1//===-- Constants.cpp - Implement Constant nodes --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Constant* classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/IR/Constants.h"
15#include "ConstantFold.h"
16#include "LLVMContextImpl.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/ADT/StringMap.h"
21#include "llvm/IR/DerivedTypes.h"
22#include "llvm/IR/GetElementPtrTypeIterator.h"
23#include "llvm/IR/GlobalValue.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/Module.h"
26#include "llvm/IR/Operator.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/ManagedStatic.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/Support/raw_ostream.h"
32#include <algorithm>
33#include <cstdarg>
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37//                              Constant Class
38//===----------------------------------------------------------------------===//
39
40void Constant::anchor() { }
41
42void ConstantData::anchor() {}
43
44bool Constant::isNegativeZeroValue() const {
45  // Floating point values have an explicit -0.0 value.
46  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
47    return CFP->isZero() && CFP->isNegative();
48
49  // Equivalent for a vector of -0.0's.
50  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
51    if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
52      if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
53        return true;
54
55  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
56    if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
57      if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
58        return true;
59
60  // We've already handled true FP case; any other FP vectors can't represent -0.0.
61  if (getType()->isFPOrFPVectorTy())
62    return false;
63
64  // Otherwise, just use +0.0.
65  return isNullValue();
66}
67
68// Return true iff this constant is positive zero (floating point), negative
69// zero (floating point), or a null value.
70bool Constant::isZeroValue() const {
71  // Floating point values have an explicit -0.0 value.
72  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
73    return CFP->isZero();
74
75  // Equivalent for a vector of -0.0's.
76  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
77    if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
78      if (SplatCFP && SplatCFP->isZero())
79        return true;
80
81  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
82    if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
83      if (SplatCFP && SplatCFP->isZero())
84        return true;
85
86  // Otherwise, just use +0.0.
87  return isNullValue();
88}
89
90bool Constant::isNullValue() const {
91  // 0 is null.
92  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
93    return CI->isZero();
94
95  // +0.0 is null.
96  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
97    return CFP->isZero() && !CFP->isNegative();
98
99  // constant zero is zero for aggregates, cpnull is null for pointers, none for
100  // tokens.
101  return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
102         isa<ConstantTokenNone>(this);
103}
104
105bool Constant::isAllOnesValue() const {
106  // Check for -1 integers
107  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
108    return CI->isMinusOne();
109
110  // Check for FP which are bitcasted from -1 integers
111  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
112    return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
113
114  // Check for constant vectors which are splats of -1 values.
115  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
116    if (Constant *Splat = CV->getSplatValue())
117      return Splat->isAllOnesValue();
118
119  // Check for constant vectors which are splats of -1 values.
120  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
121    if (Constant *Splat = CV->getSplatValue())
122      return Splat->isAllOnesValue();
123
124  return false;
125}
126
127bool Constant::isOneValue() const {
128  // Check for 1 integers
129  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
130    return CI->isOne();
131
132  // Check for FP which are bitcasted from 1 integers
133  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
134    return CFP->getValueAPF().bitcastToAPInt() == 1;
135
136  // Check for constant vectors which are splats of 1 values.
137  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
138    if (Constant *Splat = CV->getSplatValue())
139      return Splat->isOneValue();
140
141  // Check for constant vectors which are splats of 1 values.
142  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
143    if (Constant *Splat = CV->getSplatValue())
144      return Splat->isOneValue();
145
146  return false;
147}
148
149bool Constant::isMinSignedValue() const {
150  // Check for INT_MIN integers
151  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
152    return CI->isMinValue(/*isSigned=*/true);
153
154  // Check for FP which are bitcasted from INT_MIN integers
155  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
156    return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
157
158  // Check for constant vectors which are splats of INT_MIN values.
159  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
160    if (Constant *Splat = CV->getSplatValue())
161      return Splat->isMinSignedValue();
162
163  // Check for constant vectors which are splats of INT_MIN values.
164  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
165    if (Constant *Splat = CV->getSplatValue())
166      return Splat->isMinSignedValue();
167
168  return false;
169}
170
171bool Constant::isNotMinSignedValue() const {
172  // Check for INT_MIN integers
173  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
174    return !CI->isMinValue(/*isSigned=*/true);
175
176  // Check for FP which are bitcasted from INT_MIN integers
177  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
178    return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
179
180  // Check for constant vectors which are splats of INT_MIN values.
181  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
182    if (Constant *Splat = CV->getSplatValue())
183      return Splat->isNotMinSignedValue();
184
185  // Check for constant vectors which are splats of INT_MIN values.
186  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
187    if (Constant *Splat = CV->getSplatValue())
188      return Splat->isNotMinSignedValue();
189
190  // It *may* contain INT_MIN, we can't tell.
191  return false;
192}
193
194/// Constructor to create a '0' constant of arbitrary type.
195Constant *Constant::getNullValue(Type *Ty) {
196  switch (Ty->getTypeID()) {
197  case Type::IntegerTyID:
198    return ConstantInt::get(Ty, 0);
199  case Type::HalfTyID:
200    return ConstantFP::get(Ty->getContext(),
201                           APFloat::getZero(APFloat::IEEEhalf));
202  case Type::FloatTyID:
203    return ConstantFP::get(Ty->getContext(),
204                           APFloat::getZero(APFloat::IEEEsingle));
205  case Type::DoubleTyID:
206    return ConstantFP::get(Ty->getContext(),
207                           APFloat::getZero(APFloat::IEEEdouble));
208  case Type::X86_FP80TyID:
209    return ConstantFP::get(Ty->getContext(),
210                           APFloat::getZero(APFloat::x87DoubleExtended));
211  case Type::FP128TyID:
212    return ConstantFP::get(Ty->getContext(),
213                           APFloat::getZero(APFloat::IEEEquad));
214  case Type::PPC_FP128TyID:
215    return ConstantFP::get(Ty->getContext(),
216                           APFloat(APFloat::PPCDoubleDouble,
217                                   APInt::getNullValue(128)));
218  case Type::PointerTyID:
219    return ConstantPointerNull::get(cast<PointerType>(Ty));
220  case Type::StructTyID:
221  case Type::ArrayTyID:
222  case Type::VectorTyID:
223    return ConstantAggregateZero::get(Ty);
224  case Type::TokenTyID:
225    return ConstantTokenNone::get(Ty->getContext());
226  default:
227    // Function, Label, or Opaque type?
228    llvm_unreachable("Cannot create a null constant of that type!");
229  }
230}
231
232Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
233  Type *ScalarTy = Ty->getScalarType();
234
235  // Create the base integer constant.
236  Constant *C = ConstantInt::get(Ty->getContext(), V);
237
238  // Convert an integer to a pointer, if necessary.
239  if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
240    C = ConstantExpr::getIntToPtr(C, PTy);
241
242  // Broadcast a scalar to a vector, if necessary.
243  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
244    C = ConstantVector::getSplat(VTy->getNumElements(), C);
245
246  return C;
247}
248
249Constant *Constant::getAllOnesValue(Type *Ty) {
250  if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
251    return ConstantInt::get(Ty->getContext(),
252                            APInt::getAllOnesValue(ITy->getBitWidth()));
253
254  if (Ty->isFloatingPointTy()) {
255    APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
256                                          !Ty->isPPC_FP128Ty());
257    return ConstantFP::get(Ty->getContext(), FL);
258  }
259
260  VectorType *VTy = cast<VectorType>(Ty);
261  return ConstantVector::getSplat(VTy->getNumElements(),
262                                  getAllOnesValue(VTy->getElementType()));
263}
264
265Constant *Constant::getAggregateElement(unsigned Elt) const {
266  if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this))
267    return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
268
269  if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
270    return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
271
272  if (const UndefValue *UV = dyn_cast<UndefValue>(this))
273    return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
274
275  if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
276    return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
277                                       : nullptr;
278  return nullptr;
279}
280
281Constant *Constant::getAggregateElement(Constant *Elt) const {
282  assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
283  if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
284    return getAggregateElement(CI->getZExtValue());
285  return nullptr;
286}
287
288void Constant::destroyConstant() {
289  /// First call destroyConstantImpl on the subclass.  This gives the subclass
290  /// a chance to remove the constant from any maps/pools it's contained in.
291  switch (getValueID()) {
292  default:
293    llvm_unreachable("Not a constant!");
294#define HANDLE_CONSTANT(Name)                                                  \
295  case Value::Name##Val:                                                       \
296    cast<Name>(this)->destroyConstantImpl();                                   \
297    break;
298#include "llvm/IR/Value.def"
299  }
300
301  // When a Constant is destroyed, there may be lingering
302  // references to the constant by other constants in the constant pool.  These
303  // constants are implicitly dependent on the module that is being deleted,
304  // but they don't know that.  Because we only find out when the CPV is
305  // deleted, we must now notify all of our users (that should only be
306  // Constants) that they are, in fact, invalid now and should be deleted.
307  //
308  while (!use_empty()) {
309    Value *V = user_back();
310#ifndef NDEBUG // Only in -g mode...
311    if (!isa<Constant>(V)) {
312      dbgs() << "While deleting: " << *this
313             << "\n\nUse still stuck around after Def is destroyed: " << *V
314             << "\n\n";
315    }
316#endif
317    assert(isa<Constant>(V) && "References remain to Constant being destroyed");
318    cast<Constant>(V)->destroyConstant();
319
320    // The constant should remove itself from our use list...
321    assert((use_empty() || user_back() != V) && "Constant not removed!");
322  }
323
324  // Value has no outstanding references it is safe to delete it now...
325  delete this;
326}
327
328static bool canTrapImpl(const Constant *C,
329                        SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
330  assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
331  // The only thing that could possibly trap are constant exprs.
332  const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
333  if (!CE)
334    return false;
335
336  // ConstantExpr traps if any operands can trap.
337  for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
338    if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
339      if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
340        return true;
341    }
342  }
343
344  // Otherwise, only specific operations can trap.
345  switch (CE->getOpcode()) {
346  default:
347    return false;
348  case Instruction::UDiv:
349  case Instruction::SDiv:
350  case Instruction::FDiv:
351  case Instruction::URem:
352  case Instruction::SRem:
353  case Instruction::FRem:
354    // Div and rem can trap if the RHS is not known to be non-zero.
355    if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
356      return true;
357    return false;
358  }
359}
360
361bool Constant::canTrap() const {
362  SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
363  return canTrapImpl(this, NonTrappingOps);
364}
365
366/// Check if C contains a GlobalValue for which Predicate is true.
