits();
872      bool AlreadySignExtended =
873        TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1;
874      // However if the input is already sign extended we expect the sign
875      // extension to be dropped altogether later and do not simplify.
876      if (!AlreadySignExtended) {
877        // Compute the correct shift amount type, which must be getShiftAmountTy
878        // for scalar types after legalization.
879        EVT ShiftAmtTy = Op.getValueType();
880        if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
881          ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
882
883        SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl,
884                                               ShiftAmtTy);
885        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
886                                                 Op.getValueType(), InOp,
887                                                 ShiftAmt));
888      }
889    }
890
891    // Sign extension.  Compute the demanded bits in the result that are not
892    // present in the input.
893    APInt NewBits =
894      APInt::getHighBitsSet(BitWidth,
895                            BitWidth - ExVT.getScalarType().getSizeInBits());
896
897    // If none of the extended bits are demanded, eliminate the sextinreg.
898    if ((NewBits & NewMask) == 0)
899      return TLO.CombineTo(Op, Op.getOperand(0));
900
901    APInt InSignBit =
902      APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
903    APInt InputDemandedBits =
904      APInt::getLowBitsSet(BitWidth,
905                           ExVT.getScalarType().getSizeInBits()) &
906      NewMask;
907
908    // Since the sign extended bits are demanded, we know that the sign
909    // bit is demanded.
910    InputDemandedBits |= InSignBit;
911
912    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
913                             KnownZero, KnownOne, TLO, Depth+1))
914      return true;
915    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
916
917    // If the sign bit of the input is known set or clear, then we know the
918    // top bits of the result.
919
920    // If the input sign bit is known zero, convert this into a zero extension.
921    if (KnownZero.intersects(InSignBit))
922      return TLO.CombineTo(Op,
923                          TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
924
925    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
926      KnownOne |= NewBits;
927      KnownZero &= ~NewBits;
928    } else {                       // Input sign bit unknown
929      KnownZero &= ~NewBits;
930      KnownOne &= ~NewBits;
931    }
932    break;
933  }
934  case ISD::BUILD_PAIR: {
935    EVT HalfVT = Op.getOperand(0).getValueType();
936    unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
937
938    APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
939    APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
940
941    APInt KnownZeroLo, KnownOneLo;
942    APInt KnownZeroHi, KnownOneHi;
943
944    if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo,
945                             KnownOneLo, TLO, Depth + 1))
946      return true;
947
948    if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi,
949                             KnownOneHi, TLO, Depth + 1))
950      return true;
951
952    KnownZero = KnownZeroLo.zext(BitWidth) |
953                KnownZeroHi.zext(BitWidth).shl(HalfBitWidth);
954
955    KnownOne = KnownOneLo.zext(BitWidth) |
956               KnownOneHi.zext(BitWidth).shl(HalfBitWidth);
957    break;
958  }
959  case ISD::ZERO_EXTEND: {
960    unsigned OperandBitWidth =
961      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
962    APInt InMask = NewMask.trunc(OperandBitWidth);
963
964    // If none of the top bits are demanded, convert this into an any_extend.
965    APInt NewBits =
966      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
967    if (!NewBits.intersects(NewMask))
968      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
969                                               Op.getValueType(),
970                                               Op.getOperand(0)));
971
972    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
973                             KnownZero, KnownOne, TLO, Depth+1))
974      return true;
975    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
976    KnownZero = KnownZero.zext(BitWidth);
977    KnownOne = KnownOne.zext(BitWidth);
978    KnownZero |= NewBits;
979    break;
980  }
981  case ISD::SIGN_EXTEND: {
982    EVT InVT = Op.getOperand(0).getValueType();
983    unsigned InBits = InVT.getScalarType().getSizeInBits();
984    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
985    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
986    APInt NewBits   = ~InMask & NewMask;
987
988    // If none of the top bits are demanded, convert this into an any_extend.
989    if (NewBits == 0)
990      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
991                                              Op.getValueType(),
992                                              Op.getOperand(0)));
993
994    // Since some of the sign extended bits are demanded, we know that the sign
995    // bit is demanded.
996    APInt InDemandedBits = InMask & NewMask;
997    InDemandedBits |= InSignBit;
998    InDemandedBits = InDemandedBits.trunc(InBits);
999
1000    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1001                             KnownOne, TLO, Depth+1))
1002      return true;
1003    KnownZero = KnownZero.zext(BitWidth);
1004    KnownOne = KnownOne.zext(BitWidth);
1005
1006    // If the sign bit is known zero, convert this to a zero extend.
1007    if (KnownZero.intersects(InSignBit))
1008      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1009                                               Op.getValueType(),
1010                                               Op.getOperand(0)));
1011
1012    // If the sign bit is known one, the top bits match.
1013    if (KnownOne.intersects(InSignBit)) {
1014      KnownOne |= NewBits;
1015      assert((KnownZero & NewBits) == 0);
1016    } else {   // Otherwise, top bits aren't known.
1017      assert((KnownOne & NewBits) == 0);
1018      assert((KnownZero & NewBits) == 0);
1019    }
1020    break;
1021  }
1022  case ISD::ANY_EXTEND: {
1023    unsigned OperandBitWidth =
1024      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1025    APInt InMask = NewMask.trunc(OperandBitWidth);
1026    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1027                             KnownZero, KnownOne, TLO, Depth+1))
1028      return true;
1029    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1030    KnownZero = KnownZero.zext(BitWidth);
1031    KnownOne = KnownOne.zext(BitWidth);
1032    break;
1033  }
1034  case ISD::TRUNCATE: {
1035    // Simplify the input, using demanded bit information, and compute the known
1036    // zero/one bits live out.
1037    unsigned OperandBitWidth =
1038      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1039    APInt TruncMask = NewMask.zext(OperandBitWidth);
1040    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1041                             KnownZero, KnownOne, TLO, Depth+1))
1042      return true;
1043    KnownZero = KnownZero.trunc(BitWidth);
1044    KnownOne = KnownOne.trunc(BitWidth);
1045
1046    // If the input is only used by this truncate, see if we can shrink it based
1047    // on the known demanded bits.
1048    if (Op.getOperand(0).getNode()->hasOneUse()) {
1049      SDValue In = Op.getOperand(0);
1050      switch (In.getOpcode()) {
1051      default: break;
1052      case ISD::SRL:
1053        // Shrink SRL by a constant if none of the high bits shifted in are
1054        // demanded.
1055        if (TLO.LegalTypes() &&
1056            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1057          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1058          // undesirable.
1059          break;
1060        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1061        if (!ShAmt)
1062          break;
1063        SDValue Shift = In.getOperand(1);
1064        if (TLO.LegalTypes()) {
1065          uint64_t ShVal = ShAmt->getZExtValue();
1066          Shift = TLO.DAG.getConstant(ShVal, dl,
1067                                      getShiftAmountTy(Op.getValueType(), DL));
1068        }
1069
1070        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1071                                               OperandBitWidth - BitWidth);
1072        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1073
1074        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1075          // None of the shifted in bits are needed.  Add a truncate of the
1076          // shift input, then shift it.
1077          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1078                                             Op.getValueType(),
1079                                             In.getOperand(0));
1080          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1081                                                   Op.getValueType(),
1082                                                   NewTrunc,
1083                                                   Shift));
1084        }
1085        break;
1086      }
1087    }
1088
1089    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1090    break;
1091  }
1092  case ISD::AssertZext: {
1093    // AssertZext demands all of the high bits, plus any of the low bits
1094    // demanded by its users.
1095    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1096    APInt InMask = APInt::getLowBitsSet(BitWidth,
1097                                        VT.getSizeInBits());
1098    if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1099                             KnownZero, KnownOne, TLO, Depth+1))
1100      return true;
1101    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1102
1103    KnownZero |= ~InMask & NewMask;
1104    break;
1105  }
1106  case ISD::BITCAST:
1107    // If this is an FP->Int bitcast and if the sign bit is the only
1108    // thing demanded, turn this into a FGETSIGN.
1109    if (!TLO.LegalOperations() &&
1110        !Op.getValueType().isVector() &&
1111        !Op.getOperand(0).getValueType().isVector() &&
1112        NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1113        Op.getOperand(0).getValueType().isFloatingPoint()) {
1114      bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1115      bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1116      if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() &&
1117           Op.getOperand(0).getValueType() != MVT::f128) {
1118        // Cannot eliminate/lower SHL for f128 yet.
1119        EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1120        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1121        // place.  We expect the SHL to be eliminated by other optimizations.
1122        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1123        unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1124        if (!OpVTLegal && OpVTSizeInBits > 32)
1125          Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1126        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1127        SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType());
1128        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1129                                                 Op.getValueType(),
1130                                                 Sign, ShAmt));
1131      }
1132    }
1133    break;
1134  case ISD::ADD:
1135  case ISD::MUL:
1136  case ISD::SUB: {
1137    // Add, Sub, and Mul don't demand any bits in positions beyond that
1138    // of the highest bit demanded of them.
1139    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1140                                        BitWidth - NewMask.countLeadingZeros());
1141    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1142                             KnownOne2, TLO, Depth+1))
1143      return true;
1144    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1145                             KnownOne2, TLO, Depth+1))
1146      return true;
1147    // See if the operation should be performed at a smaller bit width.
1148    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1149      return true;
1150  }
1151  // FALL THROUGH
1152  default:
1153    // Just use computeKnownBits to compute output bits.
1154    TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
1155    break;
1156  }
1157
1158  // If we know the value of all of the demanded bits, return this as a
1159  // constant.
1160  if ((NewMask & (KnownZero|KnownOne)) == NewMask) {
1161    // Avoid folding to a constant if any OpaqueConstant is involved.
1162    const SDNode *N = Op.getNode();
1163    for (SDNodeIterator I = SDNodeIterator::begin(N),
1164         E = SDNodeIterator::end(N); I != E; ++I) {
1165      SDNode *Op = *I;
1166      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1167        if (C->isOpaque())
1168          return false;
1169    }
1170    return TLO.CombineTo(Op,
1171                         TLO.DAG.getConstant(KnownOne, dl, Op.getValueType()));
1172  }
1173
1174  return false;
1175}
1176
1177/// Determine which of the bits specified in Mask are known to be either zero or
1178/// one and return them in the KnownZero/KnownOne bitsets.
1179void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1180                                                   APInt &KnownZero,
1181                                                   APInt &KnownOne,
1182                                                   const SelectionDAG &DAG,
1183                                                   unsigned Depth) const {
1184  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1185          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1186          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1187          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1188         "Should use MaskedValueIsZero if you don't know whether Op"
1189         " is a target node!");
1190  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1191}
1192
1193/// This method can be implemented by targets that want to expose additional
1194/// information about sign bits to the DAG Combiner.
1195unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1196                                                         const SelectionDAG &,
1197                                                         unsigned Depth) const {
1198  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1199          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1200          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1201          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1202         "Should use ComputeNumSignBits if you don't know whether Op"
1203         " is a target node!");
1204  return 1;
1205}
1206
1207bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1208  if (!N)
1209    return false;
1210
1211  const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1212  if (!CN) {
1213    const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1214    if (!BV)
1215      return false;
1216
1217    BitVector UndefElements;
1218    CN = BV->getConstantSplatNode(&UndefElements);
1219    // Only interested in constant splats, and we don't try to handle undef
1220    // elements in identifying boolean constants.
