1//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation  ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AArch64TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64ISelLowering.h"
15#include "AArch64CallingConvention.h"
16#include "AArch64MachineFunctionInfo.h"
17#include "AArch64PerfectShuffle.h"
18#include "AArch64Subtarget.h"
19#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
21#include "MCTargetDesc/AArch64AddressingModes.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/GetElementPtrTypeIterator.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Type.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetOptions.h"
36using namespace llvm;
37
38#define DEBUG_TYPE "aarch64-lower"
39
40STATISTIC(NumTailCalls, "Number of tail calls");
41STATISTIC(NumShiftInserts, "Number of vector shift inserts");
42
43static cl::opt<bool>
44EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
45                           cl::desc("Allow AArch64 SLI/SRI formation"),
46                           cl::init(false));
47
48// FIXME: The necessary dtprel relocations don't seem to be supported
49// well in the GNU bfd and gold linkers at the moment. Therefore, by
50// default, for now, fall back to GeneralDynamic code generation.
51cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
52    "aarch64-elf-ldtls-generation", cl::Hidden,
53    cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
54    cl::init(false));
55
56/// Value type used for condition codes.
57static const MVT MVT_CC = MVT::i32;
58
59AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
60                                             const AArch64Subtarget &STI)
61    : TargetLowering(TM), Subtarget(&STI) {
62
63  // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
64  // we have to make something up. Arbitrarily, choose ZeroOrOne.
65  setBooleanContents(ZeroOrOneBooleanContent);
66  // When comparing vectors the result sets the different elements in the
67  // vector to all-one or all-zero.
68  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
69
70  // Set up the register classes.
71  addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
72  addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
73
74  if (Subtarget->hasFPARMv8()) {
75    addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
76    addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
77    addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
78    addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
79  }
80
81  if (Subtarget->hasNEON()) {
82    addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
83    addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
84    // Someone set us up the NEON.
85    addDRTypeForNEON(MVT::v2f32);
86    addDRTypeForNEON(MVT::v8i8);
87    addDRTypeForNEON(MVT::v4i16);
88    addDRTypeForNEON(MVT::v2i32);
89    addDRTypeForNEON(MVT::v1i64);
90    addDRTypeForNEON(MVT::v1f64);
91    addDRTypeForNEON(MVT::v4f16);
92
93    addQRTypeForNEON(MVT::v4f32);
94    addQRTypeForNEON(MVT::v2f64);
95    addQRTypeForNEON(MVT::v16i8);
96    addQRTypeForNEON(MVT::v8i16);
97    addQRTypeForNEON(MVT::v4i32);
98    addQRTypeForNEON(MVT::v2i64);
99    addQRTypeForNEON(MVT::v8f16);
100  }
101
102  // Compute derived properties from the register classes
103  computeRegisterProperties(Subtarget->getRegisterInfo());
104
105  // Provide all sorts of operation actions
106  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
107  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
108  setOperationAction(ISD::SETCC, MVT::i32, Custom);
109  setOperationAction(ISD::SETCC, MVT::i64, Custom);
110  setOperationAction(ISD::SETCC, MVT::f32, Custom);
111  setOperationAction(ISD::SETCC, MVT::f64, Custom);
112  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
113  setOperationAction(ISD::BR_CC, MVT::i32, Custom);
114  setOperationAction(ISD::BR_CC, MVT::i64, Custom);
115  setOperationAction(ISD::BR_CC, MVT::f32, Custom);
116  setOperationAction(ISD::BR_CC, MVT::f64, Custom);
117  setOperationAction(ISD::SELECT, MVT::i32, Custom);
118  setOperationAction(ISD::SELECT, MVT::i64, Custom);
119  setOperationAction(ISD::SELECT, MVT::f32, Custom);
120  setOperationAction(ISD::SELECT, MVT::f64, Custom);
121  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
122  setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
123  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
124  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
125  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
126  setOperationAction(ISD::JumpTable, MVT::i64, Custom);
127
128  setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
129  setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
130  setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
131
132  setOperationAction(ISD::FREM, MVT::f32, Expand);
133  setOperationAction(ISD::FREM, MVT::f64, Expand);
134  setOperationAction(ISD::FREM, MVT::f80, Expand);
135
136  // Custom lowering hooks are needed for XOR
137  // to fold it into CSINC/CSINV.
138  setOperationAction(ISD::XOR, MVT::i32, Custom);
139  setOperationAction(ISD::XOR, MVT::i64, Custom);
140
141  // Virtually no operation on f128 is legal, but LLVM can't expand them when
142  // there's a valid register class, so we need custom operations in most cases.
143  setOperationAction(ISD::FABS, MVT::f128, Expand);
144  setOperationAction(ISD::FADD, MVT::f128, Custom);
145  setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
146  setOperationAction(ISD::FCOS, MVT::f128, Expand);
147  setOperationAction(ISD::FDIV, MVT::f128, Custom);
148  setOperationAction(ISD::FMA, MVT::f128, Expand);
149  setOperationAction(ISD::FMUL, MVT::f128, Custom);
150  setOperationAction(ISD::FNEG, MVT::f128, Expand);
151  setOperationAction(ISD::FPOW, MVT::f128, Expand);
152  setOperationAction(ISD::FREM, MVT::f128, Expand);
153  setOperationAction(ISD::FRINT, MVT::f128, Expand);
154  setOperationAction(ISD::FSIN, MVT::f128, Expand);
155  setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
156  setOperationAction(ISD::FSQRT, MVT::f128, Expand);
157  setOperationAction(ISD::FSUB, MVT::f128, Custom);
158  setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
159  setOperationAction(ISD::SETCC, MVT::f128, Custom);
160  setOperationAction(ISD::BR_CC, MVT::f128, Custom);
161  setOperationAction(ISD::SELECT, MVT::f128, Custom);
162  setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
163  setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
164
165  // Lowering for many of the conversions is actually specified by the non-f128
166  // type. The LowerXXX function will be trivial when f128 isn't involved.
167  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
168  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
169  setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
170  setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
171  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
172  setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
173  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
174  setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
175  setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
176  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
177  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
178  setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
179  setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
180  setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
181
182  // Variable arguments.
183  setOperationAction(ISD::VASTART, MVT::Other, Custom);
184  setOperationAction(ISD::VAARG, MVT::Other, Custom);
185  setOperationAction(ISD::VACOPY, MVT::Other, Custom);
186  setOperationAction(ISD::VAEND, MVT::Other, Expand);
187
188  // Variable-sized objects.
189  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
190  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
191  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
192
193  // Constant pool entries
194  setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
195
196  // BlockAddress
197  setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
198
199  // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
200  setOperationAction(ISD::ADDC, MVT::i32, Custom);
201  setOperationAction(ISD::ADDE, MVT::i32, Custom);
202  setOperationAction(ISD::SUBC, MVT::i32, Custom);
203  setOperationAction(ISD::SUBE, MVT::i32, Custom);
204  setOperationAction(ISD::ADDC, MVT::i64, Custom);
205  setOperationAction(ISD::ADDE, MVT::i64, Custom);
206  setOperationAction(ISD::SUBC, MVT::i64, Custom);
207  setOperationAction(ISD::SUBE, MVT::i64, Custom);
208
209  // AArch64 lacks both left-rotate and popcount instructions.
210  setOperationAction(ISD::ROTL, MVT::i32, Expand);
211  setOperationAction(ISD::ROTL, MVT::i64, Expand);
212  for (MVT VT : MVT::vector_valuetypes()) {
213    setOperationAction(ISD::ROTL, VT, Expand);
214    setOperationAction(ISD::ROTR, VT, Expand);
215  }
216
217  // AArch64 doesn't have {U|S}MUL_LOHI.
218  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
219  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
220
221
222  setOperationAction(ISD::CTPOP, MVT::i32, Custom);
223  setOperationAction(ISD::CTPOP, MVT::i64, Custom);
224
225  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
226  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
227  for (MVT VT : MVT::vector_valuetypes()) {
228    setOperationAction(ISD::SDIVREM, VT, Expand);
229    setOperationAction(ISD::UDIVREM, VT, Expand);
230  }
231  setOperationAction(ISD::SREM, MVT::i32, Expand);
232  setOperationAction(ISD::SREM, MVT::i64, Expand);
233  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
234  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
235  setOperationAction(ISD::UREM, MVT::i32, Expand);
236  setOperationAction(ISD::UREM, MVT::i64, Expand);
237
238  // Custom lower Add/Sub/Mul with overflow.
239  setOperationAction(ISD::SADDO, MVT::i32, Custom);
240  setOperationAction(ISD::SADDO, MVT::i64, Custom);
241  setOperationAction(ISD::UADDO, MVT::i32, Custom);
242  setOperationAction(ISD::UADDO, MVT::i64, Custom);
243  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
244  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
245  setOperationAction(ISD::USUBO, MVT::i32, Custom);
246  setOperationAction(ISD::USUBO, MVT::i64, Custom);
247  setOperationAction(ISD::SMULO, MVT::i32, Custom);
248  setOperationAction(ISD::SMULO, MVT::i64, Custom);
249  setOperationAction(ISD::UMULO, MVT::i32, Custom);
250  setOperationAction(ISD::UMULO, MVT::i64, Custom);
251
252  setOperationAction(ISD::FSIN, MVT::f32, Expand);
253  setOperationAction(ISD::FSIN, MVT::f64, Expand);
254  setOperationAction(ISD::FCOS, MVT::f32, Expand);
255  setOperationAction(ISD::FCOS, MVT::f64, Expand);
256  setOperationAction(ISD::FPOW, MVT::f32, Expand);
257  setOperationAction(ISD::FPOW, MVT::f64, Expand);
258  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
259  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
260
261  // f16 is a storage-only type, always promote it to f32.
262  setOperationAction(ISD::SETCC,       MVT::f16,  Promote);
263  setOperationAction(ISD::BR_CC,       MVT::f16,  Promote);
264  setOperationAction(ISD::SELECT_CC,   MVT::f16,  Promote);
265  setOperationAction(ISD::SELECT,      MVT::f16,  Promote);
266  setOperationAction(ISD::FADD,        MVT::f16,  Promote);
267  setOperationAction(ISD::FSUB,        MVT::f16,  Promote);
268  setOperationAction(ISD::FMUL,        MVT::f16,  Promote);
269  setOperationAction(ISD::FDIV,        MVT::f16,  Promote);
270  setOperationAction(ISD::FREM,        MVT::f16,  Promote);
271  setOperationAction(ISD::FMA,         MVT::f16,  Promote);
272  setOperationAction(ISD::FNEG,        MVT::f16,  Promote);
273  setOperationAction(ISD::FABS,        MVT::f16,  Promote);
274  setOperationAction(ISD::FCEIL,       MVT::f16,  Promote);
275  setOperationAction(ISD::FCOPYSIGN,   MVT::f16,  Promote);
276  setOperationAction(ISD::FCOS,        MVT::f16,  Promote);
277  setOperationAction(ISD::FFLOOR,      MVT::f16,  Promote);
278  setOperationAction(ISD::FNEARBYINT,  MVT::f16,  Promote);
279  setOperationAction(ISD::FPOW,        MVT::f16,  Promote);
280  setOperationAction(ISD::FPOWI,       MVT::f16,  Promote);
281  setOperationAction(ISD::FRINT,       MVT::f16,  Promote);
282  setOperationAction(ISD::FSIN,        MVT::f16,  Promote);
283  setOperationAction(ISD::FSINCOS,     MVT::f16,  Promote);
284  setOperationAction(ISD::FSQRT,       MVT::f16,  Promote);
285  setOperationAction(ISD::FEXP,        MVT::f16,  Promote);
286  setOperationAction(ISD::FEXP2,       MVT::f16,  Promote);
287  setOperationAction(ISD::FLOG,        MVT::f16,  Promote);
288  setOperationAction(ISD::FLOG2,       MVT::f16,  Promote);
289  setOperationAction(ISD::FLOG10,      MVT::f16,  Promote);
290  setOperationAction(ISD::FROUND,      MVT::f16,  Promote);
291  setOperationAction(ISD::FTRUNC,      MVT::f16,  Promote);
292  setOperationAction(ISD::FMINNUM,     MVT::f16,  Promote);
293  setOperationAction(ISD::FMAXNUM,     MVT::f16,  Promote);
294  setOperationAction(ISD::FMINNAN,     MVT::f16,  Promote);
295  setOperationAction(ISD::FMAXNAN,     MVT::f16,  Promote);
296
297  // v4f16 is also a storage-only type, so promote it to v4f32 when that is
298  // known to be safe.
299  setOperationAction(ISD::FADD, MVT::v4f16, Promote);
300  setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
301  setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
302  setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
303  setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
304  setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
305  AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
306  AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
307  AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
308  AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
309  AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
310  AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
311
312  // Expand all other v4f16 operations.
313  // FIXME: We could generate better code by promoting some operations to
314  // a pair of v4f32s
315  setOperationAction(ISD::FABS, MVT::v4f16, Expand);
316  setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
317  setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
318  setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
319  setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
320  setOperationAction(ISD::FMA, MVT::v4f16, Expand);
321  setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
322  setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
323  setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
324  setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
325  setOperationAction(ISD::FREM, MVT::v4f16, Expand);
326  setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
327  setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
328  setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
329  setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
330  setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
331  setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
332  setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
333  setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
334  setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
335  setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
336  setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
337  setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
338  setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
339  setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
340  setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
341
342
343  // v8f16 is also a storage-only type, so expand it.
344  setOperationAction(ISD::FABS, MVT::v8f16, Expand);
345  setOperationAction(ISD::FADD, MVT::v8f16, Expand);
346  setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
347  setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
348  setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
349  setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
350  setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
351  setOperationAction(ISD::FMA, MVT::v8f16, Expand);
352  setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
353  setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
354  setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
355  setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
356  setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
357  setOperationAction(ISD::FREM, MVT::v8f16, Expand);
358  setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
359  setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
360  setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
361  setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
362  setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
363  setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
364  setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
365  setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
366  setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
367  setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
368  setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
369  setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
370  setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
371  setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
372  setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
373  setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
374  setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
375
376  // AArch64 has implementations of a lot of rounding-like FP operations.
377  for (MVT Ty : {MVT::f32, MVT::f64}) {
378    setOperationAction(ISD::FFLOOR, Ty, Legal);
379    setOperationAction(ISD::FNEARBYINT, Ty, Legal);
380    setOperationAction(ISD::FCEIL, Ty, Legal);
381    setOperationAction(ISD::FRINT, Ty, Legal);
382    setOperationAction(ISD::FTRUNC, Ty, Legal);
383    setOperationAction(ISD::FROUND, Ty, Legal);
384    setOperationAction(ISD::FMINNUM, Ty, Legal);
385    setOperationAction(ISD::FMAXNUM, Ty, Legal);
386    setOperationAction(ISD::FMINNAN, Ty, Legal);
387    setOperationAction(ISD::FMAXNAN, Ty, Legal);
388  }
389
390  setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
391
392  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
393
394  // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
395  // This requires the Performance Monitors extension.
396  if (Subtarget->hasPerfMon())
397    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
398
399  if (Subtarget->isTargetMachO()) {
400    // For iOS, we don't want to the normal expansion of a libcall to
401    // sincos. We want to issue a libcall to __sincos_stret to avoid memory
402    // traffic.
403    setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
404    setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
405  } else {
406    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
407    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
408  }
409
410  // Make floating-point constants legal for the large code model, so they don't
411  // become loads from the constant pool.
412  if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
413    setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
414    setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
415  }
416
417  // AArch64 does not have floating-point extending loads, i1 sign-extending
418  // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
419  for (MVT VT : MVT::fp_valuetypes()) {
420    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
421    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
422    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
423    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
424  }
425  for (MVT VT : MVT::integer_valuetypes())
426    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
427
428  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
429  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
430  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
431  setTruncStoreAction(MVT::f128, MVT::f80, Expand);
432  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
433  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
434  setTruncStoreAction(MVT::f128, MVT::f16, Expand);
435
436  setOperationAction(ISD::BITCAST, MVT::i16, Custom);
437  setOperationAction(ISD::BITCAST, MVT::f16, Custom);
438
439  // Indexed loads and stores are supported.
440  for (unsigned im = (unsigned)ISD::PRE_INC;
441       im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
442    setIndexedLoadAction(im, MVT::i8, Legal);
443    setIndexedLoadAction(im, MVT::i16, Legal);
444    setIndexedLoadAction(im, MVT::i32, Legal);
445    setIndexedLoadAction(im, MVT::i64, Legal);
446    setIndexedLoadAction(im, MVT::f64, Legal);
447    setIndexedLoadAction(im, MVT::f32, Legal);
448    setIndexedLoadAction(im, MVT::f16, Legal);
449    setIndexedStoreAction(im, MVT::i8, Legal);
450    setIndexedStoreAction(im, MVT::i16, Legal);
451    setIndexedStoreAction(im, MVT::i32, Legal);
452    setIndexedStoreAction(im, MVT::i64, Legal);
453    setIndexedStoreAction(im, MVT::f64, Legal);
454    setIndexedStoreAction(im, MVT::f32, Legal);
455    setIndexedStoreAction(im, MVT::f16, Legal);
456  }
457
458  // Trap.
459  setOperationAction(ISD::TRAP, MVT::Other, Legal);
460
461  // We combine OR nodes for bitfield operations.
462  setTargetDAGCombine(ISD::OR);
463
464  // Vector add and sub nodes may conceal a high-half opportunity.
465  // Also, try to fold ADD into CSINC/CSINV..
466  setTargetDAGCombine(ISD::ADD);
467  setTargetDAGCombine(ISD::SUB);
468  setTargetDAGCombine(ISD::SRL);
469  setTargetDAGCombine(ISD::XOR);
470  setTargetDAGCombine(ISD::SINT_TO_FP);
471  setTargetDAGCombine(ISD::UINT_TO_FP);
472
473  setTargetDAGCombine(ISD::FP_TO_SINT);
474  setTargetDAGCombine(ISD::FP_TO_UINT);
475  setTargetDAGCombine(ISD::FDIV);
476
477  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
478
479  setTargetDAGCombine(ISD::ANY_EXTEND);
480  setTargetDAGCombine(ISD::ZERO_EXTEND);
481  setTargetDAGCombine(ISD::SIGN_EXTEND);
482  setTargetDAGCombine(ISD::BITCAST);
483  setTargetDAGCombine(ISD::CONCAT_VECTORS);
484  setTargetDAGCombine(ISD::STORE);
485  if (Subtarget->supportsAddressTopByteIgnored())
486    setTargetDAGCombine(ISD::LOAD);
487
488  setTargetDAGCombine(ISD::MUL);
489
490  setTargetDAGCombine(ISD::SELECT);
491  setTargetDAGCombine(ISD::VSELECT);
492
493  setTargetDAGCombine(ISD::INTRINSIC_VOID);
494  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
495  setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
496  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
497
498  MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
499  MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
500  MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
501
502  setStackPointerRegisterToSaveRestore(AArch64::SP);
503
504  setSchedulingPreference(Sched::Hybrid);
505
506  // Enable TBZ/TBNZ
507  MaskAndBranchFoldingIsLegal = true;
508  EnableExtLdPromotion = true;
509
510  // Set required alignment.
511  setMinFunctionAlignment(2);
512  // Set preferred alignments.
513  setPrefFunctionAlignment(STI.getPrefFunctionAlignment());
514  setPrefLoopAlignment(STI.getPrefLoopAlignment());
515
516  setHasExtractBitsInsn(true);
517
518  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
519
520  if (Subtarget->hasNEON()) {
521    // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
522    // silliness like this:
523    setOperationAction(ISD::FABS, MVT::v1f64, Expand);
524    setOperationAction(ISD::FADD, MVT::v1f64, Expand);
525    setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
526    setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
527    setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
528    setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
529    setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
530    setOperationAction(ISD::FMA, MVT::v1f64, Expand);
531    setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
532    setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
533    setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
534    setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
535    setOperationAction(ISD::FREM, MVT::v1f64, Expand);
536    setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
537    setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
538    setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
539    setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
540    setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
541    setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
542    setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
543    setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
544    setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
545    setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
546    setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
547    setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
548
549    setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
550    setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
551    setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
552    setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
553    setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
554
555    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
556
557    // AArch64 doesn't have a direct vector ->f32 conversion instructions for
558    // elements smaller than i32, so promote the input to i32 first.
559    setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
560    setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
561    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
562    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
563    // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16
564    // -> v8f16 conversions.
565    setOperationAction(ISD::SINT_TO_FP, MVT::v8i8, Promote);
566    setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Promote);
567    setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote);
568    setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Promote);
569    // Similarly, there is no direct i32 -> f64 vector conversion instruction.
570    setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
571    setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
572    setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
573    setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
574    // Or, direct i32 -> f16 vector conversion.  Set it so custom, so the
575    // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
576    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
577    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
578
579    setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
580    setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
581
582    setOperationAction(ISD::CTTZ,       MVT::v2i8,  Expand);
583    setOperationAction(ISD::CTTZ,       MVT::v4i16, Expand);
584    setOperationAction(ISD::CTTZ,       MVT::v2i32, Expand);
585    setOperationAction(ISD::CTTZ,       MVT::v1i64, Expand);
586    setOperationAction(ISD::CTTZ,       MVT::v16i8, Expand);
587    setOperationAction(ISD::CTTZ,       MVT::v8i16, Expand);
588    setOperationAction(ISD::CTTZ,       MVT::v4i32, Expand);
589    setOperationAction(ISD::CTTZ,       MVT::v2i64, Expand);
590
591    // AArch64 doesn't have MUL.2d:
592    setOperationAction(ISD::MUL, MVT::v2i64, Expand);
593    // Custom handling for some quad-vector types to detect MULL.
594    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
595    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
596    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
597
598    setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
599    setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
600    // Likewise, narrowing and extending vector loads/stores aren't handled
601    // directly.
602    for (MVT VT : MVT::vector_valuetypes()) {
603      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
604
605      setOperationAction(ISD::MULHS, VT, Expand);
606      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
607      setOperationAction(ISD::MULHU, VT, Expand);
608      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
609
610      setOperationAction(ISD::BSWAP, VT, Expand);
611
612      for (MVT InnerVT : MVT::vector_valuetypes()) {
613        setTruncStoreAction(VT, InnerVT, Expand);
614        setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
615        setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
616        setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
617      }
618    }
619
620    // AArch64 has implementations of a lot of rounding-like FP operations.
621    for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
622      setOperationAction(ISD::FFLOOR, Ty, Legal);
623      setOperationAction(ISD::FNEARBYINT, Ty, Legal);
624      setOperationAction(ISD::FCEIL, Ty, Legal);
625      setOperationAction(ISD::FRINT, Ty, Legal);
626      setOperationAction(ISD::FTRUNC, Ty, Legal);
627      setOperationAction(ISD::FROUND, Ty, Legal);
628    }
629  }
630
631  PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
632}
633
634void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) {
635  if (VT == MVT::v2f32 || VT == MVT::v4f16) {
636    setOperationAction(ISD::LOAD, VT, Promote);
637    AddPromotedToType(ISD::LOAD, VT, MVT::v2i32);
638
639    setOperationAction(ISD::STORE, VT, Promote);
640    AddPromotedToType(ISD::STORE, VT, MVT::v2i32);
641  } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
642    setOperationAction(ISD::LOAD, VT, Promote);
643    AddPromotedToType(ISD::LOAD, VT, MVT::v2i64);
644
645    setOperationAction(ISD::STORE, VT, Promote);
646    AddPromotedToType(ISD::STORE, VT, MVT::v2i64);
647  }
648
649  // Mark vector float intrinsics as expand.
650  if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
651    setOperationAction(ISD::FSIN, VT, Expand);
652    setOperationAction(ISD::FCOS, VT, Expand);
653    setOperationAction(ISD::FPOWI, VT, Expand);
654    setOperationAction(ISD::FPOW, VT, Expand);
655    setOperationAction(ISD::FLOG, VT, Expand);
656    setOperationAction(ISD::FLOG2, VT, Expand);
657    setOperationAction(ISD::FLOG10, VT, Expand);
658    setOperationAction(ISD::FEXP, VT, Expand);
659    setOperationAction(ISD::FEXP2, VT, Expand);
660
661    // But we do support custom-lowering for FCOPYSIGN.
662    setOperationAction(ISD::FCOPYSIGN, VT, Custom);
663  }
664
665  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
666  setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
667  setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
668  setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
669  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
670  setOperationAction(ISD::SRA, VT, Custom);
671  setOperationAction(ISD::SRL, VT, Custom);
672  setOperationAction(ISD::SHL, VT, Custom);
673  setOperationAction(ISD::AND, VT, Custom);
674  setOperationAction(ISD::OR, VT, Custom);
675  setOperationAction(ISD::SETCC, VT, Custom);
676  setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
677
678  setOperationAction(ISD::SELECT, VT, Expand);
679  setOperationAction(ISD::SELECT_CC, VT, Expand);
680  setOperationAction(ISD::VSELECT, VT, Expand);
681  for (MVT InnerVT : MVT::all_valuetypes())
682    setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
683
684  // CNT supports only B element sizes.