367static bool
368ConstHasGlobalValuePredicate(const Constant *C,
369                             bool (*Predicate)(const GlobalValue *)) {
370  SmallPtrSet<const Constant *, 8> Visited;
371  SmallVector<const Constant *, 8> WorkList;
372  WorkList.push_back(C);
373  Visited.insert(C);
374
375  while (!WorkList.empty()) {
376    const Constant *WorkItem = WorkList.pop_back_val();
377    if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
378      if (Predicate(GV))
379        return true;
380    for (const Value *Op : WorkItem->operands()) {
381      const Constant *ConstOp = dyn_cast<Constant>(Op);
382      if (!ConstOp)
383        continue;
384      if (Visited.insert(ConstOp).second)
385        WorkList.push_back(ConstOp);
386    }
387  }
388  return false;
389}
390
391bool Constant::isThreadDependent() const {
392  auto DLLImportPredicate = [](const GlobalValue *GV) {
393    return GV->isThreadLocal();
394  };
395  return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
396}
397
398bool Constant::isDLLImportDependent() const {
399  auto DLLImportPredicate = [](const GlobalValue *GV) {
400    return GV->hasDLLImportStorageClass();
401  };
402  return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
403}
404
405bool Constant::isConstantUsed() const {
406  for (const User *U : users()) {
407    const Constant *UC = dyn_cast<Constant>(U);
408    if (!UC || isa<GlobalValue>(UC))
409      return true;
410
411    if (UC->isConstantUsed())
412      return true;
413  }
414  return false;
415}
416
417bool Constant::needsRelocation() const {
418  if (isa<GlobalValue>(this))
419    return true; // Global reference.
420
421  if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
422    return BA->getFunction()->needsRelocation();
423
424  // While raw uses of blockaddress need to be relocated, differences between
425  // two of them don't when they are for labels in the same function.  This is a
426  // common idiom when creating a table for the indirect goto extension, so we
427  // handle it efficiently here.
428  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
429    if (CE->getOpcode() == Instruction::Sub) {
430      ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
431      ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
432      if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
433          RHS->getOpcode() == Instruction::PtrToInt &&
434          isa<BlockAddress>(LHS->getOperand(0)) &&
435          isa<BlockAddress>(RHS->getOperand(0)) &&
436          cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
437              cast<BlockAddress>(RHS->getOperand(0))->getFunction())
438        return false;
439    }
440
441  bool Result = false;
442  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
443    Result |= cast<Constant>(getOperand(i))->needsRelocation();
444
445  return Result;
446}
447
448/// If the specified constantexpr is dead, remove it. This involves recursively
449/// eliminating any dead users of the constantexpr.
450static bool removeDeadUsersOfConstant(const Constant *C) {
451  if (isa<GlobalValue>(C)) return false; // Cannot remove this
452
453  while (!C->use_empty()) {
454    const Constant *User = dyn_cast<Constant>(C->user_back());
455    if (!User) return false; // Non-constant usage;
456    if (!removeDeadUsersOfConstant(User))
457      return false; // Constant wasn't dead
458  }
459
460  const_cast<Constant*>(C)->destroyConstant();
461  return true;
462}
463
464
465void Constant::removeDeadConstantUsers() const {
466  Value::const_user_iterator I = user_begin(), E = user_end();
467  Value::const_user_iterator LastNonDeadUser = E;
468  while (I != E) {
469    const Constant *User = dyn_cast<Constant>(*I);
470    if (!User) {
471      LastNonDeadUser = I;
472      ++I;
473      continue;
474    }
475
476    if (!removeDeadUsersOfConstant(User)) {
477      // If the constant wasn't dead, remember that this was the last live use
478      // and move on to the next constant.
479      LastNonDeadUser = I;
480      ++I;
481      continue;
482    }
483
484    // If the constant was dead, then the iterator is invalidated.
485    if (LastNonDeadUser == E) {
486      I = user_begin();
487      if (I == E) break;
488    } else {
489      I = LastNonDeadUser;
490      ++I;
491    }
492  }
493}
494
495
496
497//===----------------------------------------------------------------------===//
498//                                ConstantInt
499//===----------------------------------------------------------------------===//
500
501void ConstantInt::anchor() { }
502
503ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
504    : ConstantData(Ty, ConstantIntVal), Val(V) {
505  assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
506}
507
508ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
509  LLVMContextImpl *pImpl = Context.pImpl;
510  if (!pImpl->TheTrueVal)
511    pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
512  return pImpl->TheTrueVal;
513}
514
515ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
516  LLVMContextImpl *pImpl = Context.pImpl;
517  if (!pImpl->TheFalseVal)
518    pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
519  return pImpl->TheFalseVal;
520}
521
522Constant *ConstantInt::getTrue(Type *Ty) {
523  VectorType *VTy = dyn_cast<VectorType>(Ty);
524  if (!VTy) {
525    assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
526    return ConstantInt::getTrue(Ty->getContext());
527  }
528  assert(VTy->getElementType()->isIntegerTy(1) &&
529         "True must be vector of i1 or i1.");
530  return ConstantVector::getSplat(VTy->getNumElements(),
531                                  ConstantInt::getTrue(Ty->getContext()));
532}
533
534Constant *ConstantInt::getFalse(Type *Ty) {
535  VectorType *VTy = dyn_cast<VectorType>(Ty);
536  if (!VTy) {
537    assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
538    return ConstantInt::getFalse(Ty->getContext());
539  }
540  assert(VTy->getElementType()->isIntegerTy(1) &&
541         "False must be vector of i1 or i1.");
542  return ConstantVector::getSplat(VTy->getNumElements(),
543                                  ConstantInt::getFalse(Ty->getContext()));
544}
545
546// Get a ConstantInt from an APInt.
547ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
548  // get an existing value or the insertion position
549  LLVMContextImpl *pImpl = Context.pImpl;
550  ConstantInt *&Slot = pImpl->IntConstants[V];
551  if (!Slot) {
552    // Get the corresponding integer type for the bit width of the value.
553    IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
554    Slot = new ConstantInt(ITy, V);
555  }
556  assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
557  return Slot;
558}
559
560Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
561  Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
562
563  // For vectors, broadcast the value.
564  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
565    return ConstantVector::getSplat(VTy->getNumElements(), C);
566
567  return C;
568}
569
570ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
571  return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
572}
573
574ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
575  return get(Ty, V, true);
576}
577
578Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
579  return get(Ty, V, true);
580}
581
582Constant *ConstantInt::get(Type *Ty, const APInt& V) {
583  ConstantInt *C = get(Ty->getContext(), V);
584  assert(C->getType() == Ty->getScalarType() &&
585         "ConstantInt type doesn't match the type implied by its value!");
586
587  // For vectors, broadcast the value.
588  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
589    return ConstantVector::getSplat(VTy->getNumElements(), C);
590
591  return C;
592}
593
594ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
595  return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
596}
597
598/// Remove the constant from the constant table.
599void ConstantInt::destroyConstantImpl() {
600  llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
601}
602
603//===----------------------------------------------------------------------===//
604//                                ConstantFP
605//===----------------------------------------------------------------------===//
606
607static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
608  if (Ty->isHalfTy())
609    return &APFloat::IEEEhalf;
610  if (Ty->isFloatTy())
611    return &APFloat::IEEEsingle;
612  if (Ty->isDoubleTy())
613    return &APFloat::IEEEdouble;
614  if (Ty->isX86_FP80Ty())
615    return &APFloat::x87DoubleExtended;
616  else if (Ty->isFP128Ty())
617    return &APFloat::IEEEquad;
618
619  assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
620  return &APFloat::PPCDoubleDouble;
621}
622
623void ConstantFP::anchor() { }
624
625Constant *ConstantFP::get(Type *Ty, double V) {
626  LLVMContext &Context = Ty->getContext();
627
628  APFloat FV(V);
629  bool ignored;
630  FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
631             APFloat::rmNearestTiesToEven, &ignored);
632  Constant *C = get(Context, FV);
633
634  // For vectors, broadcast the value.
635  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
636    return ConstantVector::getSplat(VTy->getNumElements(), C);
637
638  return C;
639}
640
641
642Constant *ConstantFP::get(Type *Ty, StringRef Str) {
643  LLVMContext &Context = Ty->getContext();
644
645  APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
646  Constant *C = get(Context, FV);
647
648  // For vectors, broadcast the value.
649  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
650    return ConstantVector::getSplat(VTy->getNumElements(), C);
651
652  return C;
653}
654
655Constant *ConstantFP::getNaN(Type *Ty, bool Negative, unsigned Type) {
656  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
657  APFloat NaN = APFloat::getNaN(Semantics, Negative, Type);
658  Constant *C = get(Ty->getContext(), NaN);
659
660  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
661    return ConstantVector::getSplat(VTy->getNumElements(), C);
662
663  return C;
664}
665
666Constant *ConstantFP::getNegativeZero(Type *Ty) {
667  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
668  APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
669  Constant *C = get(Ty->getContext(), NegZero);
670
671  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
672    return ConstantVector::getSplat(VTy->getNumElements(), C);
673
674  return C;
675}
676
677
678Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
679  if (Ty->isFPOrFPVectorTy())
680    return getNegativeZero(Ty);
681
682  return Constant::getNullValue(Ty);
683}
684
685
686// ConstantFP accessors.
687ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
688  LLVMContextImpl* pImpl = Context.pImpl;
689
690  ConstantFP *&Slot = pImpl->FPConstants[V];
691
692  if (!Slot) {
693    Type *Ty;
694    if (&V.getSemantics() == &APFloat::IEEEhalf)
695      Ty = Type::getHalfTy(Context);
696    else if (&V.getSemantics() == &APFloat::IEEEsingle)
697      Ty = Type::getFloatTy(Context);
698    else if (&V.getSemantics() == &APFloat::IEEEdouble)
699      Ty = Type::getDoubleTy(Context);
700    else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
701      Ty = Type::getX86_FP80Ty(Context);
702    else if (&V.getSemantics() == &APFloat::IEEEquad)
703      Ty = Type::getFP128Ty(Context);
704    else {
705      assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
706             "Unknown FP format");
707      Ty = Type::getPPC_FP128Ty(Context);
708    }
709    Slot = new ConstantFP(Ty, V);
710  }
711
712  return Slot;
713}
714
715Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
716  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
717  Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
718
719  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
720    return ConstantVector::getSplat(VTy->getNumElements(), C);
721
722  return C;
723}
724
725ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
726    : ConstantData(Ty, ConstantFPVal), Val(V) {
727  assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
728         "FP type Mismatch");
729}
730
731bool ConstantFP::isExactlyValue(const APFloat &V) const {
732  return Val.bitwiseIsEqual(V);
733}
734
735/// Remove the constant from the constant table.
