TargetLowering.cpp revision e8d7230f480654cdb8ff1c3d0a38e1e9ab0bd55f
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29/// InitLibcallNames - Set default libcall names.
30///
31static void InitLibcallNames(const char **Names) {
32  Names[RTLIB::SHL_I16] = "__ashli16";
33  Names[RTLIB::SHL_I32] = "__ashlsi3";
34  Names[RTLIB::SHL_I64] = "__ashldi3";
35  Names[RTLIB::SHL_I128] = "__ashlti3";
36  Names[RTLIB::SRL_I16] = "__lshri16";
37  Names[RTLIB::SRL_I32] = "__lshrsi3";
38  Names[RTLIB::SRL_I64] = "__lshrdi3";
39  Names[RTLIB::SRL_I128] = "__lshrti3";
40  Names[RTLIB::SRA_I16] = "__ashri16";
41  Names[RTLIB::SRA_I32] = "__ashrsi3";
42  Names[RTLIB::SRA_I64] = "__ashrdi3";
43  Names[RTLIB::SRA_I128] = "__ashrti3";
44  Names[RTLIB::MUL_I16] = "__muli16";
45  Names[RTLIB::MUL_I32] = "__mulsi3";
46  Names[RTLIB::MUL_I64] = "__muldi3";
47  Names[RTLIB::MUL_I128] = "__multi3";
48  Names[RTLIB::SDIV_I32] = "__divsi3";
49  Names[RTLIB::SDIV_I64] = "__divdi3";
50  Names[RTLIB::SDIV_I128] = "__divti3";
51  Names[RTLIB::UDIV_I32] = "__udivsi3";
52  Names[RTLIB::UDIV_I64] = "__udivdi3";
53  Names[RTLIB::UDIV_I128] = "__udivti3";
54  Names[RTLIB::SREM_I32] = "__modsi3";
55  Names[RTLIB::SREM_I64] = "__moddi3";
56  Names[RTLIB::SREM_I128] = "__modti3";
57  Names[RTLIB::UREM_I32] = "__umodsi3";
58  Names[RTLIB::UREM_I64] = "__umoddi3";
59  Names[RTLIB::UREM_I128] = "__umodti3";
60  Names[RTLIB::NEG_I32] = "__negsi2";
61  Names[RTLIB::NEG_I64] = "__negdi2";
62  Names[RTLIB::ADD_F32] = "__addsf3";
63  Names[RTLIB::ADD_F64] = "__adddf3";
64  Names[RTLIB::ADD_F80] = "__addxf3";
65  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
66  Names[RTLIB::SUB_F32] = "__subsf3";
67  Names[RTLIB::SUB_F64] = "__subdf3";
68  Names[RTLIB::SUB_F80] = "__subxf3";
69  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
70  Names[RTLIB::MUL_F32] = "__mulsf3";
71  Names[RTLIB::MUL_F64] = "__muldf3";
72  Names[RTLIB::MUL_F80] = "__mulxf3";
73  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
74  Names[RTLIB::DIV_F32] = "__divsf3";
75  Names[RTLIB::DIV_F64] = "__divdf3";
76  Names[RTLIB::DIV_F80] = "__divxf3";
77  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
78  Names[RTLIB::REM_F32] = "fmodf";
79  Names[RTLIB::REM_F64] = "fmod";
80  Names[RTLIB::REM_F80] = "fmodl";
81  Names[RTLIB::REM_PPCF128] = "fmodl";
82  Names[RTLIB::POWI_F32] = "__powisf2";
83  Names[RTLIB::POWI_F64] = "__powidf2";
84  Names[RTLIB::POWI_F80] = "__powixf2";
85  Names[RTLIB::POWI_PPCF128] = "__powitf2";
86  Names[RTLIB::SQRT_F32] = "sqrtf";
87  Names[RTLIB::SQRT_F64] = "sqrt";
88  Names[RTLIB::SQRT_F80] = "sqrtl";
89  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
90  Names[RTLIB::LOG_F32] = "logf";
91  Names[RTLIB::LOG_F64] = "log";
92  Names[RTLIB::LOG_F80] = "logl";
93  Names[RTLIB::LOG_PPCF128] = "logl";
94  Names[RTLIB::LOG2_F32] = "log2f";
95  Names[RTLIB::LOG2_F64] = "log2";
96  Names[RTLIB::LOG2_F80] = "log2l";
97  Names[RTLIB::LOG2_PPCF128] = "log2l";
98  Names[RTLIB::LOG10_F32] = "log10f";
99  Names[RTLIB::LOG10_F64] = "log10";
100  Names[RTLIB::LOG10_F80] = "log10l";
101  Names[RTLIB::LOG10_PPCF128] = "log10l";
102  Names[RTLIB::EXP_F32] = "expf";
103  Names[RTLIB::EXP_F64] = "exp";
104  Names[RTLIB::EXP_F80] = "expl";
105  Names[RTLIB::EXP_PPCF128] = "expl";
106  Names[RTLIB::EXP2_F32] = "exp2f";
107  Names[RTLIB::EXP2_F64] = "exp2";
108  Names[RTLIB::EXP2_F80] = "exp2l";
109  Names[RTLIB::EXP2_PPCF128] = "exp2l";
110  Names[RTLIB::SIN_F32] = "sinf";
111  Names[RTLIB::SIN_F64] = "sin";
112  Names[RTLIB::SIN_F80] = "sinl";
113  Names[RTLIB::SIN_PPCF128] = "sinl";
114  Names[RTLIB::COS_F32] = "cosf";
115  Names[RTLIB::COS_F64] = "cos";
116  Names[RTLIB::COS_F80] = "cosl";
117  Names[RTLIB::COS_PPCF128] = "cosl";
118  Names[RTLIB::POW_F32] = "powf";
119  Names[RTLIB::POW_F64] = "pow";
120  Names[RTLIB::POW_F80] = "powl";
121  Names[RTLIB::POW_PPCF128] = "powl";
122  Names[RTLIB::CEIL_F32] = "ceilf";
123  Names[RTLIB::CEIL_F64] = "ceil";
124  Names[RTLIB::CEIL_F80] = "ceill";
125  Names[RTLIB::CEIL_PPCF128] = "ceill";
126  Names[RTLIB::TRUNC_F32] = "truncf";
127  Names[RTLIB::TRUNC_F64] = "trunc";
128  Names[RTLIB::TRUNC_F80] = "truncl";
129  Names[RTLIB::TRUNC_PPCF128] = "truncl";
130  Names[RTLIB::RINT_F32] = "rintf";
131  Names[RTLIB::RINT_F64] = "rint";
132  Names[RTLIB::RINT_F80] = "rintl";
133  Names[RTLIB::RINT_PPCF128] = "rintl";
134  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
135  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
136  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
137  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
138  Names[RTLIB::FLOOR_F32] = "floorf";
139  Names[RTLIB::FLOOR_F64] = "floor";
140  Names[RTLIB::FLOOR_F80] = "floorl";
141  Names[RTLIB::FLOOR_PPCF128] = "floorl";
142  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
143  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
144  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
145  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
146  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
147  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
148  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
149  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
150  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
151  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
152  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
153  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
154  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
155  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
156  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
157  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
158  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
159  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
160  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
161  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
162  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
163  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
164  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
165  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
166  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
167  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
168  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
169  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
170  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
171  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
172  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
173  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
174  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
175  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
176  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
177  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
178  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
179  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
180  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
181  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
182  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
183  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
184  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
185  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
186  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
187  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
188  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
189  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
190  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
191  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
192  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
193  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
194  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
195  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
196  Names[RTLIB::OEQ_F32] = "__eqsf2";
197  Names[RTLIB::OEQ_F64] = "__eqdf2";
198  Names[RTLIB::UNE_F32] = "__nesf2";
199  Names[RTLIB::UNE_F64] = "__nedf2";
200  Names[RTLIB::OGE_F32] = "__gesf2";
201  Names[RTLIB::OGE_F64] = "__gedf2";
202  Names[RTLIB::OLT_F32] = "__ltsf2";
203  Names[RTLIB::OLT_F64] = "__ltdf2";
204  Names[RTLIB::OLE_F32] = "__lesf2";
205  Names[RTLIB::OLE_F64] = "__ledf2";
206  Names[RTLIB::OGT_F32] = "__gtsf2";
207  Names[RTLIB::OGT_F64] = "__gtdf2";
208  Names[RTLIB::UO_F32] = "__unordsf2";
209  Names[RTLIB::UO_F64] = "__unorddf2";
210  Names[RTLIB::O_F32] = "__unordsf2";
211  Names[RTLIB::O_F64] = "__unorddf2";
212}
213
214/// getFPEXT - Return the FPEXT_*_* value for the given types, or
215/// UNKNOWN_LIBCALL if there is none.
216RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
217  if (OpVT == MVT::f32) {
218    if (RetVT == MVT::f64)
219      return FPEXT_F32_F64;
220  }
221  return UNKNOWN_LIBCALL;
222}
223
224/// getFPROUND - Return the FPROUND_*_* value for the given types, or
225/// UNKNOWN_LIBCALL if there is none.
226RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
227  if (RetVT == MVT::f32) {
228    if (OpVT == MVT::f64)
229      return FPROUND_F64_F32;
230    if (OpVT == MVT::f80)
231      return FPROUND_F80_F32;
232    if (OpVT == MVT::ppcf128)
233      return FPROUND_PPCF128_F32;
234  } else if (RetVT == MVT::f64) {
235    if (OpVT == MVT::f80)
236      return FPROUND_F80_F64;
237    if (OpVT == MVT::ppcf128)
238      return FPROUND_PPCF128_F64;
239  }
240  return UNKNOWN_LIBCALL;
241}
242
243/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
244/// UNKNOWN_LIBCALL if there is none.
245RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
246  if (OpVT == MVT::f32) {
247    if (RetVT == MVT::i32)
248      return FPTOSINT_F32_I32;
249    if (RetVT == MVT::i64)
250      return FPTOSINT_F32_I64;
251    if (RetVT == MVT::i128)
252      return FPTOSINT_F32_I128;
253  } else if (OpVT == MVT::f64) {
254    if (RetVT == MVT::i32)
255      return FPTOSINT_F64_I32;
256    if (RetVT == MVT::i64)
257      return FPTOSINT_F64_I64;
258    if (RetVT == MVT::i128)
259      return FPTOSINT_F64_I128;
260  } else if (OpVT == MVT::f80) {
261    if (RetVT == MVT::i32)
262      return FPTOSINT_F80_I32;
263    if (RetVT == MVT::i64)
264      return FPTOSINT_F80_I64;
265    if (RetVT == MVT::i128)
266      return FPTOSINT_F80_I128;
267  } else if (OpVT == MVT::ppcf128) {
268    if (RetVT == MVT::i32)
269      return FPTOSINT_PPCF128_I32;
270    if (RetVT == MVT::i64)
271      return FPTOSINT_PPCF128_I64;
272    if (RetVT == MVT::i128)
273      return FPTOSINT_PPCF128_I128;
274  }
275  return UNKNOWN_LIBCALL;
276}
277
278/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
279/// UNKNOWN_LIBCALL if there is none.
280RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
281  if (OpVT == MVT::f32) {
282    if (RetVT == MVT::i32)
283      return FPTOUINT_F32_I32;
284    if (RetVT == MVT::i64)
285      return FPTOUINT_F32_I64;
286    if (RetVT == MVT::i128)
287      return FPTOUINT_F32_I128;
288  } else if (OpVT == MVT::f64) {
289    if (RetVT == MVT::i32)
290      return FPTOUINT_F64_I32;
291    if (RetVT == MVT::i64)
292      return FPTOUINT_F64_I64;
293    if (RetVT == MVT::i128)
294      return FPTOUINT_F64_I128;
295  } else if (OpVT == MVT::f80) {
296    if (RetVT == MVT::i32)
297      return FPTOUINT_F80_I32;
298    if (RetVT == MVT::i64)
299      return FPTOUINT_F80_I64;
300    if (RetVT == MVT::i128)
301      return FPTOUINT_F80_I128;
302  } else if (OpVT == MVT::ppcf128) {
303    if (RetVT == MVT::i32)
304      return FPTOUINT_PPCF128_I32;
305    if (RetVT == MVT::i64)
306      return FPTOUINT_PPCF128_I64;
307    if (RetVT == MVT::i128)
308      return FPTOUINT_PPCF128_I128;
309  }
310  return UNKNOWN_LIBCALL;
311}
312
313/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
314/// UNKNOWN_LIBCALL if there is none.
315RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
316  if (OpVT == MVT::i32) {
317    if (RetVT == MVT::f32)
318      return SINTTOFP_I32_F32;
319    else if (RetVT == MVT::f64)
320      return SINTTOFP_I32_F64;
321    else if (RetVT == MVT::f80)
322      return SINTTOFP_I32_F80;
323    else if (RetVT == MVT::ppcf128)
324      return SINTTOFP_I32_PPCF128;
325  } else if (OpVT == MVT::i64) {
326    if (RetVT == MVT::f32)
327      return SINTTOFP_I64_F32;
328    else if (RetVT == MVT::f64)
329      return SINTTOFP_I64_F64;
330    else if (RetVT == MVT::f80)
331      return SINTTOFP_I64_F80;
332    else if (RetVT == MVT::ppcf128)
333      return SINTTOFP_I64_PPCF128;
334  } else if (OpVT == MVT::i128) {
335    if (RetVT == MVT::f32)
336      return SINTTOFP_I128_F32;
337    else if (RetVT == MVT::f64)
338      return SINTTOFP_I128_F64;
339    else if (RetVT == MVT::f80)
340      return SINTTOFP_I128_F80;
341    else if (RetVT == MVT::ppcf128)
342      return SINTTOFP_I128_PPCF128;
343  }
344  return UNKNOWN_LIBCALL;
345}
346
347/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
348/// UNKNOWN_LIBCALL if there is none.
349RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
350  if (OpVT == MVT::i32) {
351    if (RetVT == MVT::f32)
352      return UINTTOFP_I32_F32;
353    else if (RetVT == MVT::f64)
354      return UINTTOFP_I32_F64;
355    else if (RetVT == MVT::f80)
356      return UINTTOFP_I32_F80;
357    else if (RetVT == MVT::ppcf128)
358      return UINTTOFP_I32_PPCF128;
359  } else if (OpVT == MVT::i64) {
360    if (RetVT == MVT::f32)
361      return UINTTOFP_I64_F32;
362    else if (RetVT == MVT::f64)
363      return UINTTOFP_I64_F64;
364    else if (RetVT == MVT::f80)
365      return UINTTOFP_I64_F80;
366    else if (RetVT == MVT::ppcf128)
367      return UINTTOFP_I64_PPCF128;
368  } else if (OpVT == MVT::i128) {
369    if (RetVT == MVT::f32)
370      return UINTTOFP_I128_F32;
371    else if (RetVT == MVT::f64)
372      return UINTTOFP_I128_F64;
373    else if (RetVT == MVT::f80)
374      return UINTTOFP_I128_F80;
375    else if (RetVT == MVT::ppcf128)
376      return UINTTOFP_I128_PPCF128;
377  }
378  return UNKNOWN_LIBCALL;
379}
380
381/// InitCmpLibcallCCs - Set default comparison libcall CC.
382///
383static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
384  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
385  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
386  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
387  CCs[RTLIB::UNE_F32] = ISD::SETNE;
388  CCs[RTLIB::UNE_F64] = ISD::SETNE;
389  CCs[RTLIB::OGE_F32] = ISD::SETGE;
390  CCs[RTLIB::OGE_F64] = ISD::SETGE;
391  CCs[RTLIB::OLT_F32] = ISD::SETLT;
392  CCs[RTLIB::OLT_F64] = ISD::SETLT;
393  CCs[RTLIB::OLE_F32] = ISD::SETLE;
394  CCs[RTLIB::OLE_F64] = ISD::SETLE;
395  CCs[RTLIB::OGT_F32] = ISD::SETGT;
396  CCs[RTLIB::OGT_F64] = ISD::SETGT;
397  CCs[RTLIB::UO_F32] = ISD::SETNE;
398  CCs[RTLIB::UO_F64] = ISD::SETNE;
399  CCs[RTLIB::O_F32] = ISD::SETEQ;
400  CCs[RTLIB::O_F64] = ISD::SETEQ;
401}
402
403TargetLowering::TargetLowering(TargetMachine &tm)
404  : TM(tm), TD(TM.getTargetData()) {
405  // All operations default to being supported.
406  memset(OpActions, 0, sizeof(OpActions));
407  memset(LoadExtActions, 0, sizeof(LoadExtActions));
408  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
409  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
410  memset(ConvertActions, 0, sizeof(ConvertActions));
411  memset(CondCodeActions, 0, sizeof(CondCodeActions));
412
413  // Set default actions for various operations.
414  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
415    // Default all indexed load / store to expand.
416    for (unsigned IM = (unsigned)ISD::PRE_INC;
417         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
418      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
419      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
420    }
421
422    // These operations default to expand.
423    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
424  }
425
426  // Most targets ignore the @llvm.prefetch intrinsic.
427  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
428
429  // ConstantFP nodes default to expand.  Targets can either change this to
430  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
431  // to optimize expansions for certain constants.
432  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
433  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
434  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
435
436  // These library functions default to expand.
437  setOperationAction(ISD::FLOG , MVT::f64, Expand);
438  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
439  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
440  setOperationAction(ISD::FEXP , MVT::f64, Expand);
441  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
442  setOperationAction(ISD::FLOG , MVT::f32, Expand);
443  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
444  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
445  setOperationAction(ISD::FEXP , MVT::f32, Expand);
446  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
447
448  // Default ISD::TRAP to expand (which turns it into abort).
449  setOperationAction(ISD::TRAP, MVT::Other, Expand);
450
451  IsLittleEndian = TD->isLittleEndian();
452  UsesGlobalOffsetTable = false;
453  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
454  ShiftAmtHandling = Undefined;
455  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
456  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
457  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
458  allowUnalignedMemoryAccesses = false;
459  UseUnderscoreSetJmp = false;
460  UseUnderscoreLongJmp = false;
461  SelectIsExpensive = false;
462  IntDivIsCheap = false;
463  Pow2DivIsCheap = false;
464  StackPointerRegisterToSaveRestore = 0;
465  ExceptionPointerRegister = 0;
466  ExceptionSelectorRegister = 0;
467  BooleanContents = UndefinedBooleanContent;
468  SchedPreferenceInfo = SchedulingForLatency;
469  JumpBufSize = 0;
470  JumpBufAlignment = 0;
471  IfCvtBlockSizeLimit = 2;
472  IfCvtDupBlockSizeLimit = 0;
473  PrefLoopAlignment = 0;
474
475  InitLibcallNames(LibcallRoutineNames);
476  InitCmpLibcallCCs(CmpLibcallCCs);
477
478  // Tell Legalize whether the assembler supports DEBUG_LOC.
479  const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
480  if (!TASM || !TASM->hasDotLocAndDotFile())
481    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
482}
483
484TargetLowering::~TargetLowering() {}
485
486/// computeRegisterProperties - Once all of the register classes are added,
487/// this allows us to compute derived properties we expose.
488void TargetLowering::computeRegisterProperties() {
489  assert(MVT::LAST_VALUETYPE <= 32 &&
490         "Too many value types for ValueTypeActions to hold!");
491
492  // Everything defaults to needing one register.
493  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
494    NumRegistersForVT[i] = 1;
495    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
496  }
497  // ...except isVoid, which doesn't need any registers.
498  NumRegistersForVT[MVT::isVoid] = 0;
499
500  // Find the largest integer register class.
501  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
502  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
503    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
504
505  // Every integer value type larger than this largest register takes twice as
506  // many registers to represent as the previous ValueType.
507  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
508    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
509    if (!EVT.isInteger())
510      break;
511    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
512    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
513    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
514    ValueTypeActions.setTypeAction(EVT, Expand);
515  }
516
517  // Inspect all of the ValueType's smaller than the largest integer
518  // register to see which ones need promotion.
519  unsigned LegalIntReg = LargestIntReg;
520  for (unsigned IntReg = LargestIntReg - 1;
521       IntReg >= (unsigned)MVT::i1; --IntReg) {
522    MVT IVT = (MVT::SimpleValueType)IntReg;
523    if (isTypeLegal(IVT)) {
524      LegalIntReg = IntReg;
525    } else {
526      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
527        (MVT::SimpleValueType)LegalIntReg;
528      ValueTypeActions.setTypeAction(IVT, Promote);
529    }
530  }
531
532  // ppcf128 type is really two f64's.
533  if (!isTypeLegal(MVT::ppcf128)) {
534    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
535    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
536    TransformToType[MVT::ppcf128] = MVT::f64;
537    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
538  }
539
540  // Decide how to handle f64. If the target does not have native f64 support,
541  // expand it to i64 and we will be generating soft float library calls.