685  if (VT != MVT::v8i8 && VT != MVT::v16i8)
686    setOperationAction(ISD::CTPOP, VT, Expand);
687
688  setOperationAction(ISD::UDIV, VT, Expand);
689  setOperationAction(ISD::SDIV, VT, Expand);
690  setOperationAction(ISD::UREM, VT, Expand);
691  setOperationAction(ISD::SREM, VT, Expand);
692  setOperationAction(ISD::FREM, VT, Expand);
693
694  setOperationAction(ISD::FP_TO_SINT, VT, Custom);
695  setOperationAction(ISD::FP_TO_UINT, VT, Custom);
696
697  // [SU][MIN|MAX] are available for all NEON types apart from i64.
698  if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
699    for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
700      setOperationAction(Opcode, VT, Legal);
701
702  // F[MIN|MAX][NUM|NAN] are available for all FP NEON types (not f16 though!).
703  if (VT.isFloatingPoint() && VT.getVectorElementType() != MVT::f16)
704    for (unsigned Opcode : {ISD::FMINNAN, ISD::FMAXNAN,
705                            ISD::FMINNUM, ISD::FMAXNUM})
706      setOperationAction(Opcode, VT, Legal);
707
708  if (Subtarget->isLittleEndian()) {
709    for (unsigned im = (unsigned)ISD::PRE_INC;
710         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
711      setIndexedLoadAction(im, VT, Legal);
712      setIndexedStoreAction(im, VT, Legal);
713    }
714  }
715}
716
717void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
718  addRegisterClass(VT, &AArch64::FPR64RegClass);
719  addTypeForNEON(VT, MVT::v2i32);
720}
721
722void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
723  addRegisterClass(VT, &AArch64::FPR128RegClass);
724  addTypeForNEON(VT, MVT::v4i32);
725}
726
727EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
728                                              EVT VT) const {
729  if (!VT.isVector())
730    return MVT::i32;
731  return VT.changeVectorElementTypeToInteger();
732}
733
734/// computeKnownBitsForTargetNode - Determine which of the bits specified in
735/// Mask are known to be either zero or one and return them in the
736/// KnownZero/KnownOne bitsets.
737void AArch64TargetLowering::computeKnownBitsForTargetNode(
738    const SDValue Op, APInt &KnownZero, APInt &KnownOne,
739    const SelectionDAG &DAG, unsigned Depth) const {
740  switch (Op.getOpcode()) {
741  default:
742    break;
743  case AArch64ISD::CSEL: {
744    APInt KnownZero2, KnownOne2;
745    DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
746    DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
747    KnownZero &= KnownZero2;
748    KnownOne &= KnownOne2;
749    break;
750  }
751  case ISD::INTRINSIC_W_CHAIN: {
752    ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
753    Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
754    switch (IntID) {
755    default: return;
756    case Intrinsic::aarch64_ldaxr:
757    case Intrinsic::aarch64_ldxr: {
758      unsigned BitWidth = KnownOne.getBitWidth();
759      EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
760      unsigned MemBits = VT.getScalarType().getSizeInBits();
761      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
762      return;
763    }
764    }
765    break;
766  }
767  case ISD::INTRINSIC_WO_CHAIN:
768  case ISD::INTRINSIC_VOID: {
769    unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
770    switch (IntNo) {
771    default:
772      break;
773    case Intrinsic::aarch64_neon_umaxv:
774    case Intrinsic::aarch64_neon_uminv: {
775      // Figure out the datatype of the vector operand. The UMINV instruction
776      // will zero extend the result, so we can mark as known zero all the
777      // bits larger than the element datatype. 32-bit or larget doesn't need
778      // this as those are legal types and will be handled by isel directly.
779      MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
780      unsigned BitWidth = KnownZero.getBitWidth();
781      if (VT == MVT::v8i8 || VT == MVT::v16i8) {
782        assert(BitWidth >= 8 && "Unexpected width!");
783        APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
784        KnownZero |= Mask;
785      } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
786        assert(BitWidth >= 16 && "Unexpected width!");
787        APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
788        KnownZero |= Mask;
789      }
790      break;
791    } break;
792    }
793  }
794  }
795}
796
797MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
798                                                  EVT) const {
799  return MVT::i64;
800}
801
802bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
803                                                           unsigned AddrSpace,
804                                                           unsigned Align,
805                                                           bool *Fast) const {
806  if (Subtarget->requiresStrictAlign())
807    return false;
808
809  if (Fast) {
810    // Some CPUs are fine with unaligned stores except for 128-bit ones.
811    *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
812            // See comments in performSTORECombine() for more details about
813            // these conditions.
814
815            // Code that uses clang vector extensions can mark that it
816            // wants unaligned accesses to be treated as fast by
817            // underspecifying alignment to be 1 or 2.
818            Align <= 2 ||
819
820            // Disregard v2i64. Memcpy lowering produces those and splitting
821            // them regresses performance on micro-benchmarks and olden/bh.
822            VT == MVT::v2i64;
823  }
824  return true;
825}
826
827FastISel *
828AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
829                                      const TargetLibraryInfo *libInfo) const {
830  return AArch64::createFastISel(funcInfo, libInfo);
831}
832
833const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
834  switch ((AArch64ISD::NodeType)Opcode) {
835  case AArch64ISD::FIRST_NUMBER:      break;
836  case AArch64ISD::CALL:              return "AArch64ISD::CALL";
837  case AArch64ISD::ADRP:              return "AArch64ISD::ADRP";
838  case AArch64ISD::ADDlow:            return "AArch64ISD::ADDlow";
839  case AArch64ISD::LOADgot:           return "AArch64ISD::LOADgot";
840  case AArch64ISD::RET_FLAG:          return "AArch64ISD::RET_FLAG";
841  case AArch64ISD::BRCOND:            return "AArch64ISD::BRCOND";
842  case AArch64ISD::CSEL:              return "AArch64ISD::CSEL";
843  case AArch64ISD::FCSEL:             return "AArch64ISD::FCSEL";
844  case AArch64ISD::CSINV:             return "AArch64ISD::CSINV";
845  case AArch64ISD::CSNEG:             return "AArch64ISD::CSNEG";
846  case AArch64ISD::CSINC:             return "AArch64ISD::CSINC";
847  case AArch64ISD::THREAD_POINTER:    return "AArch64ISD::THREAD_POINTER";
848  case AArch64ISD::TLSDESC_CALLSEQ:   return "AArch64ISD::TLSDESC_CALLSEQ";
849  case AArch64ISD::ADC:               return "AArch64ISD::ADC";
850  case AArch64ISD::SBC:               return "AArch64ISD::SBC";
851  case AArch64ISD::ADDS:              return "AArch64ISD::ADDS";
852  case AArch64ISD::SUBS:              return "AArch64ISD::SUBS";
853  case AArch64ISD::ADCS:              return "AArch64ISD::ADCS";
854  case AArch64ISD::SBCS:              return "AArch64ISD::SBCS";
855  case AArch64ISD::ANDS:              return "AArch64ISD::ANDS";
856  case AArch64ISD::CCMP:              return "AArch64ISD::CCMP";
857  case AArch64ISD::CCMN:              return "AArch64ISD::CCMN";
858  case AArch64ISD::FCCMP:             return "AArch64ISD::FCCMP";
859  case AArch64ISD::FCMP:              return "AArch64ISD::FCMP";
860  case AArch64ISD::DUP:               return "AArch64ISD::DUP";
861  case AArch64ISD::DUPLANE8:          return "AArch64ISD::DUPLANE8";
862  case AArch64ISD::DUPLANE16:         return "AArch64ISD::DUPLANE16";
863  case AArch64ISD::DUPLANE32:         return "AArch64ISD::DUPLANE32";
864  case AArch64ISD::DUPLANE64:         return "AArch64ISD::DUPLANE64";
865  case AArch64ISD::MOVI:              return "AArch64ISD::MOVI";
866  case AArch64ISD::MOVIshift:         return "AArch64ISD::MOVIshift";
867  case AArch64ISD::MOVIedit:          return "AArch64ISD::MOVIedit";
868  case AArch64ISD::MOVImsl:           return "AArch64ISD::MOVImsl";
869  case AArch64ISD::FMOV:              return "AArch64ISD::FMOV";
870  case AArch64ISD::MVNIshift:         return "AArch64ISD::MVNIshift";
871  case AArch64ISD::MVNImsl:           return "AArch64ISD::MVNImsl";
872  case AArch64ISD::BICi:              return "AArch64ISD::BICi";
873  case AArch64ISD::ORRi:              return "AArch64ISD::ORRi";
874  case AArch64ISD::BSL:               return "AArch64ISD::BSL";
875  case AArch64ISD::NEG:               return "AArch64ISD::NEG";
876  case AArch64ISD::EXTR:              return "AArch64ISD::EXTR";
877  case AArch64ISD::ZIP1:              return "AArch64ISD::ZIP1";
878  case AArch64ISD::ZIP2:              return "AArch64ISD::ZIP2";
879  case AArch64ISD::UZP1:              return "AArch64ISD::UZP1";
880  case AArch64ISD::UZP2:              return "AArch64ISD::UZP2";
881  case AArch64ISD::TRN1:              return "AArch64ISD::TRN1";
882  case AArch64ISD::TRN2:              return "AArch64ISD::TRN2";
883  case AArch64ISD::REV16:             return "AArch64ISD::REV16";
884  case AArch64ISD::REV32:             return "AArch64ISD::REV32";
885  case AArch64ISD::REV64:             return "AArch64ISD::REV64";
886  case AArch64ISD::EXT:               return "AArch64ISD::EXT";
887  case AArch64ISD::VSHL:              return "AArch64ISD::VSHL";
888  case AArch64ISD::VLSHR:             return "AArch64ISD::VLSHR";
889  case AArch64ISD::VASHR:             return "AArch64ISD::VASHR";
890  case AArch64ISD::CMEQ:              return "AArch64ISD::CMEQ";
891  case AArch64ISD::CMGE:              return "AArch64ISD::CMGE";
892  case AArch64ISD::CMGT:              return "AArch64ISD::CMGT";
893  case AArch64ISD::CMHI:              return "AArch64ISD::CMHI";
894  case AArch64ISD::CMHS:              return "AArch64ISD::CMHS";
895  case AArch64ISD::FCMEQ:             return "AArch64ISD::FCMEQ";
896  case AArch64ISD::FCMGE:             return "AArch64ISD::FCMGE";
897  case AArch64ISD::FCMGT:             return "AArch64ISD::FCMGT";
898  case AArch64ISD::CMEQz:             return "AArch64ISD::CMEQz";
899  case AArch64ISD::CMGEz:             return "AArch64ISD::CMGEz";
900  case AArch64ISD::CMGTz:             return "AArch64ISD::CMGTz";
901  case AArch64ISD::CMLEz:             return "AArch64ISD::CMLEz";
902  case AArch64ISD::CMLTz:             return "AArch64ISD::CMLTz";
903  case AArch64ISD::FCMEQz:            return "AArch64ISD::FCMEQz";
904  case AArch64ISD::FCMGEz:            return "AArch64ISD::FCMGEz";
905  case AArch64ISD::FCMGTz:            return "AArch64ISD::FCMGTz";
906  case AArch64ISD::FCMLEz:            return "AArch64ISD::FCMLEz";
907  case AArch64ISD::FCMLTz:            return "AArch64ISD::FCMLTz";
908  case AArch64ISD::SADDV:             return "AArch64ISD::SADDV";
909  case AArch64ISD::UADDV:             return "AArch64ISD::UADDV";
910  case AArch64ISD::SMINV:             return "AArch64ISD::SMINV";
911  case AArch64ISD::UMINV:             return "AArch64ISD::UMINV";
912  case AArch64ISD::SMAXV:             return "AArch64ISD::SMAXV";
913  case AArch64ISD::UMAXV:             return "AArch64ISD::UMAXV";
914  case AArch64ISD::NOT:               return "AArch64ISD::NOT";
915  case AArch64ISD::BIT:               return "AArch64ISD::BIT";
916  case AArch64ISD::CBZ:               return "AArch64ISD::CBZ";
917  case AArch64ISD::CBNZ:              return "AArch64ISD::CBNZ";
918  case AArch64ISD::TBZ:               return "AArch64ISD::TBZ";
919  case AArch64ISD::TBNZ:              return "AArch64ISD::TBNZ";
920  case AArch64ISD::TC_RETURN:         return "AArch64ISD::TC_RETURN";
921  case AArch64ISD::PREFETCH:          return "AArch64ISD::PREFETCH";
922  case AArch64ISD::SITOF:             return "AArch64ISD::SITOF";
923  case AArch64ISD::UITOF:             return "AArch64ISD::UITOF";
924  case AArch64ISD::NVCAST:            return "AArch64ISD::NVCAST";
925  case AArch64ISD::SQSHL_I:           return "AArch64ISD::SQSHL_I";
926  case AArch64ISD::UQSHL_I:           return "AArch64ISD::UQSHL_I";
927  case AArch64ISD::SRSHR_I:           return "AArch64ISD::SRSHR_I";
928  case AArch64ISD::URSHR_I:           return "AArch64ISD::URSHR_I";
929  case AArch64ISD::SQSHLU_I:          return "AArch64ISD::SQSHLU_I";
930  case AArch64ISD::WrapperLarge:      return "AArch64ISD::WrapperLarge";
931  case AArch64ISD::LD2post:           return "AArch64ISD::LD2post";
932  case AArch64ISD::LD3post:           return "AArch64ISD::LD3post";
933  case AArch64ISD::LD4post:           return "AArch64ISD::LD4post";
934  case AArch64ISD::ST2post:           return "AArch64ISD::ST2post";
935  case AArch64ISD::ST3post:           return "AArch64ISD::ST3post";
936  case AArch64ISD::ST4post:           return "AArch64ISD::ST4post";
937  case AArch64ISD::LD1x2post:         return "AArch64ISD::LD1x2post";
938  case AArch64ISD::LD1x3post:         return "AArch64ISD::LD1x3post";
939  case AArch64ISD::LD1x4post:         return "AArch64ISD::LD1x4post";
940  case AArch64ISD::ST1x2post:         return "AArch64ISD::ST1x2post";
941  case AArch64ISD::ST1x3post:         return "AArch64ISD::ST1x3post";
942  case AArch64ISD::ST1x4post:         return "AArch64ISD::ST1x4post";
943  case AArch64ISD::LD1DUPpost:        return "AArch64ISD::LD1DUPpost";
944  case AArch64ISD::LD2DUPpost:        return "AArch64ISD::LD2DUPpost";
945  case AArch64ISD::LD3DUPpost:        return "AArch64ISD::LD3DUPpost";
946  case AArch64ISD::LD4DUPpost:        return "AArch64ISD::LD4DUPpost";
947  case AArch64ISD::LD1LANEpost:       return "AArch64ISD::LD1LANEpost";
948  case AArch64ISD::LD2LANEpost:       return "AArch64ISD::LD2LANEpost";
949  case AArch64ISD::LD3LANEpost:       return "AArch64ISD::LD3LANEpost";
950  case AArch64ISD::LD4LANEpost:       return "AArch64ISD::LD4LANEpost";
951  case AArch64ISD::ST2LANEpost:       return "AArch64ISD::ST2LANEpost";
952  case AArch64ISD::ST3LANEpost:       return "AArch64ISD::ST3LANEpost";
953  case AArch64ISD::ST4LANEpost:       return "AArch64ISD::ST4LANEpost";
954  case AArch64ISD::SMULL:             return "AArch64ISD::SMULL";
955  case AArch64ISD::UMULL:             return "AArch64ISD::UMULL";
956  case AArch64ISD::FRSQRTE:           return "AArch64ISD::FRSQRTE";
957  case AArch64ISD::FRECPE:            return "AArch64ISD::FRECPE";
958  }
959  return nullptr;
960}
961
962MachineBasicBlock *
963AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
964                                    MachineBasicBlock *MBB) const {
965  // We materialise the F128CSEL pseudo-instruction as some control flow and a
966  // phi node:
967
968  // OrigBB:
969  //     [... previous instrs leading to comparison ...]
970  //     b.ne TrueBB
971  //     b EndBB
972  // TrueBB:
973  //     ; Fallthrough
974  // EndBB:
975  //     Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
976
977  MachineFunction *MF = MBB->getParent();
978  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
979  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
980  DebugLoc DL = MI.getDebugLoc();
981  MachineFunction::iterator It = ++MBB->getIterator();
982
983  unsigned DestReg = MI.getOperand(0).getReg();
984  unsigned IfTrueReg = MI.getOperand(1).getReg();
985  unsigned IfFalseReg = MI.getOperand(2).getReg();
986  unsigned CondCode = MI.getOperand(3).getImm();
987  bool NZCVKilled = MI.getOperand(4).isKill();
988
989  MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
990  MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
991  MF->insert(It, TrueBB);
992  MF->insert(It, EndBB);
993
994  // Transfer rest of current basic-block to EndBB
995  EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
996                MBB->end());
997  EndBB->transferSuccessorsAndUpdatePHIs(MBB);
998
999  BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
1000  BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
1001  MBB->addSuccessor(TrueBB);
1002  MBB->addSuccessor(EndBB);
1003
1004  // TrueBB falls through to the end.
1005  TrueBB->addSuccessor(EndBB);
1006
1007  if (!NZCVKilled) {
1008    TrueBB->addLiveIn(AArch64::NZCV);
1009    EndBB->addLiveIn(AArch64::NZCV);
1010  }
1011
1012  BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
1013      .addReg(IfTrueReg)
1014      .addMBB(TrueBB)
1015      .addReg(IfFalseReg)
1016      .addMBB(MBB);
1017
1018  MI.eraseFromParent();
1019  return EndBB;
1020}
1021
1022MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
1023    MachineInstr &MI, MachineBasicBlock *BB) const {
1024  switch (MI.getOpcode()) {
1025  default:
1026#ifndef NDEBUG
1027    MI.dump();
1028#endif
1029    llvm_unreachable("Unexpected instruction for custom inserter!");
1030
1031  case AArch64::F128CSEL:
1032    return EmitF128CSEL(MI, BB);
1033
1034  case TargetOpcode::STACKMAP:
1035  case TargetOpcode::PATCHPOINT:
1036    return emitPatchPoint(MI, BB);
1037  }
1038}
1039
1040//===----------------------------------------------------------------------===//
1041// AArch64 Lowering private implementation.
1042//===----------------------------------------------------------------------===//
1043
1044//===----------------------------------------------------------------------===//
1045// Lowering Code
1046//===----------------------------------------------------------------------===//
1047
1048/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1049/// CC
1050static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
1051  switch (CC) {
1052  default:
1053    llvm_unreachable("Unknown condition code!");
1054  case ISD::SETNE:
1055    return AArch64CC::NE;
1056  case ISD::SETEQ:
1057    return AArch64CC::EQ;
1058  case ISD::SETGT:
1059    return AArch64CC::GT;
1060  case ISD::SETGE:
1061    return AArch64CC::GE;
1062  case ISD::SETLT:
1063    return AArch64CC::LT;
1064  case ISD::SETLE:
1065    return AArch64CC::LE;
1066  case ISD::SETUGT:
1067    return AArch64CC::HI;
1068  case ISD::SETUGE:
1069    return AArch64CC::HS;
1070  case ISD::SETULT:
1071    return AArch64CC::LO;
1072  case ISD::SETULE:
1073    return AArch64CC::LS;
1074  }
1075}
1076
1077/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
1078static void changeFPCCToAArch64CC(ISD::CondCode CC,
1079                                  AArch64CC::CondCode &CondCode,
1080                                  AArch64CC::CondCode &CondCode2) {
1081  CondCode2 = AArch64CC::AL;
1082  switch (CC) {
1083  default:
1084    llvm_unreachable("Unknown FP condition!");
1085  case ISD::SETEQ:
1086  case ISD::SETOEQ:
1087    CondCode = AArch64CC::EQ;
1088    break;
1089  case ISD::SETGT:
1090  case ISD::SETOGT:
1091    CondCode = AArch64CC::GT;
1092    break;
1093  case ISD::SETGE:
1094  case ISD::SETOGE:
1095    CondCode = AArch64CC::GE;
1096    break;
1097  case ISD::SETOLT:
1098    CondCode = AArch64CC::MI;
1099    break;
1100  case ISD::SETOLE:
1101    CondCode = AArch64CC::LS;
1102    break;
1103  case ISD::SETONE:
1104    CondCode = AArch64CC::MI;
1105    CondCode2 = AArch64CC::GT;
1106    break;
1107  case ISD::SETO:
1108    CondCode = AArch64CC::VC;
1109    break;
1110  case ISD::SETUO:
1111    CondCode = AArch64CC::VS;
1112    break;
1113  case ISD::SETUEQ:
1114    CondCode = AArch64CC::EQ;
1115    CondCode2 = AArch64CC::VS;
1116    break;
1117  case ISD::SETUGT:
1118    CondCode = AArch64CC::HI;
1119    break;
1120  case ISD::SETUGE:
1121    CondCode = AArch64CC::PL;
1122    break;
1123  case ISD::SETLT:
1124  case ISD::SETULT:
1125    CondCode = AArch64CC::LT;
1126    break;
1127  case ISD::SETLE:
1128  case ISD::SETULE:
1129    CondCode = AArch64CC::LE;
1130    break;
1131  case ISD::SETNE:
1132  case ISD::SETUNE:
1133    CondCode = AArch64CC::NE;
1134    break;
1135  }
1136}
1137
1138/// Convert a DAG fp condition code to an AArch64 CC.
1139/// This differs from changeFPCCToAArch64CC in that it returns cond codes that
1140/// should be AND'ed instead of OR'ed.
1141static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
1142                                     AArch64CC::CondCode &CondCode,
1143                                     AArch64CC::CondCode &CondCode2) {
1144  CondCode2 = AArch64CC::AL;
1145  switch (CC) {
1146  default:
1147    changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1148    assert(CondCode2 == AArch64CC::AL);
1149    break;
1150  case ISD::SETONE:
1151    // (a one b)
1152    // == ((a olt b) || (a ogt b))
1153    // == ((a ord b) && (a une b))
1154    CondCode = AArch64CC::VC;
1155    CondCode2 = AArch64CC::NE;
1156    break;
1157  case ISD::SETUEQ:
1158    // (a ueq b)
1159    // == ((a uno b) || (a oeq b))
1160    // == ((a ule b) && (a uge b))
1161    CondCode = AArch64CC::PL;
1162    CondCode2 = AArch64CC::LE;
1163    break;
1164  }
1165}
1166
1167/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1168/// CC usable with the vector instructions. Fewer operations are available
1169/// without a real NZCV register, so we have to use less efficient combinations
1170/// to get the same effect.
1171static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1172                                        AArch64CC::CondCode &CondCode,
1173                                        AArch64CC::CondCode &CondCode2,
1174                                        bool &Invert) {
1175  Invert = false;
1176  switch (CC) {
1177  default:
1178    // Mostly the scalar mappings work fine.
1179    changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1180    break;
1181  case ISD::SETUO:
1182    Invert = true; // Fallthrough
1183  case ISD::SETO:
1184    CondCode = AArch64CC::MI;
1185    CondCode2 = AArch64CC::GE;
1186    break;
1187  case ISD::SETUEQ:
1188  case ISD::SETULT:
1189  case ISD::SETULE:
1190  case ISD::SETUGT:
1191  case ISD::SETUGE:
1192    // All of the compare-mask comparisons are ordered, but we can switch
1193    // between the two by a double inversion. E.g. ULE == !OGT.
1194    Invert = true;
1195    changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1196    break;
1197  }
1198}
1199
1200static bool isLegalArithImmed(uint64_t C) {
1201  // Matches AArch64DAGToDAGISel::SelectArithImmed().
1202  return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1203}
1204
1205static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1206                              const SDLoc &dl, SelectionDAG &DAG) {
1207  EVT VT = LHS.getValueType();
1208
1209  if (VT.isFloatingPoint()) {
1210    assert(VT != MVT::f128);
1211    if (VT == MVT::f16) {
1212      LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
1213      RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
1214      VT = MVT::f32;
1215    }
1216    return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1217  }
1218
1219  // The CMP instruction is just an alias for SUBS, and representing it as
1220  // SUBS means that it's possible to get CSE with subtract operations.
1221  // A later phase can perform the optimization of setting the destination
1222  // register to WZR/XZR if it ends up being unused.
1223  unsigned Opcode = AArch64ISD::SUBS;
1224
1225  if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
1226      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1227    // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1228    // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1229    // can be set differently by this operation. It comes down to whether
1230    // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1231    // everything is fine. If not then the optimization is wrong. Thus general
1232    // comparisons are only valid if op2 != 0.