736void ConstantFP::destroyConstantImpl() {
737  llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
738}
739
740//===----------------------------------------------------------------------===//
741//                   ConstantAggregateZero Implementation
742//===----------------------------------------------------------------------===//
743
744Constant *ConstantAggregateZero::getSequentialElement() const {
745  return Constant::getNullValue(getType()->getSequentialElementType());
746}
747
748Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
749  return Constant::getNullValue(getType()->getStructElementType(Elt));
750}
751
752Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
753  if (isa<SequentialType>(getType()))
754    return getSequentialElement();
755  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
756}
757
758Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
759  if (isa<SequentialType>(getType()))
760    return getSequentialElement();
761  return getStructElement(Idx);
762}
763
764unsigned ConstantAggregateZero::getNumElements() const {
765  Type *Ty = getType();
766  if (auto *AT = dyn_cast<ArrayType>(Ty))
767    return AT->getNumElements();
768  if (auto *VT = dyn_cast<VectorType>(Ty))
769    return VT->getNumElements();
770  return Ty->getStructNumElements();
771}
772
773//===----------------------------------------------------------------------===//
774//                         UndefValue Implementation
775//===----------------------------------------------------------------------===//
776
777UndefValue *UndefValue::getSequentialElement() const {
778  return UndefValue::get(getType()->getSequentialElementType());
779}
780
781UndefValue *UndefValue::getStructElement(unsigned Elt) const {
782  return UndefValue::get(getType()->getStructElementType(Elt));
783}
784
785UndefValue *UndefValue::getElementValue(Constant *C) const {
786  if (isa<SequentialType>(getType()))
787    return getSequentialElement();
788  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
789}
790
791UndefValue *UndefValue::getElementValue(unsigned Idx) const {
792  if (isa<SequentialType>(getType()))
793    return getSequentialElement();
794  return getStructElement(Idx);
795}
796
797unsigned UndefValue::getNumElements() const {
798  Type *Ty = getType();
799  if (auto *AT = dyn_cast<ArrayType>(Ty))
800    return AT->getNumElements();
801  if (auto *VT = dyn_cast<VectorType>(Ty))
802    return VT->getNumElements();
803  return Ty->getStructNumElements();
804}
805
806//===----------------------------------------------------------------------===//
807//                            ConstantXXX Classes
808//===----------------------------------------------------------------------===//
809
810template <typename ItTy, typename EltTy>
811static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
812  for (; Start != End; ++Start)
813    if (*Start != Elt)
814      return false;
815  return true;
816}
817
818template <typename SequentialTy, typename ElementTy>
819static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
820  assert(!V.empty() && "Cannot get empty int sequence.");
821
822  SmallVector<ElementTy, 16> Elts;
823  for (Constant *C : V)
824    if (auto *CI = dyn_cast<ConstantInt>(C))
825      Elts.push_back(CI->getZExtValue());
826    else
827      return nullptr;
828  return SequentialTy::get(V[0]->getContext(), Elts);
829}
830
831template <typename SequentialTy, typename ElementTy>
832static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
833  assert(!V.empty() && "Cannot get empty FP sequence.");
834
835  SmallVector<ElementTy, 16> Elts;
836  for (Constant *C : V)
837    if (auto *CFP = dyn_cast<ConstantFP>(C))
838      Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
839    else
840      return nullptr;
841  return SequentialTy::getFP(V[0]->getContext(), Elts);
842}
843
844template <typename SequenceTy>
845static Constant *getSequenceIfElementsMatch(Constant *C,
846                                            ArrayRef<Constant *> V) {
847  // We speculatively build the elements here even if it turns out that there is
848  // a constantexpr or something else weird, since it is so uncommon for that to
849  // happen.
850  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
851    if (CI->getType()->isIntegerTy(8))
852      return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
853    else if (CI->getType()->isIntegerTy(16))
854      return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
855    else if (CI->getType()->isIntegerTy(32))
856      return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
857    else if (CI->getType()->isIntegerTy(64))
858      return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
859  } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
860    if (CFP->getType()->isHalfTy())
861      return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
862    else if (CFP->getType()->isFloatTy())
863      return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
864    else if (CFP->getType()->isDoubleTy())
865      return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
866  }
867
868  return nullptr;
869}
870
871ConstantAggregate::ConstantAggregate(CompositeType *T, ValueTy VT,
872                                     ArrayRef<Constant *> V)
873    : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
874               V.size()) {
875  std::copy(V.begin(), V.end(), op_begin());
876
877  // Check that types match, unless this is an opaque struct.
878  if (auto *ST = dyn_cast<StructType>(T))
879    if (ST->isOpaque())
880      return;
881  for (unsigned I = 0, E = V.size(); I != E; ++I)
882    assert(V[I]->getType() == T->getTypeAtIndex(I) &&
883           "Initializer for composite element doesn't match!");
884}
885
886ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
887    : ConstantAggregate(T, ConstantArrayVal, V) {
888  assert(V.size() == T->getNumElements() &&
889         "Invalid initializer for constant array");
890}
891
892Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
893  if (Constant *C = getImpl(Ty, V))
894    return C;
895  return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
896}
897
898Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
899  // Empty arrays are canonicalized to ConstantAggregateZero.
900  if (V.empty())
901    return ConstantAggregateZero::get(Ty);
902
903  for (unsigned i = 0, e = V.size(); i != e; ++i) {
904    assert(V[i]->getType() == Ty->getElementType() &&
905           "Wrong type in array element initializer");
906  }
907
908  // If this is an all-zero array, return a ConstantAggregateZero object.  If
909  // all undef, return an UndefValue, if "all simple", then return a
910  // ConstantDataArray.
911  Constant *C = V[0];
912  if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
913    return UndefValue::get(Ty);
914
915  if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
916    return ConstantAggregateZero::get(Ty);
917
918  // Check to see if all of the elements are ConstantFP or ConstantInt and if
919  // the element type is compatible with ConstantDataVector.  If so, use it.
920  if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
921    return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
922
923  // Otherwise, we really do want to create a ConstantArray.
924  return nullptr;
925}
926
927StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
928                                               ArrayRef<Constant*> V,
929                                               bool Packed) {
930  unsigned VecSize = V.size();
931  SmallVector<Type*, 16> EltTypes(VecSize);
932  for (unsigned i = 0; i != VecSize; ++i)
933    EltTypes[i] = V[i]->getType();
934
935  return StructType::get(Context, EltTypes, Packed);
936}
937
938
939StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
940                                               bool Packed) {
941  assert(!V.empty() &&
942         "ConstantStruct::getTypeForElements cannot be called on empty list");
943  return getTypeForElements(V[0]->getContext(), V, Packed);
944}
945
946ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
947    : ConstantAggregate(T, ConstantStructVal, V) {
948  assert((T->isOpaque() || V.size() == T->getNumElements()) &&
949         "Invalid initializer for constant struct");
950}
951
952// ConstantStruct accessors.
953Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
954  assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
955         "Incorrect # elements specified to ConstantStruct::get");
956
957  // Create a ConstantAggregateZero value if all elements are zeros.
958  bool isZero = true;
959  bool isUndef = false;
960
961  if (!V.empty()) {
962    isUndef = isa<UndefValue>(V[0]);
963    isZero = V[0]->isNullValue();
964    if (isUndef || isZero) {
965      for (unsigned i = 0, e = V.size(); i != e; ++i) {
966        if (!V[i]->isNullValue())
967          isZero = false;
968        if (!isa<UndefValue>(V[i]))
969          isUndef = false;
970      }
971    }
972  }
973  if (isZero)
974    return ConstantAggregateZero::get(ST);
975  if (isUndef)
976    return UndefValue::get(ST);
977
978  return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
979}
980
981Constant *ConstantStruct::get(StructType *T, ...) {
982  va_list ap;
983  SmallVector<Constant*, 8> Values;
984  va_start(ap, T);
985  while (Constant *Val = va_arg(ap, llvm::Constant*))
986    Values.push_back(Val);
987  va_end(ap);
988  return get(T, Values);
989}
990
991ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
992    : ConstantAggregate(T, ConstantVectorVal, V) {
993  assert(V.size() == T->getNumElements() &&
994         "Invalid initializer for constant vector");
995}
996
997// ConstantVector accessors.
998Constant *ConstantVector::get(ArrayRef<Constant*> V) {
999  if (Constant *C = getImpl(V))
1000    return C;
1001  VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
1002  return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1003}
1004
1005Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1006  assert(!V.empty() && "Vectors can't be empty");
1007  VectorType *T = VectorType::get(V.front()->getType(), V.size());
1008
1009  // If this is an all-undef or all-zero vector, return a
1010  // ConstantAggregateZero or UndefValue.
1011  Constant *C = V[0];
1012  bool isZero = C->isNullValue();
1013  bool isUndef = isa<UndefValue>(C);
1014
1015  if (isZero || isUndef) {
1016    for (unsigned i = 1, e = V.size(); i != e; ++i)
1017      if (V[i] != C) {
1018        isZero = isUndef = false;
1019        break;
1020      }
1021  }
1022
1023  if (isZero)
1024    return ConstantAggregateZero::get(T);
1025  if (isUndef)
1026    return UndefValue::get(T);
1027
1028  // Check to see if all of the elements are ConstantFP or ConstantInt and if
1029  // the element type is compatible with ConstantDataVector.  If so, use it.
1030  if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1031    return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1032
1033  // Otherwise, the element type isn't compatible with ConstantDataVector, or
1034  // the operand list constants a ConstantExpr or something else strange.
1035  return nullptr;
1036}
1037
1038Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1039  // If this splat is compatible with ConstantDataVector, use it instead of
1040  // ConstantVector.
1041  if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1042      ConstantDataSequential::isElementTypeCompatible(V->getType()))
1043    return ConstantDataVector::getSplat(NumElts, V);
1044
1045  SmallVector<Constant*, 32> Elts(NumElts, V);
1046  return get(Elts);
1047}
1048
1049ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1050  LLVMContextImpl *pImpl = Context.pImpl;
1051  if (!pImpl->TheNoneToken)
1052    pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1053  return pImpl->TheNoneToken.get();
1054}
1055
1056/// Remove the constant from the constant table.
1057void ConstantTokenNone::destroyConstantImpl() {
1058  llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1059}
1060
1061// Utility function for determining if a ConstantExpr is a CastOp or not. This
1062// can't be inline because we don't want to #include Instruction.h into
1063// Constant.h
1064bool ConstantExpr::isCast() const {
1065  return Instruction::isCast(getOpcode());
1066}
1067
1068bool ConstantExpr::isCompare() const {
1069  return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1070}
1071
1072bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1073  if (getOpcode() != Instruction::GetElementPtr) return false;
1074
1075  gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1076  User::const_op_iterator OI = std::next(this->op_begin());
1077
1078  // Skip the first index, as it has no static limit.
1079  ++GEPI;
1080  ++OI;
1081
1082  // The remaining indices must be compile-time known integers within the
1083  // bounds of the corresponding notional static array types.
1084  for (; GEPI != E; ++GEPI, ++OI) {
1085    ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1086    if (!CI) return false;
1087    if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1088      if (CI->getValue().getActiveBits() > 64 ||
1089          CI->getZExtValue() >= ATy->getNumElements())
1090        return false;
1091  }
1092
1093  // All the indices checked out.