542  if (!isTypeLegal(MVT::f64)) {
543    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
544    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
545    TransformToType[MVT::f64] = MVT::i64;
546    ValueTypeActions.setTypeAction(MVT::f64, Expand);
547  }
548
549  // Decide how to handle f32. If the target does not have native support for
550  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
551  if (!isTypeLegal(MVT::f32)) {
552    if (isTypeLegal(MVT::f64)) {
553      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
554      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
555      TransformToType[MVT::f32] = MVT::f64;
556      ValueTypeActions.setTypeAction(MVT::f32, Promote);
557    } else {
558      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
559      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
560      TransformToType[MVT::f32] = MVT::i32;
561      ValueTypeActions.setTypeAction(MVT::f32, Expand);
562    }
563  }
564
565  // Loop over all of the vector value types to see which need transformations.
566  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
567       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
568    MVT VT = (MVT::SimpleValueType)i;
569    if (!isTypeLegal(VT)) {
570      MVT IntermediateVT, RegisterVT;
571      unsigned NumIntermediates;
572      NumRegistersForVT[i] =
573        getVectorTypeBreakdown(VT,
574                               IntermediateVT, NumIntermediates,
575                               RegisterVT);
576      RegisterTypeForVT[i] = RegisterVT;
577
578      // Determine if there is a legal wider type.
579      bool IsLegalWiderType = false;
580      MVT EltVT = VT.getVectorElementType();
581      unsigned NElts = VT.getVectorNumElements();
582      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
583        MVT SVT = (MVT::SimpleValueType)nVT;
584        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
585            SVT.getVectorNumElements() > NElts) {
586          TransformToType[i] = SVT;
587          ValueTypeActions.setTypeAction(VT, Promote);
588          IsLegalWiderType = true;
589          break;
590        }
591      }
592      if (!IsLegalWiderType) {
593        MVT NVT = VT.getPow2VectorType();
594        if (NVT == VT) {
595          // Type is already a power of 2.  The default action is to split.
596          TransformToType[i] = MVT::Other;
597          ValueTypeActions.setTypeAction(VT, Expand);
598        } else {
599          TransformToType[i] = NVT;
600          ValueTypeActions.setTypeAction(VT, Promote);
601        }
602      }
603    }
604  }
605}
606
607const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
608  return NULL;
609}
610
611
612MVT TargetLowering::getSetCCResultType(MVT VT) const {
613  return getValueType(TD->getIntPtrType());
614}
615
616
617/// getVectorTypeBreakdown - Vector types are broken down into some number of
618/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
619/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
620/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
621///
622/// This method returns the number of registers needed, and the VT for each
623/// register.  It also returns the VT and quantity of the intermediate values
624/// before they are promoted/expanded.
625///
626unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
627                                                MVT &IntermediateVT,
628                                                unsigned &NumIntermediates,
629                                      MVT &RegisterVT) const {
630  // Figure out the right, legal destination reg to copy into.
631  unsigned NumElts = VT.getVectorNumElements();
632  MVT EltTy = VT.getVectorElementType();
633
634  unsigned NumVectorRegs = 1;
635
636  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
637  // could break down into LHS/RHS like LegalizeDAG does.
638  if (!isPowerOf2_32(NumElts)) {
639    NumVectorRegs = NumElts;
640    NumElts = 1;
641  }
642
643  // Divide the input until we get to a supported size.  This will always
644  // end with a scalar if the target doesn't support vectors.
645  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
646    NumElts >>= 1;
647    NumVectorRegs <<= 1;
648  }
649
650  NumIntermediates = NumVectorRegs;
651
652  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
653  if (!isTypeLegal(NewVT))
654    NewVT = EltTy;
655  IntermediateVT = NewVT;
656
657  MVT DestVT = getTypeToTransformTo(NewVT);
658  RegisterVT = DestVT;
659  if (DestVT.bitsLT(NewVT)) {
660    // Value is expanded, e.g. i64 -> i16.
661    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
662  } else {
663    // Otherwise, promotion or legal types use the same number of registers as
664    // the vector decimated to the appropriate level.
665    return NumVectorRegs;
666  }
667
668  return 1;
669}
670
671/// getWidenVectorType: given a vector type, returns the type to widen to
672/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
673/// If there is no vector type that we want to widen to, returns MVT::Other
674/// When and where to widen is target dependent based on the cost of
675/// scalarizing vs using the wider vector type.
676MVT TargetLowering::getWidenVectorType(MVT VT) const {
677  assert(VT.isVector());
678  if (isTypeLegal(VT))
679    return VT;
680
681  // Default is not to widen until moved to LegalizeTypes
682  return MVT::Other;
683}
684
685/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
686/// function arguments in the caller parameter area.  This is the actual
687/// alignment, not its logarithm.
688unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
689  return TD->getCallFrameTypeAlignment(Ty);
690}
691
692SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
693                                                 SelectionDAG &DAG) const {
694  if (usesGlobalOffsetTable())
695    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
696  return Table;
697}
698
699bool
700TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
701  // Assume that everything is safe in static mode.
702  if (getTargetMachine().getRelocationModel() == Reloc::Static)
703    return true;
704
705  // In dynamic-no-pic mode, assume that known defined values are safe.
706  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
707      GA &&
708      !GA->getGlobal()->isDeclaration() &&
709      !GA->getGlobal()->mayBeOverridden())
710    return true;
711
712  // Otherwise assume nothing is safe.
713  return false;
714}
715
716//===----------------------------------------------------------------------===//
717//  Optimization Methods
718//===----------------------------------------------------------------------===//
719
720/// ShrinkDemandedConstant - Check to see if the specified operand of the
721/// specified instruction is a constant integer.  If so, check to see if there
722/// are any bits set in the constant that are not demanded.  If so, shrink the
723/// constant and return true.
724bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
725                                                        const APInt &Demanded) {
726  DebugLoc dl = Op.getDebugLoc();
727  // FIXME: ISD::SELECT, ISD::SELECT_CC
728  switch (Op.getOpcode()) {
729  default: break;
730  case ISD::AND:
731  case ISD::OR:
732  case ISD::XOR:
733    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
734      if (C->getAPIntValue().intersects(~Demanded)) {
735        MVT VT = Op.getValueType();
736        SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
737                                    DAG.getConstant(Demanded &
738                                                      C->getAPIntValue(),
739                                                    VT));
740        return CombineTo(Op, New);
741      }
742    break;
743  }
744  return false;
745}
746
747/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
748/// DemandedMask bits of the result of Op are ever used downstream.  If we can
749/// use this information to simplify Op, create a new simplified DAG node and
750/// return true, returning the original and new nodes in Old and New. Otherwise,
751/// analyze the expression and return a mask of KnownOne and KnownZero bits for
752/// the expression (used to simplify the caller).  The KnownZero/One bits may
753/// only be accurate for those bits in the DemandedMask.
754bool TargetLowering::SimplifyDemandedBits(SDValue Op,
755                                          const APInt &DemandedMask,
756                                          APInt &KnownZero,
757                                          APInt &KnownOne,
758                                          TargetLoweringOpt &TLO,
759                                          unsigned Depth) const {
760  unsigned BitWidth = DemandedMask.getBitWidth();
761  assert(Op.getValueSizeInBits() == BitWidth &&
762         "Mask size mismatches value type size!");
763  APInt NewMask = DemandedMask;
764  DebugLoc dl = Op.getNode()->getDebugLoc();
765
766  // Don't know anything.
767  KnownZero = KnownOne = APInt(BitWidth, 0);
768
769  // Other users may use these bits.
770  if (!Op.getNode()->hasOneUse()) {
771    if (Depth != 0) {
772      // If not at the root, Just compute the KnownZero/KnownOne bits to
773      // simplify things downstream.
774      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
775      return false;
776    }
777    // If this is the root being simplified, allow it to have multiple uses,
778    // just set the NewMask to all bits.
779    NewMask = APInt::getAllOnesValue(BitWidth);
780  } else if (DemandedMask == 0) {
781    // Not demanding any bits from Op.
782    if (Op.getOpcode() != ISD::UNDEF)
783      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
784    return false;
785  } else if (Depth == 6) {        // Limit search depth.
786    return false;
787  }
788
789  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
790  switch (Op.getOpcode()) {
791  case ISD::Constant:
792    // We know all of the bits for a constant!
793    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
794    KnownZero = ~KnownOne & NewMask;
795    return false;   // Don't fall through, will infinitely loop.
796  case ISD::AND:
797    // If the RHS is a constant, check to see if the LHS would be zero without
798    // using the bits from the RHS.  Below, we use knowledge about the RHS to
799    // simplify the LHS, here we're using information from the LHS to simplify
800    // the RHS.
801    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
802      APInt LHSZero, LHSOne;
803      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
804                                LHSZero, LHSOne, Depth+1);
805      // If the LHS already has zeros where RHSC does, this and is dead.
806      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
807        return TLO.CombineTo(Op, Op.getOperand(0));
808      // If any of the set bits in the RHS are known zero on the LHS, shrink
809      // the constant.
810      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
811        return true;
812    }
813
814    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
815                             KnownOne, TLO, Depth+1))
816      return true;
817    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
818    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
819                             KnownZero2, KnownOne2, TLO, Depth+1))
820      return true;
821    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
822
823    // If all of the demanded bits are known one on one side, return the other.
824    // These bits cannot contribute to the result of the 'and'.
825    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
826      return TLO.CombineTo(Op, Op.getOperand(0));
827    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
828      return TLO.CombineTo(Op, Op.getOperand(1));
829    // If all of the demanded bits in the inputs are known zeros, return zero.
830    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
831      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
832    // If the RHS is a constant, see if we can simplify it.
833    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
834      return true;
835
836    // Output known-1 bits are only known if set in both the LHS & RHS.
837    KnownOne &= KnownOne2;
838    // Output known-0 are known to be clear if zero in either the LHS | RHS.
839    KnownZero |= KnownZero2;
840    break;
841  case ISD::OR:
842    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
843                             KnownOne, TLO, Depth+1))
844      return true;
845    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
846    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
847                             KnownZero2, KnownOne2, TLO, Depth+1))
848      return true;
849    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
850
851    // If all of the demanded bits are known zero on one side, return the other.
852    // These bits cannot contribute to the result of the 'or'.
853    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
854      return TLO.CombineTo(Op, Op.getOperand(0));
855    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
856      return TLO.CombineTo(Op, Op.getOperand(1));
857    // If all of the potentially set bits on one side are known to be set on
858    // the other side, just use the 'other' side.
859    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
860      return TLO.CombineTo(Op, Op.getOperand(0));
861    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
862      return TLO.CombineTo(Op, Op.getOperand(1));
863    // If the RHS is a constant, see if we can simplify it.
864    if (TLO.ShrinkDemandedConstant(Op, NewMask))
865      return true;
866
867    // Output known-0 bits are only known if clear in both the LHS & RHS.
868    KnownZero &= KnownZero2;
869    // Output known-1 are known to be set if set in either the LHS | RHS.