1233
1234    // So, finally, the only LLVM-native comparisons that don't mention C and V
1235    // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1236    // the absence of information about op2.
1237    Opcode = AArch64ISD::ADDS;
1238    RHS = RHS.getOperand(1);
1239  } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
1240             !isUnsignedIntSetCC(CC)) {
1241    // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1242    // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1243    // of the signed comparisons.
1244    Opcode = AArch64ISD::ANDS;
1245    RHS = LHS.getOperand(1);
1246    LHS = LHS.getOperand(0);
1247  }
1248
1249  return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
1250      .getValue(1);
1251}
1252
1253/// \defgroup AArch64CCMP CMP;CCMP matching
1254///
1255/// These functions deal with the formation of CMP;CCMP;... sequences.
1256/// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1257/// a comparison. They set the NZCV flags to a predefined value if their
1258/// predicate is false. This allows to express arbitrary conjunctions, for
1259/// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B))))"
1260/// expressed as:
1261///   cmp A
1262///   ccmp B, inv(CB), CA
1263///   check for CB flags
1264///
1265/// In general we can create code for arbitrary "... (and (and A B) C)"
1266/// sequences. We can also implement some "or" expressions, because "(or A B)"
1267/// is equivalent to "not (and (not A) (not B))" and we can implement some
1268/// negation operations:
1269/// We can negate the results of a single comparison by inverting the flags
1270/// used when the predicate fails and inverting the flags tested in the next
1271/// instruction; We can also negate the results of the whole previous
1272/// conditional compare sequence by inverting the flags tested in the next
1273/// instruction. However there is no way to negate the result of a partial
1274/// sequence.
1275///
1276/// Therefore on encountering an "or" expression we can negate the subtree on
1277/// one side and have to be able to push the negate to the leafs of the subtree
1278/// on the other side (see also the comments in code). As complete example:
1279/// "or (or (setCA (cmp A)) (setCB (cmp B)))
1280///     (and (setCC (cmp C)) (setCD (cmp D)))"
1281/// is transformed to
1282/// "not (and (not (and (setCC (cmp C)) (setCC (cmp D))))
1283///           (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1284/// and implemented as:
1285///   cmp C
1286///   ccmp D, inv(CD), CC
1287///   ccmp A, CA, inv(CD)
1288///   ccmp B, CB, inv(CA)
1289///   check for CB flags
1290/// A counterexample is "or (and A B) (and C D)" which cannot be implemented
1291/// by conditional compare sequences.
1292/// @{
1293
1294/// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
1295static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
1296                                         ISD::CondCode CC, SDValue CCOp,
1297                                         AArch64CC::CondCode Predicate,
1298                                         AArch64CC::CondCode OutCC,
1299                                         const SDLoc &DL, SelectionDAG &DAG) {
1300  unsigned Opcode = 0;
1301  if (LHS.getValueType().isFloatingPoint()) {
1302    assert(LHS.getValueType() != MVT::f128);
1303    if (LHS.getValueType() == MVT::f16) {
1304      LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
1305      RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
1306    }
1307    Opcode = AArch64ISD::FCCMP;
1308  } else if (RHS.getOpcode() == ISD::SUB) {
1309    SDValue SubOp0 = RHS.getOperand(0);
1310    if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1311      // See emitComparison() on why we can only do this for SETEQ and SETNE.
1312      Opcode = AArch64ISD::CCMN;
1313      RHS = RHS.getOperand(1);
1314    }
1315  }
1316  if (Opcode == 0)
1317    Opcode = AArch64ISD::CCMP;
1318
1319  SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
1320  AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
1321  unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
1322  SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
1323  return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
1324}
1325
1326/// Returns true if @p Val is a tree of AND/OR/SETCC operations.
1327/// CanPushNegate is set to true if we can push a negate operation through
1328/// the tree in a was that we are left with AND operations and negate operations
1329/// at the leafs only. i.e. "not (or (or x y) z)" can be changed to
1330/// "and (and (not x) (not y)) (not z)"; "not (or (and x y) z)" cannot be
1331/// brought into such a form.
1332static bool isConjunctionDisjunctionTree(const SDValue Val, bool &CanNegate,
1333                                         unsigned Depth = 0) {
1334  if (!Val.hasOneUse())
1335    return false;
1336  unsigned Opcode = Val->getOpcode();
1337  if (Opcode == ISD::SETCC) {
1338    if (Val->getOperand(0).getValueType() == MVT::f128)
1339      return false;
1340    CanNegate = true;
1341    return true;
1342  }
1343  // Protect against exponential runtime and stack overflow.
1344  if (Depth > 6)
1345    return false;
1346  if (Opcode == ISD::AND || Opcode == ISD::OR) {
1347    SDValue O0 = Val->getOperand(0);
1348    SDValue O1 = Val->getOperand(1);
1349    bool CanNegateL;
1350    if (!isConjunctionDisjunctionTree(O0, CanNegateL, Depth+1))
1351      return false;
1352    bool CanNegateR;
1353    if (!isConjunctionDisjunctionTree(O1, CanNegateR, Depth+1))
1354      return false;
1355
1356    if (Opcode == ISD::OR) {
1357      // For an OR expression we need to be able to negate at least one side or
1358      // we cannot do the transformation at all.
1359      if (!CanNegateL && !CanNegateR)
1360        return false;
1361      // We can however change a (not (or x y)) to (and (not x) (not y)) if we
1362      // can negate the x and y subtrees.
1363      CanNegate = CanNegateL && CanNegateR;
1364    } else {
1365      // If the operands are OR expressions then we finally need to negate their
1366      // outputs, we can only do that for the operand with emitted last by
1367      // negating OutCC, not for both operands.
1368      bool NeedsNegOutL = O0->getOpcode() == ISD::OR;
1369      bool NeedsNegOutR = O1->getOpcode() == ISD::OR;
1370      if (NeedsNegOutL && NeedsNegOutR)
1371        return false;
1372      // We cannot negate an AND operation (it would become an OR),
1373      CanNegate = false;
1374    }
1375    return true;
1376  }
1377  return false;
1378}
1379
1380/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1381/// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1382/// Tries to transform the given i1 producing node @p Val to a series compare
1383/// and conditional compare operations. @returns an NZCV flags producing node
1384/// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1385/// transformation was not possible.
1386/// On recursive invocations @p PushNegate may be set to true to have negation
1387/// effects pushed to the tree leafs; @p Predicate is an NZCV flag predicate
1388/// for the comparisons in the current subtree; @p Depth limits the search
1389/// depth to avoid stack overflow.
1390static SDValue emitConjunctionDisjunctionTreeRec(SelectionDAG &DAG, SDValue Val,
1391    AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
1392    AArch64CC::CondCode Predicate) {
1393  // We're at a tree leaf, produce a conditional comparison operation.
1394  unsigned Opcode = Val->getOpcode();
1395  if (Opcode == ISD::SETCC) {
1396    SDValue LHS = Val->getOperand(0);
1397    SDValue RHS = Val->getOperand(1);
1398    ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
1399    bool isInteger = LHS.getValueType().isInteger();
1400    if (Negate)
1401      CC = getSetCCInverse(CC, isInteger);
1402    SDLoc DL(Val);
1403    // Determine OutCC and handle FP special case.
1404    if (isInteger) {
1405      OutCC = changeIntCCToAArch64CC(CC);
1406    } else {
1407      assert(LHS.getValueType().isFloatingPoint());
1408      AArch64CC::CondCode ExtraCC;
1409      changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
1410      // Some floating point conditions can't be tested with a single condition
1411      // code. Construct an additional comparison in this case.
1412      if (ExtraCC != AArch64CC::AL) {
1413        SDValue ExtraCmp;
1414        if (!CCOp.getNode())
1415          ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
1416        else
1417          ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
1418                                               ExtraCC, DL, DAG);
1419        CCOp = ExtraCmp;
1420        Predicate = ExtraCC;
1421      }
1422    }
1423
1424    // Produce a normal comparison if we are first in the chain
1425    if (!CCOp)
1426      return emitComparison(LHS, RHS, CC, DL, DAG);
1427    // Otherwise produce a ccmp.
1428    return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
1429                                     DAG);
1430  }
1431  assert((Opcode == ISD::AND || (Opcode == ISD::OR && Val->hasOneUse())) &&
1432         "Valid conjunction/disjunction tree");
1433
1434  // Check if both sides can be transformed.
1435  SDValue LHS = Val->getOperand(0);
1436  SDValue RHS = Val->getOperand(1);
1437
1438  // In case of an OR we need to negate our operands and the result.
1439  // (A v B) <=> not(not(A) ^ not(B))
1440  bool NegateOpsAndResult = Opcode == ISD::OR;
1441  // We can negate the results of all previous operations by inverting the
1442  // predicate flags giving us a free negation for one side. The other side
1443  // must be negatable by itself.
1444  if (NegateOpsAndResult) {
1445    // See which side we can negate.
1446    bool CanNegateL;
1447    bool isValidL = isConjunctionDisjunctionTree(LHS, CanNegateL);
1448    assert(isValidL && "Valid conjunction/disjunction tree");
1449    (void)isValidL;
1450
1451#ifndef NDEBUG
1452    bool CanNegateR;
1453    bool isValidR = isConjunctionDisjunctionTree(RHS, CanNegateR);
1454    assert(isValidR && "Valid conjunction/disjunction tree");
1455    assert((CanNegateL || CanNegateR) && "Valid conjunction/disjunction tree");
1456#endif
1457
1458    // Order the side which we cannot negate to RHS so we can emit it first.
1459    if (!CanNegateL)
1460      std::swap(LHS, RHS);
1461  } else {
1462    bool NeedsNegOutL = LHS->getOpcode() == ISD::OR;
1463    assert((!NeedsNegOutL || RHS->getOpcode() != ISD::OR) &&
1464           "Valid conjunction/disjunction tree");
1465    // Order the side where we need to negate the output flags to RHS so it
1466    // gets emitted first.
1467    if (NeedsNegOutL)
1468      std::swap(LHS, RHS);
1469  }
1470
1471  // Emit RHS. If we want to negate the tree we only need to push a negate
1472  // through if we are already in a PushNegate case, otherwise we can negate
1473  // the "flags to test" afterwards.
1474  AArch64CC::CondCode RHSCC;
1475  SDValue CmpR = emitConjunctionDisjunctionTreeRec(DAG, RHS, RHSCC, Negate,
1476                                                   CCOp, Predicate);
1477  if (NegateOpsAndResult && !Negate)
1478    RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
1479  // Emit LHS. We may need to negate it.
1480  SDValue CmpL = emitConjunctionDisjunctionTreeRec(DAG, LHS, OutCC,
1481                                                   NegateOpsAndResult, CmpR,
1482                                                   RHSCC);
1483  // If we transformed an OR to and AND then we have to negate the result
1484  // (or absorb the Negate parameter).
1485  if (NegateOpsAndResult && !Negate)
1486    OutCC = AArch64CC::getInvertedCondCode(OutCC);
1487  return CmpL;
1488}
1489
1490/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1491/// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1492/// \see emitConjunctionDisjunctionTreeRec().
1493static SDValue emitConjunctionDisjunctionTree(SelectionDAG &DAG, SDValue Val,
1494                                              AArch64CC::CondCode &OutCC) {
1495  bool CanNegate;
1496  if (!isConjunctionDisjunctionTree(Val, CanNegate))
1497    return SDValue();
1498
1499  return emitConjunctionDisjunctionTreeRec(DAG, Val, OutCC, false, SDValue(),
1500                                           AArch64CC::AL);
1501}
1502
1503/// @}
1504
1505static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1506                             SDValue &AArch64cc, SelectionDAG &DAG,
1507                             const SDLoc &dl) {
1508  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1509    EVT VT = RHS.getValueType();
1510    uint64_t C = RHSC->getZExtValue();
1511    if (!isLegalArithImmed(C)) {
1512      // Constant does not fit, try adjusting it by one?
1513      switch (CC) {
1514      default:
1515        break;
1516      case ISD::SETLT:
1517      case ISD::SETGE:
1518        if ((VT == MVT::i32 && C != 0x80000000 &&
1519             isLegalArithImmed((uint32_t)(C - 1))) ||
1520            (VT == MVT::i64 && C != 0x80000000ULL &&
1521             isLegalArithImmed(C - 1ULL))) {
1522          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1523          C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1524          RHS = DAG.getConstant(C, dl, VT);
1525        }
1526        break;
1527      case ISD::SETULT:
1528      case ISD::SETUGE:
1529        if ((VT == MVT::i32 && C != 0 &&
1530             isLegalArithImmed((uint32_t)(C - 1))) ||
1531            (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1532          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1533          C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1534          RHS = DAG.getConstant(C, dl, VT);
1535        }
1536        break;
1537      case ISD::SETLE:
1538      case ISD::SETGT:
1539        if ((VT == MVT::i32 && C != INT32_MAX &&
1540             isLegalArithImmed((uint32_t)(C + 1))) ||
1541            (VT == MVT::i64 && C != INT64_MAX &&
1542             isLegalArithImmed(C + 1ULL))) {
1543          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1544          C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1545          RHS = DAG.getConstant(C, dl, VT);
1546        }
1547        break;
1548      case ISD::SETULE:
1549      case ISD::SETUGT:
1550        if ((VT == MVT::i32 && C != UINT32_MAX &&
1551             isLegalArithImmed((uint32_t)(C + 1))) ||
1552            (VT == MVT::i64 && C != UINT64_MAX &&
1553             isLegalArithImmed(C + 1ULL))) {
1554          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1555          C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1556          RHS = DAG.getConstant(C, dl, VT);
1557        }
1558        break;
1559      }
1560    }
1561  }
1562  SDValue Cmp;
1563  AArch64CC::CondCode AArch64CC;
1564  if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
1565    const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
1566
1567    // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1568    // For the i8 operand, the largest immediate is 255, so this can be easily
1569    // encoded in the compare instruction. For the i16 operand, however, the
1570    // largest immediate cannot be encoded in the compare.
1571    // Therefore, use a sign extending load and cmn to avoid materializing the
1572    // -1 constant. For example,
1573    // movz w1, #65535
1574    // ldrh w0, [x0, #0]
1575    // cmp w0, w1
1576    // >
1577    // ldrsh w0, [x0, #0]
1578    // cmn w0, #1
1579    // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1580    // if and only if (sext LHS) == (sext RHS). The checks are in place to
1581    // ensure both the LHS and RHS are truly zero extended and to make sure the
1582    // transformation is profitable.
1583    if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
1584        cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1585        cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1586        LHS.getNode()->hasNUsesOfValue(1, 0)) {
1587      int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1588      if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1589        SDValue SExt =
1590            DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1591                        DAG.getValueType(MVT::i16));
1592        Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
1593                                                   RHS.getValueType()),
1594                             CC, dl, DAG);
1595        AArch64CC = changeIntCCToAArch64CC(CC);
1596      }
1597    }
1598
1599    if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
1600      if ((Cmp = emitConjunctionDisjunctionTree(DAG, LHS, AArch64CC))) {
1601        if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
1602          AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
1603      }
1604    }
1605  }
1606
1607  if (!Cmp) {
1608    Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1609    AArch64CC = changeIntCCToAArch64CC(CC);
1610  }
1611  AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
1612  return Cmp;
1613}
1614
1615static std::pair<SDValue, SDValue>
1616getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1617  assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1618         "Unsupported value type");
1619  SDValue Value, Overflow;
1620  SDLoc DL(Op);
1621  SDValue LHS = Op.getOperand(0);
1622  SDValue RHS = Op.getOperand(1);
1623  unsigned Opc = 0;
1624  switch (Op.getOpcode()) {
1625  default:
1626    llvm_unreachable("Unknown overflow instruction!");
1627  case ISD::SADDO:
1628    Opc = AArch64ISD::ADDS;
1629    CC = AArch64CC::VS;
1630    break;
1631  case ISD::UADDO:
1632    Opc = AArch64ISD::ADDS;
1633    CC = AArch64CC::HS;
1634    break;
1635  case ISD::SSUBO:
1636    Opc = AArch64ISD::SUBS;
1637    CC = AArch64CC::VS;
1638    break;
1639  case ISD::USUBO:
1640    Opc = AArch64ISD::SUBS;
1641    CC = AArch64CC::LO;
1642    break;
1643  // Multiply needs a little bit extra work.
1644  case ISD::SMULO:
1645  case ISD::UMULO: {
1646    CC = AArch64CC::NE;
1647    bool IsSigned = Op.getOpcode() == ISD::SMULO;
1648    if (Op.getValueType() == MVT::i32) {
1649      unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1650      // For a 32 bit multiply with overflow check we want the instruction
1651      // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1652      // need to generate the following pattern:
1653      // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1654      LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1655      RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1656      SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1657      SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
1658                                DAG.getConstant(0, DL, MVT::i64));
1659      // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1660      // operation. We need to clear out the upper 32 bits, because we used a
1661      // widening multiply that wrote all 64 bits. In the end this should be a
1662      // noop.
1663      Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1664      if (IsSigned) {
1665        // The signed overflow check requires more than just a simple check for
1666        // any bit set in the upper 32 bits of the result. These bits could be
1667        // just the sign bits of a negative number. To perform the overflow
1668        // check we have to arithmetic shift right the 32nd bit of the result by
1669        // 31 bits. Then we compare the result to the upper 32 bits.
1670        SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
1671                                        DAG.getConstant(32, DL, MVT::i64));
1672        UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1673        SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
1674                                        DAG.getConstant(31, DL, MVT::i64));
1675        // It is important that LowerBits is last, otherwise the arithmetic
1676        // shift will not be folded into the compare (SUBS).
1677        SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1678        Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1679                       .getValue(1);
1680      } else {
1681        // The overflow check for unsigned multiply is easy. We only need to
1682        // check if any of the upper 32 bits are set. This can be done with a
1683        // CMP (shifted register). For that we need to generate the following
1684        // pattern:
1685        // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1686        SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
1687                                        DAG.getConstant(32, DL, MVT::i64));
1688        SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1689        Overflow =
1690            DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1691                        DAG.getConstant(0, DL, MVT::i64),
1692                        UpperBits).getValue(1);
1693      }
1694      break;
1695    }
1696    assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1697    // For the 64 bit multiply
1698    Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1699    if (IsSigned) {
1700      SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1701      SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
1702                                      DAG.getConstant(63, DL, MVT::i64));
1703      // It is important that LowerBits is last, otherwise the arithmetic
1704      // shift will not be folded into the compare (SUBS).
1705      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1706      Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1707                     .getValue(1);
1708    } else {
1709      SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1710      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1711      Overflow =
1712          DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1713                      DAG.getConstant(0, DL, MVT::i64),
1714                      UpperBits).getValue(1);
1715    }
1716    break;
1717  }
1718  } // switch (...)
1719
1720  if (Opc) {
1721    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1722
1723    // Emit the AArch64 operation with overflow check.
1724    Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1725    Overflow = Value.getValue(1);
1726  }
1727  return std::make_pair(Value, Overflow);
1728}
1729
1730SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1731                                             RTLIB::Libcall Call) const {
1732  SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
1733  return makeLibCall(DAG, Call, MVT::f128, Ops, false, SDLoc(Op)).first;
1734}
1735
1736static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1737  SDValue Sel = Op.getOperand(0);
1738  SDValue Other = Op.getOperand(1);
1739
1740  // If neither operand is a SELECT_CC, give up.
1741  if (Sel.getOpcode() != ISD::SELECT_CC)
1742    std::swap(Sel, Other);
1743  if (Sel.getOpcode() != ISD::SELECT_CC)
1744    return Op;
1745
1746  // The folding we want to perform is:
1747  // (xor x, (select_cc a, b, cc, 0, -1) )
1748  //   -->
1749  // (csel x, (xor x, -1), cc ...)
1750  //
1751  // The latter will get matched to a CSINV instruction.
1752
1753  ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1754  SDValue LHS = Sel.getOperand(0);
1755  SDValue RHS = Sel.getOperand(1);
1756  SDValue TVal = Sel.getOperand(2);
1757  SDValue FVal = Sel.getOperand(3);
1758  SDLoc dl(Sel);
1759
1760  // FIXME: This could be generalized to non-integer comparisons.
1761  if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1762    return Op;
1763
1764  ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1765  ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1766
1767  // The values aren't constants, this isn't the pattern we're looking for.
1768  if (!CFVal || !CTVal)
1769    return Op;
1770
1771  // We can commute the SELECT_CC by inverting the condition.  This
1772  // might be needed to make this fit into a CSINV pattern.
1773  if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1774    std::swap(TVal, FVal);
1775    std::swap(CTVal, CFVal);
1776    CC = ISD::getSetCCInverse(CC, true);
1777  }
1778
1779  // If the constants line up, perform the transform!
1780  if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1781    SDValue CCVal;
1782    SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1783
1784    FVal = Other;
1785    TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
1786                       DAG.getConstant(-1ULL, dl, Other.getValueType()));
1787
1788    return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1789                       CCVal, Cmp);
1790  }
1791
1792  return Op;
1793}
1794
1795static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1796  EVT VT = Op.getValueType();
1797
1798  // Let legalize expand this if it isn't a legal type yet.
1799  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1800    return SDValue();
1801
1802  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1803
1804  unsigned Opc;
1805  bool ExtraOp = false;
1806  switch (Op.getOpcode()) {
1807  default:
1808    llvm_unreachable("Invalid code");
1809  case ISD::ADDC:
1810    Opc = AArch64ISD::ADDS;
1811    break;
1812  case ISD::SUBC:
1813    Opc = AArch64ISD::SUBS;
1814    break;
1815  case ISD::ADDE:
1816    Opc = AArch64ISD::ADCS;
1817    ExtraOp = true;
1818    break;
1819  case ISD::SUBE:
1820    Opc = AArch64ISD::SBCS;
1821    ExtraOp = true;
1822    break;
1823  }
1824
1825  if (!ExtraOp)
1826    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1827  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1828                     Op.getOperand(2));
1829}
1830
1831static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1832  // Let legalize expand this if it isn't a legal type yet.
1833  if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1834    return SDValue();
1835
1836  SDLoc dl(Op);
1837  AArch64CC::CondCode CC;
1838  // The actual operation that sets the overflow or carry flag.
1839  SDValue Value, Overflow;
1840  std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1841
1842  // We use 0 and 1 as false and true values.
1843  SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
1844  SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
1845
1846  // We use an inverted condition, because the conditional select is inverted
1847  // too. This will allow it to be selected to a single instruction:
1848  // CSINC Wd, WZR, WZR, invert(cond).
1849  SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
1850  Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
1851                         CCVal, Overflow);
1852
1853  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
1854  return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
1855}
1856
1857// Prefetch operands are:
1858// 1: Address to prefetch
1859// 2: bool isWrite
1860// 3: int locality (0 = no locality ... 3 = extreme locality)
1861// 4: bool isDataCache
1862static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1863  SDLoc DL(Op);
1864  unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1865  unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
1866  unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
1867
1868  bool IsStream = !Locality;
1869  // When the locality number is set
1870  if (Locality) {
1871    // The front-end should have filtered out the out-of-range values
1872    assert(Locality <= 3 && "Prefetch locality out-of-range");
1873    // The locality degree is the opposite of the cache speed.
1874    // Put the number the other way around.
1875    // The encoding starts at 0 for level 1
1876    Locality = 3 - Locality;
1877  }
1878
1879  // built the mask value encoding the expected behavior.
1880  unsigned PrfOp = (IsWrite << 4) |     // Load/Store bit
1881                   (!IsData << 3) |     // IsDataCache bit
1882                   (Locality << 1) |    // Cache level bits
1883                   (unsigned)IsStream;  // Stream bit
1884  return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
1885                     DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
1886}
1887
1888SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1889                                              SelectionDAG &DAG) const {
1890  assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1891
1892  RTLIB::Libcall LC;
1893  LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1894
1895  return LowerF128Call(Op, DAG, LC);
1896}
1897
1898SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1899                                             SelectionDAG &DAG) const {
1900  if (Op.getOperand(0).getValueType() != MVT::f128) {
1901    // It's legal except when f128 is involved
1902    return Op;
1903  }
1904
1905  RTLIB::Libcall LC;
1906  LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1907
1908  // FP_ROUND node has a second operand indicating whether it is known to be
1909  // precise. That doesn't take part in the LibCall so we can't directly use
1910  // LowerF128Call.
1911  SDValue SrcVal = Op.getOperand(0);
1912  return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
1913                     SDLoc(Op)).first;
1914}
1915
1916static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1917  // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1918  // Any additional optimization in this function should be recorded
1919  // in the cost tables.
1920  EVT InVT = Op.getOperand(0).getValueType();
1921  EVT VT = Op.getValueType();
1922  unsigned NumElts = InVT.getVectorNumElements();
1923
1924  // f16 vectors are promoted to f32 before a conversion.