1221    if (!CN || UndefElements.none())
1222      return false;
1223  }
1224
1225  switch (getBooleanContents(N->getValueType(0))) {
1226  case UndefinedBooleanContent:
1227    return CN->getAPIntValue()[0];
1228  case ZeroOrOneBooleanContent:
1229    return CN->isOne();
1230  case ZeroOrNegativeOneBooleanContent:
1231    return CN->isAllOnesValue();
1232  }
1233
1234  llvm_unreachable("Invalid boolean contents");
1235}
1236
1237bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1238  if (!N)
1239    return false;
1240
1241  const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1242  if (!CN) {
1243    const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1244    if (!BV)
1245      return false;
1246
1247    BitVector UndefElements;
1248    CN = BV->getConstantSplatNode(&UndefElements);
1249    // Only interested in constant splats, and we don't try to handle undef
1250    // elements in identifying boolean constants.
1251    if (!CN || UndefElements.none())
1252      return false;
1253  }
1254
1255  if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1256    return !CN->getAPIntValue()[0];
1257
1258  return CN->isNullValue();
1259}
1260
1261bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
1262                                       bool SExt) const {
1263  if (VT == MVT::i1)
1264    return N->isOne();
1265
1266  TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
1267  switch (Cnt) {
1268  case TargetLowering::ZeroOrOneBooleanContent:
1269    // An extended value of 1 is always true, unless its original type is i1,
1270    // in which case it will be sign extended to -1.
1271    return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
1272  case TargetLowering::UndefinedBooleanContent:
1273  case TargetLowering::ZeroOrNegativeOneBooleanContent:
1274    return N->isAllOnesValue() && SExt;
1275  }
1276  llvm_unreachable("Unexpected enumeration.");
1277}
1278
1279/// This helper function of SimplifySetCC tries to optimize the comparison when
1280/// either operand of the SetCC node is a bitwise-and instruction.
1281SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
1282                                             ISD::CondCode Cond,
1283                                             DAGCombinerInfo &DCI,
1284                                             const SDLoc &DL) const {
1285  // Match these patterns in any of their permutations:
1286  // (X & Y) == Y
1287  // (X & Y) != Y
1288  if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
1289    std::swap(N0, N1);
1290
1291  EVT OpVT = N0.getValueType();
1292  if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
1293      (Cond != ISD::SETEQ && Cond != ISD::SETNE))
1294    return SDValue();
1295
1296  SDValue X, Y;
1297  if (N0.getOperand(0) == N1) {
1298    X = N0.getOperand(1);
1299    Y = N0.getOperand(0);
1300  } else if (N0.getOperand(1) == N1) {
1301    X = N0.getOperand(0);
1302    Y = N0.getOperand(1);
1303  } else {
1304    return SDValue();
1305  }
1306
1307  SelectionDAG &DAG = DCI.DAG;
1308  SDValue Zero = DAG.getConstant(0, DL, OpVT);
1309  if (DAG.isKnownToBeAPowerOfTwo(Y)) {
1310    // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
1311    // Note that where Y is variable and is known to have at most one bit set
1312    // (for example, if it is Z & 1) we cannot do this; the expressions are not
1313    // equivalent when Y == 0.
1314    Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1315    if (DCI.isBeforeLegalizeOps() ||
1316        isCondCodeLegal(Cond, N0.getSimpleValueType()))
1317      return DAG.getSetCC(DL, VT, N0, Zero, Cond);
1318  } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
1319    // If the target supports an 'and-not' or 'and-complement' logic operation,
1320    // try to use that to make a comparison operation more efficient.
1321    // But don't do this transform if the mask is a single bit because there are
1322    // more efficient ways to deal with that case (for example, 'bt' on x86 or
1323    // 'rlwinm' on PPC).
1324
1325    // Bail out if the compare operand that we want to turn into a zero is
1326    // already a zero (otherwise, infinite loop).
1327    auto *YConst = dyn_cast<ConstantSDNode>(Y);
1328    if (YConst && YConst->isNullValue())
1329      return SDValue();
1330
1331    // Transform this into: ~X & Y == 0.
1332    SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
1333    SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
1334    return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
1335  }
1336
1337  return SDValue();
1338}
1339
1340/// Try to simplify a setcc built with the specified operands and cc. If it is
1341/// unable to simplify it, return a null SDValue.
1342SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1343                                      ISD::CondCode Cond, bool foldBooleans,
1344                                      DAGCombinerInfo &DCI,
1345                                      const SDLoc &dl) const {
1346  SelectionDAG &DAG = DCI.DAG;
1347
1348  // These setcc operations always fold.
1349  switch (Cond) {
1350  default: break;
1351  case ISD::SETFALSE:
1352  case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT);
1353  case ISD::SETTRUE:
1354  case ISD::SETTRUE2: {
1355    TargetLowering::BooleanContent Cnt =
1356        getBooleanContents(N0->getValueType(0));
1357    return DAG.getConstant(
1358        Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1359        VT);
1360  }
1361  }
1362
1363  // Ensure that the constant occurs on the RHS, and fold constant
1364  // comparisons.
1365  ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1366  if (isa<ConstantSDNode>(N0.getNode()) &&
1367      (DCI.isBeforeLegalizeOps() ||
1368       isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1369    return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1370
1371  if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1372    const APInt &C1 = N1C->getAPIntValue();
1373
1374    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1375    // equality comparison, then we're just comparing whether X itself is
1376    // zero.
1377    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1378        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1379        N0.getOperand(1).getOpcode() == ISD::Constant) {
1380      const APInt &ShAmt
1381        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1382      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1383          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1384        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1385          // (srl (ctlz x), 5) == 0  -> X != 0
1386          // (srl (ctlz x), 5) != 1  -> X != 0
1387          Cond = ISD::SETNE;
1388        } else {
1389          // (srl (ctlz x), 5) != 0  -> X == 0
1390          // (srl (ctlz x), 5) == 1  -> X == 0
1391          Cond = ISD::SETEQ;
1392        }
1393        SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
1394        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1395                            Zero, Cond);
1396      }
1397    }
1398
1399    SDValue CTPOP = N0;
1400    // Look through truncs that don't change the value of a ctpop.
1401    if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1402      CTPOP = N0.getOperand(0);
1403
1404    if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1405        (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1406                        Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1407      EVT CTVT = CTPOP.getValueType();
1408      SDValue CTOp = CTPOP.getOperand(0);
1409
1410      // (ctpop x) u< 2 -> (x & x-1) == 0
1411      // (ctpop x) u> 1 -> (x & x-1) != 0
1412      if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1413        SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1414                                  DAG.getConstant(1, dl, CTVT));
1415        SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1416        ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1417        return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
1418      }
1419
1420      // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1421    }
1422
1423    // (zext x) == C --> x == (trunc C)
1424    // (sext x) == C --> x == (trunc C)
1425    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1426        DCI.isBeforeLegalize() && N0->hasOneUse()) {
1427      unsigned MinBits = N0.getValueSizeInBits();
1428      SDValue PreExt;
1429      bool Signed = false;
1430      if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1431        // ZExt
1432        MinBits = N0->getOperand(0).getValueSizeInBits();
1433        PreExt = N0->getOperand(0);
1434      } else if (N0->getOpcode() == ISD::AND) {
1435        // DAGCombine turns costly ZExts into ANDs
1436        if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1437          if ((C->getAPIntValue()+1).isPowerOf2()) {
1438            MinBits = C->getAPIntValue().countTrailingOnes();
1439            PreExt = N0->getOperand(0);
1440          }
1441      } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
1442        // SExt
1443        MinBits = N0->getOperand(0).getValueSizeInBits();
1444        PreExt = N0->getOperand(0);
1445        Signed = true;
1446      } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
1447        // ZEXTLOAD / SEXTLOAD
1448        if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1449          MinBits = LN0->getMemoryVT().getSizeInBits();
1450          PreExt = N0;
1451        } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
1452          Signed = true;
1453          MinBits = LN0->getMemoryVT().getSizeInBits();
1454          PreExt = N0;
1455        }
1456      }
1457
1458      // Figure out how many bits we need to preserve this constant.
1459      unsigned ReqdBits = Signed ?
1460        C1.getBitWidth() - C1.getNumSignBits() + 1 :
1461        C1.getActiveBits();
1462
1463      // Make sure we're not losing bits from the constant.
1464      if (MinBits > 0 &&
1465          MinBits < C1.getBitWidth() &&
1466          MinBits >= ReqdBits) {
1467        EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1468        if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1469          // Will get folded away.
1470          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
1471          SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
1472          return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1473        }
1474
1475        // If truncating the setcc operands is not desirable, we can still
1476        // simplify the expression in some cases:
1477        // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
1478        // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
1479        // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
1480        // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
1481        // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
1482        // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
1483        SDValue TopSetCC = N0->getOperand(0);
1484        unsigned N0Opc = N0->getOpcode();
1485        bool SExt = (N0Opc == ISD::SIGN_EXTEND);
1486        if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
1487            TopSetCC.getOpcode() == ISD::SETCC &&
1488            (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
1489            (isConstFalseVal(N1C) ||
1490             isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
1491
1492          bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
1493                         (!N1C->isNullValue() && Cond == ISD::SETNE);
1494
1495          if (!Inverse)
1496            return TopSetCC;
1497
1498          ISD::CondCode InvCond = ISD::getSetCCInverse(
1499              cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
1500              TopSetCC.getOperand(0).getValueType().isInteger());
1501          return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
1502                                      TopSetCC.getOperand(1),
1503                                      InvCond);
1504
1505        }
1506      }
1507    }
1508
1509    // If the LHS is '(and load, const)', the RHS is 0,
1510    // the test is for equality or unsigned, and all 1 bits of the const are
1511    // in the same partial word, see if we can shorten the load.
1512    if (DCI.isBeforeLegalize() &&
1513        !ISD::isSignedIntSetCC(Cond) &&
1514        N0.getOpcode() == ISD::AND && C1 == 0 &&
1515        N0.getNode()->hasOneUse() &&
1516        isa<LoadSDNode>(N0.getOperand(0)) &&
1517        N0.getOperand(0).getNode()->hasOneUse() &&
1518        isa<ConstantSDNode>(N0.getOperand(1))) {
1519      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1520      APInt bestMask;
1521      unsigned bestWidth = 0, bestOffset = 0;
1522      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1523        unsigned origWidth = N0.getValueType().getSizeInBits();
1524        unsigned maskWidth = origWidth;
1525        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1526        // 8 bits, but have to be careful...
1527        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1528          origWidth = Lod->getMemoryVT().getSizeInBits();
1529        const APInt &Mask =
1530          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1531        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1532          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1533          for (unsigned offset=0; offset<origWidth/width; offset++) {
1534            if ((newMask & Mask) == Mask) {
1535              if (!DAG.getDataLayout().isLittleEndian())
1536                bestOffset = (origWidth/width - offset - 1) * (width/8);
1537              else
1538                bestOffset = (uint64_t)offset * (width/8);
1539              bestMask = Mask.lshr(offset * (width/8) * 8);
1540              bestWidth = width;
1541              break;
1542            }
1543            newMask = newMask << width;
1544          }
1545        }
1546      }
1547      if (bestWidth) {
1548        EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1549        if (newVT.isRound()) {
1550          EVT PtrType = Lod->getOperand(1).getValueType();
1551          SDValue Ptr = Lod->getBasePtr();
1552          if (bestOffset != 0)
1553            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1554                              DAG.getConstant(bestOffset, dl, PtrType));
1555          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1556          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1557                                Lod->getPointerInfo().getWithOffset(bestOffset),
1558                                        false, false, false, NewAlign);
1559          return DAG.getSetCC(dl, VT,
1560                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1561                                      DAG.getConstant(bestMask.trunc(bestWidth),
1562                                                      dl, newVT)),
1563                              DAG.getConstant(0LL, dl, newVT), Cond);
1564        }
1565      }
1566    }
1567
1568    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1569    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1570      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1571
1572      // If the comparison constant has bits in the upper part, the
1573      // zero-extended value could never match.