870    KnownOne |= KnownOne2;
871    break;
872  case ISD::XOR:
873    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
874                             KnownOne, TLO, Depth+1))
875      return true;
876    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
877    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
878                             KnownOne2, TLO, Depth+1))
879      return true;
880    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
881
882    // If all of the demanded bits are known zero on one side, return the other.
883    // These bits cannot contribute to the result of the 'xor'.
884    if ((KnownZero & NewMask) == NewMask)
885      return TLO.CombineTo(Op, Op.getOperand(0));
886    if ((KnownZero2 & NewMask) == NewMask)
887      return TLO.CombineTo(Op, Op.getOperand(1));
888
889    // If all of the unknown bits are known to be zero on one side or the other
890    // (but not both) turn this into an *inclusive* or.
891    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
892    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
893      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
894                                               Op.getOperand(0),
895                                               Op.getOperand(1)));
896
897    // Output known-0 bits are known if clear or set in both the LHS & RHS.
898    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
899    // Output known-1 are known to be set if set in only one of the LHS, RHS.
900    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
901
902    // If all of the demanded bits on one side are known, and all of the set
903    // bits on that side are also known to be set on the other side, turn this
904    // into an AND, as we know the bits will be cleared.
905    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
906    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
907      if ((KnownOne & KnownOne2) == KnownOne) {
908        MVT VT = Op.getValueType();
909        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
910        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
911                                                 Op.getOperand(0), ANDC));
912      }
913    }
914
915    // If the RHS is a constant, see if we can simplify it.
916    // for XOR, we prefer to force bits to 1 if they will make a -1.
917    // if we can't force bits, try to shrink constant
918    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
919      APInt Expanded = C->getAPIntValue() | (~NewMask);
920      // if we can expand it to have all bits set, do it
921      if (Expanded.isAllOnesValue()) {
922        if (Expanded != C->getAPIntValue()) {
923          MVT VT = Op.getValueType();
924          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
925                                          TLO.DAG.getConstant(Expanded, VT));
926          return TLO.CombineTo(Op, New);
927        }
928        // if it already has all the bits set, nothing to change
929        // but don't shrink either!
930      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
931        return true;
932      }
933    }
934
935    KnownZero = KnownZeroOut;
936    KnownOne  = KnownOneOut;
937    break;
938  case ISD::SELECT:
939    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
940                             KnownOne, TLO, Depth+1))
941      return true;
942    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
943                             KnownOne2, TLO, Depth+1))
944      return true;
945    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
946    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
947
948    // If the operands are constants, see if we can simplify them.
949    if (TLO.ShrinkDemandedConstant(Op, NewMask))
950      return true;
951
952    // Only known if known in both the LHS and RHS.
953    KnownOne &= KnownOne2;
954    KnownZero &= KnownZero2;
955    break;
956  case ISD::SELECT_CC:
957    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
958                             KnownOne, TLO, Depth+1))
959      return true;
960    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
961                             KnownOne2, TLO, Depth+1))
962      return true;
963    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
964    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
965
966    // If the operands are constants, see if we can simplify them.
967    if (TLO.ShrinkDemandedConstant(Op, NewMask))
968      return true;
969
970    // Only known if known in both the LHS and RHS.
971    KnownOne &= KnownOne2;
972    KnownZero &= KnownZero2;
973    break;
974  case ISD::SHL:
975    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
976      unsigned ShAmt = SA->getZExtValue();
977      SDValue InOp = Op.getOperand(0);
978
979      // If the shift count is an invalid immediate, don't do anything.
980      if (ShAmt >= BitWidth)
981        break;
982
983      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
984      // single shift.  We can do this if the bottom bits (which are shifted
985      // out) are never demanded.
986      if (InOp.getOpcode() == ISD::SRL &&
987          isa<ConstantSDNode>(InOp.getOperand(1))) {
988        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
989          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
990          unsigned Opc = ISD::SHL;
991          int Diff = ShAmt-C1;
992          if (Diff < 0) {
993            Diff = -Diff;
994            Opc = ISD::SRL;
995          }
996
997          SDValue NewSA =
998            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
999          MVT VT = Op.getValueType();
1000          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1001                                                   InOp.getOperand(0), NewSA));
1002        }
1003      }
1004
1005      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1006                               KnownZero, KnownOne, TLO, Depth+1))
1007        return true;
1008      KnownZero <<= SA->getZExtValue();
1009      KnownOne  <<= SA->getZExtValue();
1010      // low bits known zero.
1011      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1012    }
1013    break;
1014  case ISD::SRL:
1015    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1016      MVT VT = Op.getValueType();
1017      unsigned ShAmt = SA->getZExtValue();
1018      unsigned VTSize = VT.getSizeInBits();
1019      SDValue InOp = Op.getOperand(0);
1020
1021      // If the shift count is an invalid immediate, don't do anything.
1022      if (ShAmt >= BitWidth)
1023        break;
1024
1025      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1026      // single shift.  We can do this if the top bits (which are shifted out)
1027      // are never demanded.
1028      if (InOp.getOpcode() == ISD::SHL &&
1029          isa<ConstantSDNode>(InOp.getOperand(1))) {
1030        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1031          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1032          unsigned Opc = ISD::SRL;
1033          int Diff = ShAmt-C1;
1034          if (Diff < 0) {
1035            Diff = -Diff;
1036            Opc = ISD::SHL;
1037          }
1038
1039          SDValue NewSA =
1040            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1041          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1042                                                   InOp.getOperand(0), NewSA));
1043        }
1044      }
1045
1046      // Compute the new bits that are at the top now.
1047      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1048                               KnownZero, KnownOne, TLO, Depth+1))
1049        return true;
1050      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1051      KnownZero = KnownZero.lshr(ShAmt);
1052      KnownOne  = KnownOne.lshr(ShAmt);
1053
1054      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1055      KnownZero |= HighBits;  // High bits known zero.
1056    }
1057    break;
1058  case ISD::SRA:
1059    // If this is an arithmetic shift right and only the low-bit is set, we can
1060    // always convert this into a logical shr, even if the shift amount is
1061    // variable.  The low bit of the shift cannot be an input sign bit unless
1062    // the shift amount is >= the size of the datatype, which is undefined.
1063    if (DemandedMask == 1)
1064      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1065                                               Op.getOperand(0), Op.getOperand(1)));
1066
1067    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1068      MVT VT = Op.getValueType();
1069      unsigned ShAmt = SA->getZExtValue();
1070
1071      // If the shift count is an invalid immediate, don't do anything.
1072      if (ShAmt >= BitWidth)
1073        break;
1074
1075      APInt InDemandedMask = (NewMask << ShAmt);
1076
1077      // If any of the demanded bits are produced by the sign extension, we also
1078      // demand the input sign bit.
1079      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1080      if (HighBits.intersects(NewMask))
1081        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1082
1083      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1084                               KnownZero, KnownOne, TLO, Depth+1))
1085        return true;
1086      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1087      KnownZero = KnownZero.lshr(ShAmt);
1088      KnownOne  = KnownOne.lshr(ShAmt);
1089
1090      // Handle the sign bit, adjusted to where it is now in the mask.
1091      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1092
1093      // If the input sign bit is known to be zero, or if none of the top bits
1094      // are demanded, turn this into an unsigned shift right.
1095      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1096        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1097                                                 Op.getOperand(0),
1098                                                 Op.getOperand(1)));
1099      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1100        KnownOne |= HighBits;
1101      }
1102    }
1103    break;
1104  case ISD::SIGN_EXTEND_INREG: {
1105    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1106
1107    // Sign extension.  Compute the demanded bits in the result that are not
1108    // present in the input.
1109    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1110                                          BitWidth - EVT.getSizeInBits()) &
1111                    NewMask;
1112
1113    // If none of the extended bits are demanded, eliminate the sextinreg.
1114    if (NewBits == 0)
1115      return TLO.CombineTo(Op, Op.getOperand(0));
1116
1117    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1118    InSignBit.zext(BitWidth);
1119    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1120                                                   EVT.getSizeInBits()) &
1121                              NewMask;
1122
1123    // Since the sign extended bits are demanded, we know that the sign
1124    // bit is demanded.
1125    InputDemandedBits |= InSignBit;
1126
1127    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1128                             KnownZero, KnownOne, TLO, Depth+1))
1129      return true;
1130    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1131
1132    // If the sign bit of the input is known set or clear, then we know the
1133    // top bits of the result.
1134
1135    // If the input sign bit is known zero, convert this into a zero extension.
1136    if (KnownZero.intersects(InSignBit))
1137      return TLO.CombineTo(Op,
1138                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1139
1140    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1141      KnownOne |= NewBits;
1142      KnownZero &= ~NewBits;
1143    } else {                       // Input sign bit unknown
1144      KnownZero &= ~NewBits;
1145      KnownOne &= ~NewBits;
1146    }
1147    break;
1148  }
1149  case ISD::ZERO_EXTEND: {
1150    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1151    APInt InMask = NewMask;
1152    InMask.trunc(OperandBitWidth);
1153
1154    // If none of the top bits are demanded, convert this into an any_extend.
1155    APInt NewBits =
1156      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1157    if (!NewBits.intersects(NewMask))
1158      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1159                                               Op.getValueType(),
1160                                               Op.getOperand(0)));
1161
1162    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1163                             KnownZero, KnownOne, TLO, Depth+1))
1164      return true;
1165    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1166    KnownZero.zext(BitWidth);
1167    KnownOne.zext(BitWidth);
1168    KnownZero |= NewBits;
1169    break;
1170  }
1171  case ISD::SIGN_EXTEND: {
1172    MVT InVT = Op.getOperand(0).getValueType();
1173    unsigned InBits = InVT.getSizeInBits();
1174    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1175    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1176    APInt NewBits   = ~InMask & NewMask;
1177
1178    // If none of the top bits are demanded, convert this into an any_extend.
1179    if (NewBits == 0)
1180      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1181                                              Op.getValueType(),
1182                                              Op.getOperand(0)));
1183
1184    // Since some of the sign extended bits are demanded, we know that the sign
1185    // bit is demanded.
1186    APInt InDemandedBits = InMask & NewMask;
1187    InDemandedBits |= InSignBit;
1188    InDemandedBits.trunc(InBits);
1189
1190    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1191                             KnownOne, TLO, Depth+1))
1192      return true;
1193    KnownZero.zext(BitWidth);
1194    KnownOne.zext(BitWidth);
1195
1196    // If the sign bit is known zero, convert this to a zero extend.
1197    if (KnownZero.intersects(InSignBit))
1198      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1199                                               Op.getValueType(),
1200                                               Op.getOperand(0)));
1201
1202    // If the sign bit is known one, the top bits match.
1203    if (KnownOne.intersects(InSignBit)) {
1204      KnownOne  |= NewBits;
1205      KnownZero &= ~NewBits;
1206    } else {   // Otherwise, top bits aren't known.