1925  if (InVT.getVectorElementType() == MVT::f16) {
1926    MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
1927    SDLoc dl(Op);
1928    return DAG.getNode(
1929        Op.getOpcode(), dl, Op.getValueType(),
1930        DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
1931  }
1932
1933  if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1934    SDLoc dl(Op);
1935    SDValue Cv =
1936        DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1937                    Op.getOperand(0));
1938    return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
1939  }
1940
1941  if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1942    SDLoc dl(Op);
1943    MVT ExtVT =
1944        MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1945                         VT.getVectorNumElements());
1946    SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
1947    return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1948  }
1949
1950  // Type changing conversions are illegal.
1951  return Op;
1952}
1953
1954SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1955                                              SelectionDAG &DAG) const {
1956  if (Op.getOperand(0).getValueType().isVector())
1957    return LowerVectorFP_TO_INT(Op, DAG);
1958
1959  // f16 conversions are promoted to f32.
1960  if (Op.getOperand(0).getValueType() == MVT::f16) {
1961    SDLoc dl(Op);
1962    return DAG.getNode(
1963        Op.getOpcode(), dl, Op.getValueType(),
1964        DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
1965  }
1966
1967  if (Op.getOperand(0).getValueType() != MVT::f128) {
1968    // It's legal except when f128 is involved
1969    return Op;
1970  }
1971
1972  RTLIB::Libcall LC;
1973  if (Op.getOpcode() == ISD::FP_TO_SINT)
1974    LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1975  else
1976    LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1977
1978  SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
1979  return makeLibCall(DAG, LC, Op.getValueType(), Ops, false, SDLoc(Op)).first;
1980}
1981
1982static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1983  // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1984  // Any additional optimization in this function should be recorded
1985  // in the cost tables.
1986  EVT VT = Op.getValueType();
1987  SDLoc dl(Op);
1988  SDValue In = Op.getOperand(0);
1989  EVT InVT = In.getValueType();
1990
1991  if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1992    MVT CastVT =
1993        MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1994                         InVT.getVectorNumElements());
1995    In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
1996    return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
1997  }
1998
1999  if (VT.getSizeInBits() > InVT.getSizeInBits()) {
2000    unsigned CastOpc =
2001        Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2002    EVT CastVT = VT.changeVectorElementTypeToInteger();
2003    In = DAG.getNode(CastOpc, dl, CastVT, In);
2004    return DAG.getNode(Op.getOpcode(), dl, VT, In);
2005  }
2006
2007  return Op;
2008}
2009
2010SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
2011                                            SelectionDAG &DAG) const {
2012  if (Op.getValueType().isVector())
2013    return LowerVectorINT_TO_FP(Op, DAG);
2014
2015  // f16 conversions are promoted to f32.
2016  if (Op.getValueType() == MVT::f16) {
2017    SDLoc dl(Op);
2018    return DAG.getNode(
2019        ISD::FP_ROUND, dl, MVT::f16,
2020        DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
2021        DAG.getIntPtrConstant(0, dl));
2022  }
2023
2024  // i128 conversions are libcalls.
2025  if (Op.getOperand(0).getValueType() == MVT::i128)
2026    return SDValue();
2027
2028  // Other conversions are legal, unless it's to the completely software-based
2029  // fp128.
2030  if (Op.getValueType() != MVT::f128)
2031    return Op;
2032
2033  RTLIB::Libcall LC;
2034  if (Op.getOpcode() == ISD::SINT_TO_FP)
2035    LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2036  else
2037    LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2038
2039  return LowerF128Call(Op, DAG, LC);
2040}
2041
2042SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
2043                                            SelectionDAG &DAG) const {
2044  // For iOS, we want to call an alternative entry point: __sincos_stret,
2045  // which returns the values in two S / D registers.
2046  SDLoc dl(Op);
2047  SDValue Arg = Op.getOperand(0);
2048  EVT ArgVT = Arg.getValueType();
2049  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2050
2051  ArgListTy Args;
2052  ArgListEntry Entry;
2053
2054  Entry.Node = Arg;
2055  Entry.Ty = ArgTy;
2056  Entry.isSExt = false;
2057  Entry.isZExt = false;
2058  Args.push_back(Entry);
2059
2060  const char *LibcallName =
2061      (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
2062  SDValue Callee =
2063      DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
2064
2065  StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
2066  TargetLowering::CallLoweringInfo CLI(DAG);
2067  CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
2068    .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
2069
2070  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2071  return CallResult.first;
2072}
2073
2074static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
2075  if (Op.getValueType() != MVT::f16)
2076    return SDValue();
2077
2078  assert(Op.getOperand(0).getValueType() == MVT::i16);
2079  SDLoc DL(Op);
2080
2081  Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
2082  Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
2083  return SDValue(
2084      DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
2085                         DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
2086      0);
2087}
2088
2089static EVT getExtensionTo64Bits(const EVT &OrigVT) {
2090  if (OrigVT.getSizeInBits() >= 64)
2091    return OrigVT;
2092
2093  assert(OrigVT.isSimple() && "Expecting a simple value type");
2094
2095  MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
2096  switch (OrigSimpleTy) {
2097  default: llvm_unreachable("Unexpected Vector Type");
2098  case MVT::v2i8:
2099  case MVT::v2i16:
2100     return MVT::v2i32;
2101  case MVT::v4i8:
2102    return  MVT::v4i16;
2103  }
2104}
2105
2106static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
2107                                                 const EVT &OrigTy,
2108                                                 const EVT &ExtTy,
2109                                                 unsigned ExtOpcode) {
2110  // The vector originally had a size of OrigTy. It was then extended to ExtTy.
2111  // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
2112  // 64-bits we need to insert a new extension so that it will be 64-bits.
2113  assert(ExtTy.is128BitVector() && "Unexpected extension size");
2114  if (OrigTy.getSizeInBits() >= 64)
2115    return N;
2116
2117  // Must extend size to at least 64 bits to be used as an operand for VMULL.
2118  EVT NewVT = getExtensionTo64Bits(OrigTy);
2119
2120  return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
2121}
2122
2123static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
2124                                   bool isSigned) {
2125  EVT VT = N->getValueType(0);
2126
2127  if (N->getOpcode() != ISD::BUILD_VECTOR)
2128    return false;
2129
2130  for (const SDValue &Elt : N->op_values()) {
2131    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
2132      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
2133      unsigned HalfSize = EltSize / 2;
2134      if (isSigned) {
2135        if (!isIntN(HalfSize, C->getSExtValue()))
2136          return false;
2137      } else {
2138        if (!isUIntN(HalfSize, C->getZExtValue()))
2139          return false;
2140      }
2141      continue;
2142    }
2143    return false;
2144  }
2145
2146  return true;
2147}
2148
2149static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
2150  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
2151    return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
2152                                             N->getOperand(0)->getValueType(0),
2153                                             N->getValueType(0),
2154                                             N->getOpcode());
2155
2156  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
2157  EVT VT = N->getValueType(0);
2158  SDLoc dl(N);
2159  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
2160  unsigned NumElts = VT.getVectorNumElements();
2161  MVT TruncVT = MVT::getIntegerVT(EltSize);
2162  SmallVector<SDValue, 8> Ops;
2163  for (unsigned i = 0; i != NumElts; ++i) {
2164    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
2165    const APInt &CInt = C->getAPIntValue();
2166    // Element types smaller than 32 bits are not legal, so use i32 elements.
2167    // The values are implicitly truncated so sext vs. zext doesn't matter.
2168    Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
2169  }
2170  return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
2171}
2172
2173static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
2174  if (N->getOpcode() == ISD::SIGN_EXTEND)
2175    return true;
2176  if (isExtendedBUILD_VECTOR(N, DAG, true))
2177    return true;
2178  return false;
2179}
2180
2181static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
2182  if (N->getOpcode() == ISD::ZERO_EXTEND)
2183    return true;
2184  if (isExtendedBUILD_VECTOR(N, DAG, false))
2185    return true;
2186  return false;
2187}
2188
2189static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
2190  unsigned Opcode = N->getOpcode();
2191  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2192    SDNode *N0 = N->getOperand(0).getNode();
2193    SDNode *N1 = N->getOperand(1).getNode();
2194    return N0->hasOneUse() && N1->hasOneUse() &&
2195      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
2196  }
2197  return false;
2198}
2199
2200static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
2201  unsigned Opcode = N->getOpcode();
2202  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2203    SDNode *N0 = N->getOperand(0).getNode();
2204    SDNode *N1 = N->getOperand(1).getNode();
2205    return N0->hasOneUse() && N1->hasOneUse() &&
2206      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
2207  }
2208  return false;
2209}
2210
2211static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
2212  // Multiplications are only custom-lowered for 128-bit vectors so that
2213  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
2214  EVT VT = Op.getValueType();
2215  assert(VT.is128BitVector() && VT.isInteger() &&
2216         "unexpected type for custom-lowering ISD::MUL");
2217  SDNode *N0 = Op.getOperand(0).getNode();
2218  SDNode *N1 = Op.getOperand(1).getNode();
2219  unsigned NewOpc = 0;
2220  bool isMLA = false;
2221  bool isN0SExt = isSignExtended(N0, DAG);
2222  bool isN1SExt = isSignExtended(N1, DAG);
2223  if (isN0SExt && isN1SExt)
2224    NewOpc = AArch64ISD::SMULL;
2225  else {
2226    bool isN0ZExt = isZeroExtended(N0, DAG);
2227    bool isN1ZExt = isZeroExtended(N1, DAG);
2228    if (isN0ZExt && isN1ZExt)
2229      NewOpc = AArch64ISD::UMULL;
2230    else if (isN1SExt || isN1ZExt) {
2231      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2232      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2233      if (isN1SExt && isAddSubSExt(N0, DAG)) {
2234        NewOpc = AArch64ISD::SMULL;
2235        isMLA = true;
2236      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
2237        NewOpc =  AArch64ISD::UMULL;
2238        isMLA = true;
2239      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
2240        std::swap(N0, N1);
2241        NewOpc =  AArch64ISD::UMULL;
2242        isMLA = true;
2243      }
2244    }
2245
2246    if (!NewOpc) {
2247      if (VT == MVT::v2i64)
2248        // Fall through to expand this.  It is not legal.
2249        return SDValue();
2250      else
2251        // Other vector multiplications are legal.
2252        return Op;
2253    }
2254  }
2255
2256  // Legalize to a S/UMULL instruction
2257  SDLoc DL(Op);
2258  SDValue Op0;
2259  SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
2260  if (!isMLA) {
2261    Op0 = skipExtensionForVectorMULL(N0, DAG);
2262    assert(Op0.getValueType().is64BitVector() &&
2263           Op1.getValueType().is64BitVector() &&
2264           "unexpected types for extended operands to VMULL");
2265    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
2266  }
2267  // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2268  // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2269  // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2270  SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
2271  SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
2272  EVT Op1VT = Op1.getValueType();
2273  return DAG.getNode(N0->getOpcode(), DL, VT,
2274                     DAG.getNode(NewOpc, DL, VT,
2275                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
2276                     DAG.getNode(NewOpc, DL, VT,
2277                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
2278}
2279
2280SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2281                                                     SelectionDAG &DAG) const {
2282  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2283  SDLoc dl(Op);
2284  switch (IntNo) {
2285  default: return SDValue();    // Don't custom lower most intrinsics.
2286  case Intrinsic::thread_pointer: {
2287    EVT PtrVT = getPointerTy(DAG.getDataLayout());
2288    return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
2289  }
2290  case Intrinsic::aarch64_neon_smax:
2291    return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
2292                       Op.getOperand(1), Op.getOperand(2));
2293  case Intrinsic::aarch64_neon_umax:
2294    return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
2295                       Op.getOperand(1), Op.getOperand(2));
2296  case Intrinsic::aarch64_neon_smin:
2297    return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
2298                       Op.getOperand(1), Op.getOperand(2));
2299  case Intrinsic::aarch64_neon_umin:
2300    return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
2301                       Op.getOperand(1), Op.getOperand(2));
2302  }
2303}
2304
2305SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
2306                                              SelectionDAG &DAG) const {
2307  switch (Op.getOpcode()) {
2308  default:
2309    llvm_unreachable("unimplemented operand");
2310    return SDValue();
2311  case ISD::BITCAST:
2312    return LowerBITCAST(Op, DAG);
2313  case ISD::GlobalAddress:
2314    return LowerGlobalAddress(Op, DAG);
2315  case ISD::GlobalTLSAddress:
2316    return LowerGlobalTLSAddress(Op, DAG);
2317  case ISD::SETCC:
2318    return LowerSETCC(Op, DAG);
2319  case ISD::BR_CC:
2320    return LowerBR_CC(Op, DAG);
2321  case ISD::SELECT:
2322    return LowerSELECT(Op, DAG);
2323  case ISD::SELECT_CC:
2324    return LowerSELECT_CC(Op, DAG);
2325  case ISD::JumpTable:
2326    return LowerJumpTable(Op, DAG);
2327  case ISD::ConstantPool:
2328    return LowerConstantPool(Op, DAG);
2329  case ISD::BlockAddress:
2330    return LowerBlockAddress(Op, DAG);
2331  case ISD::VASTART:
2332    return LowerVASTART(Op, DAG);
2333  case ISD::VACOPY:
2334    return LowerVACOPY(Op, DAG);
2335  case ISD::VAARG:
2336    return LowerVAARG(Op, DAG);
2337  case ISD::ADDC:
2338  case ISD::ADDE:
2339  case ISD::SUBC:
2340  case ISD::SUBE:
2341    return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
2342  case ISD::SADDO:
2343  case ISD::UADDO:
2344  case ISD::SSUBO:
2345  case ISD::USUBO:
2346  case ISD::SMULO:
2347  case ISD::UMULO:
2348    return LowerXALUO(Op, DAG);
2349  case ISD::FADD:
2350    return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
2351  case ISD::FSUB:
2352    return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
2353  case ISD::FMUL:
2354    return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
2355  case ISD::FDIV:
2356    return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
2357  case ISD::FP_ROUND:
2358    return LowerFP_ROUND(Op, DAG);
2359  case ISD::FP_EXTEND:
2360    return LowerFP_EXTEND(Op, DAG);
2361  case ISD::FRAMEADDR:
2362    return LowerFRAMEADDR(Op, DAG);
2363  case ISD::RETURNADDR:
2364    return LowerRETURNADDR(Op, DAG);
2365  case ISD::INSERT_VECTOR_ELT:
2366    return LowerINSERT_VECTOR_ELT(Op, DAG);
2367  case ISD::EXTRACT_VECTOR_ELT:
2368    return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2369  case ISD::BUILD_VECTOR:
2370    return LowerBUILD_VECTOR(Op, DAG);
2371  case ISD::VECTOR_SHUFFLE:
2372    return LowerVECTOR_SHUFFLE(Op, DAG);
2373  case ISD::EXTRACT_SUBVECTOR:
2374    return LowerEXTRACT_SUBVECTOR(Op, DAG);
2375  case ISD::SRA:
2376  case ISD::SRL:
2377  case ISD::SHL:
2378    return LowerVectorSRA_SRL_SHL(Op, DAG);
2379  case ISD::SHL_PARTS:
2380    return LowerShiftLeftParts(Op, DAG);
2381  case ISD::SRL_PARTS:
2382  case ISD::SRA_PARTS:
2383    return LowerShiftRightParts(Op, DAG);
2384  case ISD::CTPOP:
2385    return LowerCTPOP(Op, DAG);
2386  case ISD::FCOPYSIGN:
2387    return LowerFCOPYSIGN(Op, DAG);
2388  case ISD::AND:
2389    return LowerVectorAND(Op, DAG);
2390  case ISD::OR:
2391    return LowerVectorOR(Op, DAG);
2392  case ISD::XOR:
2393    return LowerXOR(Op, DAG);
2394  case ISD::PREFETCH:
2395    return LowerPREFETCH(Op, DAG);
2396  case ISD::SINT_TO_FP:
2397  case ISD::UINT_TO_FP:
2398    return LowerINT_TO_FP(Op, DAG);
2399  case ISD::FP_TO_SINT:
2400  case ISD::FP_TO_UINT:
2401    return LowerFP_TO_INT(Op, DAG);
2402  case ISD::FSINCOS:
2403    return LowerFSINCOS(Op, DAG);
2404  case ISD::MUL:
2405    return LowerMUL(Op, DAG);
2406  case ISD::INTRINSIC_WO_CHAIN:
2407    return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2408  }
2409}
2410
2411//===----------------------------------------------------------------------===//
2412//                      Calling Convention Implementation
2413//===----------------------------------------------------------------------===//
2414
2415#include "AArch64GenCallingConv.inc"
2416
2417/// Selects the correct CCAssignFn for a given CallingConvention value.
2418CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2419                                                     bool IsVarArg) const {
2420  switch (CC) {
2421  default:
2422    llvm_unreachable("Unsupported calling convention.");
2423  case CallingConv::WebKit_JS:
2424    return CC_AArch64_WebKit_JS;
2425  case CallingConv::GHC:
2426    return CC_AArch64_GHC;
2427  case CallingConv::C:
2428  case CallingConv::Fast:
2429  case CallingConv::PreserveMost:
2430  case CallingConv::CXX_FAST_TLS:
2431    if (!Subtarget->isTargetDarwin())
2432      return CC_AArch64_AAPCS;
2433    return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
2434  }
2435}
2436
2437SDValue AArch64TargetLowering::LowerFormalArguments(
2438    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2439    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2440    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2441  MachineFunction &MF = DAG.getMachineFunction();
2442  MachineFrameInfo *MFI = MF.getFrameInfo();
2443
2444  // Assign locations to all of the incoming arguments.
2445  SmallVector<CCValAssign, 16> ArgLocs;
2446  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2447                 *DAG.getContext());
2448
2449  // At this point, Ins[].VT may already be promoted to i32. To correctly
2450  // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2451  // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2452  // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2453  // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2454  // LocVT.
2455  unsigned NumArgs = Ins.size();
2456  Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2457  unsigned CurArgIdx = 0;
2458  for (unsigned i = 0; i != NumArgs; ++i) {
2459    MVT ValVT = Ins[i].VT;
2460    if (Ins[i].isOrigArg()) {
2461      std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2462      CurArgIdx = Ins[i].getOrigArgIndex();
2463
2464      // Get type of the original argument.
2465      EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
2466                                  /*AllowUnknown*/ true);
2467      MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2468      // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2469      if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2470        ValVT = MVT::i8;
2471      else if (ActualMVT == MVT::i16)
2472        ValVT = MVT::i16;
2473    }
2474    CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2475    bool Res =
2476        AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
2477    assert(!Res && "Call operand has unhandled type");
2478    (void)Res;
2479  }
2480  assert(ArgLocs.size() == Ins.size());
2481  SmallVector<SDValue, 16> ArgValues;
2482  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2483    CCValAssign &VA = ArgLocs[i];
2484
2485    if (Ins[i].Flags.isByVal()) {
2486      // Byval is used for HFAs in the PCS, but the system should work in a
2487      // non-compliant manner for larger structs.
2488      EVT PtrVT = getPointerTy(DAG.getDataLayout());
2489      int Size = Ins[i].Flags.getByValSize();
2490      unsigned NumRegs = (Size + 7) / 8;
2491
2492      // FIXME: This works on big-endian for composite byvals, which are the common
2493      // case. It should also work for fundamental types too.
2494      unsigned FrameIdx =
2495        MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
2496      SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
2497      InVals.push_back(FrameIdxN);
2498
2499      continue;
2500    }
2501
2502    if (VA.isRegLoc()) {
2503      // Arguments stored in registers.
2504      EVT RegVT = VA.getLocVT();
2505
2506      SDValue ArgValue;
2507      const TargetRegisterClass *RC;
2508
2509      if (RegVT == MVT::i32)
2510        RC = &AArch64::GPR32RegClass;
2511      else if (RegVT == MVT::i64)
2512        RC = &AArch64::GPR64RegClass;
2513      else if (RegVT == MVT::f16)
2514        RC = &AArch64::FPR16RegClass;
2515      else if (RegVT == MVT::f32)
2516        RC = &AArch64::FPR32RegClass;
2517      else if (RegVT == MVT::f64 || RegVT.is64BitVector())
2518        RC = &AArch64::FPR64RegClass;
2519      else if (RegVT == MVT::f128 || RegVT.is128BitVector())
2520        RC = &AArch64::FPR128RegClass;
2521      else
2522        llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2523
2524      // Transform the arguments in physical registers into virtual ones.
2525      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2526      ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2527
2528      // If this is an 8, 16 or 32-bit value, it is really passed promoted
2529      // to 64 bits.  Insert an assert[sz]ext to capture this, then
2530      // truncate to the right size.
2531      switch (VA.getLocInfo()) {
2532      default:
2533        llvm_unreachable("Unknown loc info!");
2534      case CCValAssign::Full:
2535        break;
2536      case CCValAssign::BCvt:
2537        ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
2538        break;
2539      case CCValAssign::AExt:
2540      case CCValAssign::SExt:
2541      case CCValAssign::ZExt:
2542        // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
2543        // nodes after our lowering.
2544        assert(RegVT == Ins[i].VT && "incorrect register location selected");
2545        break;
2546      }
2547
2548      InVals.push_back(ArgValue);
2549
2550    } else { // VA.isRegLoc()
2551      assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
2552      unsigned ArgOffset = VA.getLocMemOffset();
2553      unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
2554
2555      uint32_t BEAlign = 0;
2556      if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
2557          !Ins[i].Flags.isInConsecutiveRegs())
2558        BEAlign = 8 - ArgSize;
2559
2560      int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
2561
2562      // Create load nodes to retrieve arguments from the stack.
2563      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2564      SDValue ArgValue;
2565
2566      // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
2567      ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
2568      MVT MemVT = VA.getValVT();
2569
2570      switch (VA.getLocInfo()) {
2571      default:
2572        break;
2573      case CCValAssign::BCvt:
2574        MemVT = VA.getLocVT();
2575        break;
2576      case CCValAssign::SExt:
2577        ExtType = ISD::SEXTLOAD;
2578        break;
2579      case CCValAssign::ZExt:
2580        ExtType = ISD::ZEXTLOAD;
2581        break;
2582      case CCValAssign::AExt:
2583        ExtType = ISD::EXTLOAD;
2584        break;
2585      }
2586
2587      ArgValue = DAG.getExtLoad(
2588          ExtType, DL, VA.getLocVT(), Chain, FIN,
2589          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
2590          MemVT, false, false, false, 0);
2591
2592      InVals.push_back(ArgValue);
2593    }
2594  }
2595
2596  // varargs
2597  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2598  if (isVarArg) {
2599    if (!Subtarget->isTargetDarwin()) {
2600      // The AAPCS variadic function ABI is identical to the non-variadic
2601      // one. As a result there may be more arguments in registers and we should
2602      // save them for future reference.
2603      saveVarArgRegisters(CCInfo, DAG, DL, Chain);
2604    }
2605
2606    // This will point to the next argument passed via stack.
2607    unsigned StackOffset = CCInfo.getNextStackOffset();
2608    // We currently pass all varargs at 8-byte alignment.
2609    StackOffset = ((StackOffset + 7) & ~7);
2610    FuncInfo->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
2611  }
2612
2613  unsigned StackArgSize = CCInfo.getNextStackOffset();
2614  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2615  if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
2616    // This is a non-standard ABI so by fiat I say we're allowed to make full
2617    // use of the stack area to be popped, which must be aligned to 16 bytes in
2618    // any case:
2619    StackArgSize = alignTo(StackArgSize, 16);
2620
2621    // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
2622    // a multiple of 16.
2623    FuncInfo->setArgumentStackToRestore(StackArgSize);
2624
2625    // This realignment carries over to the available bytes below. Our own
2626    // callers will guarantee the space is free by giving an aligned value to
2627    // CALLSEQ_START.
2628  }
2629  // Even if we're not expected to free up the space, it's useful to know how
2630  // much is there while considering tail calls (because we can reuse it).