1094  return true;
1095}
1096
1097bool ConstantExpr::hasIndices() const {
1098  return getOpcode() == Instruction::ExtractValue ||
1099         getOpcode() == Instruction::InsertValue;
1100}
1101
1102ArrayRef<unsigned> ConstantExpr::getIndices() const {
1103  if (const ExtractValueConstantExpr *EVCE =
1104        dyn_cast<ExtractValueConstantExpr>(this))
1105    return EVCE->Indices;
1106
1107  return cast<InsertValueConstantExpr>(this)->Indices;
1108}
1109
1110unsigned ConstantExpr::getPredicate() const {
1111  return cast<CompareConstantExpr>(this)->predicate;
1112}
1113
1114Constant *
1115ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1116  assert(Op->getType() == getOperand(OpNo)->getType() &&
1117         "Replacing operand with value of different type!");
1118  if (getOperand(OpNo) == Op)
1119    return const_cast<ConstantExpr*>(this);
1120
1121  SmallVector<Constant*, 8> NewOps;
1122  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1123    NewOps.push_back(i == OpNo ? Op : getOperand(i));
1124
1125  return getWithOperands(NewOps);
1126}
1127
1128Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1129                                        bool OnlyIfReduced, Type *SrcTy) const {
1130  assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1131
1132  // If no operands changed return self.
1133  if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1134    return const_cast<ConstantExpr*>(this);
1135
1136  Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1137  switch (getOpcode()) {
1138  case Instruction::Trunc:
1139  case Instruction::ZExt:
1140  case Instruction::SExt:
1141  case Instruction::FPTrunc:
1142  case Instruction::FPExt:
1143  case Instruction::UIToFP:
1144  case Instruction::SIToFP:
1145  case Instruction::FPToUI:
1146  case Instruction::FPToSI:
1147  case Instruction::PtrToInt:
1148  case Instruction::IntToPtr:
1149  case Instruction::BitCast:
1150  case Instruction::AddrSpaceCast:
1151    return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1152  case Instruction::Select:
1153    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1154  case Instruction::InsertElement:
1155    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1156                                          OnlyIfReducedTy);
1157  case Instruction::ExtractElement:
1158    return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1159  case Instruction::InsertValue:
1160    return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1161                                        OnlyIfReducedTy);
1162  case Instruction::ExtractValue:
1163    return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1164  case Instruction::ShuffleVector:
1165    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
1166                                          OnlyIfReducedTy);
1167  case Instruction::GetElementPtr: {
1168    auto *GEPO = cast<GEPOperator>(this);
1169    assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1170    return ConstantExpr::getGetElementPtr(
1171        SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1172        GEPO->isInBounds(), OnlyIfReducedTy);
1173  }
1174  case Instruction::ICmp:
1175  case Instruction::FCmp:
1176    return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1177                                    OnlyIfReducedTy);
1178  default:
1179    assert(getNumOperands() == 2 && "Must be binary operator?");
1180    return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1181                             OnlyIfReducedTy);
1182  }
1183}
1184
1185
1186//===----------------------------------------------------------------------===//
1187//                      isValueValidForType implementations
1188
1189bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1190  unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1191  if (Ty->isIntegerTy(1))
1192    return Val == 0 || Val == 1;
1193  if (NumBits >= 64)
1194    return true; // always true, has to fit in largest type
1195  uint64_t Max = (1ll << NumBits) - 1;
1196  return Val <= Max;
1197}
1198
1199bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1200  unsigned NumBits = Ty->getIntegerBitWidth();
1201  if (Ty->isIntegerTy(1))
1202    return Val == 0 || Val == 1 || Val == -1;
1203  if (NumBits >= 64)
1204    return true; // always true, has to fit in largest type
1205  int64_t Min = -(1ll << (NumBits-1));
1206  int64_t Max = (1ll << (NumBits-1)) - 1;
1207  return (Val >= Min && Val <= Max);
1208}
1209
1210bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1211  // convert modifies in place, so make a copy.
1212  APFloat Val2 = APFloat(Val);
1213  bool losesInfo;
1214  switch (Ty->getTypeID()) {
1215  default:
1216    return false;         // These can't be represented as floating point!
1217
1218  // FIXME rounding mode needs to be more flexible
1219  case Type::HalfTyID: {
1220    if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1221      return true;
1222    Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1223    return !losesInfo;
1224  }
1225  case Type::FloatTyID: {
1226    if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1227      return true;
1228    Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1229    return !losesInfo;
1230  }
1231  case Type::DoubleTyID: {
1232    if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1233        &Val2.getSemantics() == &APFloat::IEEEsingle ||
1234        &Val2.getSemantics() == &APFloat::IEEEdouble)
1235      return true;
1236    Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1237    return !losesInfo;
1238  }
1239  case Type::X86_FP80TyID:
1240    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1241           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1242           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1243           &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1244  case Type::FP128TyID:
1245    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1246           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1247           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1248           &Val2.getSemantics() == &APFloat::IEEEquad;
1249  case Type::PPC_FP128TyID:
1250    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1251           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1252           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1253           &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1254  }
1255}
1256
1257
1258//===----------------------------------------------------------------------===//
1259//                      Factory Function Implementation
1260
1261ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1262  assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1263         "Cannot create an aggregate zero of non-aggregate type!");
1264
1265  ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1266  if (!Entry)
1267    Entry = new ConstantAggregateZero(Ty);
1268
1269  return Entry;
1270}
1271
1272/// Remove the constant from the constant table.
1273void ConstantAggregateZero::destroyConstantImpl() {
1274  getContext().pImpl->CAZConstants.erase(getType());
1275}
1276
1277/// Remove the constant from the constant table.
1278void ConstantArray::destroyConstantImpl() {
1279  getType()->getContext().pImpl->ArrayConstants.remove(this);
1280}
1281
1282
1283//---- ConstantStruct::get() implementation...
1284//
1285
1286/// Remove the constant from the constant table.
1287void ConstantStruct::destroyConstantImpl() {
1288  getType()->getContext().pImpl->StructConstants.remove(this);
1289}
1290
1291/// Remove the constant from the constant table.
1292void ConstantVector::destroyConstantImpl() {
1293  getType()->getContext().pImpl->VectorConstants.remove(this);
1294}
1295
1296Constant *Constant::getSplatValue() const {
1297  assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1298  if (isa<ConstantAggregateZero>(this))
1299    return getNullValue(this->getType()->getVectorElementType());
1300  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1301    return CV->getSplatValue();
1302  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1303    return CV->getSplatValue();
1304  return nullptr;
1305}
1306
1307Constant *ConstantVector::getSplatValue() const {
1308  // Check out first element.
1309  Constant *Elt = getOperand(0);
1310  // Then make sure all remaining elements point to the same value.
1311  for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1312    if (getOperand(I) != Elt)
1313      return nullptr;
1314  return Elt;
1315}
1316
1317const APInt &Constant::getUniqueInteger() const {
1318  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1319    return CI->getValue();
1320  assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1321  const Constant *C = this->getAggregateElement(0U);
1322  assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1323  return cast<ConstantInt>(C)->getValue();
1324}
1325
1326//---- ConstantPointerNull::get() implementation.
1327//
1328
1329ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1330  ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1331  if (!Entry)
1332    Entry = new ConstantPointerNull(Ty);
1333
1334  return Entry;
1335}
1336
1337/// Remove the constant from the constant table.
1338void ConstantPointerNull::destroyConstantImpl() {
1339  getContext().pImpl->CPNConstants.erase(getType());
1340}
1341
1342UndefValue *UndefValue::get(Type *Ty) {
1343  UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1344  if (!Entry)
1345    Entry = new UndefValue(Ty);
1346
1347  return Entry;
1348}
1349
1350/// Remove the constant from the constant table.
1351void UndefValue::destroyConstantImpl() {
1352  // Free the constant and any dangling references to it.
1353  getContext().pImpl->UVConstants.erase(getType());
1354}
1355
1356BlockAddress *BlockAddress::get(BasicBlock *BB) {
1357  assert(BB->getParent() && "Block must have a parent");
1358  return get(BB->getParent(), BB);
1359}
1360
1361BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1362  BlockAddress *&BA =
1363    F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1364  if (!BA)
1365    BA = new BlockAddress(F, BB);
1366
1367  assert(BA->getFunction() == F && "Basic block moved between functions");
1368  return BA;
1369}
1370
1371BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1372: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1373           &Op<0>(), 2) {
1374  setOperand(0, F);
1375  setOperand(1, BB);
1376  BB->AdjustBlockAddressRefCount(1);
1377}
1378
1379BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1380  if (!BB->hasAddressTaken())
1381    return nullptr;
1382
1383  const Function *F = BB->getParent();
1384  assert(F && "Block must have a parent");
1385  BlockAddress *BA =
1386      F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1387  assert(BA && "Refcount and block address map disagree!");
1388  return BA;
1389}
1390
1391/// Remove the constant from the constant table.
1392void BlockAddress::destroyConstantImpl() {
1393  getFunction()->getType()->getContext().pImpl
1394    ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1395  getBasicBlock()->AdjustBlockAddressRefCount(-1);
1396}
1397
1398Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
1399  // This could be replacing either the Basic Block or the Function.  In either
1400  // case, we have to remove the map entry.
1401  Function *NewF = getFunction();
1402  BasicBlock *NewBB = getBasicBlock();
1403
1404  if (From == NewF)
1405    NewF = cast<Function>(To->stripPointerCasts());
1406  else {
1407    assert(From == NewBB && "From does not match any operand");
1408    NewBB = cast<BasicBlock>(To);
1409  }
1410
1411  // See if the 'new' entry already exists, if not, just update this in place
1412  // and return early.
1413  BlockAddress *&NewBA =
1414    getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1415  if (NewBA)
1416    return NewBA;
1417
1418  getBasicBlock()->AdjustBlockAddressRefCount(-1);
1419
1420  // Remove the old entry, this can't cause the map to rehash (just a
1421  // tombstone will get added).
1422  getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1423                                                          getBasicBlock()));
1424  NewBA = this;
1425  setOperand(0, NewF);
1426  setOperand(1, NewBB);
1427  getBasicBlock()->AdjustBlockAddressRefCount(1);
1428
1429  // If we just want to keep the existing value, then return null.
1430  // Callers know that this means we shouldn't delete this value.
1431  return nullptr;
1432}
1433
1434//---- ConstantExpr::get() implementations.
1435//
1436
1437/// This is a utility function to handle folding of casts and lookup of the
1438/// cast in the ExprConstants map. It is used by the various get* methods below.
1439static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1440                               bool OnlyIfReduced = false) {
1441  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1442  // Fold a few common cases
1443  if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1444    return FC;
1445
1446  if (OnlyIfReduced)
1447    return nullptr;
1448
1449  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1450
1451  // Look up the constant in the table first to ensure uniqueness.