1207      KnownOne  &= ~NewBits;
1208      KnownZero &= ~NewBits;
1209    }
1210    break;
1211  }
1212  case ISD::ANY_EXTEND: {
1213    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1214    APInt InMask = NewMask;
1215    InMask.trunc(OperandBitWidth);
1216    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1217                             KnownZero, KnownOne, TLO, Depth+1))
1218      return true;
1219    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1220    KnownZero.zext(BitWidth);
1221    KnownOne.zext(BitWidth);
1222    break;
1223  }
1224  case ISD::TRUNCATE: {
1225    // Simplify the input, using demanded bit information, and compute the known
1226    // zero/one bits live out.
1227    APInt TruncMask = NewMask;
1228    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1229    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1230                             KnownZero, KnownOne, TLO, Depth+1))
1231      return true;
1232    KnownZero.trunc(BitWidth);
1233    KnownOne.trunc(BitWidth);
1234
1235    // If the input is only used by this truncate, see if we can shrink it based
1236    // on the known demanded bits.
1237    if (Op.getOperand(0).getNode()->hasOneUse()) {
1238      SDValue In = Op.getOperand(0);
1239      unsigned InBitWidth = In.getValueSizeInBits();
1240      switch (In.getOpcode()) {
1241      default: break;
1242      case ISD::SRL:
1243        // Shrink SRL by a constant if none of the high bits shifted in are
1244        // demanded.
1245        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1246          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1247                                                 InBitWidth - BitWidth);
1248          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1249          HighBits.trunc(BitWidth);
1250
1251          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1252            // None of the shifted in bits are needed.  Add a truncate of the
1253            // shift input, then shift it.
1254            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1255                                                 Op.getValueType(),
1256                                                 In.getOperand(0));
1257            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1258                                                     Op.getValueType(),
1259                                                     NewTrunc,
1260                                                     In.getOperand(1)));
1261          }
1262        }
1263        break;
1264      }
1265    }
1266
1267    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1268    break;
1269  }
1270  case ISD::AssertZext: {
1271    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1272    APInt InMask = APInt::getLowBitsSet(BitWidth,
1273                                        VT.getSizeInBits());
1274    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1275                             KnownZero, KnownOne, TLO, Depth+1))
1276      return true;
1277    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1278    KnownZero |= ~InMask & NewMask;
1279    break;
1280  }
1281  case ISD::BIT_CONVERT:
1282#if 0
1283    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1284    // is demanded, turn this into a FGETSIGN.
1285    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1286        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1287        !MVT::isVector(Op.getOperand(0).getValueType())) {
1288      // Only do this xform if FGETSIGN is valid or if before legalize.
1289      if (!TLO.AfterLegalize ||
1290          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1291        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1292        // place.  We expect the SHL to be eliminated by other optimizations.
1293        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1294                                         Op.getOperand(0));
1295        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1296        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1297        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1298                                                 Sign, ShAmt));
1299      }
1300    }
1301#endif
1302    break;
1303  default:
1304    // Just use ComputeMaskedBits to compute output bits.
1305    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1306    break;
1307  }
1308
1309  // If we know the value of all of the demanded bits, return this as a
1310  // constant.
1311  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1312    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1313
1314  return false;
1315}
1316
1317/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1318/// in Mask are known to be either zero or one and return them in the
1319/// KnownZero/KnownOne bitsets.
1320void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1321                                                    const APInt &Mask,
1322                                                    APInt &KnownZero,
1323                                                    APInt &KnownOne,
1324                                                    const SelectionDAG &DAG,
1325                                                    unsigned Depth) const {
1326  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1327          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1328          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1329          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1330         "Should use MaskedValueIsZero if you don't know whether Op"
1331         " is a target node!");
1332  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1333}
1334
1335/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1336/// targets that want to expose additional information about sign bits to the
1337/// DAG Combiner.
1338unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1339                                                         unsigned Depth) const {
1340  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1341          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1342          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1343          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1344         "Should use ComputeNumSignBits if you don't know whether Op"
1345         " is a target node!");
1346  return 1;
1347}
1348
1349static bool ValueHasAtMostOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1350  // Logical shift right or left won't ever introduce new set bits.
1351  // We check for this case because we don't care which bits are
1352  // set, but ComputeMaskedBits won't know anything unless it can
1353  // determine which specific bits may be set.
1354  if (Val.getOpcode() == ISD::SHL || Val.getOpcode() == ISD::SRL)
1355    return ValueHasAtMostOneBitSet(Val.getOperand(0), DAG);
1356
1357  MVT OpVT = Val.getValueType();
1358  unsigned BitWidth = OpVT.getSizeInBits();
1359  APInt Mask = APInt::getAllOnesValue(BitWidth);
1360  APInt KnownZero, KnownOne;
1361  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1362  return KnownZero.countPopulation() == BitWidth - 1;
1363}
1364
1365/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1366/// and cc. If it is unable to simplify it, return a null SDValue.
1367SDValue
1368TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1369                              ISD::CondCode Cond, bool foldBooleans,
1370                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1371  SelectionDAG &DAG = DCI.DAG;
1372
1373  // These setcc operations always fold.
1374  switch (Cond) {
1375  default: break;
1376  case ISD::SETFALSE:
1377  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1378  case ISD::SETTRUE:
1379  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1380  }
1381
1382  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1383    const APInt &C1 = N1C->getAPIntValue();
1384    if (isa<ConstantSDNode>(N0.getNode())) {
1385      return DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1386    } else {
1387      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1388      // equality comparison, then we're just comparing whether X itself is
1389      // zero.
1390      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1391          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1392          N0.getOperand(1).getOpcode() == ISD::Constant) {
1393        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1394        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1395            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1396          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1397            // (srl (ctlz x), 5) == 0  -> X != 0
1398            // (srl (ctlz x), 5) != 1  -> X != 0
1399            Cond = ISD::SETNE;
1400          } else {
1401            // (srl (ctlz x), 5) != 0  -> X == 0
1402            // (srl (ctlz x), 5) == 1  -> X == 0
1403            Cond = ISD::SETEQ;
1404          }
1405          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1406          return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1407                              Zero, Cond);
1408        }
1409      }
1410
1411      // If the LHS is '(and load, const)', the RHS is 0,
1412      // the test is for equality or unsigned, and all 1 bits of the const are
1413      // in the same partial word, see if we can shorten the load.
1414      if (DCI.isBeforeLegalize() &&
1415          N0.getOpcode() == ISD::AND && C1 == 0 &&
1416          isa<LoadSDNode>(N0.getOperand(0)) &&
1417          N0.getOperand(0).getNode()->hasOneUse() &&
1418          isa<ConstantSDNode>(N0.getOperand(1))) {
1419        LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1420        uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1421        uint64_t bestMask = 0;
1422        unsigned bestWidth = 0, bestOffset = 0;
1423        if (!Lod->isVolatile() && Lod->isUnindexed()) {
1424          unsigned origWidth = N0.getValueType().getSizeInBits();
1425          // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1426          // 8 bits, but have to be careful...
1427          if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1428            origWidth = Lod->getMemoryVT().getSizeInBits();
1429          for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1430            uint64_t newMask = (1ULL << width) - 1;
1431            for (unsigned offset=0; offset<origWidth/width; offset++) {
1432              if ((newMask & Mask)==Mask) {
1433                if (!TD->isLittleEndian())
1434                  bestOffset = (origWidth/width - offset - 1) * (width/8);
1435                else
1436                  bestOffset = (uint64_t)offset * (width/8);
1437                bestMask = Mask >> (offset * (width/8) * 8);
1438                bestWidth = width;
1439                break;
1440              }
1441              newMask = newMask << width;
1442            }
1443          }
1444        }
1445        if (bestWidth) {
1446          MVT newVT = MVT::getIntegerVT(bestWidth);
1447          if (newVT.isRound()) {
1448            MVT PtrType = Lod->getOperand(1).getValueType();
1449            SDValue Ptr = Lod->getBasePtr();
1450            if (bestOffset != 0)
1451              Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1452                                DAG.getConstant(bestOffset, PtrType));
1453            unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1454            SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1455                                          Lod->getSrcValue(),
1456                                          Lod->getSrcValueOffset() + bestOffset,
1457                                          false, NewAlign);
1458            return DAG.getSetCC(dl, VT,
1459                                DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1460                                            DAG.getConstant(bestMask, newVT)),
1461                                DAG.getConstant(0LL, newVT), Cond);
1462          }
1463        }
1464      }
1465
1466      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1467      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1468        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1469
1470        // If the comparison constant has bits in the upper part, the
1471        // zero-extended value could never match.
1472        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1473                                                C1.getBitWidth() - InSize))) {
1474          switch (Cond) {
1475          case ISD::SETUGT:
1476          case ISD::SETUGE:
1477          case ISD::SETEQ: return DAG.getConstant(0, VT);
1478          case ISD::SETULT:
1479          case ISD::SETULE:
1480          case ISD::SETNE: return DAG.getConstant(1, VT);
1481          case ISD::SETGT:
1482          case ISD::SETGE:
1483            // True if the sign bit of C1 is set.
1484            return DAG.getConstant(C1.isNegative(), VT);
1485          case ISD::SETLT:
1486          case ISD::SETLE:
1487            // True if the sign bit of C1 isn't set.
1488            return DAG.getConstant(C1.isNonNegative(), VT);
1489          default:
1490            break;
1491          }
1492        }
1493
1494        // Otherwise, we can perform the comparison with the low bits.
1495        switch (Cond) {
1496        case ISD::SETEQ:
1497        case ISD::SETNE:
1498        case ISD::SETUGT:
1499        case ISD::SETUGE:
1500        case ISD::SETULT:
1501        case ISD::SETULE:
1502          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1503                          DAG.getConstant(APInt(C1).trunc(InSize),
1504                                          N0.getOperand(0).getValueType()),
1505                          Cond);
1506        default:
1507          break;   // todo, be more careful with signed comparisons
1508        }
1509      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1510                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1511        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1512        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1513        MVT ExtDstTy = N0.getValueType();
1514        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1515
1516        // If the extended part has any inconsistent bits, it cannot ever
1517        // compare equal.  In other words, they have to be all ones or all
1518        // zeros.
1519        APInt ExtBits =
1520          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1521        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1522          return DAG.getConstant(Cond == ISD::SETNE, VT);
1523
1524        SDValue ZextOp;
1525        MVT Op0Ty = N0.getOperand(0).getValueType();
1526        if (Op0Ty == ExtSrcTy) {
1527          ZextOp = N0.getOperand(0);
1528        } else {
1529          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1530          ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1531                               DAG.getConstant(Imm, Op0Ty));
1532        }
1533        if (!DCI.isCalledByLegalizer())
1534          DCI.AddToWorklist(ZextOp.getNode());
1535        // Otherwise, make this a use of a zext.