2631  FuncInfo->setBytesInStackArgArea(StackArgSize);
2632
2633  return Chain;
2634}
2635
2636void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
2637                                                SelectionDAG &DAG,
2638                                                const SDLoc &DL,
2639                                                SDValue &Chain) const {
2640  MachineFunction &MF = DAG.getMachineFunction();
2641  MachineFrameInfo *MFI = MF.getFrameInfo();
2642  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2643  auto PtrVT = getPointerTy(DAG.getDataLayout());
2644
2645  SmallVector<SDValue, 8> MemOps;
2646
2647  static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2648                                          AArch64::X3, AArch64::X4, AArch64::X5,
2649                                          AArch64::X6, AArch64::X7 };
2650  static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
2651  unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
2652
2653  unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2654  int GPRIdx = 0;
2655  if (GPRSaveSize != 0) {
2656    GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2657
2658    SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
2659
2660    for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2661      unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2662      SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
2663      SDValue Store = DAG.getStore(
2664          Val.getValue(1), DL, Val, FIN,
2665          MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8), false,
2666          false, 0);
2667      MemOps.push_back(Store);
2668      FIN =
2669          DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
2670    }
2671  }
2672  FuncInfo->setVarArgsGPRIndex(GPRIdx);
2673  FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2674
2675  if (Subtarget->hasFPARMv8()) {
2676    static const MCPhysReg FPRArgRegs[] = {
2677        AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2678        AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2679    static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
2680    unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
2681
2682    unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2683    int FPRIdx = 0;
2684    if (FPRSaveSize != 0) {
2685      FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2686
2687      SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
2688
2689      for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2690        unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2691        SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2692
2693        SDValue Store = DAG.getStore(
2694            Val.getValue(1), DL, Val, FIN,
2695            MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16),
2696            false, false, 0);
2697        MemOps.push_back(Store);
2698        FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
2699                          DAG.getConstant(16, DL, PtrVT));
2700      }
2701    }
2702    FuncInfo->setVarArgsFPRIndex(FPRIdx);
2703    FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2704  }
2705
2706  if (!MemOps.empty()) {
2707    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2708  }
2709}
2710
2711/// LowerCallResult - Lower the result values of a call into the
2712/// appropriate copies out of appropriate physical registers.
2713SDValue AArch64TargetLowering::LowerCallResult(
2714    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2715    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2716    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2717    SDValue ThisVal) const {
2718  CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2719                          ? RetCC_AArch64_WebKit_JS
2720                          : RetCC_AArch64_AAPCS;
2721  // Assign locations to each value returned by this call.
2722  SmallVector<CCValAssign, 16> RVLocs;
2723  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2724                 *DAG.getContext());
2725  CCInfo.AnalyzeCallResult(Ins, RetCC);
2726
2727  // Copy all of the result registers out of their specified physreg.
2728  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2729    CCValAssign VA = RVLocs[i];
2730
2731    // Pass 'this' value directly from the argument to return value, to avoid
2732    // reg unit interference
2733    if (i == 0 && isThisReturn) {
2734      assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2735             "unexpected return calling convention register assignment");
2736      InVals.push_back(ThisVal);
2737      continue;
2738    }
2739
2740    SDValue Val =
2741        DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2742    Chain = Val.getValue(1);
2743    InFlag = Val.getValue(2);
2744
2745    switch (VA.getLocInfo()) {
2746    default:
2747      llvm_unreachable("Unknown loc info!");
2748    case CCValAssign::Full:
2749      break;
2750    case CCValAssign::BCvt:
2751      Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2752      break;
2753    }
2754
2755    InVals.push_back(Val);
2756  }
2757
2758  return Chain;
2759}
2760
2761bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2762    SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2763    const SmallVectorImpl<ISD::OutputArg> &Outs,
2764    const SmallVectorImpl<SDValue> &OutVals,
2765    const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2766  // For CallingConv::C this function knows whether the ABI needs
2767  // changing. That's not true for other conventions so they will have to opt in
2768  // manually.
2769  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2770    return false;
2771
2772  MachineFunction &MF = DAG.getMachineFunction();
2773  const Function *CallerF = MF.getFunction();
2774  CallingConv::ID CallerCC = CallerF->getCallingConv();
2775  bool CCMatch = CallerCC == CalleeCC;
2776
2777  // Byval parameters hand the function a pointer directly into the stack area
2778  // we want to reuse during a tail call. Working around this *is* possible (see
2779  // X86) but less efficient and uglier in LowerCall.
2780  for (Function::const_arg_iterator i = CallerF->arg_begin(),
2781                                    e = CallerF->arg_end();
2782       i != e; ++i)
2783    if (i->hasByValAttr())
2784      return false;
2785
2786  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2787    return IsTailCallConvention(CalleeCC) && CCMatch;
2788  }
2789
2790  // Externally-defined functions with weak linkage should not be
2791  // tail-called on AArch64 when the OS does not support dynamic
2792  // pre-emption of symbols, as the AAELF spec requires normal calls
2793  // to undefined weak functions to be replaced with a NOP or jump to the
2794  // next instruction. The behaviour of branch instructions in this
2795  // situation (as used for tail calls) is implementation-defined, so we
2796  // cannot rely on the linker replacing the tail call with a return.
2797  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2798    const GlobalValue *GV = G->getGlobal();
2799    const Triple &TT = getTargetMachine().getTargetTriple();
2800    if (GV->hasExternalWeakLinkage() &&
2801        (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2802      return false;
2803  }
2804
2805  // Now we search for cases where we can use a tail call without changing the
2806  // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2807  // concept.
2808
2809  // I want anyone implementing a new calling convention to think long and hard
2810  // about this assert.
2811  assert((!isVarArg || CalleeCC == CallingConv::C) &&
2812         "Unexpected variadic calling convention");
2813
2814  LLVMContext &C = *DAG.getContext();
2815  if (isVarArg && !Outs.empty()) {
2816    // At least two cases here: if caller is fastcc then we can't have any
2817    // memory arguments (we'd be expected to clean up the stack afterwards). If
2818    // caller is C then we could potentially use its argument area.
2819
2820    // FIXME: for now we take the most conservative of these in both cases:
2821    // disallow all variadic memory operands.
2822    SmallVector<CCValAssign, 16> ArgLocs;
2823    CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2824
2825    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
2826    for (const CCValAssign &ArgLoc : ArgLocs)
2827      if (!ArgLoc.isRegLoc())
2828        return false;
2829  }
2830
2831  // Check that the call results are passed in the same way.
2832  if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2833                                  CCAssignFnForCall(CalleeCC, isVarArg),
2834                                  CCAssignFnForCall(CallerCC, isVarArg)))
2835    return false;
2836  // The callee has to preserve all registers the caller needs to preserve.
2837  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
2838  const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2839  if (!CCMatch) {
2840    const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2841    if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2842      return false;
2843  }
2844
2845  // Nothing more to check if the callee is taking no arguments
2846  if (Outs.empty())
2847    return true;
2848
2849  SmallVector<CCValAssign, 16> ArgLocs;
2850  CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2851
2852  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2853
2854  const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2855
2856  // If the stack arguments for this call do not fit into our own save area then
2857  // the call cannot be made tail.
2858  if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2859    return false;
2860
2861  const MachineRegisterInfo &MRI = MF.getRegInfo();
2862  if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2863    return false;
2864
2865  return true;
2866}
2867
2868SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2869                                                   SelectionDAG &DAG,
2870                                                   MachineFrameInfo *MFI,
2871                                                   int ClobberedFI) const {
2872  SmallVector<SDValue, 8> ArgChains;
2873  int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2874  int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2875
2876  // Include the original chain at the beginning of the list. When this is
2877  // used by target LowerCall hooks, this helps legalize find the
2878  // CALLSEQ_BEGIN node.
2879  ArgChains.push_back(Chain);
2880
2881  // Add a chain value for each stack argument corresponding
2882  for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2883                            UE = DAG.getEntryNode().getNode()->use_end();
2884       U != UE; ++U)
2885    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2886      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2887        if (FI->getIndex() < 0) {
2888          int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2889          int64_t InLastByte = InFirstByte;
2890          InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2891
2892          if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2893              (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2894            ArgChains.push_back(SDValue(L, 1));
2895        }
2896
2897  // Build a tokenfactor for all the chains.
2898  return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2899}
2900
2901bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2902                                                   bool TailCallOpt) const {
2903  return CallCC == CallingConv::Fast && TailCallOpt;
2904}
2905
2906bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2907  return CallCC == CallingConv::Fast ||
2908         CallCC == CallingConv::PreserveMost;
2909}
2910
2911/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2912/// and add input and output parameter nodes.
2913SDValue
2914AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2915                                 SmallVectorImpl<SDValue> &InVals) const {
2916  SelectionDAG &DAG = CLI.DAG;
2917  SDLoc &DL = CLI.DL;
2918  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2919  SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2920  SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2921  SDValue Chain = CLI.Chain;
2922  SDValue Callee = CLI.Callee;
2923  bool &IsTailCall = CLI.IsTailCall;
2924  CallingConv::ID CallConv = CLI.CallConv;
2925  bool IsVarArg = CLI.IsVarArg;
2926
2927  MachineFunction &MF = DAG.getMachineFunction();
2928  bool IsThisReturn = false;
2929
2930  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2931  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2932  bool IsSibCall = false;
2933
2934  if (IsTailCall) {
2935    // Check if it's really possible to do a tail call.
2936    IsTailCall = isEligibleForTailCallOptimization(
2937        Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2938    if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2939      report_fatal_error("failed to perform tail call elimination on a call "
2940                         "site marked musttail");
2941
2942    // A sibling call is one where we're under the usual C ABI and not planning
2943    // to change that but can still do a tail call:
2944    if (!TailCallOpt && IsTailCall)
2945      IsSibCall = true;
2946
2947    if (IsTailCall)
2948      ++NumTailCalls;
2949  }
2950
2951  // Analyze operands of the call, assigning locations to each operand.
2952  SmallVector<CCValAssign, 16> ArgLocs;
2953  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2954                 *DAG.getContext());
2955
2956  if (IsVarArg) {
2957    // Handle fixed and variable vector arguments differently.
2958    // Variable vector arguments always go into memory.
2959    unsigned NumArgs = Outs.size();
2960
2961    for (unsigned i = 0; i != NumArgs; ++i) {
2962      MVT ArgVT = Outs[i].VT;
2963      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2964      CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2965                                               /*IsVarArg=*/ !Outs[i].IsFixed);
2966      bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2967      assert(!Res && "Call operand has unhandled type");
2968      (void)Res;
2969    }
2970  } else {
2971    // At this point, Outs[].VT may already be promoted to i32. To correctly
2972    // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2973    // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2974    // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2975    // we use a special version of AnalyzeCallOperands to pass in ValVT and
2976    // LocVT.
2977    unsigned NumArgs = Outs.size();
2978    for (unsigned i = 0; i != NumArgs; ++i) {
2979      MVT ValVT = Outs[i].VT;
2980      // Get type of the original argument.
2981      EVT ActualVT = getValueType(DAG.getDataLayout(),
2982                                  CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
2983                                  /*AllowUnknown*/ true);
2984      MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2985      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2986      // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2987      if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2988        ValVT = MVT::i8;
2989      else if (ActualMVT == MVT::i16)
2990        ValVT = MVT::i16;
2991
2992      CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2993      bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
2994      assert(!Res && "Call operand has unhandled type");
2995      (void)Res;
2996    }
2997  }
2998
2999  // Get a count of how many bytes are to be pushed on the stack.
3000  unsigned NumBytes = CCInfo.getNextStackOffset();
3001
3002  if (IsSibCall) {
3003    // Since we're not changing the ABI to make this a tail call, the memory
3004    // operands are already available in the caller's incoming argument space.
3005    NumBytes = 0;
3006  }
3007
3008  // FPDiff is the byte offset of the call's argument area from the callee's.
3009  // Stores to callee stack arguments will be placed in FixedStackSlots offset
3010  // by this amount for a tail call. In a sibling call it must be 0 because the
3011  // caller will deallocate the entire stack and the callee still expects its
3012  // arguments to begin at SP+0. Completely unused for non-tail calls.
3013  int FPDiff = 0;
3014
3015  if (IsTailCall && !IsSibCall) {
3016    unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
3017
3018    // Since callee will pop argument stack as a tail call, we must keep the
3019    // popped size 16-byte aligned.
3020    NumBytes = alignTo(NumBytes, 16);
3021
3022    // FPDiff will be negative if this tail call requires more space than we
3023    // would automatically have in our incoming argument space. Positive if we
3024    // can actually shrink the stack.
3025    FPDiff = NumReusableBytes - NumBytes;
3026
3027    // The stack pointer must be 16-byte aligned at all times it's used for a
3028    // memory operation, which in practice means at *all* times and in
3029    // particular across call boundaries. Therefore our own arguments started at
3030    // a 16-byte aligned SP and the delta applied for the tail call should
3031    // satisfy the same constraint.
3032    assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
3033  }
3034
3035  // Adjust the stack pointer for the new arguments...
3036  // These operations are automatically eliminated by the prolog/epilog pass
3037  if (!IsSibCall)
3038    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, DL,
3039                                                              true),
3040                                 DL);
3041
3042  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
3043                                        getPointerTy(DAG.getDataLayout()));
3044
3045  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3046  SmallVector<SDValue, 8> MemOpChains;
3047  auto PtrVT = getPointerTy(DAG.getDataLayout());
3048
3049  // Walk the register/memloc assignments, inserting copies/loads.
3050  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
3051       ++i, ++realArgIdx) {
3052    CCValAssign &VA = ArgLocs[i];
3053    SDValue Arg = OutVals[realArgIdx];
3054    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
3055
3056    // Promote the value if needed.
3057    switch (VA.getLocInfo()) {
3058    default:
3059      llvm_unreachable("Unknown loc info!");
3060    case CCValAssign::Full:
3061      break;
3062    case CCValAssign::SExt:
3063      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3064      break;
3065    case CCValAssign::ZExt:
3066      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3067      break;
3068    case CCValAssign::AExt:
3069      if (Outs[realArgIdx].ArgVT == MVT::i1) {
3070        // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
3071        Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3072        Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
3073      }
3074      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3075      break;
3076    case CCValAssign::BCvt:
3077      Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3078      break;
3079    case CCValAssign::FPExt:
3080      Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3081      break;
3082    }
3083
3084    if (VA.isRegLoc()) {
3085      if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
3086        assert(VA.getLocVT() == MVT::i64 &&
3087               "unexpected calling convention register assignment");
3088        assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
3089               "unexpected use of 'returned'");
3090        IsThisReturn = true;
3091      }
3092      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3093    } else {
3094      assert(VA.isMemLoc());
3095
3096      SDValue DstAddr;
3097      MachinePointerInfo DstInfo;
3098
3099      // FIXME: This works on big-endian for composite byvals, which are the
3100      // common case. It should also work for fundamental types too.
3101      uint32_t BEAlign = 0;
3102      unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
3103                                        : VA.getValVT().getSizeInBits();
3104      OpSize = (OpSize + 7) / 8;
3105      if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
3106          !Flags.isInConsecutiveRegs()) {
3107        if (OpSize < 8)
3108          BEAlign = 8 - OpSize;
3109      }
3110      unsigned LocMemOffset = VA.getLocMemOffset();
3111      int32_t Offset = LocMemOffset + BEAlign;
3112      SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3113      PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3114
3115      if (IsTailCall) {
3116        Offset = Offset + FPDiff;
3117        int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3118
3119        DstAddr = DAG.getFrameIndex(FI, PtrVT);
3120        DstInfo =
3121            MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
3122
3123        // Make sure any stack arguments overlapping with where we're storing
3124        // are loaded before this eventual operation. Otherwise they'll be
3125        // clobbered.
3126        Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
3127      } else {
3128        SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3129
3130        DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3131        DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
3132                                               LocMemOffset);
3133      }
3134
3135      if (Outs[i].Flags.isByVal()) {
3136        SDValue SizeNode =
3137            DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
3138        SDValue Cpy = DAG.getMemcpy(
3139            Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
3140            /*isVol = */ false, /*AlwaysInline = */ false,
3141            /*isTailCall = */ false,
3142            DstInfo, MachinePointerInfo());
3143
3144        MemOpChains.push_back(Cpy);
3145      } else {
3146        // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
3147        // promoted to a legal register type i32, we should truncate Arg back to
3148        // i1/i8/i16.
3149        if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
3150            VA.getValVT() == MVT::i16)
3151          Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
3152
3153        SDValue Store =
3154            DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
3155        MemOpChains.push_back(Store);
3156      }
3157    }
3158  }
3159
3160  if (!MemOpChains.empty())
3161    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3162
3163  // Build a sequence of copy-to-reg nodes chained together with token chain
3164  // and flag operands which copy the outgoing args into the appropriate regs.
3165  SDValue InFlag;
3166  for (auto &RegToPass : RegsToPass) {
3167    Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3168                             RegToPass.second, InFlag);
3169    InFlag = Chain.getValue(1);
3170  }
3171
3172  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3173  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3174  // node so that legalize doesn't hack it.
3175  if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3176      Subtarget->isTargetMachO()) {
3177    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3178      const GlobalValue *GV = G->getGlobal();
3179      bool InternalLinkage = GV->hasInternalLinkage();
3180      if (InternalLinkage)
3181        Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
3182      else {
3183        Callee =
3184            DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT);
3185        Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3186      }
3187    } else if (ExternalSymbolSDNode *S =
3188                   dyn_cast<ExternalSymbolSDNode>(Callee)) {
3189      const char *Sym = S->getSymbol();
3190      Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
3191      Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3192    }
3193  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3194    const GlobalValue *GV = G->getGlobal();
3195    Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
3196  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3197    const char *Sym = S->getSymbol();
3198    Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
3199  }
3200
3201  // We don't usually want to end the call-sequence here because we would tidy
3202  // the frame up *after* the call, however in the ABI-changing tail-call case
3203  // we've carefully laid out the parameters so that when sp is reset they'll be
3204  // in the correct location.
3205  if (IsTailCall && !IsSibCall) {
3206    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3207                               DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
3208    InFlag = Chain.getValue(1);
3209  }
3210
3211  std::vector<SDValue> Ops;
3212  Ops.push_back(Chain);
3213  Ops.push_back(Callee);
3214
3215  if (IsTailCall) {
3216    // Each tail call may have to adjust the stack by a different amount, so
3217    // this information must travel along with the operation for eventual
3218    // consumption by emitEpilogue.
3219    Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3220  }
3221
3222  // Add argument registers to the end of the list so that they are known live
3223  // into the call.
3224  for (auto &RegToPass : RegsToPass)
3225    Ops.push_back(DAG.getRegister(RegToPass.first,
3226                                  RegToPass.second.getValueType()));
3227
3228  // Add a register mask operand representing the call-preserved registers.
3229  const uint32_t *Mask;
3230  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3231  if (IsThisReturn) {
3232    // For 'this' returns, use the X0-preserving mask if applicable
3233    Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
3234    if (!Mask) {
3235      IsThisReturn = false;
3236      Mask = TRI->getCallPreservedMask(MF, CallConv);
3237    }
3238  } else
3239    Mask = TRI->getCallPreservedMask(MF, CallConv);
3240
3241  assert(Mask && "Missing call preserved mask for calling convention");
3242  Ops.push_back(DAG.getRegisterMask(Mask));
3243
3244  if (InFlag.getNode())
3245    Ops.push_back(InFlag);
3246
3247  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3248
3249  // If we're doing a tall call, use a TC_RETURN here rather than an
3250  // actual call instruction.
3251  if (IsTailCall) {
3252    MF.getFrameInfo()->setHasTailCall();
3253    return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
3254  }
3255
3256  // Returns a chain and a flag for retval copy to use.
3257  Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
3258  InFlag = Chain.getValue(1);
3259
3260  uint64_t CalleePopBytes =
3261      DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;
3262
3263  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3264                             DAG.getIntPtrConstant(CalleePopBytes, DL, true),
3265                             InFlag, DL);
3266  if (!Ins.empty())
3267    InFlag = Chain.getValue(1);
3268
3269  // Handle result values, copying them out of physregs into vregs that we
3270  // return.
3271  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3272                         InVals, IsThisReturn,
3273                         IsThisReturn ? OutVals[0] : SDValue());
3274}
3275
3276bool AArch64TargetLowering::CanLowerReturn(
3277    CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
3278    const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
3279  CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3280                          ? RetCC_AArch64_WebKit_JS
3281                          : RetCC_AArch64_AAPCS;
3282  SmallVector<CCValAssign, 16> RVLocs;
3283  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
3284  return CCInfo.CheckReturn(Outs, RetCC);
3285}
3286
3287SDValue
3288AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3289                                   bool isVarArg,
3290                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
3291                                   const SmallVectorImpl<SDValue> &OutVals,
3292                                   const SDLoc &DL, SelectionDAG &DAG) const {
3293  CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3294                          ? RetCC_AArch64_WebKit_JS
3295                          : RetCC_AArch64_AAPCS;
3296  SmallVector<CCValAssign, 16> RVLocs;
3297  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3298                 *DAG.getContext());
3299  CCInfo.AnalyzeReturn(Outs, RetCC);
3300
3301  // Copy the result values into the output registers.
3302  SDValue Flag;
3303  SmallVector<SDValue, 4> RetOps(1, Chain);
3304  for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
3305       ++i, ++realRVLocIdx) {
3306    CCValAssign &VA = RVLocs[i];
3307    assert(VA.isRegLoc() && "Can only return in registers!");
3308    SDValue Arg = OutVals[realRVLocIdx];
3309
3310    switch (VA.getLocInfo()) {
3311    default:
3312      llvm_unreachable("Unknown loc info!");
3313    case CCValAssign::Full:
3314      if (Outs[i].ArgVT == MVT::i1) {
3315        // AAPCS requires i1 to be zero-extended to i8 by the producer of the
3316        // value. This is strictly redundant on Darwin (which uses "zeroext
3317        // i1"), but will be optimised out before ISel.
3318        Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3319        Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3320      }
3321      break;
3322    case CCValAssign::BCvt:
3323      Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3324      break;
3325    }
3326
3327    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
3328    Flag = Chain.getValue(1);
3329    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3330  }
3331  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3332  const MCPhysReg *I =
3333      TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3334  if (I) {
3335    for (; *I; ++I) {
3336      if (AArch64::GPR64RegClass.contains(*I))
3337        RetOps.push_back(DAG.getRegister(*I, MVT::i64));
3338      else if (AArch64::FPR64RegClass.contains(*I))
3339        RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
3340      else
3341        llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3342    }
3343  }
3344
3345  RetOps[0] = Chain; // Update chain.
3346
3347  // Add the flag if we have it.
3348  if (Flag.getNode())
3349    RetOps.push_back(Flag);
3350
3351  return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
3352}
3353
3354//===----------------------------------------------------------------------===//
3355//  Other Lowering Code
3356//===----------------------------------------------------------------------===//
3357
3358SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
3359                                                  SelectionDAG &DAG) const {
3360  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3361  SDLoc DL(Op);
3362  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
3363  const GlobalValue *GV = GN->getGlobal();
3364  unsigned char OpFlags =
3365      Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
3366
3367  assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
3368         "unexpected offset in global node");
3369
3370  // This also catched the large code model case for Darwin.
3371  if ((OpFlags & AArch64II::MO_GOT) != 0) {
3372    SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
3373    // FIXME: Once remat is capable of dealing with instructions with register
3374    // operands, expand this into two nodes instead of using a wrapper node.
3375    return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3376  }
3377
3378  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3379    const unsigned char MO_NC = AArch64II::MO_NC;
3380    return DAG.getNode(
3381        AArch64ISD::WrapperLarge, DL, PtrVT,
3382        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
3383        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3384        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3385        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3386  } else {
3387    // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
3388    // the only correct model on Darwin.
3389    SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3390                                            OpFlags | AArch64II::MO_PAGE);
3391    unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
3392    SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
3393
3394    SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3395    return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3396  }
3397}
3398
3399/// \brief Convert a TLS address reference into the correct sequence of loads
3400/// and calls to compute the variable's address (for Darwin, currently) and
3401/// return an SDValue containing the final node.
3402
3403/// Darwin only has one TLS scheme which must be capable of dealing with the
3404/// fully general situation, in the worst case. This means:
3405///     + "extern __thread" declaration.
3406///     + Defined in a possibly unknown dynamic library.
3407///
3408/// The general system is that each __thread variable has a [3 x i64] descriptor
3409/// which contains information used by the runtime to calculate the address. The
3410/// only part of this the compiler needs to know about is the first xword, which
3411/// contains a function pointer that must be called with the address of the
3412/// entire descriptor in "x0".
3413///
3414/// Since this descriptor may be in a different unit, in general even the
3415/// descriptor must be accessed via an indirect load. The "ideal" code sequence
3416/// is:
3417///     adrp x0, _var@TLVPPAGE
3418///     ldr x0, [x0, _var@TLVPPAGEOFF]   ; x0 now contains address of descriptor
3419///     ldr x1, [x0]                     ; x1 contains 1st entry of descriptor,
3420///                                      ; the function pointer
3421///     blr x1                           ; Uses descriptor address in x0
3422///     ; Address of _var is now in x0.
3423///
3424/// If the address of _var's descriptor *is* known to the linker, then it can
3425/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
3426/// a slight efficiency gain.
3427SDValue
3428AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
3429                                                   SelectionDAG &DAG) const {
3430  assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
3431
3432  SDLoc DL(Op);
3433  MVT PtrVT = getPointerTy(DAG.getDataLayout());
3434  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3435
3436  SDValue TLVPAddr =
3437      DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3438  SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
3439
3440  // The first entry in the descriptor is a function pointer that we must call
3441  // to obtain the address of the variable.