1574      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1575                                              C1.getBitWidth() - InSize))) {
1576        switch (Cond) {
1577        case ISD::SETUGT:
1578        case ISD::SETUGE:
1579        case ISD::SETEQ: return DAG.getConstant(0, dl, VT);
1580        case ISD::SETULT:
1581        case ISD::SETULE:
1582        case ISD::SETNE: return DAG.getConstant(1, dl, VT);
1583        case ISD::SETGT:
1584        case ISD::SETGE:
1585          // True if the sign bit of C1 is set.
1586          return DAG.getConstant(C1.isNegative(), dl, VT);
1587        case ISD::SETLT:
1588        case ISD::SETLE:
1589          // True if the sign bit of C1 isn't set.
1590          return DAG.getConstant(C1.isNonNegative(), dl, VT);
1591        default:
1592          break;
1593        }
1594      }
1595
1596      // Otherwise, we can perform the comparison with the low bits.
1597      switch (Cond) {
1598      case ISD::SETEQ:
1599      case ISD::SETNE:
1600      case ISD::SETUGT:
1601      case ISD::SETUGE:
1602      case ISD::SETULT:
1603      case ISD::SETULE: {
1604        EVT newVT = N0.getOperand(0).getValueType();
1605        if (DCI.isBeforeLegalizeOps() ||
1606            (isOperationLegal(ISD::SETCC, newVT) &&
1607             getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
1608          EVT NewSetCCVT =
1609              getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
1610          SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
1611
1612          SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
1613                                          NewConst, Cond);
1614          return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
1615        }
1616        break;
1617      }
1618      default:
1619        break;   // todo, be more careful with signed comparisons
1620      }
1621    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1622               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1623      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1624      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1625      EVT ExtDstTy = N0.getValueType();
1626      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1627
1628      // If the constant doesn't fit into the number of bits for the source of
1629      // the sign extension, it is impossible for both sides to be equal.
1630      if (C1.getMinSignedBits() > ExtSrcTyBits)
1631        return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
1632
1633      SDValue ZextOp;
1634      EVT Op0Ty = N0.getOperand(0).getValueType();
1635      if (Op0Ty == ExtSrcTy) {
1636        ZextOp = N0.getOperand(0);
1637      } else {
1638        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1639        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1640                              DAG.getConstant(Imm, dl, Op0Ty));
1641      }
1642      if (!DCI.isCalledByLegalizer())
1643        DCI.AddToWorklist(ZextOp.getNode());
1644      // Otherwise, make this a use of a zext.
1645      return DAG.getSetCC(dl, VT, ZextOp,
1646                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1647                                                              ExtDstTyBits,
1648                                                              ExtSrcTyBits),
1649                                          dl, ExtDstTy),
1650                          Cond);
1651    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1652                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1653      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1654      if (N0.getOpcode() == ISD::SETCC &&
1655          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1656        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1657        if (TrueWhenTrue)
1658          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1659        // Invert the condition.
1660        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1661        CC = ISD::getSetCCInverse(CC,
1662                                  N0.getOperand(0).getValueType().isInteger());
1663        if (DCI.isBeforeLegalizeOps() ||
1664            isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1665          return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1666      }
1667
1668      if ((N0.getOpcode() == ISD::XOR ||
1669           (N0.getOpcode() == ISD::AND &&
1670            N0.getOperand(0).getOpcode() == ISD::XOR &&
1671            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1672          isa<ConstantSDNode>(N0.getOperand(1)) &&
1673          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1674        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1675        // can only do this if the top bits are known zero.
1676        unsigned BitWidth = N0.getValueSizeInBits();
1677        if (DAG.MaskedValueIsZero(N0,
1678                                  APInt::getHighBitsSet(BitWidth,
1679                                                        BitWidth-1))) {
1680          // Okay, get the un-inverted input value.
1681          SDValue Val;
1682          if (N0.getOpcode() == ISD::XOR)
1683            Val = N0.getOperand(0);
1684          else {
1685            assert(N0.getOpcode() == ISD::AND &&
1686                    N0.getOperand(0).getOpcode() == ISD::XOR);
1687            // ((X^1)&1)^1 -> X & 1
1688            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1689                              N0.getOperand(0).getOperand(0),
1690                              N0.getOperand(1));
1691          }
1692
1693          return DAG.getSetCC(dl, VT, Val, N1,
1694                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1695        }
1696      } else if (N1C->getAPIntValue() == 1 &&
1697                 (VT == MVT::i1 ||
1698                  getBooleanContents(N0->getValueType(0)) ==
1699                      ZeroOrOneBooleanContent)) {
1700        SDValue Op0 = N0;
1701        if (Op0.getOpcode() == ISD::TRUNCATE)
1702          Op0 = Op0.getOperand(0);
1703
1704        if ((Op0.getOpcode() == ISD::XOR) &&
1705            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1706            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1707          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1708          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1709          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1710                              Cond);
1711        }
1712        if (Op0.getOpcode() == ISD::AND &&
1713            isa<ConstantSDNode>(Op0.getOperand(1)) &&
1714            cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1715          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1716          if (Op0.getValueType().bitsGT(VT))
1717            Op0 = DAG.getNode(ISD::AND, dl, VT,
1718                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1719                          DAG.getConstant(1, dl, VT));
1720          else if (Op0.getValueType().bitsLT(VT))
1721            Op0 = DAG.getNode(ISD::AND, dl, VT,
1722                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1723                        DAG.getConstant(1, dl, VT));
1724
1725          return DAG.getSetCC(dl, VT, Op0,
1726                              DAG.getConstant(0, dl, Op0.getValueType()),
1727                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1728        }
1729        if (Op0.getOpcode() == ISD::AssertZext &&
1730            cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1731          return DAG.getSetCC(dl, VT, Op0,
1732                              DAG.getConstant(0, dl, Op0.getValueType()),
1733                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1734      }
1735    }
1736
1737    APInt MinVal, MaxVal;
1738    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1739    if (ISD::isSignedIntSetCC(Cond)) {
1740      MinVal = APInt::getSignedMinValue(OperandBitSize);
1741      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1742    } else {
1743      MinVal = APInt::getMinValue(OperandBitSize);
1744      MaxVal = APInt::getMaxValue(OperandBitSize);
1745    }
1746
1747    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1748    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1749      if (C1 == MinVal) return DAG.getConstant(1, dl, VT);  // X >= MIN --> true
1750      // X >= C0 --> X > (C0 - 1)
1751      APInt C = C1 - 1;
1752      ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
1753      if ((DCI.isBeforeLegalizeOps() ||
1754           isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1755          (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1756                                isLegalICmpImmediate(C.getSExtValue())))) {
1757        return DAG.getSetCC(dl, VT, N0,
1758                            DAG.getConstant(C, dl, N1.getValueType()),
1759                            NewCC);
1760      }
1761    }
1762
1763    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1764      if (C1 == MaxVal) return DAG.getConstant(1, dl, VT);  // X <= MAX --> true
1765      // X <= C0 --> X < (C0 + 1)
1766      APInt C = C1 + 1;
1767      ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
1768      if ((DCI.isBeforeLegalizeOps() ||
1769           isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1770          (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1771                                isLegalICmpImmediate(C.getSExtValue())))) {
1772        return DAG.getSetCC(dl, VT, N0,
1773                            DAG.getConstant(C, dl, N1.getValueType()),
1774                            NewCC);
1775      }
1776    }
1777
1778    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1779      return DAG.getConstant(0, dl, VT);      // X < MIN --> false
1780    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1781      return DAG.getConstant(1, dl, VT);      // X >= MIN --> true
1782    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1783      return DAG.getConstant(0, dl, VT);      // X > MAX --> false
1784    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1785      return DAG.getConstant(1, dl, VT);      // X <= MAX --> true
1786
1787    // Canonicalize setgt X, Min --> setne X, Min
1788    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1789      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1790    // Canonicalize setlt X, Max --> setne X, Max
1791    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1792      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1793
1794    // If we have setult X, 1, turn it into seteq X, 0
1795    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1796      return DAG.getSetCC(dl, VT, N0,
1797                          DAG.getConstant(MinVal, dl, N0.getValueType()),
1798                          ISD::SETEQ);
1799    // If we have setugt X, Max-1, turn it into seteq X, Max
1800    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1801      return DAG.getSetCC(dl, VT, N0,
1802                          DAG.getConstant(MaxVal, dl, N0.getValueType()),
1803                          ISD::SETEQ);
1804
1805    // If we have "setcc X, C0", check to see if we can shrink the immediate
1806    // by changing cc.
1807
1808    // SETUGT X, SINTMAX  -> SETLT X, 0
1809    if (Cond == ISD::SETUGT &&
1810        C1 == APInt::getSignedMaxValue(OperandBitSize))
1811      return DAG.getSetCC(dl, VT, N0,
1812                          DAG.getConstant(0, dl, N1.getValueType()),
1813                          ISD::SETLT);
1814
1815    // SETULT X, SINTMIN  -> SETGT X, -1
1816    if (Cond == ISD::SETULT &&
1817        C1 == APInt::getSignedMinValue(OperandBitSize)) {
1818      SDValue ConstMinusOne =
1819          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
1820                          N1.getValueType());
1821      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1822    }
1823
1824    // Fold bit comparisons when we can.
1825    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1826        (VT == N0.getValueType() ||
1827         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1828        N0.getOpcode() == ISD::AND) {
1829      auto &DL = DAG.getDataLayout();
1830      if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1831        EVT ShiftTy = DCI.isBeforeLegalize()
1832                          ? getPointerTy(DL)
1833                          : getShiftAmountTy(N0.getValueType(), DL);
1834        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1835          // Perform the xform if the AND RHS is a single bit.
1836          if (AndRHS->getAPIntValue().isPowerOf2()) {
1837            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1838                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1839                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
1840                                   ShiftTy)));
1841          }
1842        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1843          // (X & 8) == 8  -->  (X & 8) >> 3
1844          // Perform the xform if C1 is a single bit.