1452  ConstantExprKeyType Key(opc, C);
1453
1454  return pImpl->ExprConstants.getOrCreate(Ty, Key);
1455}
1456
1457Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1458                                bool OnlyIfReduced) {
1459  Instruction::CastOps opc = Instruction::CastOps(oc);
1460  assert(Instruction::isCast(opc) && "opcode out of range");
1461  assert(C && Ty && "Null arguments to getCast");
1462  assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1463
1464  switch (opc) {
1465  default:
1466    llvm_unreachable("Invalid cast opcode");
1467  case Instruction::Trunc:
1468    return getTrunc(C, Ty, OnlyIfReduced);
1469  case Instruction::ZExt:
1470    return getZExt(C, Ty, OnlyIfReduced);
1471  case Instruction::SExt:
1472    return getSExt(C, Ty, OnlyIfReduced);
1473  case Instruction::FPTrunc:
1474    return getFPTrunc(C, Ty, OnlyIfReduced);
1475  case Instruction::FPExt:
1476    return getFPExtend(C, Ty, OnlyIfReduced);
1477  case Instruction::UIToFP:
1478    return getUIToFP(C, Ty, OnlyIfReduced);
1479  case Instruction::SIToFP:
1480    return getSIToFP(C, Ty, OnlyIfReduced);
1481  case Instruction::FPToUI:
1482    return getFPToUI(C, Ty, OnlyIfReduced);
1483  case Instruction::FPToSI:
1484    return getFPToSI(C, Ty, OnlyIfReduced);
1485  case Instruction::PtrToInt:
1486    return getPtrToInt(C, Ty, OnlyIfReduced);
1487  case Instruction::IntToPtr:
1488    return getIntToPtr(C, Ty, OnlyIfReduced);
1489  case Instruction::BitCast:
1490    return getBitCast(C, Ty, OnlyIfReduced);
1491  case Instruction::AddrSpaceCast:
1492    return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1493  }
1494}
1495
1496Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1497  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1498    return getBitCast(C, Ty);
1499  return getZExt(C, Ty);
1500}
1501
1502Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1503  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1504    return getBitCast(C, Ty);
1505  return getSExt(C, Ty);
1506}
1507
1508Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1509  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1510    return getBitCast(C, Ty);
1511  return getTrunc(C, Ty);
1512}
1513
1514Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1515  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1516  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1517          "Invalid cast");
1518
1519  if (Ty->isIntOrIntVectorTy())
1520    return getPtrToInt(S, Ty);
1521
1522  unsigned SrcAS = S->getType()->getPointerAddressSpace();
1523  if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1524    return getAddrSpaceCast(S, Ty);
1525
1526  return getBitCast(S, Ty);
1527}
1528
1529Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1530                                                         Type *Ty) {
1531  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1532  assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1533
1534  if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1535    return getAddrSpaceCast(S, Ty);
1536
1537  return getBitCast(S, Ty);
1538}
1539
1540Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
1541  assert(C->getType()->isIntOrIntVectorTy() &&
1542         Ty->isIntOrIntVectorTy() && "Invalid cast");
1543  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1544  unsigned DstBits = Ty->getScalarSizeInBits();
1545  Instruction::CastOps opcode =
1546    (SrcBits == DstBits ? Instruction::BitCast :
1547     (SrcBits > DstBits ? Instruction::Trunc :
1548      (isSigned ? Instruction::SExt : Instruction::ZExt)));
1549  return getCast(opcode, C, Ty);
1550}
1551
1552Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1553  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1554         "Invalid cast");
1555  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1556  unsigned DstBits = Ty->getScalarSizeInBits();
1557  if (SrcBits == DstBits)
1558    return C; // Avoid a useless cast
1559  Instruction::CastOps opcode =
1560    (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1561  return getCast(opcode, C, Ty);
1562}
1563
1564Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1565#ifndef NDEBUG
1566  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1567  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1568#endif
1569  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1570  assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1571  assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1572  assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1573         "SrcTy must be larger than DestTy for Trunc!");
1574
1575  return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
1576}
1577
1578Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1579#ifndef NDEBUG
1580  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1581  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1582#endif
1583  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1584  assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1585  assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1586  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1587         "SrcTy must be smaller than DestTy for SExt!");
1588
1589  return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
1590}
1591
1592Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1593#ifndef NDEBUG
1594  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1595  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1596#endif
1597  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1598  assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1599  assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1600  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1601         "SrcTy must be smaller than DestTy for ZExt!");
1602
1603  return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
1604}
1605
1606Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1607#ifndef NDEBUG
1608  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1609  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1610#endif
1611  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1612  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1613         C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1614         "This is an illegal floating point truncation!");
1615  return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
1616}
1617
1618Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
1619#ifndef NDEBUG
1620  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1621  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1622#endif
1623  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1624  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1625         C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1626         "This is an illegal floating point extension!");
1627  return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
1628}
1629
1630Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1631#ifndef NDEBUG
1632  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1633  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1634#endif
1635  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1636  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1637         "This is an illegal uint to floating point cast!");
1638  return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
1639}
1640
1641Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1642#ifndef NDEBUG
1643  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1644  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1645#endif
1646  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1647  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1648         "This is an illegal sint to floating point cast!");
1649  return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
1650}
1651
1652Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1653#ifndef NDEBUG
1654  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1655  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1656#endif
1657  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1658  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1659         "This is an illegal floating point to uint cast!");
1660  return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
1661}
1662
1663Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1664#ifndef NDEBUG
1665  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1666  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1667#endif
1668  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1669  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1670         "This is an illegal floating point to sint cast!");
1671  return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
1672}
1673
1674Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
1675                                    bool OnlyIfReduced) {
1676  assert(C->getType()->getScalarType()->isPointerTy() &&
1677         "PtrToInt source must be pointer or pointer vector");
1678  assert(DstTy->getScalarType()->isIntegerTy() &&
1679         "PtrToInt destination must be integer or integer vector");
1680  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1681  if (isa<VectorType>(C->getType()))
1682    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1683           "Invalid cast between a different number of vector elements");
1684  return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
1685}
1686
1687Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
1688                                    bool OnlyIfReduced) {
1689  assert(C->getType()->getScalarType()->isIntegerTy() &&
1690         "IntToPtr source must be integer or integer vector");
1691  assert(DstTy->getScalarType()->isPointerTy() &&
1692         "IntToPtr destination must be a pointer or pointer vector");
1693  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1694  if (isa<VectorType>(C->getType()))
1695    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1696           "Invalid cast between a different number of vector elements");
1697  return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
1698}
1699
1700Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
1701                                   bool OnlyIfReduced) {
1702  assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1703         "Invalid constantexpr bitcast!");
1704
1705  // It is common to ask for a bitcast of a value to its own type, handle this
1706  // speedily.
1707  if (C->getType() == DstTy) return C;
1708
1709  return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
1710}
1711
1712Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
1713                                         bool OnlyIfReduced) {
1714  assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1715         "Invalid constantexpr addrspacecast!");
1716
1717  // Canonicalize addrspacecasts between different pointer types by first
1718  // bitcasting the pointer type and then converting the address space.
1719  PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1720  PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1721  Type *DstElemTy = DstScalarTy->getElementType();
1722  if (SrcScalarTy->getElementType() != DstElemTy) {
1723    Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1724    if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1725      // Handle vectors of pointers.
1726      MidTy = VectorType::get(MidTy, VT->getNumElements());
1727    }
1728    C = getBitCast(C, MidTy);
1729  }
1730  return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
1731}
1732
1733Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1734                            unsigned Flags, Type *OnlyIfReducedTy) {
1735  // Check the operands for consistency first.
1736  assert(Opcode >= Instruction::BinaryOpsBegin &&
1737         Opcode <  Instruction::BinaryOpsEnd   &&
1738         "Invalid opcode in binary constant expression");
1739  assert(C1->getType() == C2->getType() &&
1740         "Operand types in binary constant expression should match");
1741
1742#ifndef NDEBUG
1743  switch (Opcode) {
1744  case Instruction::Add:
1745  case Instruction::Sub:
1746  case Instruction::Mul:
1747    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1748    assert(C1->getType()->isIntOrIntVectorTy() &&
1749           "Tried to create an integer operation on a non-integer type!");
1750    break;
1751  case Instruction::FAdd:
1752  case Instruction::FSub:
1753  case Instruction::FMul:
1754    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1755    assert(C1->getType()->isFPOrFPVectorTy() &&
1756           "Tried to create a floating-point operation on a "
1757           "non-floating-point type!");
1758    break;
1759  case Instruction::UDiv:
1760  case Instruction::SDiv:
1761    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1762    assert(C1->getType()->isIntOrIntVectorTy() &&
1763           "Tried to create an arithmetic operation on a non-arithmetic type!");
1764    break;
1765  case Instruction::FDiv:
1766    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1767    assert(C1->getType()->isFPOrFPVectorTy() &&
1768           "Tried to create an arithmetic operation on a non-arithmetic type!");
1769    break;
1770  case Instruction::URem:
1771  case Instruction::SRem:
1772    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1773    assert(C1->getType()->isIntOrIntVectorTy() &&
1774           "Tried to create an arithmetic operation on a non-arithmetic type!");
1775    break;
1776  case Instruction::FRem:
1777    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1778    assert(C1->getType()->isFPOrFPVectorTy() &&
1779           "Tried to create an arithmetic operation on a non-arithmetic type!");
1780    break;
1781  case Instruction::And:
1782  case Instruction::Or:
1783  case Instruction::Xor:
1784    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1785    assert(C1->getType()->isIntOrIntVectorTy() &&
1786           "Tried to create a logical operation on a non-integral type!");
1787    break;
1788  case Instruction::Shl:
1789  case Instruction::LShr:
1790  case Instruction::AShr:
1791    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1792    assert(C1->getType()->isIntOrIntVectorTy() &&
1793           "Tried to create a shift operation on a non-integer type!");
1794    break;
1795  default:
1796    break;
1797  }
1798#endif
1799
1800  if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1801    return FC;          // Fold a few common cases.
1802
1803  if (OnlyIfReducedTy == C1->getType())
1804    return nullptr;
1805
1806  Constant *ArgVec[] = { C1, C2 };
1807  ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1808
1809  LLVMContextImpl *pImpl = C1->getContext().pImpl;
1810  return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1811}
1812
1813Constant *ConstantExpr::getSizeOf(Type* Ty) {
1814  // sizeof is implemented as: (i64) gep (Ty*)null, 1
1815  // Note that a non-inbounds gep is used, as null isn't within any object.
1816  Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1817  Constant *GEP = getGetElementPtr(
1818      Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1819  return getPtrToInt(GEP,
1820                     Type::getInt64Ty(Ty->getContext()));
1821}
1822
1823Constant *ConstantExpr::getAlignOf(Type* Ty) {
1824  // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1825  // Note that a non-inbounds gep is used, as null isn't within any object.
1826  Type *AligningTy =
1827    StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, nullptr);
1828  Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
1829  Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1830  Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1831  Constant *Indices[2] = { Zero, One };
1832  Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
1833  return getPtrToInt(GEP,
1834                     Type::getInt64Ty(Ty->getContext()));
1835}
1836
1837Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1838  return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1839                                           FieldNo));
1840}
1841
1842Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1843  // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1844  // Note that a non-inbounds gep is used, as null isn't within any object.