3442  SDValue Chain = DAG.getEntryNode();
3443  SDValue FuncTLVGet =
3444      DAG.getLoad(MVT::i64, DL, Chain, DescAddr,
3445                  MachinePointerInfo::getGOT(DAG.getMachineFunction()), false,
3446                  true, true, 8);
3447  Chain = FuncTLVGet.getValue(1);
3448
3449  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3450  MFI->setAdjustsStack(true);
3451
3452  // TLS calls preserve all registers except those that absolutely must be
3453  // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3454  // silly).
3455  const uint32_t *Mask =
3456      Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
3457
3458  // Finally, we can make the call. This is just a degenerate version of a
3459  // normal AArch64 call node: x0 takes the address of the descriptor, and
3460  // returns the address of the variable in this thread.
3461  Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
3462  Chain =
3463      DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3464                  Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
3465                  DAG.getRegisterMask(Mask), Chain.getValue(1));
3466  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
3467}
3468
3469/// When accessing thread-local variables under either the general-dynamic or
3470/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
3471/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
3472/// is a function pointer to carry out the resolution.
3473///
3474/// The sequence is:
3475///    adrp  x0, :tlsdesc:var
3476///    ldr   x1, [x0, #:tlsdesc_lo12:var]
3477///    add   x0, x0, #:tlsdesc_lo12:var
3478///    .tlsdesccall var
3479///    blr   x1
3480///    (TPIDR_EL0 offset now in x0)
3481///
3482///  The above sequence must be produced unscheduled, to enable the linker to
3483///  optimize/relax this sequence.
3484///  Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
3485///  above sequence, and expanded really late in the compilation flow, to ensure
3486///  the sequence is produced as per above.
3487SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
3488                                                      const SDLoc &DL,
3489                                                      SelectionDAG &DAG) const {
3490  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3491
3492  SDValue Chain = DAG.getEntryNode();
3493  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3494
3495  Chain =
3496      DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
3497  SDValue Glue = Chain.getValue(1);
3498
3499  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
3500}
3501
3502SDValue
3503AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
3504                                                SelectionDAG &DAG) const {
3505  assert(Subtarget->isTargetELF() && "This function expects an ELF target");
3506  assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3507         "ELF TLS only supported in small memory model");
3508  // Different choices can be made for the maximum size of the TLS area for a
3509  // module. For the small address model, the default TLS size is 16MiB and the
3510  // maximum TLS size is 4GiB.
3511  // FIXME: add -mtls-size command line option and make it control the 16MiB
3512  // vs. 4GiB code sequence generation.
3513  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3514
3515  TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
3516
3517  if (DAG.getTarget().Options.EmulatedTLS)
3518    return LowerToTLSEmulatedModel(GA, DAG);
3519
3520  if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
3521    if (Model == TLSModel::LocalDynamic)
3522      Model = TLSModel::GeneralDynamic;
3523  }
3524
3525  SDValue TPOff;
3526  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3527  SDLoc DL(Op);
3528  const GlobalValue *GV = GA->getGlobal();
3529
3530  SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
3531
3532  if (Model == TLSModel::LocalExec) {
3533    SDValue HiVar = DAG.getTargetGlobalAddress(
3534        GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
3535    SDValue LoVar = DAG.getTargetGlobalAddress(
3536        GV, DL, PtrVT, 0,
3537        AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3538
3539    SDValue TPWithOff_lo =
3540        SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
3541                                   HiVar,
3542                                   DAG.getTargetConstant(0, DL, MVT::i32)),
3543                0);
3544    SDValue TPWithOff =
3545        SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
3546                                   LoVar,
3547                                   DAG.getTargetConstant(0, DL, MVT::i32)),
3548                0);
3549    return TPWithOff;
3550  } else if (Model == TLSModel::InitialExec) {
3551    TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3552    TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
3553  } else if (Model == TLSModel::LocalDynamic) {
3554    // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
3555    // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
3556    // the beginning of the module's TLS region, followed by a DTPREL offset
3557    // calculation.
3558
3559    // These accesses will need deduplicating if there's more than one.
3560    AArch64FunctionInfo *MFI =
3561        DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3562    MFI->incNumLocalDynamicTLSAccesses();
3563
3564    // The call needs a relocation too for linker relaxation. It doesn't make
3565    // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3566    // the address.
3567    SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
3568                                                  AArch64II::MO_TLS);
3569
3570    // Now we can calculate the offset from TPIDR_EL0 to this module's
3571    // thread-local area.
3572    TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
3573
3574    // Now use :dtprel_whatever: operations to calculate this variable's offset
3575    // in its thread-storage area.
3576    SDValue HiVar = DAG.getTargetGlobalAddress(
3577        GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
3578    SDValue LoVar = DAG.getTargetGlobalAddress(
3579        GV, DL, MVT::i64, 0,
3580        AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3581
3582    TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
3583                                       DAG.getTargetConstant(0, DL, MVT::i32)),
3584                    0);
3585    TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
3586                                       DAG.getTargetConstant(0, DL, MVT::i32)),
3587                    0);
3588  } else if (Model == TLSModel::GeneralDynamic) {
3589    // The call needs a relocation too for linker relaxation. It doesn't make
3590    // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3591    // the address.
3592    SDValue SymAddr =
3593        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3594
3595    // Finally we can make a call to calculate the offset from tpidr_el0.
3596    TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
3597  } else
3598    llvm_unreachable("Unsupported ELF TLS access model");
3599
3600  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3601}
3602
3603SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3604                                                     SelectionDAG &DAG) const {
3605  if (Subtarget->isTargetDarwin())
3606    return LowerDarwinGlobalTLSAddress(Op, DAG);
3607  else if (Subtarget->isTargetELF())
3608    return LowerELFGlobalTLSAddress(Op, DAG);
3609
3610  llvm_unreachable("Unexpected platform trying to use TLS");
3611}
3612SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3613  SDValue Chain = Op.getOperand(0);
3614  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3615  SDValue LHS = Op.getOperand(2);
3616  SDValue RHS = Op.getOperand(3);
3617  SDValue Dest = Op.getOperand(4);
3618  SDLoc dl(Op);
3619
3620  // Handle f128 first, since lowering it will result in comparing the return
3621  // value of a libcall against zero, which is just what the rest of LowerBR_CC
3622  // is expecting to deal with.
3623  if (LHS.getValueType() == MVT::f128) {
3624    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3625
3626    // If softenSetCCOperands returned a scalar, we need to compare the result
3627    // against zero to select between true and false values.
3628    if (!RHS.getNode()) {
3629      RHS = DAG.getConstant(0, dl, LHS.getValueType());
3630      CC = ISD::SETNE;
3631    }
3632  }
3633
3634  // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3635  // instruction.
3636  unsigned Opc = LHS.getOpcode();
3637  if (LHS.getResNo() == 1 && isOneConstant(RHS) &&
3638      (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3639       Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3640    assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3641           "Unexpected condition code.");
3642    // Only lower legal XALUO ops.
3643    if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3644      return SDValue();
3645
3646    // The actual operation with overflow check.
3647    AArch64CC::CondCode OFCC;
3648    SDValue Value, Overflow;
3649    std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3650
3651    if (CC == ISD::SETNE)
3652      OFCC = getInvertedCondCode(OFCC);
3653    SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
3654
3655    return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3656                       Overflow);
3657  }
3658
3659  if (LHS.getValueType().isInteger()) {
3660    assert((LHS.getValueType() == RHS.getValueType()) &&
3661           (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3662
3663    // If the RHS of the comparison is zero, we can potentially fold this
3664    // to a specialized branch.
3665    const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3666    if (RHSC && RHSC->getZExtValue() == 0) {
3667      if (CC == ISD::SETEQ) {
3668        // See if we can use a TBZ to fold in an AND as well.
3669        // TBZ has a smaller branch displacement than CBZ.  If the offset is
3670        // out of bounds, a late MI-layer pass rewrites branches.
3671        // 403.gcc is an example that hits this case.
3672        if (LHS.getOpcode() == ISD::AND &&
3673            isa<ConstantSDNode>(LHS.getOperand(1)) &&
3674            isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3675          SDValue Test = LHS.getOperand(0);
3676          uint64_t Mask = LHS.getConstantOperandVal(1);
3677          return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
3678                             DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3679                             Dest);
3680        }
3681
3682        return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3683      } else if (CC == ISD::SETNE) {
3684        // See if we can use a TBZ to fold in an AND as well.
3685        // TBZ has a smaller branch displacement than CBZ.  If the offset is
3686        // out of bounds, a late MI-layer pass rewrites branches.
3687        // 403.gcc is an example that hits this case.
3688        if (LHS.getOpcode() == ISD::AND &&
3689            isa<ConstantSDNode>(LHS.getOperand(1)) &&
3690            isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3691          SDValue Test = LHS.getOperand(0);
3692          uint64_t Mask = LHS.getConstantOperandVal(1);
3693          return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
3694                             DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3695                             Dest);
3696        }
3697
3698        return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
3699      } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3700        // Don't combine AND since emitComparison converts the AND to an ANDS
3701        // (a.k.a. TST) and the test in the test bit and branch instruction
3702        // becomes redundant.  This would also increase register pressure.
3703        uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3704        return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
3705                           DAG.getConstant(Mask, dl, MVT::i64), Dest);
3706      }
3707    }
3708    if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3709        LHS.getOpcode() != ISD::AND) {
3710      // Don't combine AND since emitComparison converts the AND to an ANDS
3711      // (a.k.a. TST) and the test in the test bit and branch instruction
3712      // becomes redundant.  This would also increase register pressure.
3713      uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3714      return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
3715                         DAG.getConstant(Mask, dl, MVT::i64), Dest);
3716    }
3717
3718    SDValue CCVal;
3719    SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3720    return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3721                       Cmp);
3722  }
3723
3724  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3725
3726  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3727  // clean.  Some of them require two branches to implement.
3728  SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3729  AArch64CC::CondCode CC1, CC2;
3730  changeFPCCToAArch64CC(CC, CC1, CC2);
3731  SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
3732  SDValue BR1 =
3733      DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3734  if (CC2 != AArch64CC::AL) {
3735    SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
3736    return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3737                       Cmp);
3738  }
3739
3740  return BR1;
3741}
3742
3743SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3744                                              SelectionDAG &DAG) const {
3745  EVT VT = Op.getValueType();
3746  SDLoc DL(Op);
3747
3748  SDValue In1 = Op.getOperand(0);
3749  SDValue In2 = Op.getOperand(1);
3750  EVT SrcVT = In2.getValueType();
3751
3752  if (SrcVT.bitsLT(VT))
3753    In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3754  else if (SrcVT.bitsGT(VT))
3755    In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
3756
3757  EVT VecVT;
3758  EVT EltVT;
3759  uint64_t EltMask;
3760  SDValue VecVal1, VecVal2;
3761  if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3762    EltVT = MVT::i32;
3763    VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
3764    EltMask = 0x80000000ULL;
3765
3766    if (!VT.isVector()) {
3767      VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3768                                          DAG.getUNDEF(VecVT), In1);
3769      VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3770                                          DAG.getUNDEF(VecVT), In2);
3771    } else {
3772      VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3773      VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3774    }
3775  } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3776    EltVT = MVT::i64;
3777    VecVT = MVT::v2i64;
3778
3779    // We want to materialize a mask with the high bit set, but the AdvSIMD
3780    // immediate moves cannot materialize that in a single instruction for
3781    // 64-bit elements. Instead, materialize zero and then negate it.
3782    EltMask = 0;
3783
3784    if (!VT.isVector()) {
3785      VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3786                                          DAG.getUNDEF(VecVT), In1);
3787      VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3788                                          DAG.getUNDEF(VecVT), In2);
3789    } else {
3790      VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3791      VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3792    }
3793  } else {
3794    llvm_unreachable("Invalid type for copysign!");
3795  }
3796
3797  SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
3798
3799  // If we couldn't materialize the mask above, then the mask vector will be
3800  // the zero vector, and we need to negate it here.
3801  if (VT == MVT::f64 || VT == MVT::v2f64) {
3802    BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3803    BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3804    BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3805  }
3806
3807  SDValue Sel =
3808      DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3809
3810  if (VT == MVT::f32)
3811    return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3812  else if (VT == MVT::f64)
3813    return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3814  else
3815    return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3816}
3817
3818SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
3819  if (DAG.getMachineFunction().getFunction()->hasFnAttribute(
3820          Attribute::NoImplicitFloat))
3821    return SDValue();
3822
3823  if (!Subtarget->hasNEON())
3824    return SDValue();
3825
3826  // While there is no integer popcount instruction, it can
3827  // be more efficiently lowered to the following sequence that uses
3828  // AdvSIMD registers/instructions as long as the copies to/from
3829  // the AdvSIMD registers are cheap.
3830  //  FMOV    D0, X0        // copy 64-bit int to vector, high bits zero'd
3831  //  CNT     V0.8B, V0.8B  // 8xbyte pop-counts
3832  //  ADDV    B0, V0.8B     // sum 8xbyte pop-counts
3833  //  UMOV    X0, V0.B[0]   // copy byte result back to integer reg
3834  SDValue Val = Op.getOperand(0);
3835  SDLoc DL(Op);
3836  EVT VT = Op.getValueType();
3837
3838  if (VT == MVT::i32)
3839    Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
3840  Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
3841
3842  SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
3843  SDValue UaddLV = DAG.getNode(
3844      ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
3845      DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
3846
3847  if (VT == MVT::i64)
3848    UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3849  return UaddLV;
3850}
3851
3852SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3853
3854  if (Op.getValueType().isVector())
3855    return LowerVSETCC(Op, DAG);
3856
3857  SDValue LHS = Op.getOperand(0);
3858  SDValue RHS = Op.getOperand(1);
3859  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3860  SDLoc dl(Op);
3861
3862  // We chose ZeroOrOneBooleanContents, so use zero and one.
3863  EVT VT = Op.getValueType();
3864  SDValue TVal = DAG.getConstant(1, dl, VT);
3865  SDValue FVal = DAG.getConstant(0, dl, VT);
3866
3867  // Handle f128 first, since one possible outcome is a normal integer
3868  // comparison which gets picked up by the next if statement.
3869  if (LHS.getValueType() == MVT::f128) {
3870    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3871
3872    // If softenSetCCOperands returned a scalar, use it.
3873    if (!RHS.getNode()) {
3874      assert(LHS.getValueType() == Op.getValueType() &&
3875             "Unexpected setcc expansion!");
3876      return LHS;
3877    }
3878  }
3879
3880  if (LHS.getValueType().isInteger()) {
3881    SDValue CCVal;
3882    SDValue Cmp =
3883        getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3884
3885    // Note that we inverted the condition above, so we reverse the order of
3886    // the true and false operands here.  This will allow the setcc to be
3887    // matched to a single CSINC instruction.
3888    return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3889  }
3890
3891  // Now we know we're dealing with FP values.
3892  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3893
3894  // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead
3895  // and do the comparison.
3896  SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3897
3898  AArch64CC::CondCode CC1, CC2;
3899  changeFPCCToAArch64CC(CC, CC1, CC2);
3900  if (CC2 == AArch64CC::AL) {
3901    changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
3902    SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
3903
3904    // Note that we inverted the condition above, so we reverse the order of
3905    // the true and false operands here.  This will allow the setcc to be
3906    // matched to a single CSINC instruction.
3907    return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3908  } else {
3909    // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3910    // totally clean.  Some of them require two CSELs to implement.  As is in
3911    // this case, we emit the first CSEL and then emit a second using the output
3912    // of the first as the RHS.  We're effectively OR'ing the two CC's together.
3913
3914    // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
3915    SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
3916    SDValue CS1 =
3917        DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3918
3919    SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
3920    return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3921  }
3922}
3923
3924SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
3925                                              SDValue RHS, SDValue TVal,
3926                                              SDValue FVal, const SDLoc &dl,
3927                                              SelectionDAG &DAG) const {
3928  // Handle f128 first, because it will result in a comparison of some RTLIB
3929  // call result against zero.
3930  if (LHS.getValueType() == MVT::f128) {
3931    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3932
3933    // If softenSetCCOperands returned a scalar, we need to compare the result
3934    // against zero to select between true and false values.
3935    if (!RHS.getNode()) {
3936      RHS = DAG.getConstant(0, dl, LHS.getValueType());
3937      CC = ISD::SETNE;
3938    }
3939  }
3940
3941  // Also handle f16, for which we need to do a f32 comparison.
3942  if (LHS.getValueType() == MVT::f16) {
3943    LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
3944    RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
3945  }
3946
3947  // Next, handle integers.
3948  if (LHS.getValueType().isInteger()) {
3949    assert((LHS.getValueType() == RHS.getValueType()) &&
3950           (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3951
3952    unsigned Opcode = AArch64ISD::CSEL;
3953
3954    // If both the TVal and the FVal are constants, see if we can swap them in
3955    // order to for a CSINV or CSINC out of them.
3956    ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3957    ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3958
3959    if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3960      std::swap(TVal, FVal);
3961      std::swap(CTVal, CFVal);
3962      CC = ISD::getSetCCInverse(CC, true);
3963    } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3964      std::swap(TVal, FVal);
3965      std::swap(CTVal, CFVal);
3966      CC = ISD::getSetCCInverse(CC, true);
3967    } else if (TVal.getOpcode() == ISD::XOR) {
3968      // If TVal is a NOT we want to swap TVal and FVal so that we can match
3969      // with a CSINV rather than a CSEL.
3970      if (isAllOnesConstant(TVal.getOperand(1))) {
3971        std::swap(TVal, FVal);
3972        std::swap(CTVal, CFVal);
3973        CC = ISD::getSetCCInverse(CC, true);
3974      }
3975    } else if (TVal.getOpcode() == ISD::SUB) {
3976      // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3977      // that we can match with a CSNEG rather than a CSEL.
3978      if (isNullConstant(TVal.getOperand(0))) {
3979        std::swap(TVal, FVal);
3980        std::swap(CTVal, CFVal);
3981        CC = ISD::getSetCCInverse(CC, true);
3982      }
3983    } else if (CTVal && CFVal) {
3984      const int64_t TrueVal = CTVal->getSExtValue();
3985      const int64_t FalseVal = CFVal->getSExtValue();
3986      bool Swap = false;
3987
3988      // If both TVal and FVal are constants, see if FVal is the
3989      // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3990      // instead of a CSEL in that case.
3991      if (TrueVal == ~FalseVal) {
3992        Opcode = AArch64ISD::CSINV;
3993      } else if (TrueVal == -FalseVal) {
3994        Opcode = AArch64ISD::CSNEG;
3995      } else if (TVal.getValueType() == MVT::i32) {
3996        // If our operands are only 32-bit wide, make sure we use 32-bit
3997        // arithmetic for the check whether we can use CSINC. This ensures that
3998        // the addition in the check will wrap around properly in case there is
3999        // an overflow (which would not be the case if we do the check with
4000        // 64-bit arithmetic).
4001        const uint32_t TrueVal32 = CTVal->getZExtValue();
4002        const uint32_t FalseVal32 = CFVal->getZExtValue();
4003
4004        if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
4005          Opcode = AArch64ISD::CSINC;
4006
4007          if (TrueVal32 > FalseVal32) {
4008            Swap = true;
4009          }
4010        }
4011        // 64-bit check whether we can use CSINC.
4012      } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
4013        Opcode = AArch64ISD::CSINC;
4014
4015        if (TrueVal > FalseVal) {
4016          Swap = true;
4017        }
4018      }
4019
4020      // Swap TVal and FVal if necessary.
4021      if (Swap) {
4022        std::swap(TVal, FVal);
4023        std::swap(CTVal, CFVal);
4024        CC = ISD::getSetCCInverse(CC, true);
4025      }
4026
4027      if (Opcode != AArch64ISD::CSEL) {
4028        // Drop FVal since we can get its value by simply inverting/negating
4029        // TVal.
4030        FVal = TVal;
4031      }
4032    }
4033
4034    SDValue CCVal;
4035    SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
4036
4037    EVT VT = TVal.getValueType();
4038    return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
4039  }
4040
4041  // Now we know we're dealing with FP values.
4042  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
4043  assert(LHS.getValueType() == RHS.getValueType());
4044  EVT VT = TVal.getValueType();
4045  SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4046
4047  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4048  // clean.  Some of them require two CSELs to implement.
4049  AArch64CC::CondCode CC1, CC2;
4050  changeFPCCToAArch64CC(CC, CC1, CC2);
4051  SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4052  SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
4053
4054  // If we need a second CSEL, emit it, using the output of the first as the
4055  // RHS.  We're effectively OR'ing the two CC's together.
4056  if (CC2 != AArch64CC::AL) {
4057    SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4058    return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
4059  }
4060
4061  // Otherwise, return the output of the first CSEL.
4062  return CS1;
4063}
4064
4065SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
4066                                              SelectionDAG &DAG) const {
4067  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4068  SDValue LHS = Op.getOperand(0);
4069  SDValue RHS = Op.getOperand(1);
4070  SDValue TVal = Op.getOperand(2);
4071  SDValue FVal = Op.getOperand(3);
4072  SDLoc DL(Op);
4073  return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4074}
4075
4076SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
4077                                           SelectionDAG &DAG) const {
4078  SDValue CCVal = Op->getOperand(0);
4079  SDValue TVal = Op->getOperand(1);
4080  SDValue FVal = Op->getOperand(2);
4081  SDLoc DL(Op);
4082
4083  unsigned Opc = CCVal.getOpcode();
4084  // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
4085  // instruction.
4086  if (CCVal.getResNo() == 1 &&
4087      (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4088       Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
4089    // Only lower legal XALUO ops.
4090    if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
4091      return SDValue();
4092
4093    AArch64CC::CondCode OFCC;
4094    SDValue Value, Overflow;
4095    std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
4096    SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
4097
4098    return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
4099                       CCVal, Overflow);
4100  }
4101
4102  // Lower it the same way as we would lower a SELECT_CC node.
4103  ISD::CondCode CC;
4104  SDValue LHS, RHS;
4105  if (CCVal.getOpcode() == ISD::SETCC) {
4106    LHS = CCVal.getOperand(0);
4107    RHS = CCVal.getOperand(1);
4108    CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
4109  } else {
4110    LHS = CCVal;
4111    RHS = DAG.getConstant(0, DL, CCVal.getValueType());
4112    CC = ISD::SETNE;
4113  }
4114  return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4115}
4116
4117SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
4118                                              SelectionDAG &DAG) const {
4119  // Jump table entries as PC relative offsets. No additional tweaking
4120  // is necessary here. Just get the address of the jump table.
4121  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4122  EVT PtrVT = getPointerTy(DAG.getDataLayout());
4123  SDLoc DL(Op);
4124
4125  if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4126      !Subtarget->isTargetMachO()) {
4127    const unsigned char MO_NC = AArch64II::MO_NC;
4128    return DAG.getNode(
4129        AArch64ISD::WrapperLarge, DL, PtrVT,
4130        DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
4131        DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
4132        DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
4133        DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
4134                               AArch64II::MO_G0 | MO_NC));
4135  }
4136
4137  SDValue Hi =
4138      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
4139  SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
4140                                      AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4141  SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4142  return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4143}
4144
4145SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
4146                                                 SelectionDAG &DAG) const {
4147  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4148  EVT PtrVT = getPointerTy(DAG.getDataLayout());
4149  SDLoc DL(Op);
4150
4151  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
4152    // Use the GOT for the large code model on iOS.
4153    if (Subtarget->isTargetMachO()) {
4154      SDValue GotAddr = DAG.getTargetConstantPool(
4155          CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
4156          AArch64II::MO_GOT);
4157      return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
4158    }
4159
4160    const unsigned char MO_NC = AArch64II::MO_NC;
4161    return DAG.getNode(
4162        AArch64ISD::WrapperLarge, DL, PtrVT,
4163        DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4164                                  CP->getOffset(), AArch64II::MO_G3),
4165        DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4166                                  CP->getOffset(), AArch64II::MO_G2 | MO_NC),
4167        DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4168                                  CP->getOffset(), AArch64II::MO_G1 | MO_NC),
4169        DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4170                                  CP->getOffset(), AArch64II::MO_G0 | MO_NC));
4171  } else {
4172    // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
4173    // ELF, the only valid one on Darwin.