1845          if (C1.isPowerOf2()) {
1846            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1847                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1848                                      DAG.getConstant(C1.logBase2(), dl,
1849                                                      ShiftTy)));
1850          }
1851        }
1852      }
1853    }
1854
1855    if (C1.getMinSignedBits() <= 64 &&
1856        !isLegalICmpImmediate(C1.getSExtValue())) {
1857      // (X & -256) == 256 -> (X >> 8) == 1
1858      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1859          N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
1860        if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1861          const APInt &AndRHSC = AndRHS->getAPIntValue();
1862          if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
1863            unsigned ShiftBits = AndRHSC.countTrailingZeros();
1864            auto &DL = DAG.getDataLayout();
1865            EVT ShiftTy = DCI.isBeforeLegalize()
1866                              ? getPointerTy(DL)
1867                              : getShiftAmountTy(N0.getValueType(), DL);
1868            EVT CmpTy = N0.getValueType();
1869            SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
1870                                        DAG.getConstant(ShiftBits, dl,
1871                                                        ShiftTy));
1872            SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
1873            return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
1874          }
1875        }
1876      } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
1877                 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
1878        bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
1879        // X <  0x100000000 -> (X >> 32) <  1
1880        // X >= 0x100000000 -> (X >> 32) >= 1
1881        // X <= 0x0ffffffff -> (X >> 32) <  1
1882        // X >  0x0ffffffff -> (X >> 32) >= 1
1883        unsigned ShiftBits;
1884        APInt NewC = C1;
1885        ISD::CondCode NewCond = Cond;
1886        if (AdjOne) {
1887          ShiftBits = C1.countTrailingOnes();
1888          NewC = NewC + 1;
1889          NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1890        } else {
1891          ShiftBits = C1.countTrailingZeros();
1892        }
1893        NewC = NewC.lshr(ShiftBits);
1894        if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
1895          isLegalICmpImmediate(NewC.getSExtValue())) {
1896          auto &DL = DAG.getDataLayout();
1897          EVT ShiftTy = DCI.isBeforeLegalize()
1898                            ? getPointerTy(DL)
1899                            : getShiftAmountTy(N0.getValueType(), DL);
1900          EVT CmpTy = N0.getValueType();
1901          SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
1902                                      DAG.getConstant(ShiftBits, dl, ShiftTy));
1903          SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
1904          return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
1905        }
1906      }
1907    }
1908  }
1909
1910  if (isa<ConstantFPSDNode>(N0.getNode())) {
1911    // Constant fold or commute setcc.
1912    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1913    if (O.getNode()) return O;
1914  } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1915    // If the RHS of an FP comparison is a constant, simplify it away in
1916    // some cases.
1917    if (CFP->getValueAPF().isNaN()) {
1918      // If an operand is known to be a nan, we can fold it.
1919      switch (ISD::getUnorderedFlavor(Cond)) {
1920      default: llvm_unreachable("Unknown flavor!");
1921      case 0:  // Known false.
1922        return DAG.getConstant(0, dl, VT);
1923      case 1:  // Known true.
1924        return DAG.getConstant(1, dl, VT);
1925      case 2:  // Undefined.
1926        return DAG.getUNDEF(VT);
1927      }
1928    }
1929
1930    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1931    // constant if knowing that the operand is non-nan is enough.  We prefer to
1932    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1933    // materialize 0.0.
1934    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1935      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1936
1937    // If the condition is not legal, see if we can find an equivalent one
1938    // which is legal.
1939    if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
1940      // If the comparison was an awkward floating-point == or != and one of
1941      // the comparison operands is infinity or negative infinity, convert the
1942      // condition to a less-awkward <= or >=.
1943      if (CFP->getValueAPF().isInfinity()) {
1944        if (CFP->getValueAPF().isNegative()) {
1945          if (Cond == ISD::SETOEQ &&
1946              isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1947            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
1948          if (Cond == ISD::SETUEQ &&
1949              isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1950            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
1951          if (Cond == ISD::SETUNE &&
1952              isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1953            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
1954          if (Cond == ISD::SETONE &&
1955              isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1956            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
1957        } else {
1958          if (Cond == ISD::SETOEQ &&
1959              isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1960            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
1961          if (Cond == ISD::SETUEQ &&
1962              isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1963            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
1964          if (Cond == ISD::SETUNE &&
1965              isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1966            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
1967          if (Cond == ISD::SETONE &&
1968              isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1969            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
1970        }
1971      }
1972    }
1973  }
1974
1975  if (N0 == N1) {
1976    // The sext(setcc()) => setcc() optimization relies on the appropriate
1977    // constant being emitted.
1978    uint64_t EqVal = 0;
1979    switch (getBooleanContents(N0.getValueType())) {
1980    case UndefinedBooleanContent:
1981    case ZeroOrOneBooleanContent:
1982      EqVal = ISD::isTrueWhenEqual(Cond);
1983      break;
1984    case ZeroOrNegativeOneBooleanContent:
1985      EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
1986      break;
1987    }
1988
1989    // We can always fold X == X for integer setcc's.
1990    if (N0.getValueType().isInteger()) {
1991      return DAG.getConstant(EqVal, dl, VT);
1992    }
1993    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1994    if (UOF == 2)   // FP operators that are undefined on NaNs.
1995      return DAG.getConstant(EqVal, dl, VT);
1996    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1997      return DAG.getConstant(EqVal, dl, VT);
1998    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1999    // if it is not already.
2000    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2001    if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
2002          getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
2003      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2004  }
2005
2006  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2007      N0.getValueType().isInteger()) {
2008    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2009        N0.getOpcode() == ISD::XOR) {
2010      // Simplify (X+Y) == (X+Z) -->  Y == Z
2011      if (N0.getOpcode() == N1.getOpcode()) {
2012        if (N0.getOperand(0) == N1.getOperand(0))
2013          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2014        if (N0.getOperand(1) == N1.getOperand(1))
2015          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2016        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2017          // If X op Y == Y op X, try other combinations.
2018          if (N0.getOperand(0) == N1.getOperand(1))
2019            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2020                                Cond);
2021          if (N0.getOperand(1) == N1.getOperand(0))
2022            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2023                                Cond);
2024        }
2025      }
2026
2027      // If RHS is a legal immediate value for a compare instruction, we need
2028      // to be careful about increasing register pressure needlessly.
2029      bool LegalRHSImm = false;
2030
2031      if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2032        if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2033          // Turn (X+C1) == C2 --> X == C2-C1
2034          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2035            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2036                                DAG.getConstant(RHSC->getAPIntValue()-
2037                                                LHSR->getAPIntValue(),
2038                                dl, N0.getValueType()), Cond);
2039          }
2040
2041          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2042          if (N0.getOpcode() == ISD::XOR)
2043            // If we know that all of the inverted bits are zero, don't bother
2044            // performing the inversion.
2045            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2046              return
2047                DAG.getSetCC(dl, VT, N0.getOperand(0),
2048                             DAG.getConstant(LHSR->getAPIntValue() ^
2049                                               RHSC->getAPIntValue(),
2050                                             dl, N0.getValueType()),
2051                             Cond);
2052        }
2053
2054        // Turn (C1-X) == C2 --> X == C1-C2
2055        if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2056          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2057            return
2058              DAG.getSetCC(dl, VT, N0.getOperand(1),
2059                           DAG.getConstant(SUBC->getAPIntValue() -
2060                                             RHSC->getAPIntValue(),
2061                                           dl, N0.getValueType()),
2062                           Cond);
2063          }
2064        }
2065
2066        // Could RHSC fold directly into a compare?
2067        if (RHSC->getValueType(0).getSizeInBits() <= 64)
2068          LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2069      }
2070
2071      // Simplify (X+Z) == X -->  Z == 0
2072      // Don't do this if X is an immediate that can fold into a cmp
2073      // instruction and X+Z has other uses. It could be an induction variable
2074      // chain, and the transform would increase register pressure.
2075      if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2076        if (N0.getOperand(0) == N1)
2077          return DAG.getSetCC(dl, VT, N0.getOperand(1),
2078                              DAG.getConstant(0, dl, N0.getValueType()), Cond);
2079        if (N0.getOperand(1) == N1) {
2080          if (DAG.isCommutativeBinOp(N0.getOpcode()))
2081            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2082                                DAG.getConstant(0, dl, N0.getValueType()),
2083                                Cond);
2084          if (N0.getNode()->hasOneUse()) {
2085            assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2086            auto &DL = DAG.getDataLayout();
2087            // (Z-X) == X  --> Z == X<<1
2088            SDValue SH = DAG.getNode(
2089                ISD::SHL, dl, N1.getValueType(), N1,
2090                DAG.getConstant(1, dl,
2091                                getShiftAmountTy(N1.getValueType(), DL)));
2092            if (!DCI.isCalledByLegalizer())
2093              DCI.AddToWorklist(SH.getNode());
2094            return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2095          }
2096        }
2097      }
2098    }
2099
2100    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2101        N1.getOpcode() == ISD::XOR) {
2102      // Simplify  X == (X+Z) -->  Z == 0
2103      if (N1.getOperand(0) == N0)
2104        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2105                        DAG.getConstant(0, dl, N1.getValueType()), Cond);
2106      if (N1.getOperand(1) == N0) {
2107        if (DAG.isCommutativeBinOp(N1.getOpcode()))
2108          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2109                          DAG.getConstant(0, dl, N1.getValueType()), Cond);
2110        if (N1.getNode()->hasOneUse()) {
2111          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2112          auto &DL = DAG.getDataLayout();
2113          // X == (Z-X)  --> X<<1 == Z
2114          SDValue SH = DAG.getNode(
2115              ISD::SHL, dl, N1.getValueType(), N0,
2116              DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL)));
2117          if (!DCI.isCalledByLegalizer())
2118            DCI.AddToWorklist(SH.getNode());
2119          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2120        }
2121      }
2122    }
2123
2124    if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
2125      return V;
2126  }
2127
2128  // Fold away ALL boolean setcc's.
2129  SDValue Temp;
2130  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2131    switch (Cond) {
2132    default: llvm_unreachable("Unknown integer setcc!");
2133    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2134      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2135      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2136      if (!DCI.isCalledByLegalizer())
2137        DCI.AddToWorklist(Temp.getNode());
2138      break;
2139    case ISD::SETNE:  // X != Y   -->  (X^Y)
2140      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2141      break;
2142    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2143    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2144      Temp = DAG.getNOT(dl, N0, MVT::i1);
2145      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2146      if (!DCI.isCalledByLegalizer())
2147        DCI.AddToWorklist(Temp.getNode());
2148      break;
2149    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2150    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2151      Temp = DAG.getNOT(dl, N1, MVT::i1);
2152      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2153      if (!DCI.isCalledByLegalizer())
2154        DCI.AddToWorklist(Temp.getNode());
2155      break;
2156    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2157    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2158      Temp = DAG.getNOT(dl, N0, MVT::i1);
2159      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2160      if (!DCI.isCalledByLegalizer())
2161        DCI.AddToWorklist(Temp.getNode());
2162      break;
2163    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2164    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2165      Temp = DAG.getNOT(dl, N1, MVT::i1);
2166      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2167      break;
2168    }
2169    if (VT != MVT::i1) {
2170      if (!DCI.isCalledByLegalizer())
2171        DCI.AddToWorklist(N0.getNode());
2172      // FIXME: If running after legalize, we probably can't do this.
2173      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2174    }
2175    return N0;
2176  }
2177
2178  // Could not fold it.
2179  return SDValue();
2180}
2181
2182/// Returns true (and the GlobalValue and the offset) if the node is a
2183/// GlobalAddress + offset.
2184bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2185                                    int64_t &Offset) const {
2186  if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
2187    GA = GASD->getGlobal();
2188    Offset += GASD->getOffset();
2189    return true;
2190  }
2191
2192  if (N->getOpcode() == ISD::ADD) {
2193    SDValue N1 = N->getOperand(0);
2194    SDValue N2 = N->getOperand(1);
2195    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2196      if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
2197        Offset += V->getSExtValue();
2198        return true;
2199      }
2200    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2201      if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
2202        Offset += V->getSExtValue();
2203        return true;
2204      }
2205    }
2206  }
2207
2208  return false;
2209}
2210
2211SDValue TargetLowering::PerformDAGCombine(SDNode *N,
2212                                          DAGCombinerInfo &DCI) const {
2213  // Default implementation: no optimization.