1536        return DAG.getSetCC(dl, VT, ZextOp,
1537                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1538                                                               ExtDstTyBits,
1539                                                               ExtSrcTyBits),
1540                                            ExtDstTy),
1541                            Cond);
1542      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1543                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1544
1545        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1546        if (N0.getOpcode() == ISD::SETCC) {
1547          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1548          if (TrueWhenTrue)
1549            return N0;
1550
1551          // Invert the condition.
1552          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1553          CC = ISD::getSetCCInverse(CC,
1554                                   N0.getOperand(0).getValueType().isInteger());
1555          return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1556        }
1557
1558        if ((N0.getOpcode() == ISD::XOR ||
1559             (N0.getOpcode() == ISD::AND &&
1560              N0.getOperand(0).getOpcode() == ISD::XOR &&
1561              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1562            isa<ConstantSDNode>(N0.getOperand(1)) &&
1563            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1564          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1565          // can only do this if the top bits are known zero.
1566          unsigned BitWidth = N0.getValueSizeInBits();
1567          if (DAG.MaskedValueIsZero(N0,
1568                                    APInt::getHighBitsSet(BitWidth,
1569                                                          BitWidth-1))) {
1570            // Okay, get the un-inverted input value.
1571            SDValue Val;
1572            if (N0.getOpcode() == ISD::XOR)
1573              Val = N0.getOperand(0);
1574            else {
1575              assert(N0.getOpcode() == ISD::AND &&
1576                     N0.getOperand(0).getOpcode() == ISD::XOR);
1577              // ((X^1)&1)^1 -> X & 1
1578              Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1579                                N0.getOperand(0).getOperand(0),
1580                                N0.getOperand(1));
1581            }
1582            return DAG.getSetCC(dl, VT, Val, N1,
1583                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1584          }
1585        }
1586      }
1587
1588      APInt MinVal, MaxVal;
1589      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1590      if (ISD::isSignedIntSetCC(Cond)) {
1591        MinVal = APInt::getSignedMinValue(OperandBitSize);
1592        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1593      } else {
1594        MinVal = APInt::getMinValue(OperandBitSize);
1595        MaxVal = APInt::getMaxValue(OperandBitSize);
1596      }
1597
1598      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1599      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1600        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1601        // X >= C0 --> X > (C0-1)
1602        return DAG.getSetCC(dl, VT, N0,
1603                            DAG.getConstant(C1-1, N1.getValueType()),
1604                            (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1605      }
1606
1607      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1608        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1609        // X <= C0 --> X < (C0+1)
1610        return DAG.getSetCC(dl, VT, N0,
1611                            DAG.getConstant(C1+1, N1.getValueType()),
1612                            (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1613      }
1614
1615      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1616        return DAG.getConstant(0, VT);      // X < MIN --> false
1617      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1618        return DAG.getConstant(1, VT);      // X >= MIN --> true
1619      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1620        return DAG.getConstant(0, VT);      // X > MAX --> false
1621      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1622        return DAG.getConstant(1, VT);      // X <= MAX --> true
1623
1624      // Canonicalize setgt X, Min --> setne X, Min
1625      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1626        return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1627      // Canonicalize setlt X, Max --> setne X, Max
1628      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1629        return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1630
1631      // If we have setult X, 1, turn it into seteq X, 0
1632      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1633        return DAG.getSetCC(dl, VT, N0,
1634                            DAG.getConstant(MinVal, N0.getValueType()),
1635                            ISD::SETEQ);
1636      // If we have setugt X, Max-1, turn it into seteq X, Max
1637      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1638        return DAG.getSetCC(dl, VT, N0,
1639                            DAG.getConstant(MaxVal, N0.getValueType()),
1640                            ISD::SETEQ);
1641
1642      // If we have "setcc X, C0", check to see if we can shrink the immediate
1643      // by changing cc.
1644
1645      // SETUGT X, SINTMAX  -> SETLT X, 0
1646      if (Cond == ISD::SETUGT &&
1647          C1 == APInt::getSignedMaxValue(OperandBitSize))
1648        return DAG.getSetCC(dl, VT, N0,
1649                            DAG.getConstant(0, N1.getValueType()),
1650                            ISD::SETLT);
1651
1652      // SETULT X, SINTMIN  -> SETGT X, -1
1653      if (Cond == ISD::SETULT &&
1654          C1 == APInt::getSignedMinValue(OperandBitSize)) {
1655        SDValue ConstMinusOne =
1656            DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1657                            N1.getValueType());
1658        return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1659      }
1660
1661      // Fold bit comparisons when we can.
1662      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1663          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1664        if (ConstantSDNode *AndRHS =
1665                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1666          MVT ShiftTy = DCI.isBeforeLegalize() ?
1667            getPointerTy() : getShiftAmountTy();
1668          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1669            // Perform the xform if the AND RHS is a single bit.
1670            if (isPowerOf2_64(AndRHS->getZExtValue())) {
1671              return DAG.getNode(ISD::SRL, dl, VT, N0,
1672                                 DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1673                                                 ShiftTy));
1674            }
1675          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1676            // (X & 8) == 8  -->  (X & 8) >> 3
1677            // Perform the xform if C1 is a single bit.
1678            if (C1.isPowerOf2()) {
1679              return DAG.getNode(ISD::SRL, dl, VT, N0,
1680                                 DAG.getConstant(C1.logBase2(), ShiftTy));
1681            }
1682          }
1683        }
1684    }
1685  } else if (isa<ConstantSDNode>(N0.getNode())) {
1686      // Ensure that the constant occurs on the RHS.
1687    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1688  }
1689
1690  if (isa<ConstantFPSDNode>(N0.getNode())) {
1691    // Constant fold or commute setcc.
1692    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1693    if (O.getNode()) return O;
1694  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1695    // If the RHS of an FP comparison is a constant, simplify it away in
1696    // some cases.
1697    if (CFP->getValueAPF().isNaN()) {
1698      // If an operand is known to be a nan, we can fold it.
1699      switch (ISD::getUnorderedFlavor(Cond)) {
1700      default: assert(0 && "Unknown flavor!");
1701      case 0:  // Known false.
1702        return DAG.getConstant(0, VT);
1703      case 1:  // Known true.
1704        return DAG.getConstant(1, VT);
1705      case 2:  // Undefined.
1706        return DAG.getUNDEF(VT);
1707      }
1708    }
1709
1710    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1711    // constant if knowing that the operand is non-nan is enough.  We prefer to
1712    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1713    // materialize 0.0.
1714    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1715      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1716  }
1717
1718  if (N0 == N1) {
1719    // We can always fold X == X for integer setcc's.
1720    if (N0.getValueType().isInteger())
1721      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1722    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1723    if (UOF == 2)   // FP operators that are undefined on NaNs.
1724      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1725    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1726      return DAG.getConstant(UOF, VT);
1727    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1728    // if it is not already.
1729    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1730    if (NewCond != Cond)
1731      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1732  }
1733
1734  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1735      N0.getValueType().isInteger()) {
1736    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1737        N0.getOpcode() == ISD::XOR) {
1738      // Simplify (X+Y) == (X+Z) -->  Y == Z
1739      if (N0.getOpcode() == N1.getOpcode()) {
1740        if (N0.getOperand(0) == N1.getOperand(0))
1741          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1742        if (N0.getOperand(1) == N1.getOperand(1))
1743          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1744        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1745          // If X op Y == Y op X, try other combinations.
1746          if (N0.getOperand(0) == N1.getOperand(1))
1747            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1748                                Cond);
1749          if (N0.getOperand(1) == N1.getOperand(0))
1750            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1751                                Cond);
1752        }
1753      }
1754
1755      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1756        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1757          // Turn (X+C1) == C2 --> X == C2-C1
1758          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1759            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1760                                DAG.getConstant(RHSC->getAPIntValue()-
1761                                                LHSR->getAPIntValue(),
1762                                N0.getValueType()), Cond);
1763          }
1764
1765          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1766          if (N0.getOpcode() == ISD::XOR)
1767            // If we know that all of the inverted bits are zero, don't bother
1768            // performing the inversion.
1769            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1770              return
1771                DAG.getSetCC(dl, VT, N0.getOperand(0),
1772                             DAG.getConstant(LHSR->getAPIntValue() ^
1773                                               RHSC->getAPIntValue(),
1774                                             N0.getValueType()),
1775                             Cond);
1776        }
1777
1778        // Turn (C1-X) == C2 --> X == C1-C2
1779        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1780          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1781            return
1782              DAG.getSetCC(dl, VT, N0.getOperand(1),
1783                           DAG.getConstant(SUBC->getAPIntValue() -
1784                                             RHSC->getAPIntValue(),
1785                                           N0.getValueType()),
1786                           Cond);
1787          }
1788        }
1789      }
1790
1791      // Simplify (X+Z) == X -->  Z == 0
1792      if (N0.getOperand(0) == N1)
1793        return DAG.getSetCC(dl, VT, N0.getOperand(1),
1794                        DAG.getConstant(0, N0.getValueType()), Cond);
1795      if (N0.getOperand(1) == N1) {
1796        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1797          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1798                          DAG.getConstant(0, N0.getValueType()), Cond);
1799        else if (N0.getNode()->hasOneUse()) {
1800          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1801          // (Z-X) == X  --> Z == X<<1
1802          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
1803                                     N1,
1804                                     DAG.getConstant(1, getShiftAmountTy()));
1805          if (!DCI.isCalledByLegalizer())
1806            DCI.AddToWorklist(SH.getNode());
1807          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1808        }
1809      }
1810    }
1811
1812    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1813        N1.getOpcode() == ISD::XOR) {
1814      // Simplify  X == (X+Z) -->  Z == 0
1815      if (N1.getOperand(0) == N0) {
1816        return DAG.getSetCC(dl, VT, N1.getOperand(1),
1817                        DAG.getConstant(0, N1.getValueType()), Cond);
1818      } else if (N1.getOperand(1) == N0) {
1819        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1820          return DAG.getSetCC(dl, VT, N1.getOperand(0),
1821                          DAG.getConstant(0, N1.getValueType()), Cond);
1822        } else if (N1.getNode()->hasOneUse()) {
1823          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1824          // X == (Z-X)  --> X<<1 == Z
1825          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1826                                     DAG.getConstant(1, getShiftAmountTy()));
1827          if (!DCI.isCalledByLegalizer())
1828            DCI.AddToWorklist(SH.getNode());
1829          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1830        }
1831      }
1832    }
1833
1834    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1835    if (N0.getOpcode() == ISD::AND)
1836      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1837        if (ValueHasAtMostOneBitSet(N1, DAG)) {
1838          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1839          SDValue Zero = DAG.getConstant(0, N1.getValueType());
1840          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1841        }
1842      }
1843    if (N1.getOpcode() == ISD::AND)
1844      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1845        if (ValueHasAtMostOneBitSet(N0, DAG)) {
1846          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1847          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1848          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
1849        }
1850      }
1851  }
1852
1853  // Fold away ALL boolean setcc's.