1845  Constant *GEPIdx[] = {
1846    ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1847    FieldNo
1848  };
1849  Constant *GEP = getGetElementPtr(
1850      Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1851  return getPtrToInt(GEP,
1852                     Type::getInt64Ty(Ty->getContext()));
1853}
1854
1855Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
1856                                   Constant *C2, bool OnlyIfReduced) {
1857  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1858
1859  switch (Predicate) {
1860  default: llvm_unreachable("Invalid CmpInst predicate");
1861  case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1862  case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1863  case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1864  case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1865  case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1866  case CmpInst::FCMP_TRUE:
1867    return getFCmp(Predicate, C1, C2, OnlyIfReduced);
1868
1869  case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1870  case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1871  case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1872  case CmpInst::ICMP_SLE:
1873    return getICmp(Predicate, C1, C2, OnlyIfReduced);
1874  }
1875}
1876
1877Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
1878                                  Type *OnlyIfReducedTy) {
1879  assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1880
1881  if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1882    return SC;        // Fold common cases
1883
1884  if (OnlyIfReducedTy == V1->getType())
1885    return nullptr;
1886
1887  Constant *ArgVec[] = { C, V1, V2 };
1888  ConstantExprKeyType Key(Instruction::Select, ArgVec);
1889
1890  LLVMContextImpl *pImpl = C->getContext().pImpl;
1891  return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1892}
1893
1894Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
1895                                         ArrayRef<Value *> Idxs, bool InBounds,
1896                                         Type *OnlyIfReducedTy) {
1897  if (!Ty)
1898    Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
1899  else
1900    assert(
1901        Ty ==
1902        cast<PointerType>(C->getType()->getScalarType())->getContainedType(0u));
1903
1904  if (Constant *FC = ConstantFoldGetElementPtr(Ty, C, InBounds, Idxs))
1905    return FC;          // Fold a few common cases.
1906
1907  // Get the result type of the getelementptr!
1908  Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
1909  assert(DestTy && "GEP indices invalid!");
1910  unsigned AS = C->getType()->getPointerAddressSpace();
1911  Type *ReqTy = DestTy->getPointerTo(AS);
1912
1913  unsigned NumVecElts = 0;
1914  if (C->getType()->isVectorTy())
1915    NumVecElts = C->getType()->getVectorNumElements();
1916  else for (auto Idx : Idxs)
1917    if (Idx->getType()->isVectorTy())
1918      NumVecElts = Idx->getType()->getVectorNumElements();
1919
1920  if (NumVecElts)
1921    ReqTy = VectorType::get(ReqTy, NumVecElts);
1922
1923  if (OnlyIfReducedTy == ReqTy)
1924    return nullptr;
1925
1926  // Look up the constant in the table first to ensure uniqueness
1927  std::vector<Constant*> ArgVec;
1928  ArgVec.reserve(1 + Idxs.size());
1929  ArgVec.push_back(C);
1930  for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1931    assert((!Idxs[i]->getType()->isVectorTy() ||
1932            Idxs[i]->getType()->getVectorNumElements() == NumVecElts) &&
1933           "getelementptr index type missmatch");
1934
1935    Constant *Idx = cast<Constant>(Idxs[i]);
1936    if (NumVecElts && !Idxs[i]->getType()->isVectorTy())
1937      Idx = ConstantVector::getSplat(NumVecElts, Idx);
1938    ArgVec.push_back(Idx);
1939  }
1940  const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1941                                InBounds ? GEPOperator::IsInBounds : 0, None,
1942                                Ty);
1943
1944  LLVMContextImpl *pImpl = C->getContext().pImpl;
1945  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1946}
1947
1948Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
1949                                Constant *RHS, bool OnlyIfReduced) {
1950  assert(LHS->getType() == RHS->getType());
1951  assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1952         pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1953
1954  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1955    return FC;          // Fold a few common cases...
1956
1957  if (OnlyIfReduced)
1958    return nullptr;
1959
1960  // Look up the constant in the table first to ensure uniqueness
1961  Constant *ArgVec[] = { LHS, RHS };
1962  // Get the key type with both the opcode and predicate
1963  const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
1964
1965  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1966  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1967    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1968
1969  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1970  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1971}
1972
1973Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
1974                                Constant *RHS, bool OnlyIfReduced) {
1975  assert(LHS->getType() == RHS->getType());
1976  assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1977
1978  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1979    return FC;          // Fold a few common cases...
1980
1981  if (OnlyIfReduced)
1982    return nullptr;
1983
1984  // Look up the constant in the table first to ensure uniqueness
1985  Constant *ArgVec[] = { LHS, RHS };
1986  // Get the key type with both the opcode and predicate
1987  const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
1988
1989  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1990  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1991    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1992
1993  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1994  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1995}
1996
1997Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
1998                                          Type *OnlyIfReducedTy) {
1999  assert(Val->getType()->isVectorTy() &&
2000         "Tried to create extractelement operation on non-vector type!");
2001  assert(Idx->getType()->isIntegerTy() &&
2002         "Extractelement index must be an integer type!");
2003
2004  if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2005    return FC;          // Fold a few common cases.
2006
2007  Type *ReqTy = Val->getType()->getVectorElementType();
2008  if (OnlyIfReducedTy == ReqTy)
2009    return nullptr;
2010
2011  // Look up the constant in the table first to ensure uniqueness
2012  Constant *ArgVec[] = { Val, Idx };
2013  const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2014
2015  LLVMContextImpl *pImpl = Val->getContext().pImpl;
2016  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2017}
2018
2019Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2020                                         Constant *Idx, Type *OnlyIfReducedTy) {
2021  assert(Val->getType()->isVectorTy() &&
2022         "Tried to create insertelement operation on non-vector type!");
2023  assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2024         "Insertelement types must match!");
2025  assert(Idx->getType()->isIntegerTy() &&
2026         "Insertelement index must be i32 type!");
2027
2028  if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2029    return FC;          // Fold a few common cases.
2030
2031  if (OnlyIfReducedTy == Val->getType())
2032    return nullptr;
2033
2034  // Look up the constant in the table first to ensure uniqueness
2035  Constant *ArgVec[] = { Val, Elt, Idx };
2036  const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2037
2038  LLVMContextImpl *pImpl = Val->getContext().pImpl;
2039  return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2040}
2041
2042Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2043                                         Constant *Mask, Type *OnlyIfReducedTy) {
2044  assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2045         "Invalid shuffle vector constant expr operands!");
2046
2047  if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2048    return FC;          // Fold a few common cases.
2049
2050  unsigned NElts = Mask->getType()->getVectorNumElements();
2051  Type *EltTy = V1->getType()->getVectorElementType();
2052  Type *ShufTy = VectorType::get(EltTy, NElts);
2053
2054  if (OnlyIfReducedTy == ShufTy)
2055    return nullptr;
2056
2057  // Look up the constant in the table first to ensure uniqueness
2058  Constant *ArgVec[] = { V1, V2, Mask };
2059  const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
2060
2061  LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2062  return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2063}
2064
2065Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2066                                       ArrayRef<unsigned> Idxs,
2067                                       Type *OnlyIfReducedTy) {
2068  assert(Agg->getType()->isFirstClassType() &&
2069         "Non-first-class type for constant insertvalue expression");
2070
2071  assert(ExtractValueInst::getIndexedType(Agg->getType(),
2072                                          Idxs) == Val->getType() &&
2073         "insertvalue indices invalid!");
2074  Type *ReqTy = Val->getType();
2075
2076  if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2077    return FC;
2078
2079  if (OnlyIfReducedTy == ReqTy)
2080    return nullptr;
2081
2082  Constant *ArgVec[] = { Agg, Val };
2083  const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2084
2085  LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2086  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2087}
2088
2089Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2090                                        Type *OnlyIfReducedTy) {
2091  assert(Agg->getType()->isFirstClassType() &&
2092         "Tried to create extractelement operation on non-first-class type!");
2093
2094  Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2095  (void)ReqTy;
2096  assert(ReqTy && "extractvalue indices invalid!");
2097
2098  assert(Agg->getType()->isFirstClassType() &&
2099         "Non-first-class type for constant extractvalue expression");
2100  if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2101    return FC;
2102
2103  if (OnlyIfReducedTy == ReqTy)
2104    return nullptr;
2105
2106  Constant *ArgVec[] = { Agg };
2107  const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2108
2109  LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2110  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2111}
2112
2113Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2114  assert(C->getType()->isIntOrIntVectorTy() &&
2115         "Cannot NEG a nonintegral value!");
2116  return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2117                C, HasNUW, HasNSW);
2118}
2119
2120Constant *ConstantExpr::getFNeg(Constant *C) {
2121  assert(C->getType()->isFPOrFPVectorTy() &&
2122         "Cannot FNEG a non-floating-point value!");
2123  return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2124}
2125
2126Constant *ConstantExpr::getNot(Constant *C) {
2127  assert(C->getType()->isIntOrIntVectorTy() &&
2128         "Cannot NOT a nonintegral value!");
2129  return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2130}
2131
2132Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2133                               bool HasNUW, bool HasNSW) {
2134  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2135                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2136  return get(Instruction::Add, C1, C2, Flags);
2137}
2138
2139Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2140  return get(Instruction::FAdd, C1, C2);
2141}
2142
2143Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2144                               bool HasNUW, bool HasNSW) {
2145  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2146                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2147  return get(Instruction::Sub, C1, C2, Flags);
2148}
2149
2150Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2151  return get(Instruction::FSub, C1, C2);
2152}
2153
2154Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2155                               bool HasNUW, bool HasNSW) {
2156  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2157                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2158  return get(Instruction::Mul, C1, C2, Flags);
2159}
2160
2161Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2162  return get(Instruction::FMul, C1, C2);
2163}
2164
2165Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2166  return get(Instruction::UDiv, C1, C2,
2167             isExact ? PossiblyExactOperator::IsExact : 0);
2168}
2169
2170Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2171  return get(Instruction::SDiv, C1, C2,
2172             isExact ? PossiblyExactOperator::IsExact : 0);
2173}
2174
2175Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2176  return get(Instruction::FDiv, C1, C2);
2177}
2178
2179Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2180  return get(Instruction::URem, C1, C2);
2181}
2182
2183Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2184  return get(Instruction::SRem, C1, C2);
2185}
2186
2187Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2188  return get(Instruction::FRem, C1, C2);
2189}
2190
2191Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2192  return get(Instruction::And, C1, C2);
2193}
2194
2195Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2196  return get(Instruction::Or, C1, C2);
2197}
2198
2199Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2200  return get(Instruction::Xor, C1, C2);
2201}
2202
2203Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2204                               bool HasNUW, bool HasNSW) {
2205  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2206                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2207  return get(Instruction::Shl, C1, C2, Flags);
2208}
2209
2210Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2211  return get(Instruction::LShr, C1, C2,
2212             isExact ? PossiblyExactOperator::IsExact : 0);
2213}
2214
2215Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2216  return get(Instruction::AShr, C1, C2,
2217             isExact ? PossiblyExactOperator::IsExact : 0);
2218}
2219
2220Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2221  switch (Opcode) {
2222  default:
2223    // Doesn't have an identity.