2214  return SDValue();
2215}
2216
2217//===----------------------------------------------------------------------===//
2218//  Inline Assembler Implementation Methods
2219//===----------------------------------------------------------------------===//
2220
2221TargetLowering::ConstraintType
2222TargetLowering::getConstraintType(StringRef Constraint) const {
2223  unsigned S = Constraint.size();
2224
2225  if (S == 1) {
2226    switch (Constraint[0]) {
2227    default: break;
2228    case 'r': return C_RegisterClass;
2229    case 'm':    // memory
2230    case 'o':    // offsetable
2231    case 'V':    // not offsetable
2232      return C_Memory;
2233    case 'i':    // Simple Integer or Relocatable Constant
2234    case 'n':    // Simple Integer
2235    case 'E':    // Floating Point Constant
2236    case 'F':    // Floating Point Constant
2237    case 's':    // Relocatable Constant
2238    case 'p':    // Address.
2239    case 'X':    // Allow ANY value.
2240    case 'I':    // Target registers.
2241    case 'J':
2242    case 'K':
2243    case 'L':
2244    case 'M':
2245    case 'N':
2246    case 'O':
2247    case 'P':
2248    case '<':
2249    case '>':
2250      return C_Other;
2251    }
2252  }
2253
2254  if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2255    if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
2256      return C_Memory;
2257    return C_Register;
2258  }
2259  return C_Unknown;
2260}
2261
2262/// Try to replace an X constraint, which matches anything, with another that
2263/// has more specific requirements based on the type of the corresponding
2264/// operand.
2265const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2266  if (ConstraintVT.isInteger())
2267    return "r";
2268  if (ConstraintVT.isFloatingPoint())
2269    return "f";      // works for many targets
2270  return nullptr;
2271}
2272
2273/// Lower the specified operand into the Ops vector.
2274/// If it is invalid, don't add anything to Ops.
2275void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2276                                                  std::string &Constraint,
2277                                                  std::vector<SDValue> &Ops,
2278                                                  SelectionDAG &DAG) const {
2279
2280  if (Constraint.length() > 1) return;
2281
2282  char ConstraintLetter = Constraint[0];
2283  switch (ConstraintLetter) {
2284  default: break;
2285  case 'X':     // Allows any operand; labels (basic block) use this.
2286    if (Op.getOpcode() == ISD::BasicBlock) {
2287      Ops.push_back(Op);
2288      return;
2289    }
2290    // fall through
2291  case 'i':    // Simple Integer or Relocatable Constant
2292  case 'n':    // Simple Integer
2293  case 's': {  // Relocatable Constant
2294    // These operands are interested in values of the form (GV+C), where C may
2295    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2296    // is possible and fine if either GV or C are missing.
2297    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2298    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2299
2300    // If we have "(add GV, C)", pull out GV/C
2301    if (Op.getOpcode() == ISD::ADD) {
2302      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2303      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2304      if (!C || !GA) {
2305        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2306        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2307      }
2308      if (!C || !GA) {
2309        C = nullptr;
2310        GA = nullptr;
2311      }
2312    }
2313
2314    // If we find a valid operand, map to the TargetXXX version so that the
2315    // value itself doesn't get selected.
2316    if (GA) {   // Either &GV   or   &GV+C
2317      if (ConstraintLetter != 'n') {
2318        int64_t Offs = GA->getOffset();
2319        if (C) Offs += C->getZExtValue();
2320        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2321                                                 C ? SDLoc(C) : SDLoc(),
2322                                                 Op.getValueType(), Offs));
2323      }
2324      return;
2325    }
2326    if (C) {   // just C, no GV.
2327      // Simple constants are not allowed for 's'.
2328      if (ConstraintLetter != 's') {
2329        // gcc prints these as sign extended.  Sign extend value to 64 bits
2330        // now; without this it would get ZExt'd later in
2331        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2332        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2333                                            SDLoc(C), MVT::i64));
2334      }
2335      return;
2336    }
2337    break;
2338  }
2339  }
2340}
2341
2342std::pair<unsigned, const TargetRegisterClass *>
2343TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
2344                                             StringRef Constraint,
2345                                             MVT VT) const {
2346  if (Constraint.empty() || Constraint[0] != '{')
2347    return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
2348  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2349
2350  // Remove the braces from around the name.
2351  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2352
2353  std::pair<unsigned, const TargetRegisterClass*> R =
2354    std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
2355
2356  // Figure out which register class contains this reg.
2357  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2358       E = RI->regclass_end(); RCI != E; ++RCI) {
2359    const TargetRegisterClass *RC = *RCI;
2360
2361    // If none of the value types for this register class are valid, we
2362    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2363    if (!isLegalRC(RC))
2364      continue;
2365
2366    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2367         I != E; ++I) {
2368      if (RegName.equals_lower(RI->getRegAsmName(*I))) {
2369        std::pair<unsigned, const TargetRegisterClass*> S =
2370          std::make_pair(*I, RC);
2371
2372        // If this register class has the requested value type, return it,
2373        // otherwise keep searching and return the first class found
2374        // if no other is found which explicitly has the requested type.
2375        if (RC->hasType(VT))
2376          return S;
2377        else if (!R.second)
2378          R = S;
2379      }
2380    }
2381  }
2382
2383  return R;
2384}
2385
2386//===----------------------------------------------------------------------===//
2387// Constraint Selection.
2388
2389/// Return true of this is an input operand that is a matching constraint like
2390/// "4".
2391bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2392  assert(!ConstraintCode.empty() && "No known constraint!");
2393  return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2394}
2395
2396/// If this is an input matching constraint, this method returns the output
2397/// operand it matches.
2398unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2399  assert(!ConstraintCode.empty() && "No known constraint!");
2400  return atoi(ConstraintCode.c_str());
2401}
2402
2403/// Split up the constraint string from the inline assembly value into the
2404/// specific constraints and their prefixes, and also tie in the associated
2405/// operand values.
2406/// If this returns an empty vector, and if the constraint string itself
2407/// isn't empty, there was an error parsing.
2408TargetLowering::AsmOperandInfoVector
2409TargetLowering::ParseConstraints(const DataLayout &DL,
2410                                 const TargetRegisterInfo *TRI,
2411                                 ImmutableCallSite CS) const {
2412  /// Information about all of the constraints.
2413  AsmOperandInfoVector ConstraintOperands;
2414  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2415  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2416
2417  // Do a prepass over the constraints, canonicalizing them, and building up the
2418  // ConstraintOperands list.
2419  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2420  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2421
2422  for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2423    ConstraintOperands.emplace_back(std::move(CI));
2424    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2425
2426    // Update multiple alternative constraint count.
2427    if (OpInfo.multipleAlternatives.size() > maCount)
2428      maCount = OpInfo.multipleAlternatives.size();
2429
2430    OpInfo.ConstraintVT = MVT::Other;
2431
2432    // Compute the value type for each operand.
2433    switch (OpInfo.Type) {
2434    case InlineAsm::isOutput:
2435      // Indirect outputs just consume an argument.
2436      if (OpInfo.isIndirect) {
2437        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2438        break;
2439      }
2440
2441      // The return value of the call is this value.  As such, there is no
2442      // corresponding argument.
2443      assert(!CS.getType()->isVoidTy() &&
2444             "Bad inline asm!");
2445      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2446        OpInfo.ConstraintVT =
2447            getSimpleValueType(DL, STy->getElementType(ResNo));
2448      } else {
2449        assert(ResNo == 0 && "Asm only has one result!");
2450        OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
2451      }
2452      ++ResNo;
2453      break;
2454    case InlineAsm::isInput:
2455      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2456      break;
2457    case InlineAsm::isClobber:
2458      // Nothing to do.
2459      break;
2460    }
2461
2462    if (OpInfo.CallOperandVal) {
2463      llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2464      if (OpInfo.isIndirect) {
2465        llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2466        if (!PtrTy)
2467          report_fatal_error("Indirect operand for inline asm not a pointer!");
2468        OpTy = PtrTy->getElementType();
2469      }
2470
2471      // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2472      if (StructType *STy = dyn_cast<StructType>(OpTy))
2473        if (STy->getNumElements() == 1)
2474          OpTy = STy->getElementType(0);
2475
2476      // If OpTy is not a single value, it may be a struct/union that we
2477      // can tile with integers.
2478      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2479        unsigned BitSize = DL.getTypeSizeInBits(OpTy);
2480        switch (BitSize) {
2481        default: break;
2482        case 1:
2483        case 8:
2484        case 16:
2485        case 32:
2486        case 64:
2487        case 128:
2488          OpInfo.ConstraintVT =
2489            MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2490          break;
2491        }
2492      } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2493        unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
2494        OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
2495      } else {
2496        OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2497      }
2498    }
2499  }
2500
2501  // If we have multiple alternative constraints, select the best alternative.
2502  if (!ConstraintOperands.empty()) {
2503    if (maCount) {
2504      unsigned bestMAIndex = 0;
2505      int bestWeight = -1;
2506      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2507      int weight = -1;
2508      unsigned maIndex;
2509      // Compute the sums of the weights for each alternative, keeping track
2510      // of the best (highest weight) one so far.
2511      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2512        int weightSum = 0;
2513        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2514            cIndex != eIndex; ++cIndex) {
2515          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2516          if (OpInfo.Type == InlineAsm::isClobber)
2517            continue;
2518
2519          // If this is an output operand with a matching input operand,
2520          // look up the matching input. If their types mismatch, e.g. one
2521          // is an integer, the other is floating point, or their sizes are
2522          // different, flag it as an maCantMatch.
2523          if (OpInfo.hasMatchingInput()) {
2524            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2525            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2526              if ((OpInfo.ConstraintVT.isInteger() !=
2527                   Input.ConstraintVT.isInteger()) ||
2528                  (OpInfo.ConstraintVT.getSizeInBits() !=
2529                   Input.ConstraintVT.getSizeInBits())) {
2530                weightSum = -1;  // Can't match.
2531                break;
2532              }
2533            }
2534          }
2535          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2536          if (weight == -1) {
2537            weightSum = -1;
2538            break;
2539          }
2540          weightSum += weight;
2541        }
2542        // Update best.
2543        if (weightSum > bestWeight) {
2544          bestWeight = weightSum;
2545          bestMAIndex = maIndex;
2546        }
2547      }
2548
2549      // Now select chosen alternative in each constraint.
2550      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2551          cIndex != eIndex; ++cIndex) {
2552        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2553        if (cInfo.Type == InlineAsm::isClobber)
2554          continue;
2555        cInfo.selectAlternative(bestMAIndex);
2556      }
2557    }
2558  }
2559
2560  // Check and hook up tied operands, choose constraint code to use.
2561  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2562      cIndex != eIndex; ++cIndex) {
2563    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2564
2565    // If this is an output operand with a matching input operand, look up the
2566    // matching input. If their types mismatch, e.g. one is an integer, the
2567    // other is floating point, or their sizes are different, flag it as an
2568    // error.