1854  SDValue Temp;
1855  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1856    switch (Cond) {
1857    default: assert(0 && "Unknown integer setcc!");
1858    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
1859      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1860      N0 = DAG.getNOT(dl, Temp, MVT::i1);
1861      if (!DCI.isCalledByLegalizer())
1862        DCI.AddToWorklist(Temp.getNode());
1863      break;
1864    case ISD::SETNE:  // X != Y   -->  (X^Y)
1865      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1866      break;
1867    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
1868    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
1869      Temp = DAG.getNOT(dl, N0, MVT::i1);
1870      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
1871      if (!DCI.isCalledByLegalizer())
1872        DCI.AddToWorklist(Temp.getNode());
1873      break;
1874    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
1875    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
1876      Temp = DAG.getNOT(dl, N1, MVT::i1);
1877      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
1878      if (!DCI.isCalledByLegalizer())
1879        DCI.AddToWorklist(Temp.getNode());
1880      break;
1881    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
1882    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
1883      Temp = DAG.getNOT(dl, N0, MVT::i1);
1884      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
1885      if (!DCI.isCalledByLegalizer())
1886        DCI.AddToWorklist(Temp.getNode());
1887      break;
1888    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
1889    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
1890      Temp = DAG.getNOT(dl, N1, MVT::i1);
1891      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
1892      break;
1893    }
1894    if (VT != MVT::i1) {
1895      if (!DCI.isCalledByLegalizer())
1896        DCI.AddToWorklist(N0.getNode());
1897      // FIXME: If running after legalize, we probably can't do this.
1898      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
1899    }
1900    return N0;
1901  }
1902
1903  // Could not fold it.
1904  return SDValue();
1905}
1906
1907/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1908/// node is a GlobalAddress + offset.
1909bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
1910                                    int64_t &Offset) const {
1911  if (isa<GlobalAddressSDNode>(N)) {
1912    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1913    GA = GASD->getGlobal();
1914    Offset += GASD->getOffset();
1915    return true;
1916  }
1917
1918  if (N->getOpcode() == ISD::ADD) {
1919    SDValue N1 = N->getOperand(0);
1920    SDValue N2 = N->getOperand(1);
1921    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
1922      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1923      if (V) {
1924        Offset += V->getSExtValue();
1925        return true;
1926      }
1927    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
1928      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1929      if (V) {
1930        Offset += V->getSExtValue();
1931        return true;
1932      }
1933    }
1934  }
1935  return false;
1936}
1937
1938
1939/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
1940/// loading 'Bytes' bytes from a location that is 'Dist' units away from the
1941/// location that the 'Base' load is loading from.
1942bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
1943                                       unsigned Bytes, int Dist,
1944                                       const MachineFrameInfo *MFI) const {
1945  if (LD->getOperand(0).getNode() != Base->getOperand(0).getNode())
1946    return false;
1947  MVT VT = LD->getValueType(0);
1948  if (VT.getSizeInBits() / 8 != Bytes)
1949    return false;
1950
1951  SDValue Loc = LD->getOperand(1);
1952  SDValue BaseLoc = Base->getOperand(1);
1953  if (Loc.getOpcode() == ISD::FrameIndex) {
1954    if (BaseLoc.getOpcode() != ISD::FrameIndex)
1955      return false;
1956    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
1957    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
1958    int FS  = MFI->getObjectSize(FI);
1959    int BFS = MFI->getObjectSize(BFI);
1960    if (FS != BFS || FS != (int)Bytes) return false;
1961    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
1962  }
1963
1964  GlobalValue *GV1 = NULL;
1965  GlobalValue *GV2 = NULL;
1966  int64_t Offset1 = 0;
1967  int64_t Offset2 = 0;
1968  bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
1969  bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
1970  if (isGA1 && isGA2 && GV1 == GV2)
1971    return Offset1 == (Offset2 + Dist*Bytes);
1972  return false;
1973}
1974
1975
1976SDValue TargetLowering::
1977PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1978  // Default implementation: no optimization.
1979  return SDValue();
1980}
1981
1982//===----------------------------------------------------------------------===//
1983//  Inline Assembler Implementation Methods
1984//===----------------------------------------------------------------------===//
1985
1986
1987TargetLowering::ConstraintType
1988TargetLowering::getConstraintType(const std::string &Constraint) const {
1989  // FIXME: lots more standard ones to handle.
1990  if (Constraint.size() == 1) {
1991    switch (Constraint[0]) {
1992    default: break;
1993    case 'r': return C_RegisterClass;
1994    case 'm':    // memory
1995    case 'o':    // offsetable
1996    case 'V':    // not offsetable
1997      return C_Memory;
1998    case 'i':    // Simple Integer or Relocatable Constant
1999    case 'n':    // Simple Integer
2000    case 's':    // Relocatable Constant
2001    case 'X':    // Allow ANY value.
2002    case 'I':    // Target registers.
2003    case 'J':
2004    case 'K':
2005    case 'L':
2006    case 'M':
2007    case 'N':
2008    case 'O':
2009    case 'P':
2010      return C_Other;
2011    }
2012  }
2013
2014  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2015      Constraint[Constraint.size()-1] == '}')
2016    return C_Register;
2017  return C_Unknown;
2018}
2019
2020/// LowerXConstraint - try to replace an X constraint, which matches anything,
2021/// with another that has more specific requirements based on the type of the
2022/// corresponding operand.
2023const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
2024  if (ConstraintVT.isInteger())
2025    return "r";
2026  if (ConstraintVT.isFloatingPoint())
2027    return "f";      // works for many targets
2028  return 0;
2029}
2030
2031/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2032/// vector.  If it is invalid, don't add anything to Ops.
2033void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2034                                                  char ConstraintLetter,
2035                                                  bool hasMemory,
2036                                                  std::vector<SDValue> &Ops,
2037                                                  SelectionDAG &DAG) const {
2038  switch (ConstraintLetter) {
2039  default: break;
2040  case 'X':     // Allows any operand; labels (basic block) use this.
2041    if (Op.getOpcode() == ISD::BasicBlock) {
2042      Ops.push_back(Op);
2043      return;
2044    }
2045    // fall through
2046  case 'i':    // Simple Integer or Relocatable Constant
2047  case 'n':    // Simple Integer
2048  case 's': {  // Relocatable Constant
2049    // These operands are interested in values of the form (GV+C), where C may
2050    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2051    // is possible and fine if either GV or C are missing.
2052    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2053    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2054
2055    // If we have "(add GV, C)", pull out GV/C
2056    if (Op.getOpcode() == ISD::ADD) {
2057      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2058      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2059      if (C == 0 || GA == 0) {
2060        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2061        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2062      }
2063      if (C == 0 || GA == 0)
2064        C = 0, GA = 0;
2065    }
2066
2067    // If we find a valid operand, map to the TargetXXX version so that the
2068    // value itself doesn't get selected.
2069    if (GA) {   // Either &GV   or   &GV+C
2070      if (ConstraintLetter != 'n') {
2071        int64_t Offs = GA->getOffset();
2072        if (C) Offs += C->getZExtValue();
2073        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2074                                                 Op.getValueType(), Offs));
2075        return;
2076      }
2077    }
2078    if (C) {   // just C, no GV.
2079      // Simple constants are not allowed for 's'.
2080      if (ConstraintLetter != 's') {
2081        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue(),
2082                                            Op.getValueType()));
2083        return;
2084      }
2085    }
2086    break;
2087  }
2088  }
2089}
2090
2091std::vector<unsigned> TargetLowering::
2092getRegClassForInlineAsmConstraint(const std::string &Constraint,
2093                                  MVT VT) const {
2094  return std::vector<unsigned>();
2095}
2096
2097
2098std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2099getRegForInlineAsmConstraint(const std::string &Constraint,
2100                             MVT VT) const {
2101  if (Constraint[0] != '{')
2102    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2103  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2104
2105  // Remove the braces from around the name.
2106  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
2107
2108  // Figure out which register class contains this reg.
2109  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2110  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2111       E = RI->regclass_end(); RCI != E; ++RCI) {
2112    const TargetRegisterClass *RC = *RCI;
2113
2114    // If none of the the value types for this register class are valid, we
2115    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2116    bool isLegal = false;
2117    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2118         I != E; ++I) {
2119      if (isTypeLegal(*I)) {
2120        isLegal = true;
2121        break;
2122      }
2123    }
2124
2125    if (!isLegal) continue;
2126
2127    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2128         I != E; ++I) {
2129      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
2130        return std::make_pair(*I, RC);
2131    }
2132  }
2133
2134  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2135}
2136
2137//===----------------------------------------------------------------------===//
2138// Constraint Selection.
2139
2140/// isMatchingInputConstraint - Return true of this is an input operand that is
2141/// a matching constraint like "4".
2142bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2143  assert(!ConstraintCode.empty() && "No known constraint!");
2144  return isdigit(ConstraintCode[0]);
2145}
2146
2147/// getMatchedOperand - If this is an input matching constraint, this method
2148/// returns the output operand it matches.
2149unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2150  assert(!ConstraintCode.empty() && "No known constraint!");
2151  return atoi(ConstraintCode.c_str());
2152}
2153
2154
2155/// getConstraintGenerality - Return an integer indicating how general CT
2156/// is.
2157static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2158  switch (CT) {
2159  default: assert(0 && "Unknown constraint type!");
2160  case TargetLowering::C_Other:
2161  case TargetLowering::C_Unknown:
2162    return 0;
2163  case TargetLowering::C_Register:
2164    return 1;
2165  case TargetLowering::C_RegisterClass:
2166    return 2;
2167  case TargetLowering::C_Memory:
2168    return 3;
2169  }
2170}
2171
2172/// ChooseConstraint - If there are multiple different constraints that we
2173/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2174/// This is somewhat tricky: constraints fall into four classes:
2175///    Other         -> immediates and magic values
2176///    Register      -> one specific register
2177///    RegisterClass -> a group of regs
2178///    Memory        -> memory
2179/// Ideally, we would pick the most specific constraint possible: if we have
2180/// something that fits into a register, we would pick it.  The problem here
2181/// is that if we have something that could either be in a register or in
2182/// memory that use of the register could cause selection of *other*
2183/// operands to fail: they might only succeed if we pick memory.  Because of
2184/// this the heuristic we use is:
2185///
2186///  1) If there is an 'other' constraint, and if the operand is valid for
2187///     that constraint, use it.  This makes us take advantage of 'i'
2188///     constraints when available.