4174    SDValue Hi =
4175        DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4176                                  CP->getOffset(), AArch64II::MO_PAGE);
4177    SDValue Lo = DAG.getTargetConstantPool(
4178        CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
4179        AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4180
4181    SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4182    return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4183  }
4184}
4185
4186SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
4187                                               SelectionDAG &DAG) const {
4188  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
4189  EVT PtrVT = getPointerTy(DAG.getDataLayout());
4190  SDLoc DL(Op);
4191  if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4192      !Subtarget->isTargetMachO()) {
4193    const unsigned char MO_NC = AArch64II::MO_NC;
4194    return DAG.getNode(
4195        AArch64ISD::WrapperLarge, DL, PtrVT,
4196        DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
4197        DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
4198        DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
4199        DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
4200  } else {
4201    SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
4202    SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
4203                                                             AArch64II::MO_NC);
4204    SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4205    return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4206  }
4207}
4208
4209SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
4210                                                 SelectionDAG &DAG) const {
4211  AArch64FunctionInfo *FuncInfo =
4212      DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4213
4214  SDLoc DL(Op);
4215  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
4216                                 getPointerTy(DAG.getDataLayout()));
4217  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4218  return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
4219                      MachinePointerInfo(SV), false, false, 0);
4220}
4221
4222SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
4223                                                SelectionDAG &DAG) const {
4224  // The layout of the va_list struct is specified in the AArch64 Procedure Call
4225  // Standard, section B.3.
4226  MachineFunction &MF = DAG.getMachineFunction();
4227  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
4228  auto PtrVT = getPointerTy(DAG.getDataLayout());
4229  SDLoc DL(Op);
4230
4231  SDValue Chain = Op.getOperand(0);
4232  SDValue VAList = Op.getOperand(1);
4233  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4234  SmallVector<SDValue, 4> MemOps;
4235
4236  // void *__stack at offset 0
4237  SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
4238  MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
4239                                MachinePointerInfo(SV), false, false, 8));
4240
4241  // void *__gr_top at offset 8
4242  int GPRSize = FuncInfo->getVarArgsGPRSize();
4243  if (GPRSize > 0) {
4244    SDValue GRTop, GRTopAddr;
4245
4246    GRTopAddr =
4247        DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
4248
4249    GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
4250    GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
4251                        DAG.getConstant(GPRSize, DL, PtrVT));
4252
4253    MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
4254                                  MachinePointerInfo(SV, 8), false, false, 8));
4255  }
4256
4257  // void *__vr_top at offset 16
4258  int FPRSize = FuncInfo->getVarArgsFPRSize();
4259  if (FPRSize > 0) {
4260    SDValue VRTop, VRTopAddr;
4261    VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4262                            DAG.getConstant(16, DL, PtrVT));
4263
4264    VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
4265    VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
4266                        DAG.getConstant(FPRSize, DL, PtrVT));
4267
4268    MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
4269                                  MachinePointerInfo(SV, 16), false, false, 8));
4270  }
4271
4272  // int __gr_offs at offset 24
4273  SDValue GROffsAddr =
4274      DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
4275  MemOps.push_back(DAG.getStore(Chain, DL,
4276                                DAG.getConstant(-GPRSize, DL, MVT::i32),
4277                                GROffsAddr, MachinePointerInfo(SV, 24), false,
4278                                false, 4));
4279
4280  // int __vr_offs at offset 28
4281  SDValue VROffsAddr =
4282      DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
4283  MemOps.push_back(DAG.getStore(Chain, DL,
4284                                DAG.getConstant(-FPRSize, DL, MVT::i32),
4285                                VROffsAddr, MachinePointerInfo(SV, 28), false,
4286                                false, 4));
4287
4288  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
4289}
4290
4291SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
4292                                            SelectionDAG &DAG) const {
4293  return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
4294                                     : LowerAAPCS_VASTART(Op, DAG);
4295}
4296
4297SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
4298                                           SelectionDAG &DAG) const {
4299  // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
4300  // pointer.
4301  SDLoc DL(Op);
4302  unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
4303  const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
4304  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
4305
4306  return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
4307                       Op.getOperand(2),
4308                       DAG.getConstant(VaListSize, DL, MVT::i32),
4309                       8, false, false, false, MachinePointerInfo(DestSV),
4310                       MachinePointerInfo(SrcSV));
4311}
4312
4313SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
4314  assert(Subtarget->isTargetDarwin() &&
4315         "automatic va_arg instruction only works on Darwin");
4316
4317  const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4318  EVT VT = Op.getValueType();
4319  SDLoc DL(Op);
4320  SDValue Chain = Op.getOperand(0);
4321  SDValue Addr = Op.getOperand(1);
4322  unsigned Align = Op.getConstantOperandVal(3);
4323  auto PtrVT = getPointerTy(DAG.getDataLayout());
4324
4325  SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V),
4326                               false, false, false, 0);
4327  Chain = VAList.getValue(1);
4328
4329  if (Align > 8) {
4330    assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
4331    VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4332                         DAG.getConstant(Align - 1, DL, PtrVT));
4333    VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
4334                         DAG.getConstant(-(int64_t)Align, DL, PtrVT));
4335  }
4336
4337  Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
4338  uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
4339
4340  // Scalar integer and FP values smaller than 64 bits are implicitly extended
4341  // up to 64 bits.  At the very least, we have to increase the striding of the
4342  // vaargs list to match this, and for FP values we need to introduce
4343  // FP_ROUND nodes as well.
4344  if (VT.isInteger() && !VT.isVector())
4345    ArgSize = 8;
4346  bool NeedFPTrunc = false;
4347  if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
4348    ArgSize = 8;
4349    NeedFPTrunc = true;
4350  }
4351
4352  // Increment the pointer, VAList, to the next vaarg
4353  SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4354                               DAG.getConstant(ArgSize, DL, PtrVT));
4355  // Store the incremented VAList to the legalized pointer
4356  SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
4357                                 false, false, 0);
4358
4359  // Load the actual argument out of the pointer VAList
4360  if (NeedFPTrunc) {
4361    // Load the value as an f64.
4362    SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
4363                                 MachinePointerInfo(), false, false, false, 0);
4364    // Round the value down to an f32.
4365    SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
4366                                   DAG.getIntPtrConstant(1, DL));
4367    SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
4368    // Merge the rounded value with the chain output of the load.
4369    return DAG.getMergeValues(Ops, DL);
4370  }
4371
4372  return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
4373                     false, false, 0);
4374}
4375
4376SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
4377                                              SelectionDAG &DAG) const {
4378  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4379  MFI->setFrameAddressIsTaken(true);
4380
4381  EVT VT = Op.getValueType();
4382  SDLoc DL(Op);
4383  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4384  SDValue FrameAddr =
4385      DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
4386  while (Depth--)
4387    FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
4388                            MachinePointerInfo(), false, false, false, 0);
4389  return FrameAddr;
4390}
4391
4392// FIXME? Maybe this could be a TableGen attribute on some registers and
4393// this table could be generated automatically from RegInfo.
4394unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT,
4395                                                  SelectionDAG &DAG) const {
4396  unsigned Reg = StringSwitch<unsigned>(RegName)
4397                       .Case("sp", AArch64::SP)
4398                       .Default(0);
4399  if (Reg)
4400    return Reg;
4401  report_fatal_error(Twine("Invalid register name \""
4402                              + StringRef(RegName)  + "\"."));
4403}
4404
4405SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
4406                                               SelectionDAG &DAG) const {
4407  MachineFunction &MF = DAG.getMachineFunction();
4408  MachineFrameInfo *MFI = MF.getFrameInfo();
4409  MFI->setReturnAddressIsTaken(true);
4410
4411  EVT VT = Op.getValueType();
4412  SDLoc DL(Op);
4413  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4414  if (Depth) {
4415    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
4416    SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
4417    return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4418                       DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4419                       MachinePointerInfo(), false, false, false, 0);
4420  }
4421
4422  // Return LR, which contains the return address. Mark it an implicit live-in.
4423  unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
4424  return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4425}
4426
4427/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4428/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4429SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
4430                                                    SelectionDAG &DAG) const {
4431  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4432  EVT VT = Op.getValueType();
4433  unsigned VTBits = VT.getSizeInBits();
4434  SDLoc dl(Op);
4435  SDValue ShOpLo = Op.getOperand(0);
4436  SDValue ShOpHi = Op.getOperand(1);
4437  SDValue ShAmt = Op.getOperand(2);
4438  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4439
4440  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4441
4442  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4443                                 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
4444  SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4445
4446  // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
4447  // is "undef". We wanted 0, so CSEL it directly.
4448  SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
4449                               ISD::SETEQ, dl, DAG);
4450  SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
4451  HiBitsForLo =
4452      DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
4453                  HiBitsForLo, CCVal, Cmp);
4454
4455  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4456                                   DAG.getConstant(VTBits, dl, MVT::i64));
4457
4458  SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4459  SDValue LoForNormalShift =
4460      DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);
4461
4462  Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
4463                       dl, DAG);
4464  CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
4465  SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4466  SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
4467                           LoForNormalShift, CCVal, Cmp);
4468
4469  // AArch64 shifts larger than the register width are wrapped rather than
4470  // clamped, so we can't just emit "hi >> x".
4471  SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4472  SDValue HiForBigShift =
4473      Opc == ISD::SRA
4474          ? DAG.getNode(Opc, dl, VT, ShOpHi,
4475                        DAG.getConstant(VTBits - 1, dl, MVT::i64))
4476          : DAG.getConstant(0, dl, VT);
4477  SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
4478                           HiForNormalShift, CCVal, Cmp);
4479
4480  SDValue Ops[2] = { Lo, Hi };
4481  return DAG.getMergeValues(Ops, dl);
4482}
4483
4484
4485/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4486/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4487SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
4488                                                   SelectionDAG &DAG) const {
4489  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4490  EVT VT = Op.getValueType();
4491  unsigned VTBits = VT.getSizeInBits();
4492  SDLoc dl(Op);
4493  SDValue ShOpLo = Op.getOperand(0);
4494  SDValue ShOpHi = Op.getOperand(1);
4495  SDValue ShAmt = Op.getOperand(2);
4496
4497  assert(Op.getOpcode() == ISD::SHL_PARTS);
4498  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4499                                 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
4500  SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4501
4502  // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
4503  // is "undef". We wanted 0, so CSEL it directly.
4504  SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
4505                               ISD::SETEQ, dl, DAG);
4506  SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
4507  LoBitsForHi =
4508      DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
4509                  LoBitsForHi, CCVal, Cmp);
4510
4511  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4512                                   DAG.getConstant(VTBits, dl, MVT::i64));
4513  SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4514  SDValue HiForNormalShift =
4515      DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
4516
4517  SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4518
4519  Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
4520                       dl, DAG);
4521  CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
4522  SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
4523                           HiForNormalShift, CCVal, Cmp);
4524
4525  // AArch64 shifts of larger than register sizes are wrapped rather than
4526  // clamped, so we can't just emit "lo << a" if a is too big.
4527  SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
4528  SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4529  SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
4530                           LoForNormalShift, CCVal, Cmp);
4531
4532  SDValue Ops[2] = { Lo, Hi };
4533  return DAG.getMergeValues(Ops, dl);
4534}
4535
4536bool AArch64TargetLowering::isOffsetFoldingLegal(
4537    const GlobalAddressSDNode *GA) const {
4538  // The AArch64 target doesn't support folding offsets into global addresses.
4539  return false;
4540}
4541
4542bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4543  // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
4544  // FIXME: We should be able to handle f128 as well with a clever lowering.
4545  if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
4546    return true;
4547
4548  if (VT == MVT::f64)
4549    return AArch64_AM::getFP64Imm(Imm) != -1;
4550  else if (VT == MVT::f32)
4551    return AArch64_AM::getFP32Imm(Imm) != -1;
4552  return false;
4553}
4554
4555//===----------------------------------------------------------------------===//
4556//                          AArch64 Optimization Hooks
4557//===----------------------------------------------------------------------===//
4558
4559/// getEstimate - Return the appropriate estimate DAG for either the reciprocal
4560/// or the reciprocal square root.
4561static SDValue getEstimate(const AArch64Subtarget &ST,
4562  const AArch64TargetLowering::DAGCombinerInfo &DCI, unsigned Opcode,
4563  const SDValue &Operand, unsigned &ExtraSteps) {
4564  if (!ST.hasNEON())
4565    return SDValue();
4566
4567  EVT VT = Operand.getValueType();
4568
4569  std::string RecipOp;
4570  RecipOp = Opcode == (AArch64ISD::FRECPE) ? "div": "sqrt";
4571  RecipOp = ((VT.isVector()) ? "vec-": "") + RecipOp;
4572  RecipOp += (VT.getScalarType() == MVT::f64) ? "d": "f";
4573
4574  TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
4575  if (!Recips.isEnabled(RecipOp))
4576    return SDValue();
4577
4578  ExtraSteps = Recips.getRefinementSteps(RecipOp);
4579  return DCI.DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
4580}
4581
4582SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
4583  DAGCombinerInfo &DCI, unsigned &ExtraSteps) const {
4584  return getEstimate(*Subtarget, DCI, AArch64ISD::FRECPE, Operand, ExtraSteps);
4585}
4586
4587SDValue AArch64TargetLowering::getRsqrtEstimate(SDValue Operand,
4588  DAGCombinerInfo &DCI, unsigned &ExtraSteps, bool &UseOneConst) const {
4589  UseOneConst = true;
4590  return getEstimate(*Subtarget, DCI, AArch64ISD::FRSQRTE, Operand, ExtraSteps);
4591}
4592
4593//===----------------------------------------------------------------------===//
4594//                          AArch64 Inline Assembly Support
4595//===----------------------------------------------------------------------===//
4596
4597// Table of Constraints
4598// TODO: This is the current set of constraints supported by ARM for the
4599// compiler, not all of them may make sense, e.g. S may be difficult to support.
4600//
4601// r - A general register
4602// w - An FP/SIMD register of some size in the range v0-v31
4603// x - An FP/SIMD register of some size in the range v0-v15
4604// I - Constant that can be used with an ADD instruction
4605// J - Constant that can be used with a SUB instruction
4606// K - Constant that can be used with a 32-bit logical instruction
4607// L - Constant that can be used with a 64-bit logical instruction
4608// M - Constant that can be used as a 32-bit MOV immediate
4609// N - Constant that can be used as a 64-bit MOV immediate
4610// Q - A memory reference with base register and no offset
4611// S - A symbolic address
4612// Y - Floating point constant zero
4613// Z - Integer constant zero
4614//
4615//   Note that general register operands will be output using their 64-bit x
4616// register name, whatever the size of the variable, unless the asm operand
4617// is prefixed by the %w modifier. Floating-point and SIMD register operands
4618// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4619// %q modifier.
4620const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4621  // At this point, we have to lower this constraint to something else, so we
4622  // lower it to an "r" or "w". However, by doing this we will force the result
4623  // to be in register, while the X constraint is much more permissive.
4624  //
4625  // Although we are correct (we are free to emit anything, without
4626  // constraints), we might break use cases that would expect us to be more
4627  // efficient and emit something else.
4628  if (!Subtarget->hasFPARMv8())
4629    return "r";
4630
4631  if (ConstraintVT.isFloatingPoint())
4632    return "w";
4633
4634  if (ConstraintVT.isVector() &&
4635     (ConstraintVT.getSizeInBits() == 64 ||
4636      ConstraintVT.getSizeInBits() == 128))
4637    return "w";
4638
4639  return "r";
4640}
4641
4642/// getConstraintType - Given a constraint letter, return the type of
4643/// constraint it is for this target.
4644AArch64TargetLowering::ConstraintType
4645AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
4646  if (Constraint.size() == 1) {
4647    switch (Constraint[0]) {
4648    default:
4649      break;
4650    case 'z':
4651      return C_Other;
4652    case 'x':
4653    case 'w':
4654      return C_RegisterClass;
4655    // An address with a single base register. Due to the way we
4656    // currently handle addresses it is the same as 'r'.
4657    case 'Q':
4658      return C_Memory;
4659    }
4660  }
4661  return TargetLowering::getConstraintType(Constraint);
4662}
4663
4664/// Examine constraint type and operand type and determine a weight value.
4665/// This object must already have been set up with the operand type
4666/// and the current alternative constraint selected.
4667TargetLowering::ConstraintWeight
4668AArch64TargetLowering::getSingleConstraintMatchWeight(
4669    AsmOperandInfo &info, const char *constraint) const {
4670  ConstraintWeight weight = CW_Invalid;
4671  Value *CallOperandVal = info.CallOperandVal;
4672  // If we don't have a value, we can't do a match,
4673  // but allow it at the lowest weight.
4674  if (!CallOperandVal)
4675    return CW_Default;
4676  Type *type = CallOperandVal->getType();
4677  // Look at the constraint type.
4678  switch (*constraint) {
4679  default:
4680    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4681    break;
4682  case 'x':
4683  case 'w':
4684    if (type->isFloatingPointTy() || type->isVectorTy())
4685      weight = CW_Register;
4686    break;
4687  case 'z':
4688    weight = CW_Constant;
4689    break;
4690  }
4691  return weight;
4692}
4693
4694std::pair<unsigned, const TargetRegisterClass *>
4695AArch64TargetLowering::getRegForInlineAsmConstraint(
4696    const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
4697  if (Constraint.size() == 1) {
4698    switch (Constraint[0]) {
4699    case 'r':
4700      if (VT.getSizeInBits() == 64)
4701        return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4702      return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4703    case 'w':
4704      if (VT.getSizeInBits() == 32)
4705        return std::make_pair(0U, &AArch64::FPR32RegClass);
4706      if (VT.getSizeInBits() == 64)
4707        return std::make_pair(0U, &AArch64::FPR64RegClass);
4708      if (VT.getSizeInBits() == 128)
4709        return std::make_pair(0U, &AArch64::FPR128RegClass);
4710      break;
4711    // The instructions that this constraint is designed for can
4712    // only take 128-bit registers so just use that regclass.
4713    case 'x':
4714      if (VT.getSizeInBits() == 128)
4715        return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4716      break;
4717    }
4718  }
4719  if (StringRef("{cc}").equals_lower(Constraint))
4720    return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4721
4722  // Use the default implementation in TargetLowering to convert the register
4723  // constraint into a member of a register class.
4724  std::pair<unsigned, const TargetRegisterClass *> Res;
4725  Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4726
4727  // Not found as a standard register?
4728  if (!Res.second) {
4729    unsigned Size = Constraint.size();
4730    if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4731        tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
4732      int RegNo;
4733      bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
4734      if (!Failed && RegNo >= 0 && RegNo <= 31) {
4735        // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
4736        // By default we'll emit v0-v31 for this unless there's a modifier where
4737        // we'll emit the correct register as well.
4738        if (VT != MVT::Other && VT.getSizeInBits() == 64) {
4739          Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
4740          Res.second = &AArch64::FPR64RegClass;
4741        } else {
4742          Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4743          Res.second = &AArch64::FPR128RegClass;
4744        }
4745      }
4746    }
4747  }
4748
4749  return Res;
4750}
4751
4752/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4753/// vector.  If it is invalid, don't add anything to Ops.
4754void AArch64TargetLowering::LowerAsmOperandForConstraint(
4755    SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4756    SelectionDAG &DAG) const {
4757  SDValue Result;
4758
4759  // Currently only support length 1 constraints.
4760  if (Constraint.length() != 1)
4761    return;
4762
4763  char ConstraintLetter = Constraint[0];
4764  switch (ConstraintLetter) {
4765  default:
4766    break;
4767
4768  // This set of constraints deal with valid constants for various instructions.
4769  // Validate and return a target constant for them if we can.
4770  case 'z': {
4771    // 'z' maps to xzr or wzr so it needs an input of 0.
4772    if (!isNullConstant(Op))
4773      return;
4774
4775    if (Op.getValueType() == MVT::i64)
4776      Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4777    else
4778      Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4779    break;
4780  }
4781
4782  case 'I':
4783  case 'J':
4784  case 'K':
4785  case 'L':
4786  case 'M':
4787  case 'N':
4788    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4789    if (!C)
4790      return;
4791
4792    // Grab the value and do some validation.
4793    uint64_t CVal = C->getZExtValue();
4794    switch (ConstraintLetter) {
4795    // The I constraint applies only to simple ADD or SUB immediate operands:
4796    // i.e. 0 to 4095 with optional shift by 12
4797    // The J constraint applies only to ADD or SUB immediates that would be
4798    // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4799    // instruction [or vice versa], in other words -1 to -4095 with optional
4800    // left shift by 12.
4801    case 'I':
4802      if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4803        break;
4804      return;
4805    case 'J': {
4806      uint64_t NVal = -C->getSExtValue();
4807      if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4808        CVal = C->getSExtValue();
4809        break;
4810      }
4811      return;
4812    }
4813    // The K and L constraints apply *only* to logical immediates, including
4814    // what used to be the MOVI alias for ORR (though the MOVI alias has now
4815    // been removed and MOV should be used). So these constraints have to
4816    // distinguish between bit patterns that are valid 32-bit or 64-bit
4817    // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4818    // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4819    // versa.
4820    case 'K':
4821      if (AArch64_AM::isLogicalImmediate(CVal, 32))
4822        break;
4823      return;
4824    case 'L':
4825      if (AArch64_AM::isLogicalImmediate(CVal, 64))
4826        break;
4827      return;
4828    // The M and N constraints are a superset of K and L respectively, for use
4829    // with the MOV (immediate) alias. As well as the logical immediates they
4830    // also match 32 or 64-bit immediates that can be loaded either using a
4831    // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4832    // (M) or 64-bit 0x1234000000000000 (N) etc.
4833    // As a note some of this code is liberally stolen from the asm parser.
4834    case 'M': {
4835      if (!isUInt<32>(CVal))
4836        return;
4837      if (AArch64_AM::isLogicalImmediate(CVal, 32))
4838        break;
4839      if ((CVal & 0xFFFF) == CVal)
4840        break;
4841      if ((CVal & 0xFFFF0000ULL) == CVal)
4842        break;
4843      uint64_t NCVal = ~(uint32_t)CVal;
4844      if ((NCVal & 0xFFFFULL) == NCVal)
4845        break;
4846      if ((NCVal & 0xFFFF0000ULL) == NCVal)
4847        break;
4848      return;
4849    }
4850    case 'N': {
4851      if (AArch64_AM::isLogicalImmediate(CVal, 64))
4852        break;
4853      if ((CVal & 0xFFFFULL) == CVal)
4854        break;
4855      if ((CVal & 0xFFFF0000ULL) == CVal)
4856        break;
4857      if ((CVal & 0xFFFF00000000ULL) == CVal)
4858        break;
4859      if ((CVal & 0xFFFF000000000000ULL) == CVal)
4860        break;
4861      uint64_t NCVal = ~CVal;
4862      if ((NCVal & 0xFFFFULL) == NCVal)
4863        break;
4864      if ((NCVal & 0xFFFF0000ULL) == NCVal)
4865        break;
4866      if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4867        break;
4868      if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4869        break;
4870      return;
4871    }
4872    default:
4873      return;
4874    }
4875
4876    // All assembler immediates are 64-bit integers.
4877    Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
4878    break;
4879  }
4880
4881  if (Result.getNode()) {
4882    Ops.push_back(Result);
4883    return;
4884  }
4885
4886  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4887}
4888
4889//===----------------------------------------------------------------------===//
4890//                     AArch64 Advanced SIMD Support
4891//===----------------------------------------------------------------------===//
4892
4893/// WidenVector - Given a value in the V64 register class, produce the
4894/// equivalent value in the V128 register class.
4895static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4896  EVT VT = V64Reg.getValueType();
4897  unsigned NarrowSize = VT.getVectorNumElements();
4898  MVT EltTy = VT.getVectorElementType().getSimpleVT();
4899  MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4900  SDLoc DL(V64Reg);
4901
4902  return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
4903                     V64Reg, DAG.getConstant(0, DL, MVT::i32));
4904}
4905
4906/// getExtFactor - Determine the adjustment factor for the position when
4907/// generating an "extract from vector registers" instruction.
4908static unsigned getExtFactor(SDValue &V) {
4909  EVT EltType = V.getValueType().getVectorElementType();
4910  return EltType.getSizeInBits() / 8;
4911}
4912
4913/// NarrowVector - Given a value in the V128 register class, produce the
4914/// equivalent value in the V64 register class.
4915static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4916  EVT VT = V128Reg.getValueType();
4917  unsigned WideSize = VT.getVectorNumElements();
4918  MVT EltTy = VT.getVectorElementType().getSimpleVT();
4919  MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4920  SDLoc DL(V128Reg);
4921
4922  return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4923}
4924
4925// Gather data to see if the operation can be modelled as a
4926// shuffle in combination with VEXTs.
4927SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4928                                                  SelectionDAG &DAG) const {
4929  assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
4930  SDLoc dl(Op);
4931  EVT VT = Op.getValueType();
4932  unsigned NumElts = VT.getVectorNumElements();
4933
4934  struct ShuffleSourceInfo {
4935    SDValue Vec;
4936    unsigned MinElt;
4937    unsigned MaxElt;
4938
4939    // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4940    // be compatible with the shuffle we intend to construct. As a result
4941    // ShuffleVec will be some sliding window into the original Vec.
4942    SDValue ShuffleVec;
4943
4944    // Code should guarantee that element i in Vec starts at element "WindowBase
4945    // + i * WindowScale in ShuffleVec".