2569    if (OpInfo.hasMatchingInput()) {
2570      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2571
2572      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2573        std::pair<unsigned, const TargetRegisterClass *> MatchRC =
2574            getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
2575                                         OpInfo.ConstraintVT);
2576        std::pair<unsigned, const TargetRegisterClass *> InputRC =
2577            getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
2578                                         Input.ConstraintVT);
2579        if ((OpInfo.ConstraintVT.isInteger() !=
2580             Input.ConstraintVT.isInteger()) ||
2581            (MatchRC.second != InputRC.second)) {
2582          report_fatal_error("Unsupported asm: input constraint"
2583                             " with a matching output constraint of"
2584                             " incompatible type!");
2585        }
2586      }
2587    }
2588  }
2589
2590  return ConstraintOperands;
2591}
2592
2593/// Return an integer indicating how general CT is.
2594static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2595  switch (CT) {
2596  case TargetLowering::C_Other:
2597  case TargetLowering::C_Unknown:
2598    return 0;
2599  case TargetLowering::C_Register:
2600    return 1;
2601  case TargetLowering::C_RegisterClass:
2602    return 2;
2603  case TargetLowering::C_Memory:
2604    return 3;
2605  }
2606  llvm_unreachable("Invalid constraint type");
2607}
2608
2609/// Examine constraint type and operand type and determine a weight value.
2610/// This object must already have been set up with the operand type
2611/// and the current alternative constraint selected.
2612TargetLowering::ConstraintWeight
2613  TargetLowering::getMultipleConstraintMatchWeight(
2614    AsmOperandInfo &info, int maIndex) const {
2615  InlineAsm::ConstraintCodeVector *rCodes;
2616  if (maIndex >= (int)info.multipleAlternatives.size())
2617    rCodes = &info.Codes;
2618  else
2619    rCodes = &info.multipleAlternatives[maIndex].Codes;
2620  ConstraintWeight BestWeight = CW_Invalid;
2621
2622  // Loop over the options, keeping track of the most general one.
2623  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2624    ConstraintWeight weight =
2625      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2626    if (weight > BestWeight)
2627      BestWeight = weight;
2628  }
2629
2630  return BestWeight;
2631}
2632
2633/// Examine constraint type and operand type and determine a weight value.
2634/// This object must already have been set up with the operand type
2635/// and the current alternative constraint selected.
2636TargetLowering::ConstraintWeight
2637  TargetLowering::getSingleConstraintMatchWeight(
2638    AsmOperandInfo &info, const char *constraint) const {
2639  ConstraintWeight weight = CW_Invalid;
2640  Value *CallOperandVal = info.CallOperandVal;
2641    // If we don't have a value, we can't do a match,
2642    // but allow it at the lowest weight.
2643  if (!CallOperandVal)
2644    return CW_Default;
2645  // Look at the constraint type.
2646  switch (*constraint) {
2647    case 'i': // immediate integer.
2648    case 'n': // immediate integer with a known value.
2649      if (isa<ConstantInt>(CallOperandVal))
2650        weight = CW_Constant;
2651      break;
2652    case 's': // non-explicit intregal immediate.
2653      if (isa<GlobalValue>(CallOperandVal))
2654        weight = CW_Constant;
2655      break;
2656    case 'E': // immediate float if host format.
2657    case 'F': // immediate float.
2658      if (isa<ConstantFP>(CallOperandVal))
2659        weight = CW_Constant;
2660      break;
2661    case '<': // memory operand with autodecrement.
2662    case '>': // memory operand with autoincrement.
2663    case 'm': // memory operand.
2664    case 'o': // offsettable memory operand
2665    case 'V': // non-offsettable memory operand
2666      weight = CW_Memory;
2667      break;
2668    case 'r': // general register.
2669    case 'g': // general register, memory operand or immediate integer.
2670              // note: Clang converts "g" to "imr".
2671      if (CallOperandVal->getType()->isIntegerTy())
2672        weight = CW_Register;
2673      break;
2674    case 'X': // any operand.
2675    default:
2676      weight = CW_Default;
2677      break;
2678  }
2679  return weight;
2680}
2681
2682/// If there are multiple different constraints that we could pick for this
2683/// operand (e.g. "imr") try to pick the 'best' one.
2684/// This is somewhat tricky: constraints fall into four classes:
2685///    Other         -> immediates and magic values
2686///    Register      -> one specific register
2687///    RegisterClass -> a group of regs
2688///    Memory        -> memory
2689/// Ideally, we would pick the most specific constraint possible: if we have
2690/// something that fits into a register, we would pick it.  The problem here
2691/// is that if we have something that could either be in a register or in
2692/// memory that use of the register could cause selection of *other*
2693/// operands to fail: they might only succeed if we pick memory.  Because of
2694/// this the heuristic we use is:
2695///
2696///  1) If there is an 'other' constraint, and if the operand is valid for
2697///     that constraint, use it.  This makes us take advantage of 'i'
2698///     constraints when available.
2699///  2) Otherwise, pick the most general constraint present.  This prefers
2700///     'm' over 'r', for example.
2701///
2702static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2703                             const TargetLowering &TLI,
2704                             SDValue Op, SelectionDAG *DAG) {
2705  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2706  unsigned BestIdx = 0;
2707  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2708  int BestGenerality = -1;
2709
2710  // Loop over the options, keeping track of the most general one.
2711  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2712    TargetLowering::ConstraintType CType =
2713      TLI.getConstraintType(OpInfo.Codes[i]);
2714
2715    // If this is an 'other' constraint, see if the operand is valid for it.
2716    // For example, on X86 we might have an 'rI' constraint.  If the operand
2717    // is an integer in the range [0..31] we want to use I (saving a load
2718    // of a register), otherwise we must use 'r'.
2719    if (CType == TargetLowering::C_Other && Op.getNode()) {
2720      assert(OpInfo.Codes[i].size() == 1 &&
2721             "Unhandled multi-letter 'other' constraint");
2722      std::vector<SDValue> ResultOps;
2723      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2724                                       ResultOps, *DAG);
2725      if (!ResultOps.empty()) {
2726        BestType = CType;
2727        BestIdx = i;
2728        break;
2729      }
2730    }
2731
2732    // Things with matching constraints can only be registers, per gcc
2733    // documentation.  This mainly affects "g" constraints.
2734    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2735      continue;
2736
2737    // This constraint letter is more general than the previous one, use it.
2738    int Generality = getConstraintGenerality(CType);
2739    if (Generality > BestGenerality) {
2740      BestType = CType;
2741      BestIdx = i;
2742      BestGenerality = Generality;
2743    }
2744  }
2745
2746  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2747  OpInfo.ConstraintType = BestType;
2748}
2749
2750/// Determines the constraint code and constraint type to use for the specific
2751/// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2752void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2753                                            SDValue Op,
2754                                            SelectionDAG *DAG) const {
2755  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2756
2757  // Single-letter constraints ('r') are very common.
2758  if (OpInfo.Codes.size() == 1) {
2759    OpInfo.ConstraintCode = OpInfo.Codes[0];
2760    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2761  } else {
2762    ChooseConstraint(OpInfo, *this, Op, DAG);
2763  }
2764
2765  // 'X' matches anything.
2766  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2767    // Labels and constants are handled elsewhere ('X' is the only thing
2768    // that matches labels).  For Functions, the type here is the type of
2769    // the result, which is not what we want to look at; leave them alone.
2770    Value *v = OpInfo.CallOperandVal;
2771    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2772      OpInfo.CallOperandVal = v;
2773      return;
2774    }
2775
2776    // Otherwise, try to resolve it to something we know about by looking at
2777    // the actual operand type.
2778    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2779      OpInfo.ConstraintCode = Repl;
2780      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2781    }
2782  }
2783}
2784
2785/// \brief Given an exact SDIV by a constant, create a multiplication
2786/// with the multiplicative inverse of the constant.
2787static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
2788                              const SDLoc &dl, SelectionDAG &DAG,
2789                              std::vector<SDNode *> &Created) {
2790  assert(d != 0 && "Division by zero!");
2791
2792  // Shift the value upfront if it is even, so the LSB is one.
2793  unsigned ShAmt = d.countTrailingZeros();
2794  if (ShAmt) {
2795    // TODO: For UDIV use SRL instead of SRA.
2796    SDValue Amt =
2797        DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
2798                                                        DAG.getDataLayout()));
2799    SDNodeFlags Flags;
2800    Flags.setExact(true);
2801    Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags);
2802    Created.push_back(Op1.getNode());
2803    d = d.ashr(ShAmt);
2804  }
2805
2806  // Calculate the multiplicative inverse, using Newton's method.
2807  APInt t, xn = d;
2808  while ((t = d*xn) != 1)
2809    xn *= APInt(d.getBitWidth(), 2) - t;
2810
2811  SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
2812  SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2813  Created.push_back(Mul.getNode());
2814  return Mul;
2815}
2816
2817SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2818                                      SelectionDAG &DAG,
2819                                      std::vector<SDNode *> *Created) const {
2820  AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2821  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2822  if (TLI.isIntDivCheap(N->getValueType(0), Attr))
2823    return SDValue(N,0); // Lower SDIV as SDIV
2824  return SDValue();
2825}
2826
2827/// \brief Given an ISD::SDIV node expressing a divide by constant,
2828/// return a DAG expression to select that will generate the same value by
2829/// multiplying by a magic number.
2830/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
2831SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
2832                                  SelectionDAG &DAG, bool IsAfterLegalization,
2833                                  std::vector<SDNode *> *Created) const {
2834  assert(Created && "No vector to hold sdiv ops.");
2835
2836  EVT VT = N->getValueType(0);
2837  SDLoc dl(N);
2838
2839  // Check to see if we can do this.
2840  // FIXME: We should be more aggressive here.
2841  if (!isTypeLegal(VT))
2842    return SDValue();
2843
2844  // If the sdiv has an 'exact' bit we can use a simpler lowering.
2845  if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact())
2846    return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created);
2847
2848  APInt::ms magics = Divisor.magic();
2849
2850  // Multiply the numerator (operand 0) by the magic value
2851  // FIXME: We should support doing a MUL in a wider type
2852  SDValue Q;
2853  if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
2854                            isOperationLegalOrCustom(ISD::MULHS, VT))
2855    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2856                    DAG.getConstant(magics.m, dl, VT));
2857  else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
2858                                 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2859    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2860                              N->getOperand(0),
2861                              DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
2862  else
2863    return SDValue();       // No mulhs or equvialent
2864  // If d > 0 and m < 0, add the numerator
2865  if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
2866    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2867    Created->push_back(Q.getNode());
2868  }
2869  // If d < 0 and m > 0, subtract the numerator.
2870  if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
2871    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2872    Created->push_back(Q.getNode());
2873  }
2874  auto &DL = DAG.getDataLayout();
2875  // Shift right algebraic if shift value is nonzero
2876  if (magics.s > 0) {
2877    Q = DAG.getNode(
2878        ISD::SRA, dl, VT, Q,
2879        DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
2880    Created->push_back(Q.getNode());
2881  }
2882  // Extract the sign bit and add it to the quotient
2883  SDValue T =
2884      DAG.getNode(ISD::SRL, dl, VT, Q,
2885                  DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
2886                                  getShiftAmountTy(Q.getValueType(), DL)));
2887  Created->push_back(T.getNode());
2888  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2889}
2890
2891/// \brief Given an ISD::UDIV node expressing a divide by constant,
2892/// return a DAG expression to select that will generate the same value by
2893/// multiplying by a magic number.