2189///  2) Otherwise, pick the most general constraint present.  This prefers
2190///     'm' over 'r', for example.
2191///
2192static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2193                             bool hasMemory,  const TargetLowering &TLI,
2194                             SDValue Op, SelectionDAG *DAG) {
2195  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2196  unsigned BestIdx = 0;
2197  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2198  int BestGenerality = -1;
2199
2200  // Loop over the options, keeping track of the most general one.
2201  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2202    TargetLowering::ConstraintType CType =
2203      TLI.getConstraintType(OpInfo.Codes[i]);
2204
2205    // If this is an 'other' constraint, see if the operand is valid for it.
2206    // For example, on X86 we might have an 'rI' constraint.  If the operand
2207    // is an integer in the range [0..31] we want to use I (saving a load
2208    // of a register), otherwise we must use 'r'.
2209    if (CType == TargetLowering::C_Other && Op.getNode()) {
2210      assert(OpInfo.Codes[i].size() == 1 &&
2211             "Unhandled multi-letter 'other' constraint");
2212      std::vector<SDValue> ResultOps;
2213      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2214                                       ResultOps, *DAG);
2215      if (!ResultOps.empty()) {
2216        BestType = CType;
2217        BestIdx = i;
2218        break;
2219      }
2220    }
2221
2222    // This constraint letter is more general than the previous one, use it.
2223    int Generality = getConstraintGenerality(CType);
2224    if (Generality > BestGenerality) {
2225      BestType = CType;
2226      BestIdx = i;
2227      BestGenerality = Generality;
2228    }
2229  }
2230
2231  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2232  OpInfo.ConstraintType = BestType;
2233}
2234
2235/// ComputeConstraintToUse - Determines the constraint code and constraint
2236/// type to use for the specific AsmOperandInfo, setting
2237/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2238void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2239                                            SDValue Op,
2240                                            bool hasMemory,
2241                                            SelectionDAG *DAG) const {
2242  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2243
2244  // Single-letter constraints ('r') are very common.
2245  if (OpInfo.Codes.size() == 1) {
2246    OpInfo.ConstraintCode = OpInfo.Codes[0];
2247    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2248  } else {
2249    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2250  }
2251
2252  // 'X' matches anything.
2253  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2254    // Labels and constants are handled elsewhere ('X' is the only thing
2255    // that matches labels).
2256    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
2257        isa<ConstantInt>(OpInfo.CallOperandVal))
2258      return;
2259
2260    // Otherwise, try to resolve it to something we know about by looking at
2261    // the actual operand type.
2262    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2263      OpInfo.ConstraintCode = Repl;
2264      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2265    }
2266  }
2267}
2268
2269//===----------------------------------------------------------------------===//
2270//  Loop Strength Reduction hooks
2271//===----------------------------------------------------------------------===//
2272
2273/// isLegalAddressingMode - Return true if the addressing mode represented
2274/// by AM is legal for this target, for a load/store of the specified type.
2275bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2276                                           const Type *Ty) const {
2277  // The default implementation of this implements a conservative RISCy, r+r and
2278  // r+i addr mode.
2279
2280  // Allows a sign-extended 16-bit immediate field.
2281  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2282    return false;
2283
2284  // No global is ever allowed as a base.
2285  if (AM.BaseGV)
2286    return false;
2287
2288  // Only support r+r,
2289  switch (AM.Scale) {
2290  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2291    break;
2292  case 1:
2293    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2294      return false;
2295    // Otherwise we have r+r or r+i.
2296    break;
2297  case 2:
2298    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2299      return false;
2300    // Allow 2*r as r+r.
2301    break;
2302  }
2303
2304  return true;
2305}
2306
2307struct mu {
2308  APInt m;     // magic number
2309  bool a;      // add indicator
2310  unsigned s;  // shift amount
2311};
2312
2313/// magicu - calculate the magic numbers required to codegen an integer udiv as
2314/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2315static mu magicu(const APInt& d) {
2316  unsigned p;
2317  APInt nc, delta, q1, r1, q2, r2;
2318  struct mu magu;
2319  magu.a = 0;               // initialize "add" indicator
2320  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
2321  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
2322  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
2323
2324  nc = allOnes - (-d).urem(d);
2325  p = d.getBitWidth() - 1;  // initialize p
2326  q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
2327  r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc)
2328  q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
2329  r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d)
2330  do {
2331    p = p + 1;
2332    if (r1.uge(nc - r1)) {
2333      q1 = q1 + q1 + 1;  // update q1
2334      r1 = r1 + r1 - nc; // update r1
2335    }
2336    else {
2337      q1 = q1+q1; // update q1
2338      r1 = r1+r1; // update r1
2339    }
2340    if ((r2 + 1).uge(d - r2)) {
2341      if (q2.uge(signedMax)) magu.a = 1;
2342      q2 = q2+q2 + 1;     // update q2
2343      r2 = r2+r2 + 1 - d; // update r2
2344    }
2345    else {
2346      if (q2.uge(signedMin)) magu.a = 1;
2347      q2 = q2+q2;     // update q2
2348      r2 = r2+r2 + 1; // update r2
2349    }
2350    delta = d - 1 - r2;
2351  } while (p < d.getBitWidth()*2 &&
2352           (q1.ult(delta) || (q1 == delta && r1 == 0)));
2353  magu.m = q2 + 1; // resulting magic number
2354  magu.s = p - d.getBitWidth();  // resulting shift
2355  return magu;
2356}
2357
2358// Magic for divide replacement
2359struct ms {
2360  APInt m;  // magic number
2361  unsigned s;  // shift amount
2362};
2363
2364/// magic - calculate the magic numbers required to codegen an integer sdiv as
2365/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2366/// or -1.
2367static ms magic(const APInt& d) {
2368  unsigned p;
2369  APInt ad, anc, delta, q1, r1, q2, r2, t;
2370  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
2371  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
2372  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
2373  struct ms mag;
2374
2375  ad = d.abs();
2376  t = signedMin + (d.lshr(d.getBitWidth() - 1));
2377  anc = t - 1 - t.urem(ad);   // absolute value of nc
2378  p = d.getBitWidth() - 1;    // initialize p
2379  q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc)
2380  r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc))
2381  q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d)
2382  r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d))
2383  do {
2384    p = p + 1;
2385    q1 = q1<<1;          // update q1 = 2p/abs(nc)
2386    r1 = r1<<1;          // update r1 = rem(2p/abs(nc))
2387    if (r1.uge(anc)) {  // must be unsigned comparison
2388      q1 = q1 + 1;
2389      r1 = r1 - anc;
2390    }
2391    q2 = q2<<1;          // update q2 = 2p/abs(d)
2392    r2 = r2<<1;          // update r2 = rem(2p/abs(d))
2393    if (r2.uge(ad)) {   // must be unsigned comparison
2394      q2 = q2 + 1;
2395      r2 = r2 - ad;
2396    }
2397    delta = ad - r2;
2398  } while (q1.ule(delta) || (q1 == delta && r1 == 0));
2399
2400  mag.m = q2 + 1;
2401  if (d.isNegative()) mag.m = -mag.m;   // resulting magic number
2402  mag.s = p - d.getBitWidth();          // resulting shift
2403  return mag;
2404}
2405
2406/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2407/// return a DAG expression to select that will generate the same value by
2408/// multiplying by a magic number.  See:
2409/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2410SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2411                                  std::vector<SDNode*>* Created) const {
2412  MVT VT = N->getValueType(0);
2413  DebugLoc dl= N->getDebugLoc();
2414
2415  // Check to see if we can do this.
2416  // FIXME: We should be more aggressive here.
2417  if (!isTypeLegal(VT))
2418    return SDValue();
2419
2420  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2421  ms magics = magic(d);
2422
2423  // Multiply the numerator (operand 0) by the magic value
2424  // FIXME: We should support doing a MUL in a wider type
2425  SDValue Q;
2426  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2427    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2428                    DAG.getConstant(magics.m, VT));
2429  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2430    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2431                              N->getOperand(0),
2432                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2433  else
2434    return SDValue();       // No mulhs or equvialent
2435  // If d > 0 and m < 0, add the numerator
2436  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2437    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2438    if (Created)
2439      Created->push_back(Q.getNode());
2440  }
2441  // If d < 0 and m > 0, subtract the numerator.
2442  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2443    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2444    if (Created)
2445      Created->push_back(Q.getNode());
2446  }
2447  // Shift right algebraic if shift value is nonzero
2448  if (magics.s > 0) {
2449    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2450                    DAG.getConstant(magics.s, getShiftAmountTy()));
2451    if (Created)
2452      Created->push_back(Q.getNode());
2453  }
2454  // Extract the sign bit and add it to the quotient
2455  SDValue T =
2456    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2457                                                 getShiftAmountTy()));
2458  if (Created)
2459    Created->push_back(T.getNode());
2460  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2461}
2462
2463/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2464/// return a DAG expression to select that will generate the same value by
2465/// multiplying by a magic number.  See:
2466/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2467SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2468                                  std::vector<SDNode*>* Created) const {
2469  MVT VT = N->getValueType(0);
2470  DebugLoc dl = N->getDebugLoc();
2471
2472  // Check to see if we can do this.
2473  // FIXME: We should be more aggressive here.
2474  if (!isTypeLegal(VT))
2475    return SDValue();
2476
2477  // FIXME: We should use a narrower constant when the upper
2478  // bits are known to be zero.
2479  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2480  mu magics = magicu(N1C->getAPIntValue());
2481
2482  // Multiply the numerator (operand 0) by the magic value
2483  // FIXME: We should support doing a MUL in a wider type
2484  SDValue Q;
2485  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2486    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2487                    DAG.getConstant(magics.m, VT));
2488  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2489    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2490                              N->getOperand(0),
2491                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2492  else
2493    return SDValue();       // No mulhu or equvialent
2494  if (Created)
2495    Created->push_back(Q.getNode());
2496
2497  if (magics.a == 0) {
2498    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2499           "We shouldn't generate an undefined shift!");
2500    return DAG.getNode(ISD::SRL, dl, VT, Q,
2501                       DAG.getConstant(magics.s, getShiftAmountTy()));
2502  } else {
2503    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2504    if (Created)
2505      Created->push_back(NPQ.getNode());
2506    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2507                      DAG.getConstant(1, getShiftAmountTy()));
2508    if (Created)
2509      Created->push_back(NPQ.getNode());
2510    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2511    if (Created)
2512      Created->push_back(NPQ.getNode());
2513    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2514                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2515  }
2516}
2517