2224    return nullptr;
2225
2226  case Instruction::Add:
2227  case Instruction::Or:
2228  case Instruction::Xor:
2229    return Constant::getNullValue(Ty);
2230
2231  case Instruction::Mul:
2232    return ConstantInt::get(Ty, 1);
2233
2234  case Instruction::And:
2235    return Constant::getAllOnesValue(Ty);
2236  }
2237}
2238
2239Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2240  switch (Opcode) {
2241  default:
2242    // Doesn't have an absorber.
2243    return nullptr;
2244
2245  case Instruction::Or:
2246    return Constant::getAllOnesValue(Ty);
2247
2248  case Instruction::And:
2249  case Instruction::Mul:
2250    return Constant::getNullValue(Ty);
2251  }
2252}
2253
2254/// Remove the constant from the constant table.
2255void ConstantExpr::destroyConstantImpl() {
2256  getType()->getContext().pImpl->ExprConstants.remove(this);
2257}
2258
2259const char *ConstantExpr::getOpcodeName() const {
2260  return Instruction::getOpcodeName(getOpcode());
2261}
2262
2263GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2264    Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2265    : ConstantExpr(DestTy, Instruction::GetElementPtr,
2266                   OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2267                       (IdxList.size() + 1),
2268                   IdxList.size() + 1),
2269      SrcElementTy(SrcElementTy),
2270      ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
2271  Op<0>() = C;
2272  Use *OperandList = getOperandList();
2273  for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2274    OperandList[i+1] = IdxList[i];
2275}
2276
2277Type *GetElementPtrConstantExpr::getSourceElementType() const {
2278  return SrcElementTy;
2279}
2280
2281Type *GetElementPtrConstantExpr::getResultElementType() const {
2282  return ResElementTy;
2283}
2284
2285//===----------------------------------------------------------------------===//
2286//                       ConstantData* implementations
2287
2288void ConstantDataArray::anchor() {}
2289void ConstantDataVector::anchor() {}
2290
2291Type *ConstantDataSequential::getElementType() const {
2292  return getType()->getElementType();
2293}
2294
2295StringRef ConstantDataSequential::getRawDataValues() const {
2296  return StringRef(DataElements, getNumElements()*getElementByteSize());
2297}
2298
2299bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2300  if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2301  if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2302    switch (IT->getBitWidth()) {
2303    case 8:
2304    case 16:
2305    case 32:
2306    case 64:
2307      return true;
2308    default: break;
2309    }
2310  }
2311  return false;
2312}
2313
2314unsigned ConstantDataSequential::getNumElements() const {
2315  if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2316    return AT->getNumElements();
2317  return getType()->getVectorNumElements();
2318}
2319
2320
2321uint64_t ConstantDataSequential::getElementByteSize() const {
2322  return getElementType()->getPrimitiveSizeInBits()/8;
2323}
2324
2325/// Return the start of the specified element.
2326const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2327  assert(Elt < getNumElements() && "Invalid Elt");
2328  return DataElements+Elt*getElementByteSize();
2329}
2330
2331
2332/// Return true if the array is empty or all zeros.
2333static bool isAllZeros(StringRef Arr) {
2334  for (char I : Arr)
2335    if (I != 0)
2336      return false;
2337  return true;
2338}
2339
2340/// This is the underlying implementation of all of the
2341/// ConstantDataSequential::get methods.  They all thunk down to here, providing
2342/// the correct element type.  We take the bytes in as a StringRef because
2343/// we *want* an underlying "char*" to avoid TBAA type punning violations.
2344Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2345  assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2346  // If the elements are all zero or there are no elements, return a CAZ, which
2347  // is more dense and canonical.
2348  if (isAllZeros(Elements))
2349    return ConstantAggregateZero::get(Ty);
2350
2351  // Do a lookup to see if we have already formed one of these.
2352  auto &Slot =
2353      *Ty->getContext()
2354           .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2355           .first;
2356
2357  // The bucket can point to a linked list of different CDS's that have the same
2358  // body but different types.  For example, 0,0,0,1 could be a 4 element array
2359  // of i8, or a 1-element array of i32.  They'll both end up in the same
2360  /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2361  ConstantDataSequential **Entry = &Slot.second;
2362  for (ConstantDataSequential *Node = *Entry; Node;
2363       Entry = &Node->Next, Node = *Entry)
2364    if (Node->getType() == Ty)
2365      return Node;
2366
2367  // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2368  // and return it.
2369  if (isa<ArrayType>(Ty))
2370    return *Entry = new ConstantDataArray(Ty, Slot.first().data());
2371
2372  assert(isa<VectorType>(Ty));
2373  return *Entry = new ConstantDataVector(Ty, Slot.first().data());
2374}
2375
2376void ConstantDataSequential::destroyConstantImpl() {
2377  // Remove the constant from the StringMap.
2378  StringMap<ConstantDataSequential*> &CDSConstants =
2379    getType()->getContext().pImpl->CDSConstants;
2380
2381  StringMap<ConstantDataSequential*>::iterator Slot =
2382    CDSConstants.find(getRawDataValues());
2383
2384  assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2385
2386  ConstantDataSequential **Entry = &Slot->getValue();
2387
2388  // Remove the entry from the hash table.
2389  if (!(*Entry)->Next) {
2390    // If there is only one value in the bucket (common case) it must be this
2391    // entry, and removing the entry should remove the bucket completely.
2392    assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2393    getContext().pImpl->CDSConstants.erase(Slot);
2394  } else {
2395    // Otherwise, there are multiple entries linked off the bucket, unlink the
2396    // node we care about but keep the bucket around.
2397    for (ConstantDataSequential *Node = *Entry; ;
2398         Entry = &Node->Next, Node = *Entry) {
2399      assert(Node && "Didn't find entry in its uniquing hash table!");
2400      // If we found our entry, unlink it from the list and we're done.
2401      if (Node == this) {
2402        *Entry = Node->Next;
2403        break;
2404      }
2405    }
2406  }
2407
2408  // If we were part of a list, make sure that we don't delete the list that is
2409  // still owned by the uniquing map.
2410  Next = nullptr;
2411}
2412
2413/// get() constructors - Return a constant with array type with an element
2414/// count and element type matching the ArrayRef passed in.  Note that this
2415/// can return a ConstantAggregateZero object.
2416Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2417  Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2418  const char *Data = reinterpret_cast<const char *>(Elts.data());
2419  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2420}
2421Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2422  Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2423  const char *Data = reinterpret_cast<const char *>(Elts.data());
2424  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2425}
2426Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2427  Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2428  const char *Data = reinterpret_cast<const char *>(Elts.data());
2429  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2430}
2431Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2432  Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2433  const char *Data = reinterpret_cast<const char *>(Elts.data());
2434  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2435}
2436Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2437  Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2438  const char *Data = reinterpret_cast<const char *>(Elts.data());
2439  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2440}
2441Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2442  Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2443  const char *Data = reinterpret_cast<const char *>(Elts.data());
2444  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2445}
2446
2447/// getFP() constructors - Return a constant with array type with an element
2448/// count and element type of float with precision matching the number of
2449/// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2450/// double for 64bits) Note that this can return a ConstantAggregateZero
2451/// object.
2452Constant *ConstantDataArray::getFP(LLVMContext &Context,
2453                                   ArrayRef<uint16_t> Elts) {
2454  Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size());
2455  const char *Data = reinterpret_cast<const char *>(Elts.data());
2456  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2457}
2458Constant *ConstantDataArray::getFP(LLVMContext &Context,
2459                                   ArrayRef<uint32_t> Elts) {
2460  Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2461  const char *Data = reinterpret_cast<const char *>(Elts.data());
2462  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2463}
2464Constant *ConstantDataArray::getFP(LLVMContext &Context,
2465                                   ArrayRef<uint64_t> Elts) {
2466  Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2467  const char *Data = reinterpret_cast<const char *>(Elts.data());
2468  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2469}
2470
2471Constant *ConstantDataArray::getString(LLVMContext &Context,
2472                                       StringRef Str, bool AddNull) {
2473  if (!AddNull) {
2474    const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2475    return get(Context, makeArrayRef(const_cast<uint8_t *>(Data),
2476               Str.size()));
2477  }
2478
2479  SmallVector<uint8_t, 64> ElementVals;
2480  ElementVals.append(Str.begin(), Str.end());
2481  ElementVals.push_back(0);
2482  return get(Context, ElementVals);
2483}
2484
2485/// get() constructors - Return a constant with vector type with an element
2486/// count and element type matching the ArrayRef passed in.  Note that this
2487/// can return a ConstantAggregateZero object.
2488Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2489  Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2490  const char *Data = reinterpret_cast<const char *>(Elts.data());
2491  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2492}
2493Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2494  Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2495  const char *Data = reinterpret_cast<const char *>(Elts.data());
2496  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2497}
2498Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2499  Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2500  const char *Data = reinterpret_cast<const char *>(Elts.data());
2501  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2502}
2503Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2504  Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2505  const char *Data = reinterpret_cast<const char *>(Elts.data());
2506  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2507}
2508Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2509  Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2510  const char *Data = reinterpret_cast<const char *>(Elts.data());
2511  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2512}
2513Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2514  Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2515  const char *Data = reinterpret_cast<const char *>(Elts.data());
2516  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2517}
2518
2519/// getFP() constructors - Return a constant with vector type with an element
2520/// count and element type of float with the precision matching the number of
2521/// bits in the ArrayRef passed in.  (i.e. half for 16bits, float for 32bits,
2522/// double for 64bits) Note that this can return a ConstantAggregateZero
2523/// object.
2524Constant *ConstantDataVector::getFP(LLVMContext &Context,
2525                                    ArrayRef<uint16_t> Elts) {
2526  Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2527  const char *Data = reinterpret_cast<const char *>(Elts.data());
2528  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2529}
2530Constant *ConstantDataVector::getFP(LLVMContext &Context,
2531                                    ArrayRef<uint32_t> Elts) {
2532  Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2533  const char *Data = reinterpret_cast<const char *>(Elts.data());
2534  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2535}
2536Constant *ConstantDataVector::getFP(LLVMContext &Context,
2537                                    ArrayRef<uint64_t> Elts) {
2538  Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2539  const char *Data = reinterpret_cast<const char *>(Elts.data());
2540  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2541}
2542
2543Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2544  assert(isElementTypeCompatible(V->getType()) &&
2545         "Element type not compatible with ConstantData");
2546  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2547    if (CI->getType()->isIntegerTy(8)) {
2548      SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2549      return get(V->getContext(), Elts);
2550    }
2551    if (CI->getType()->isIntegerTy(16)) {
2552      SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2553      return get(V->getContext(), Elts);
2554    }
2555    if (CI->getType()->isIntegerTy(32)) {
2556      SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2557      return get(V->getContext(), Elts);
2558    }
2559    assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2560    SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2561    return get(V->getContext(), Elts);
2562  }
2563
2564  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2565    if (CFP->getType()->isHalfTy()) {
2566      SmallVector<uint16_t, 16> Elts(
2567          NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2568      return getFP(V->getContext(), Elts);
2569    }
2570    if (CFP->getType()->isFloatTy()) {
2571      SmallVector<uint32_t, 16> Elts(
2572          NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2573      return getFP(V->getContext(), Elts);
2574    }
2575    if (CFP->getType()->isDoubleTy()) {
2576      SmallVector<uint64_t, 16> Elts(
2577          NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2578      return getFP(V->getContext(), Elts);
2579    }
2580  }
2581  return ConstantVector::getSplat(NumElts, V);
2582}
2583
2584
2585uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2586  assert(isa<IntegerType>(getElementType()) &&
2587         "Accessor can only be used when element is an integer");
2588  const char *EltPtr = getElementPointer(Elt);
2589
2590  // The data is stored in host byte order, make sure to cast back to the right
2591  // type to load with the right endianness.