2894/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
2895SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
2896                                  SelectionDAG &DAG, bool IsAfterLegalization,
2897                                  std::vector<SDNode *> *Created) const {
2898  assert(Created && "No vector to hold udiv ops.");
2899
2900  EVT VT = N->getValueType(0);
2901  SDLoc dl(N);
2902  auto &DL = DAG.getDataLayout();
2903
2904  // Check to see if we can do this.
2905  // FIXME: We should be more aggressive here.
2906  if (!isTypeLegal(VT))
2907    return SDValue();
2908
2909  // FIXME: We should use a narrower constant when the upper
2910  // bits are known to be zero.
2911  APInt::mu magics = Divisor.magicu();
2912
2913  SDValue Q = N->getOperand(0);
2914
2915  // If the divisor is even, we can avoid using the expensive fixup by shifting
2916  // the divided value upfront.
2917  if (magics.a != 0 && !Divisor[0]) {
2918    unsigned Shift = Divisor.countTrailingZeros();
2919    Q = DAG.getNode(
2920        ISD::SRL, dl, VT, Q,
2921        DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
2922    Created->push_back(Q.getNode());
2923
2924    // Get magic number for the shifted divisor.
2925    magics = Divisor.lshr(Shift).magicu(Shift);
2926    assert(magics.a == 0 && "Should use cheap fixup now");
2927  }
2928
2929  // Multiply the numerator (operand 0) by the magic value
2930  // FIXME: We should support doing a MUL in a wider type
2931  if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
2932                            isOperationLegalOrCustom(ISD::MULHU, VT))
2933    Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
2934  else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
2935                                 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2936    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
2937                            DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
2938  else
2939    return SDValue();       // No mulhu or equvialent
2940
2941  Created->push_back(Q.getNode());
2942
2943  if (magics.a == 0) {
2944    assert(magics.s < Divisor.getBitWidth() &&
2945           "We shouldn't generate an undefined shift!");
2946    return DAG.getNode(
2947        ISD::SRL, dl, VT, Q,
2948        DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
2949  } else {
2950    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2951    Created->push_back(NPQ.getNode());
2952    NPQ = DAG.getNode(
2953        ISD::SRL, dl, VT, NPQ,
2954        DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
2955    Created->push_back(NPQ.getNode());
2956    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2957    Created->push_back(NPQ.getNode());
2958    return DAG.getNode(
2959        ISD::SRL, dl, VT, NPQ,
2960        DAG.getConstant(magics.s - 1, dl,
2961                        getShiftAmountTy(NPQ.getValueType(), DL)));
2962  }
2963}
2964
2965bool TargetLowering::
2966verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
2967  if (!isa<ConstantSDNode>(Op.getOperand(0))) {
2968    DAG.getContext()->emitError("argument to '__builtin_return_address' must "
2969                                "be a constant integer");
2970    return true;
2971  }
2972
2973  return false;
2974}
2975
2976//===----------------------------------------------------------------------===//
2977// Legalization Utilities
2978//===----------------------------------------------------------------------===//
2979
2980bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
2981                               SelectionDAG &DAG, SDValue LL, SDValue LH,
2982                               SDValue RL, SDValue RH) const {
2983  EVT VT = N->getValueType(0);
2984  SDLoc dl(N);
2985
2986  bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
2987  bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
2988  bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
2989  bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
2990  if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
2991    unsigned OuterBitSize = VT.getSizeInBits();
2992    unsigned InnerBitSize = HiLoVT.getSizeInBits();
2993    unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
2994    unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
2995
2996    // LL, LH, RL, and RH must be either all NULL or all set to a value.
2997    assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
2998           (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
2999
3000    if (!LL.getNode() && !RL.getNode() &&
3001        isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3002      LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0));
3003      RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1));
3004    }
3005
3006    if (!LL.getNode())
3007      return false;
3008
3009    APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
3010    if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
3011        DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
3012      // The inputs are both zero-extended.
3013      if (HasUMUL_LOHI) {
3014        // We can emit a umul_lohi.
3015        Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
3016                         RL);
3017        Hi = SDValue(Lo.getNode(), 1);
3018        return true;
3019      }
3020      if (HasMULHU) {
3021        // We can emit a mulhu+mul.
3022        Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
3023        Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
3024        return true;
3025      }
3026    }
3027    if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
3028      // The input values are both sign-extended.
3029      if (HasSMUL_LOHI) {
3030        // We can emit a smul_lohi.
3031        Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
3032                         RL);
3033        Hi = SDValue(Lo.getNode(), 1);
3034        return true;
3035      }
3036      if (HasMULHS) {
3037        // We can emit a mulhs+mul.
3038        Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
3039        Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL);
3040        return true;
3041      }
3042    }
3043
3044    if (!LH.getNode() && !RH.getNode() &&
3045        isOperationLegalOrCustom(ISD::SRL, VT) &&
3046        isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3047      auto &DL = DAG.getDataLayout();
3048      unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits();
3049      SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL));
3050      LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift);
3051      LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
3052      RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift);
3053      RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
3054    }
3055
3056    if (!LH.getNode())
3057      return false;
3058
3059    if (HasUMUL_LOHI) {
3060      // Lo,Hi = umul LHS, RHS.
3061      SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
3062                                     DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
3063      Lo = UMulLOHI;
3064      Hi = UMulLOHI.getValue(1);
3065      RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3066      LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3067      Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3068      Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3069      return true;
3070    }
3071    if (HasMULHU) {
3072      Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
3073      Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
3074      RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3075      LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3076      Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3077      Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3078      return true;
3079    }
3080  }
3081  return false;
3082}
3083
3084bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
3085                               SelectionDAG &DAG) const {
3086  EVT VT = Node->getOperand(0).getValueType();
3087  EVT NVT = Node->getValueType(0);
3088  SDLoc dl(SDValue(Node, 0));
3089
3090  // FIXME: Only f32 to i64 conversions are supported.
3091  if (VT != MVT::f32 || NVT != MVT::i64)
3092    return false;
3093
3094  // Expand f32 -> i64 conversion
3095  // This algorithm comes from compiler-rt's implementation of fixsfdi:
3096  // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
3097  EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
3098                                VT.getSizeInBits());
3099  SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
3100  SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
3101  SDValue Bias = DAG.getConstant(127, dl, IntVT);
3102  SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl,
3103                                     IntVT);
3104  SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
3105  SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
3106
3107  SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
3108
3109  auto &DL = DAG.getDataLayout();
3110  SDValue ExponentBits = DAG.getNode(
3111      ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
3112      DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
3113  SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
3114
3115  SDValue Sign = DAG.getNode(
3116      ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
3117      DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
3118  Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
3119
3120  SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
3121      DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
3122      DAG.getConstant(0x00800000, dl, IntVT));
3123
3124  R = DAG.getZExtOrTrunc(R, dl, NVT);
3125
3126  R = DAG.getSelectCC(
3127      dl, Exponent, ExponentLoBit,
3128      DAG.getNode(ISD::SHL, dl, NVT, R,
3129                  DAG.getZExtOrTrunc(
3130                      DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
3131                      dl, getShiftAmountTy(IntVT, DL))),
3132      DAG.getNode(ISD::SRL, dl, NVT, R,
3133                  DAG.getZExtOrTrunc(
3134                      DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
3135                      dl, getShiftAmountTy(IntVT, DL))),
3136      ISD::SETGT);
3137
3138  SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
3139      DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
3140      Sign);
3141
3142  Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
3143      DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
3144  return true;
3145}
3146
3147SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
3148                                            SelectionDAG &DAG) const {
3149  SDLoc SL(LD);
3150  SDValue Chain = LD->getChain();
3151  SDValue BasePTR = LD->getBasePtr();
3152  EVT SrcVT = LD->getMemoryVT();
3153  ISD::LoadExtType ExtType = LD->getExtensionType();
3154
3155  unsigned NumElem = SrcVT.getVectorNumElements();
3156
3157  EVT SrcEltVT = SrcVT.getScalarType();
3158  EVT DstEltVT = LD->getValueType(0).getScalarType();
3159
3160  unsigned Stride = SrcEltVT.getSizeInBits() / 8;
3161  assert(SrcEltVT.isByteSized());
3162
3163  EVT PtrVT = BasePTR.getValueType();
3164
3165  SmallVector<SDValue, 8> Vals;
3166  SmallVector<SDValue, 8> LoadChains;
3167
3168  for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3169    SDValue ScalarLoad = DAG.getExtLoad(
3170      ExtType, SL, DstEltVT,
3171      Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
3172      SrcEltVT,
3173      LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(),
3174      MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo());
3175
3176    BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR,
3177                          DAG.getConstant(Stride, SL, PtrVT));
3178
3179    Vals.push_back(ScalarLoad.getValue(0));
3180    LoadChains.push_back(ScalarLoad.getValue(1));
3181  }
3182
3183  SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
3184  SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, SL, LD->getValueType(0), Vals);
3185
3186  return DAG.getMergeValues({ Value, NewChain }, SL);
3187}
3188
3189// FIXME: This relies on each element having a byte size, otherwise the stride
3190// is 0 and just overwrites the same location. ExpandStore currently expects
3191// this broken behavior.
3192SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
3193                                             SelectionDAG &DAG) const {
3194  SDLoc SL(ST);
3195
3196  SDValue Chain = ST->getChain();
3197  SDValue BasePtr = ST->getBasePtr();
3198  SDValue Value = ST->getValue();
3199  EVT StVT = ST->getMemoryVT();
3200
3201  unsigned Alignment = ST->getAlignment();
3202  bool isVolatile = ST->isVolatile();
3203  bool isNonTemporal = ST->isNonTemporal();
3204  AAMDNodes AAInfo = ST->getAAInfo();
3205
3206  // The type of the data we want to save
3207  EVT RegVT = Value.getValueType();
3208  EVT RegSclVT = RegVT.getScalarType();
3209
3210  // The type of data as saved in memory.
3211  EVT MemSclVT = StVT.getScalarType();
3212
3213  EVT PtrVT = BasePtr.getValueType();
3214
3215  // Store Stride in bytes
3216  unsigned Stride = MemSclVT.getSizeInBits() / 8;
3217  EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
3218  unsigned NumElem = StVT.getVectorNumElements();
3219
3220  // Extract each of the elements from the original vector and save them into
3221  // memory individually.
3222  SmallVector<SDValue, 8> Stores;
3223  for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3224    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
3225                              DAG.getConstant(Idx, SL, IdxVT));
3226
3227    SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
3228                              DAG.getConstant(Idx * Stride, SL, PtrVT));
3229
3230    // This scalar TruncStore may be illegal, but we legalize it later.
3231    SDValue Store = DAG.getTruncStore(
3232      Chain, SL, Elt, Ptr,
3233      ST->getPointerInfo().getWithOffset(Idx * Stride), MemSclVT,
3234      isVolatile, isNonTemporal, MinAlign(Alignment, Idx * Stride),
3235      AAInfo);
3236
3237    Stores.push_back(Store);
3238  }
3239
3240  return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
3241}
3242
3243std::pair<SDValue, SDValue>
3244TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
3245  assert(LD->getAddressingMode() == ISD::UNINDEXED &&
3246         "unaligned indexed loads not implemented!");
3247  SDValue Chain = LD->getChain();
3248  SDValue Ptr = LD->getBasePtr();
3249  EVT VT = LD->getValueType(0);
3250  EVT LoadedVT = LD->getMemoryVT();
3251  SDLoc dl(LD);
3252  if (VT.isFloatingPoint() || VT.isVector()) {
3253    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
3254    if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
3255      if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) {
3256        // Scalarize the load and let the individual components be handled.
3257        SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
3258        return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
3259      }
3260
3261      // Expand to a (misaligned) integer load of the same size,
3262      // then bitconvert to floating point or vector.
3263      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
3264                                    LD->getMemOperand());
3265      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
3266      if (LoadedVT != VT)
3267        Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
3268                             ISD::ANY_EXTEND, dl, VT, Result);
3269
3270      return std::make_pair(Result, newLoad.getValue(1));
3271    }
3272
3273    // Copy the value to a (aligned) stack slot using (unaligned) integer
3274    // loads and stores, then do a (aligned) load from the stack slot.
3275    MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
3276    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
3277    unsigned RegBytes = RegVT.getSizeInBits() / 8;
3278    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
3279
3280    // Make sure the stack slot is also aligned for the register type.
3281    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
3282
3283    SmallVector<SDValue, 8> Stores;
3284    SDValue StackPtr = StackBase;
3285    unsigned Offset = 0;
3286
3287    EVT PtrVT = Ptr.getValueType();
3288    EVT StackPtrVT = StackPtr.getValueType();
3289
3290    SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3291    SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3292
3293    // Do all but one copies using the full register width.
3294    for (unsigned i = 1; i < NumRegs; i++) {
3295      // Load one integer register's worth from the original location.
3296      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
3297                                 LD->getPointerInfo().getWithOffset(Offset),
3298                                 LD->isVolatile(), LD->isNonTemporal(),
3299                                 LD->isInvariant(),
3300                                 MinAlign(LD->getAlignment(), Offset),
3301                                 LD->getAAInfo());
3302      // Follow the load with a store to the stack slot.  Remember the store.
3303      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
3304                                    MachinePointerInfo(), false, false, 0));
3305      // Increment the pointers.
3306      Offset += RegBytes;
3307      Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3308      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr,
3309                             StackPtrIncrement);
3310    }
3311
3312    // The last copy may be partial.  Do an extending load.
3313    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3314                                  8 * (LoadedBytes - Offset));
3315    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
3316                                  LD->getPointerInfo().getWithOffset(Offset),
3317                                  MemVT, LD->isVolatile(),
3318                                  LD->isNonTemporal(),
3319                                  LD->isInvariant(),
3320                                  MinAlign(LD->getAlignment(), Offset),
3321                                  LD->getAAInfo());
3322    // Follow the load with a store to the stack slot.  Remember the store.
3323    // On big-endian machines this requires a truncating store to ensure
3324    // that the bits end up in the right place.
3325    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
3326                                       MachinePointerInfo(), MemVT,
3327                                       false, false, 0));
3328
3329    // The order of the stores doesn't matter - say it with a TokenFactor.
3330    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3331
3332    // Finally, perform the original load only redirected to the stack slot.
3333    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
3334                          MachinePointerInfo(), LoadedVT, false,false, false,
3335                          0);
3336
3337    // Callers expect a MERGE_VALUES node.
3338    return std::make_pair(Load, TF);
3339  }
3340
3341  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
3342         "Unaligned load of unsupported type.");
3343
3344  // Compute the new VT that is half the size of the old one.  This is an
3345  // integer MVT.
3346  unsigned NumBits = LoadedVT.getSizeInBits();
3347  EVT NewLoadedVT;
3348  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
3349  NumBits >>= 1;
3350
3351  unsigned Alignment = LD->getAlignment();
3352  unsigned IncrementSize = NumBits / 8;
3353  ISD::LoadExtType HiExtType = LD->getExtensionType();
3354
3355  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
3356  if (HiExtType == ISD::NON_EXTLOAD)
3357    HiExtType = ISD::ZEXTLOAD;
3358
3359  // Load the value in two parts
3360  SDValue Lo, Hi;
3361  if (DAG.getDataLayout().isLittleEndian()) {
3362    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3363                        NewLoadedVT, LD->isVolatile(),
3364                        LD->isNonTemporal(), LD->isInvariant(), Alignment,
3365                        LD->getAAInfo());
3366    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3367                      DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3368    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
3369                        LD->getPointerInfo().getWithOffset(IncrementSize),
3370                        NewLoadedVT, LD->isVolatile(),
3371                        LD->isNonTemporal(),LD->isInvariant(),
3372                        MinAlign(Alignment, IncrementSize), LD->getAAInfo());
3373  } else {
3374    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3375                        NewLoadedVT, LD->isVolatile(),
3376                        LD->isNonTemporal(), LD->isInvariant(), Alignment,
3377                        LD->getAAInfo());
3378    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3379                      DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3380    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
3381                        LD->getPointerInfo().getWithOffset(IncrementSize),
3382                        NewLoadedVT, LD->isVolatile(),
3383                        LD->isNonTemporal(), LD->isInvariant(),
3384                        MinAlign(Alignment, IncrementSize), LD->getAAInfo());
3385  }
3386
3387  // aggregate the two parts
3388  SDValue ShiftAmount =
3389      DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
3390                                                    DAG.getDataLayout()));
3391  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
3392  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
3393
3394  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
3395                             Hi.getValue(1));
3396
3397  return std::make_pair(Result, TF);
3398}
3399
3400SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
3401                                             SelectionDAG &DAG) const {
3402  assert(ST->getAddressingMode() == ISD::UNINDEXED &&
3403         "unaligned indexed stores not implemented!");
3404  SDValue Chain = ST->getChain();
3405  SDValue Ptr = ST->getBasePtr();
3406  SDValue Val = ST->getValue();
3407  EVT VT = Val.getValueType();
3408  int Alignment = ST->getAlignment();
3409
3410  SDLoc dl(ST);
3411  if (ST->getMemoryVT().isFloatingPoint() ||
3412      ST->getMemoryVT().isVector()) {
3413    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
3414    if (isTypeLegal(intVT)) {
3415      if (!isOperationLegalOrCustom(ISD::STORE, intVT)) {
3416        // Scalarize the store and let the individual components be handled.
3417        SDValue Result = scalarizeVectorStore(ST, DAG);
3418
3419        return Result;
3420      }
3421      // Expand to a bitconvert of the value to the integer type of the
3422      // same size, then a (misaligned) int store.
3423      // FIXME: Does not handle truncating floating point stores!
3424      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
3425      Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
3426                           ST->isVolatile(), ST->isNonTemporal(), Alignment);
3427      return Result;
3428    }
3429    // Do a (aligned) store to a stack slot, then copy from the stack slot
3430    // to the final destination using (unaligned) integer loads and stores.
3431    EVT StoredVT = ST->getMemoryVT();
3432    MVT RegVT =
3433      getRegisterType(*DAG.getContext(),
3434                      EVT::getIntegerVT(*DAG.getContext(),
3435                                        StoredVT.getSizeInBits()));
3436    EVT PtrVT = Ptr.getValueType();
3437    unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
3438    unsigned RegBytes = RegVT.getSizeInBits() / 8;
3439    unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
3440
3441    // Make sure the stack slot is also aligned for the register type.
3442    SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
3443
3444    // Perform the original store, only redirected to the stack slot.
3445    SDValue Store = DAG.getTruncStore(Chain, dl,
3446                                      Val, StackPtr, MachinePointerInfo(),
3447                                      StoredVT, false, false, 0);
3448
3449    EVT StackPtrVT = StackPtr.getValueType();
3450
3451    SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3452    SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3453    SmallVector<SDValue, 8> Stores;
3454    unsigned Offset = 0;
3455
3456    // Do all but one copies using the full register width.
3457    for (unsigned i = 1; i < NumRegs; i++) {
3458      // Load one integer register's worth from the stack slot.
3459      SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
3460                                 MachinePointerInfo(),
3461                                 false, false, false, 0);
3462      // Store it to the final location.  Remember the store.
3463      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
3464                                  ST->getPointerInfo().getWithOffset(Offset),
3465                                    ST->isVolatile(), ST->isNonTemporal(),
3466                                    MinAlign(ST->getAlignment(), Offset)));
3467      // Increment the pointers.
3468      Offset += RegBytes;
3469      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT,
3470                             StackPtr, StackPtrIncrement);
3471      Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3472    }
3473
3474    // The last store may be partial.  Do a truncating store.  On big-endian
3475    // machines this requires an extending load from the stack slot to ensure
3476    // that the bits are in the right place.
3477    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3478                                  8 * (StoredBytes - Offset));
3479
3480    // Load from the stack slot.
3481    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
3482                                  MachinePointerInfo(),
3483                                  MemVT, false, false, false, 0);
3484
3485    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
3486                                       ST->getPointerInfo()
3487                                         .getWithOffset(Offset),
3488                                       MemVT, ST->isVolatile(),
3489                                       ST->isNonTemporal(),
3490                                       MinAlign(ST->getAlignment(), Offset),
3491                                       ST->getAAInfo()));
3492    // The order of the stores doesn't matter - say it with a TokenFactor.
3493    SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3494    return Result;
3495  }
3496
3497  assert(ST->getMemoryVT().isInteger() &&
3498         !ST->getMemoryVT().isVector() &&
3499         "Unaligned store of unknown type.");
3500  // Get the half-size VT
3501  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
3502  int NumBits = NewStoredVT.getSizeInBits();
3503  int IncrementSize = NumBits / 8;
3504
3505  // Divide the stored value in two parts.
3506  SDValue ShiftAmount =
3507      DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
3508                                                    DAG.getDataLayout()));
3509  SDValue Lo = Val;
3510  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
3511
3512  // Store the two parts
3513  SDValue Store1, Store2;
3514  Store1 = DAG.getTruncStore(Chain, dl,
3515                             DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
3516                             Ptr, ST->getPointerInfo(), NewStoredVT,
3517                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
3518
3519  EVT PtrVT = Ptr.getValueType();
3520  Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3521                    DAG.getConstant(IncrementSize, dl, PtrVT));
3522  Alignment = MinAlign(Alignment, IncrementSize);
3523  Store2 = DAG.getTruncStore(
3524      Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
3525      ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT,
3526      ST->isVolatile(), ST->isNonTemporal(), Alignment, ST->getAAInfo());
3527
3528  SDValue Result =
3529    DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
3530  return Result;
3531}
3532
3533//===----------------------------------------------------------------------===//
3534// Implementation of Emulated TLS Model
3535//===----------------------------------------------------------------------===//
3536
3537SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
3538                                                SelectionDAG &DAG) const {
3539  // Access to address of TLS varialbe xyz is lowered to a function call:
3540  //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
3541  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3542  PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
3543  SDLoc dl(GA);
3544
3545  ArgListTy Args;
3546  ArgListEntry Entry;
3547  std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
3548  Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
3549  StringRef EmuTlsVarName(NameString);
3550  GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
3551  assert(EmuTlsVar && "Cannot find EmuTlsVar ");
3552  Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
3553  Entry.Ty = VoidPtrType;
3554  Args.push_back(Entry);
3555
3556  SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
3557
3558  TargetLowering::CallLoweringInfo CLI(DAG);
3559  CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
3560  CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
3561  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3562
3563  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
3564  // At last for X86 targets, maybe good for other targets too?
3565  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3566  MFI->setAdjustsStack(true);  // Is this only for X86 target?
3567  MFI->setHasCalls(true);
3568
3569  assert((GA->getOffset() == 0) &&
3570         "Emulated TLS must have zero offset in GlobalAddressSDNode");
3571  return CallResult.first;
3572}
3573