2592  switch (getElementType()->getIntegerBitWidth()) {
2593  default: llvm_unreachable("Invalid bitwidth for CDS");
2594  case 8:
2595    return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2596  case 16:
2597    return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2598  case 32:
2599    return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2600  case 64:
2601    return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2602  }
2603}
2604
2605APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2606  const char *EltPtr = getElementPointer(Elt);
2607
2608  switch (getElementType()->getTypeID()) {
2609  default:
2610    llvm_unreachable("Accessor can only be used when element is float/double!");
2611  case Type::HalfTyID: {
2612    auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2613    return APFloat(APFloat::IEEEhalf, APInt(16, EltVal));
2614  }
2615  case Type::FloatTyID: {
2616    auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2617    return APFloat(APFloat::IEEEsingle, APInt(32, EltVal));
2618  }
2619  case Type::DoubleTyID: {
2620    auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2621    return APFloat(APFloat::IEEEdouble, APInt(64, EltVal));
2622  }
2623  }
2624}
2625
2626float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2627  assert(getElementType()->isFloatTy() &&
2628         "Accessor can only be used when element is a 'float'");
2629  const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2630  return *const_cast<float *>(EltPtr);
2631}
2632
2633double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2634  assert(getElementType()->isDoubleTy() &&
2635         "Accessor can only be used when element is a 'float'");
2636  const double *EltPtr =
2637      reinterpret_cast<const double *>(getElementPointer(Elt));
2638  return *const_cast<double *>(EltPtr);
2639}
2640
2641Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2642  if (getElementType()->isHalfTy() || getElementType()->isFloatTy() ||
2643      getElementType()->isDoubleTy())
2644    return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2645
2646  return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2647}
2648
2649bool ConstantDataSequential::isString() const {
2650  return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2651}
2652
2653bool ConstantDataSequential::isCString() const {
2654  if (!isString())
2655    return false;
2656
2657  StringRef Str = getAsString();
2658
2659  // The last value must be nul.
2660  if (Str.back() != 0) return false;
2661
2662  // Other elements must be non-nul.
2663  return Str.drop_back().find(0) == StringRef::npos;
2664}
2665
2666Constant *ConstantDataVector::getSplatValue() const {
2667  const char *Base = getRawDataValues().data();
2668
2669  // Compare elements 1+ to the 0'th element.
2670  unsigned EltSize = getElementByteSize();
2671  for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2672    if (memcmp(Base, Base+i*EltSize, EltSize))
2673      return nullptr;
2674
2675  // If they're all the same, return the 0th one as a representative.
2676  return getElementAsConstant(0);
2677}
2678
2679//===----------------------------------------------------------------------===//
2680//                handleOperandChange implementations
2681
2682/// Update this constant array to change uses of
2683/// 'From' to be uses of 'To'.  This must update the uniquing data structures
2684/// etc.
2685///
2686/// Note that we intentionally replace all uses of From with To here.  Consider
2687/// a large array that uses 'From' 1000 times.  By handling this case all here,
2688/// ConstantArray::handleOperandChange is only invoked once, and that
2689/// single invocation handles all 1000 uses.  Handling them one at a time would
2690/// work, but would be really slow because it would have to unique each updated
2691/// array instance.
2692///
2693void Constant::handleOperandChange(Value *From, Value *To) {
2694  Value *Replacement = nullptr;
2695  switch (getValueID()) {
2696  default:
2697    llvm_unreachable("Not a constant!");
2698#define HANDLE_CONSTANT(Name)                                                  \
2699  case Value::Name##Val:                                                       \
2700    Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To);         \
2701    break;
2702#include "llvm/IR/Value.def"
2703  }
2704
2705  // If handleOperandChangeImpl returned nullptr, then it handled
2706  // replacing itself and we don't want to delete or replace anything else here.
2707  if (!Replacement)
2708    return;
2709
2710  // I do need to replace this with an existing value.
2711  assert(Replacement != this && "I didn't contain From!");
2712
2713  // Everyone using this now uses the replacement.
2714  replaceAllUsesWith(Replacement);
2715
2716  // Delete the old constant!
2717  destroyConstant();
2718}
2719
2720Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
2721  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2722  Constant *ToC = cast<Constant>(To);
2723
2724  SmallVector<Constant*, 8> Values;
2725  Values.reserve(getNumOperands());  // Build replacement array.
2726
2727  // Fill values with the modified operands of the constant array.  Also,
2728  // compute whether this turns into an all-zeros array.
2729  unsigned NumUpdated = 0;
2730
2731  // Keep track of whether all the values in the array are "ToC".
2732  bool AllSame = true;
2733  Use *OperandList = getOperandList();
2734  unsigned OperandNo = 0;
2735  for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2736    Constant *Val = cast<Constant>(O->get());
2737    if (Val == From) {
2738      OperandNo = (O - OperandList);
2739      Val = ToC;
2740      ++NumUpdated;
2741    }
2742    Values.push_back(Val);
2743    AllSame &= Val == ToC;
2744  }
2745
2746  if (AllSame && ToC->isNullValue())
2747    return ConstantAggregateZero::get(getType());
2748
2749  if (AllSame && isa<UndefValue>(ToC))
2750    return UndefValue::get(getType());
2751
2752  // Check for any other type of constant-folding.
2753  if (Constant *C = getImpl(getType(), Values))
2754    return C;
2755
2756  // Update to the new value.
2757  return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
2758      Values, this, From, ToC, NumUpdated, OperandNo);
2759}
2760
2761Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
2762  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2763  Constant *ToC = cast<Constant>(To);
2764
2765  Use *OperandList = getOperandList();
2766
2767  SmallVector<Constant*, 8> Values;
2768  Values.reserve(getNumOperands());  // Build replacement struct.
2769
2770  // Fill values with the modified operands of the constant struct.  Also,
2771  // compute whether this turns into an all-zeros struct.
2772  unsigned NumUpdated = 0;
2773  bool AllSame = true;
2774  unsigned OperandNo = 0;
2775  for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
2776    Constant *Val = cast<Constant>(O->get());
2777    if (Val == From) {
2778      OperandNo = (O - OperandList);
2779      Val = ToC;
2780      ++NumUpdated;
2781    }
2782    Values.push_back(Val);
2783    AllSame &= Val == ToC;
2784  }
2785
2786  if (AllSame && ToC->isNullValue())
2787    return ConstantAggregateZero::get(getType());
2788
2789  if (AllSame && isa<UndefValue>(ToC))
2790    return UndefValue::get(getType());
2791
2792  // Update to the new value.
2793  return getContext().pImpl->StructConstants.replaceOperandsInPlace(
2794      Values, this, From, ToC, NumUpdated, OperandNo);
2795}
2796
2797Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
2798  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2799  Constant *ToC = cast<Constant>(To);
2800
2801  SmallVector<Constant*, 8> Values;
2802  Values.reserve(getNumOperands());  // Build replacement array...
2803  unsigned NumUpdated = 0;
2804  unsigned OperandNo = 0;
2805  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2806    Constant *Val = getOperand(i);
2807    if (Val == From) {
2808      OperandNo = i;
2809      ++NumUpdated;
2810      Val = ToC;
2811    }
2812    Values.push_back(Val);
2813  }
2814
2815  if (Constant *C = getImpl(Values))
2816    return C;
2817
2818  // Update to the new value.
2819  return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
2820      Values, this, From, ToC, NumUpdated, OperandNo);
2821}
2822
2823Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
2824  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2825  Constant *To = cast<Constant>(ToV);
2826
2827  SmallVector<Constant*, 8> NewOps;
2828  unsigned NumUpdated = 0;
2829  unsigned OperandNo = 0;
2830  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2831    Constant *Op = getOperand(i);
2832    if (Op == From) {
2833      OperandNo = i;
2834      ++NumUpdated;
2835      Op = To;
2836    }
2837    NewOps.push_back(Op);
2838  }
2839  assert(NumUpdated && "I didn't contain From!");
2840
2841  if (Constant *C = getWithOperands(NewOps, getType(), true))
2842    return C;
2843
2844  // Update to the new value.
2845  return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
2846      NewOps, this, From, To, NumUpdated, OperandNo);
2847}
2848
2849Instruction *ConstantExpr::getAsInstruction() {
2850  SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
2851  ArrayRef<Value*> Ops(ValueOperands);
2852
2853  switch (getOpcode()) {
2854  case Instruction::Trunc:
2855  case Instruction::ZExt:
2856  case Instruction::SExt:
2857  case Instruction::FPTrunc:
2858  case Instruction::FPExt:
2859  case Instruction::UIToFP:
2860  case Instruction::SIToFP:
2861  case Instruction::FPToUI:
2862  case Instruction::FPToSI:
2863  case Instruction::PtrToInt:
2864  case Instruction::IntToPtr:
2865  case Instruction::BitCast:
2866  case Instruction::AddrSpaceCast:
2867    return CastInst::Create((Instruction::CastOps)getOpcode(),
2868                            Ops[0], getType());
2869  case Instruction::Select:
2870    return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2871  case Instruction::InsertElement:
2872    return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2873  case Instruction::ExtractElement:
2874    return ExtractElementInst::Create(Ops[0], Ops[1]);
2875  case Instruction::InsertValue:
2876    return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2877  case Instruction::ExtractValue:
2878    return ExtractValueInst::Create(Ops[0], getIndices());
2879  case Instruction::ShuffleVector:
2880    return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2881
2882  case Instruction::GetElementPtr: {
2883    const auto *GO = cast<GEPOperator>(this);
2884    if (GO->isInBounds())
2885      return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
2886                                               Ops[0], Ops.slice(1));
2887    return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
2888                                     Ops.slice(1));
2889  }
2890  case Instruction::ICmp:
2891  case Instruction::FCmp:
2892    return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2893                           (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
2894
2895  default:
2896    assert(getNumOperands() == 2 && "Must be binary operator?");
2897    BinaryOperator *BO =
2898      BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2899                             Ops[0], Ops[1]);
2900    if (isa<OverflowingBinaryOperator>(BO)) {
2901      BO->setHasNoUnsignedWrap(SubclassOptionalData &
2902                               OverflowingBinaryOperator::NoUnsignedWrap);
2903      BO->setHasNoSignedWrap(SubclassOptionalData &
2904                             OverflowingBinaryOperator::NoSignedWrap);
2905    }
2906    if (isa<PossiblyExactOperator>(BO))
2907      BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
2908    return BO;
2909  }
2910}
2911