4946    int WindowBase;
4947    int WindowScale;
4948
4949    bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4950    ShuffleSourceInfo(SDValue Vec)
4951        : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4952          WindowScale(1) {}
4953  };
4954
4955  // First gather all vectors used as an immediate source for this BUILD_VECTOR
4956  // node.
4957  SmallVector<ShuffleSourceInfo, 2> Sources;
4958  for (unsigned i = 0; i < NumElts; ++i) {
4959    SDValue V = Op.getOperand(i);
4960    if (V.isUndef())
4961      continue;
4962    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4963             !isa<ConstantSDNode>(V.getOperand(1))) {
4964      // A shuffle can only come from building a vector from various
4965      // elements of other vectors, provided their indices are constant.
4966      return SDValue();
4967    }
4968
4969    // Add this element source to the list if it's not already there.
4970    SDValue SourceVec = V.getOperand(0);
4971    auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4972    if (Source == Sources.end())
4973      Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
4974
4975    // Update the minimum and maximum lane number seen.
4976    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4977    Source->MinElt = std::min(Source->MinElt, EltNo);
4978    Source->MaxElt = std::max(Source->MaxElt, EltNo);
4979  }
4980
4981  // Currently only do something sane when at most two source vectors
4982  // are involved.
4983  if (Sources.size() > 2)
4984    return SDValue();
4985
4986  // Find out the smallest element size among result and two sources, and use
4987  // it as element size to build the shuffle_vector.
4988  EVT SmallestEltTy = VT.getVectorElementType();
4989  for (auto &Source : Sources) {
4990    EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
4991    if (SrcEltTy.bitsLT(SmallestEltTy)) {
4992      SmallestEltTy = SrcEltTy;
4993    }
4994  }
4995  unsigned ResMultiplier =
4996      VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
4997  NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4998  EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
4999
5000  // If the source vector is too wide or too narrow, we may nevertheless be able
5001  // to construct a compatible shuffle either by concatenating it with UNDEF or
5002  // extracting a suitable range of elements.
5003  for (auto &Src : Sources) {
5004    EVT SrcVT = Src.ShuffleVec.getValueType();
5005
5006    if (SrcVT.getSizeInBits() == VT.getSizeInBits())
5007      continue;
5008
5009    // This stage of the search produces a source with the same element type as
5010    // the original, but with a total width matching the BUILD_VECTOR output.
5011    EVT EltVT = SrcVT.getVectorElementType();
5012    unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
5013    EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
5014
5015    if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
5016      assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
5017      // We can pad out the smaller vector for free, so if it's part of a
5018      // shuffle...
5019      Src.ShuffleVec =
5020          DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
5021                      DAG.getUNDEF(Src.ShuffleVec.getValueType()));
5022      continue;
5023    }
5024
5025    assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
5026
5027    if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
5028      // Span too large for a VEXT to cope
5029      return SDValue();
5030    }
5031
5032    if (Src.MinElt >= NumSrcElts) {
5033      // The extraction can just take the second half
5034      Src.ShuffleVec =
5035          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5036                      DAG.getConstant(NumSrcElts, dl, MVT::i64));
5037      Src.WindowBase = -NumSrcElts;
5038    } else if (Src.MaxElt < NumSrcElts) {
5039      // The extraction can just take the first half
5040      Src.ShuffleVec =
5041          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5042                      DAG.getConstant(0, dl, MVT::i64));
5043    } else {
5044      // An actual VEXT is needed
5045      SDValue VEXTSrc1 =
5046          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5047                      DAG.getConstant(0, dl, MVT::i64));
5048      SDValue VEXTSrc2 =
5049          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5050                      DAG.getConstant(NumSrcElts, dl, MVT::i64));
5051      unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
5052
5053      Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
5054                                   VEXTSrc2,
5055                                   DAG.getConstant(Imm, dl, MVT::i32));
5056      Src.WindowBase = -Src.MinElt;
5057    }
5058  }
5059
5060  // Another possible incompatibility occurs from the vector element types. We
5061  // can fix this by bitcasting the source vectors to the same type we intend
5062  // for the shuffle.
5063  for (auto &Src : Sources) {
5064    EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
5065    if (SrcEltTy == SmallestEltTy)
5066      continue;
5067    assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
5068    Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
5069    Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
5070    Src.WindowBase *= Src.WindowScale;
5071  }
5072
5073  // Final sanity check before we try to actually produce a shuffle.
5074  DEBUG(
5075    for (auto Src : Sources)
5076      assert(Src.ShuffleVec.getValueType() == ShuffleVT);
5077  );
5078
5079  // The stars all align, our next step is to produce the mask for the shuffle.
5080  SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
5081  int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
5082  for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
5083    SDValue Entry = Op.getOperand(i);
5084    if (Entry.isUndef())
5085      continue;
5086
5087    auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
5088    int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
5089
5090    // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
5091    // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
5092    // segment.
5093    EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
5094    int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
5095                               VT.getVectorElementType().getSizeInBits());
5096    int LanesDefined = BitsDefined / BitsPerShuffleLane;
5097
5098    // This source is expected to fill ResMultiplier lanes of the final shuffle,
5099    // starting at the appropriate offset.
5100    int *LaneMask = &Mask[i * ResMultiplier];
5101
5102    int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
5103    ExtractBase += NumElts * (Src - Sources.begin());
5104    for (int j = 0; j < LanesDefined; ++j)
5105      LaneMask[j] = ExtractBase + j;
5106  }
5107
5108  // Final check before we try to produce nonsense...
5109  if (!isShuffleMaskLegal(Mask, ShuffleVT))
5110    return SDValue();
5111
5112  SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
5113  for (unsigned i = 0; i < Sources.size(); ++i)
5114    ShuffleOps[i] = Sources[i].ShuffleVec;
5115
5116  SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
5117                                         ShuffleOps[1], Mask);
5118  return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
5119}
5120
5121// check if an EXT instruction can handle the shuffle mask when the
5122// vector sources of the shuffle are the same.
5123static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
5124  unsigned NumElts = VT.getVectorNumElements();
5125
5126  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
5127  if (M[0] < 0)
5128    return false;
5129
5130  Imm = M[0];
5131
5132  // If this is a VEXT shuffle, the immediate value is the index of the first
5133  // element.  The other shuffle indices must be the successive elements after
5134  // the first one.
5135  unsigned ExpectedElt = Imm;
5136  for (unsigned i = 1; i < NumElts; ++i) {
5137    // Increment the expected index.  If it wraps around, just follow it
5138    // back to index zero and keep going.
5139    ++ExpectedElt;
5140    if (ExpectedElt == NumElts)
5141      ExpectedElt = 0;
5142
5143    if (M[i] < 0)
5144      continue; // ignore UNDEF indices
5145    if (ExpectedElt != static_cast<unsigned>(M[i]))
5146      return false;
5147  }
5148
5149  return true;
5150}
5151
5152// check if an EXT instruction can handle the shuffle mask when the
5153// vector sources of the shuffle are different.
5154static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
5155                      unsigned &Imm) {
5156  // Look for the first non-undef element.
5157  const int *FirstRealElt = std::find_if(M.begin(), M.end(),
5158      [](int Elt) {return Elt >= 0;});
5159
5160  // Benefit form APInt to handle overflow when calculating expected element.
5161  unsigned NumElts = VT.getVectorNumElements();
5162  unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
5163  APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
5164  // The following shuffle indices must be the successive elements after the
5165  // first real element.
5166  const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
5167      [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
5168  if (FirstWrongElt != M.end())
5169    return false;
5170
5171  // The index of an EXT is the first element if it is not UNDEF.
5172  // Watch out for the beginning UNDEFs. The EXT index should be the expected
5173  // value of the first element.  E.g.
5174  // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
5175  // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
5176  // ExpectedElt is the last mask index plus 1.
5177  Imm = ExpectedElt.getZExtValue();
5178
5179  // There are two difference cases requiring to reverse input vectors.
5180  // For example, for vector <4 x i32> we have the following cases,
5181  // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
5182  // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
5183  // For both cases, we finally use mask <5, 6, 7, 0>, which requires
5184  // to reverse two input vectors.
5185  if (Imm < NumElts)
5186    ReverseEXT = true;
5187  else
5188    Imm -= NumElts;
5189
5190  return true;
5191}
5192
5193/// isREVMask - Check if a vector shuffle corresponds to a REV
5194/// instruction with the specified blocksize.  (The order of the elements
5195/// within each block of the vector is reversed.)
5196static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
5197  assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
5198         "Only possible block sizes for REV are: 16, 32, 64");
5199
5200  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5201  if (EltSz == 64)
5202    return false;
5203
5204  unsigned NumElts = VT.getVectorNumElements();
5205  unsigned BlockElts = M[0] + 1;
5206  // If the first shuffle index is UNDEF, be optimistic.
5207  if (M[0] < 0)
5208    BlockElts = BlockSize / EltSz;
5209
5210  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
5211    return false;
5212
5213  for (unsigned i = 0; i < NumElts; ++i) {
5214    if (M[i] < 0)
5215      continue; // ignore UNDEF indices
5216    if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
5217      return false;
5218  }
5219
5220  return true;
5221}
5222
5223static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5224  unsigned NumElts = VT.getVectorNumElements();
5225  WhichResult = (M[0] == 0 ? 0 : 1);
5226  unsigned Idx = WhichResult * NumElts / 2;
5227  for (unsigned i = 0; i != NumElts; i += 2) {
5228    if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
5229        (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
5230      return false;
5231    Idx += 1;
5232  }
5233
5234  return true;
5235}
5236
5237static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5238  unsigned NumElts = VT.getVectorNumElements();
5239  WhichResult = (M[0] == 0 ? 0 : 1);
5240  for (unsigned i = 0; i != NumElts; ++i) {
5241    if (M[i] < 0)
5242      continue; // ignore UNDEF indices
5243    if ((unsigned)M[i] != 2 * i + WhichResult)
5244      return false;
5245  }
5246
5247  return true;
5248}
5249
5250static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5251  unsigned NumElts = VT.getVectorNumElements();
5252  WhichResult = (M[0] == 0 ? 0 : 1);
5253  for (unsigned i = 0; i < NumElts; i += 2) {
5254    if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
5255        (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
5256      return false;
5257  }
5258  return true;
5259}
5260
5261/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
5262/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5263/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
5264static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5265  unsigned NumElts = VT.getVectorNumElements();
5266  WhichResult = (M[0] == 0 ? 0 : 1);
5267  unsigned Idx = WhichResult * NumElts / 2;
5268  for (unsigned i = 0; i != NumElts; i += 2) {
5269    if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
5270        (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
5271      return false;
5272    Idx += 1;
5273  }
5274
5275  return true;
5276}
5277
5278/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
5279/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5280/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
5281static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5282  unsigned Half = VT.getVectorNumElements() / 2;
5283  WhichResult = (M[0] == 0 ? 0 : 1);
5284  for (unsigned j = 0; j != 2; ++j) {
5285    unsigned Idx = WhichResult;
5286    for (unsigned i = 0; i != Half; ++i) {
5287      int MIdx = M[i + j * Half];
5288      if (MIdx >= 0 && (unsigned)MIdx != Idx)
5289        return false;
5290      Idx += 2;
5291    }
5292  }
5293
5294  return true;
5295}
5296
5297/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
5298/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5299/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
5300static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5301  unsigned NumElts = VT.getVectorNumElements();
5302  WhichResult = (M[0] == 0 ? 0 : 1);
5303  for (unsigned i = 0; i < NumElts; i += 2) {
5304    if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
5305        (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
5306      return false;
5307  }
5308  return true;
5309}
5310
5311static bool isINSMask(ArrayRef<int> M, int NumInputElements,
5312                      bool &DstIsLeft, int &Anomaly) {
5313  if (M.size() != static_cast<size_t>(NumInputElements))
5314    return false;
5315
5316  int NumLHSMatch = 0, NumRHSMatch = 0;
5317  int LastLHSMismatch = -1, LastRHSMismatch = -1;
5318
5319  for (int i = 0; i < NumInputElements; ++i) {
5320    if (M[i] == -1) {
5321      ++NumLHSMatch;
5322      ++NumRHSMatch;
5323      continue;
5324    }
5325
5326    if (M[i] == i)
5327      ++NumLHSMatch;
5328    else
5329      LastLHSMismatch = i;
5330
5331    if (M[i] == i + NumInputElements)
5332      ++NumRHSMatch;
5333    else
5334      LastRHSMismatch = i;
5335  }
5336
5337  if (NumLHSMatch == NumInputElements - 1) {
5338    DstIsLeft = true;
5339    Anomaly = LastLHSMismatch;
5340    return true;
5341  } else if (NumRHSMatch == NumInputElements - 1) {
5342    DstIsLeft = false;
5343    Anomaly = LastRHSMismatch;
5344    return true;
5345  }
5346
5347  return false;
5348}
5349
5350static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
5351  if (VT.getSizeInBits() != 128)
5352    return false;
5353
5354  unsigned NumElts = VT.getVectorNumElements();
5355
5356  for (int I = 0, E = NumElts / 2; I != E; I++) {
5357    if (Mask[I] != I)
5358      return false;
5359  }
5360
5361  int Offset = NumElts / 2;
5362  for (int I = NumElts / 2, E = NumElts; I != E; I++) {
5363    if (Mask[I] != I + SplitLHS * Offset)
5364      return false;
5365  }
5366
5367  return true;
5368}
5369
5370static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
5371  SDLoc DL(Op);
5372  EVT VT = Op.getValueType();
5373  SDValue V0 = Op.getOperand(0);
5374  SDValue V1 = Op.getOperand(1);
5375  ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
5376
5377  if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
5378      VT.getVectorElementType() != V1.getValueType().getVectorElementType())
5379    return SDValue();
5380
5381  bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
5382
5383  if (!isConcatMask(Mask, VT, SplitV0))
5384    return SDValue();
5385
5386  EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
5387                                VT.getVectorNumElements() / 2);
5388  if (SplitV0) {
5389    V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
5390                     DAG.getConstant(0, DL, MVT::i64));
5391  }
5392  if (V1.getValueType().getSizeInBits() == 128) {
5393    V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
5394                     DAG.getConstant(0, DL, MVT::i64));
5395  }
5396  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
5397}
5398
5399/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5400/// the specified operations to build the shuffle.
5401static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5402                                      SDValue RHS, SelectionDAG &DAG,
5403                                      const SDLoc &dl) {
5404  unsigned OpNum = (PFEntry >> 26) & 0x0F;
5405  unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
5406  unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
5407
5408  enum {
5409    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5410    OP_VREV,
5411    OP_VDUP0,
5412    OP_VDUP1,
5413    OP_VDUP2,
5414    OP_VDUP3,
5415    OP_VEXT1,
5416    OP_VEXT2,
5417    OP_VEXT3,
5418    OP_VUZPL, // VUZP, left result
5419    OP_VUZPR, // VUZP, right result
5420    OP_VZIPL, // VZIP, left result
5421    OP_VZIPR, // VZIP, right result
5422    OP_VTRNL, // VTRN, left result
5423    OP_VTRNR  // VTRN, right result
5424  };
5425
5426  if (OpNum == OP_COPY) {
5427    if (LHSID == (1 * 9 + 2) * 9 + 3)
5428      return LHS;
5429    assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
5430    return RHS;
5431  }
5432
5433  SDValue OpLHS, OpRHS;
5434  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5435  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5436  EVT VT = OpLHS.getValueType();
5437
5438  switch (OpNum) {
5439  default:
5440    llvm_unreachable("Unknown shuffle opcode!");
5441  case OP_VREV:
5442    // VREV divides the vector in half and swaps within the half.
5443    if (VT.getVectorElementType() == MVT::i32 ||
5444        VT.getVectorElementType() == MVT::f32)
5445      return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
5446    // vrev <4 x i16> -> REV32
5447    if (VT.getVectorElementType() == MVT::i16 ||
5448        VT.getVectorElementType() == MVT::f16)
5449      return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
5450    // vrev <4 x i8> -> REV16
5451    assert(VT.getVectorElementType() == MVT::i8);
5452    return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
5453  case OP_VDUP0:
5454  case OP_VDUP1:
5455  case OP_VDUP2:
5456  case OP_VDUP3: {
5457    EVT EltTy = VT.getVectorElementType();
5458    unsigned Opcode;
5459    if (EltTy == MVT::i8)
5460      Opcode = AArch64ISD::DUPLANE8;
5461    else if (EltTy == MVT::i16 || EltTy == MVT::f16)
5462      Opcode = AArch64ISD::DUPLANE16;
5463    else if (EltTy == MVT::i32 || EltTy == MVT::f32)
5464      Opcode = AArch64ISD::DUPLANE32;
5465    else if (EltTy == MVT::i64 || EltTy == MVT::f64)
5466      Opcode = AArch64ISD::DUPLANE64;
5467    else
5468      llvm_unreachable("Invalid vector element type?");
5469
5470    if (VT.getSizeInBits() == 64)
5471      OpLHS = WidenVector(OpLHS, DAG);
5472    SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
5473    return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
5474  }
5475  case OP_VEXT1:
5476  case OP_VEXT2:
5477  case OP_VEXT3: {
5478    unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
5479    return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
5480                       DAG.getConstant(Imm, dl, MVT::i32));
5481  }
5482  case OP_VUZPL:
5483    return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
5484                       OpRHS);
5485  case OP_VUZPR:
5486    return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
5487                       OpRHS);
5488  case OP_VZIPL:
5489    return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
5490                       OpRHS);
5491  case OP_VZIPR:
5492    return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
5493                       OpRHS);
5494  case OP_VTRNL:
5495    return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
5496                       OpRHS);
5497  case OP_VTRNR:
5498    return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
5499                       OpRHS);
5500  }
5501}
5502
5503static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
5504                           SelectionDAG &DAG) {
5505  // Check to see if we can use the TBL instruction.
5506  SDValue V1 = Op.getOperand(0);
5507  SDValue V2 = Op.getOperand(1);
5508  SDLoc DL(Op);
5509
5510  EVT EltVT = Op.getValueType().getVectorElementType();
5511  unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
5512
5513  SmallVector<SDValue, 8> TBLMask;
5514  for (int Val : ShuffleMask) {
5515    for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5516      unsigned Offset = Byte + Val * BytesPerElt;
5517      TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
5518    }
5519  }
5520
5521  MVT IndexVT = MVT::v8i8;
5522  unsigned IndexLen = 8;
5523  if (Op.getValueType().getSizeInBits() == 128) {
5524    IndexVT = MVT::v16i8;
5525    IndexLen = 16;
5526  }
5527
5528  SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
5529  SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
5530
5531  SDValue Shuffle;
5532  if (V2.getNode()->isUndef()) {
5533    if (IndexLen == 8)
5534      V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
5535    Shuffle = DAG.getNode(
5536        ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5537        DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
5538        DAG.getBuildVector(IndexVT, DL,
5539                           makeArrayRef(TBLMask.data(), IndexLen)));
5540  } else {
5541    if (IndexLen == 8) {
5542      V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
5543      Shuffle = DAG.getNode(
5544          ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5545          DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
5546          DAG.getBuildVector(IndexVT, DL,
5547                             makeArrayRef(TBLMask.data(), IndexLen)));
5548    } else {
5549      // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
5550      // cannot currently represent the register constraints on the input
5551      // table registers.
5552      //  Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
5553      //                   DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
5554      //                   IndexLen));
5555      Shuffle = DAG.getNode(
5556          ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5557          DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
5558          V2Cst, DAG.getBuildVector(IndexVT, DL,
5559                                    makeArrayRef(TBLMask.data(), IndexLen)));
5560    }
5561  }
5562  return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
5563}
5564
5565static unsigned getDUPLANEOp(EVT EltType) {
5566  if (EltType == MVT::i8)
5567    return AArch64ISD::DUPLANE8;
5568  if (EltType == MVT::i16 || EltType == MVT::f16)
5569    return AArch64ISD::DUPLANE16;
5570  if (EltType == MVT::i32 || EltType == MVT::f32)
5571    return AArch64ISD::DUPLANE32;
5572  if (EltType == MVT::i64 || EltType == MVT::f64)
5573    return AArch64ISD::DUPLANE64;
5574
5575  llvm_unreachable("Invalid vector element type?");
5576}
5577
5578SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5579                                                   SelectionDAG &DAG) const {
5580  SDLoc dl(Op);
5581  EVT VT = Op.getValueType();
5582
5583  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5584
5585  // Convert shuffles that are directly supported on NEON to target-specific
5586  // DAG nodes, instead of keeping them as shuffles and matching them again
5587  // during code selection.  This is more efficient and avoids the possibility
5588  // of inconsistencies between legalization and selection.
5589  ArrayRef<int> ShuffleMask = SVN->getMask();
5590
5591  SDValue V1 = Op.getOperand(0);
5592  SDValue V2 = Op.getOperand(1);
5593
5594  if (SVN->isSplat()) {
5595    int Lane = SVN->getSplatIndex();
5596    // If this is undef splat, generate it via "just" vdup, if possible.
5597    if (Lane == -1)
5598      Lane = 0;
5599
5600    if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
5601      return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
5602                         V1.getOperand(0));
5603    // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
5604    // constant. If so, we can just reference the lane's definition directly.
5605    if (V1.getOpcode() == ISD::BUILD_VECTOR &&
5606        !isa<ConstantSDNode>(V1.getOperand(Lane)))
5607      return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
5608
5609    // Otherwise, duplicate from the lane of the input vector.
5610    unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
5611
5612    // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
5613    // to make a vector of the same size as this SHUFFLE. We can ignore the
5614    // extract entirely, and canonicalise the concat using WidenVector.
5615    if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5616      Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5617      V1 = V1.getOperand(0);
5618    } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5619      unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5620      Lane -= Idx * VT.getVectorNumElements() / 2;
5621      V1 = WidenVector(V1.getOperand(Idx), DAG);
5622    } else if (VT.getSizeInBits() == 64)
5623      V1 = WidenVector(V1, DAG);
5624
5625    return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
5626  }
5627
5628  if (isREVMask(ShuffleMask, VT, 64))
5629    return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5630  if (isREVMask(ShuffleMask, VT, 32))
5631    return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5632  if (isREVMask(ShuffleMask, VT, 16))
5633    return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5634
5635  bool ReverseEXT = false;
5636  unsigned Imm;
5637  if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5638    if (ReverseEXT)
5639      std::swap(V1, V2);
5640    Imm *= getExtFactor(V1);
5641    return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
5642                       DAG.getConstant(Imm, dl, MVT::i32));
5643  } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5644    Imm *= getExtFactor(V1);
5645    return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
5646                       DAG.getConstant(Imm, dl, MVT::i32));
5647  }
5648
5649  unsigned WhichResult;
5650  if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5651    unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5652    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5653  }
5654  if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5655    unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5656    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5657  }
5658  if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5659    unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5660    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5661  }
5662
5663  if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5664    unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5665    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5666  }
5667  if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5668    unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5669    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5670  }
5671  if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5672    unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5673    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5674  }
5675
5676  if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
5677    return Concat;
5678
5679  bool DstIsLeft;
5680  int Anomaly;
5681  int NumInputElements = V1.getValueType().getVectorNumElements();
5682  if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5683    SDValue DstVec = DstIsLeft ? V1 : V2;
5684    SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
5685
5686    SDValue SrcVec = V1;
5687    int SrcLane = ShuffleMask[Anomaly];
5688    if (SrcLane >= NumInputElements) {
5689      SrcVec = V2;
5690      SrcLane -= VT.getVectorNumElements();
5691    }
5692    SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
5693
5694    EVT ScalarVT = VT.getVectorElementType();
5695
5696    if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
5697      ScalarVT = MVT::i32;
5698
5699    return DAG.getNode(
5700        ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5701        DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5702        DstLaneV);
5703  }
5704
5705  // If the shuffle is not directly supported and it has 4 elements, use
5706  // the PerfectShuffle-generated table to synthesize it from other shuffles.
5707  unsigned NumElts = VT.getVectorNumElements();
5708  if (NumElts == 4) {
5709    unsigned PFIndexes[4];
5710    for (unsigned i = 0; i != 4; ++i) {
5711      if (ShuffleMask[i] < 0)
5712        PFIndexes[i] = 8;
5713      else
5714        PFIndexes[i] = ShuffleMask[i];
5715    }
5716
5717    // Compute the index in the perfect shuffle table.
5718    unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5719                            PFIndexes[2] * 9 + PFIndexes[3];
5720    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5721    unsigned Cost = (PFEntry >> 30);
5722
5723    if (Cost <= 4)
5724      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5725  }
5726
5727  return GenerateTBL(Op, ShuffleMask, DAG);
5728}
5729
5730static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5731                               APInt &UndefBits) {
5732  EVT VT = BVN->getValueType(0);
5733  APInt SplatBits, SplatUndef;
5734  unsigned SplatBitSize;
5735  bool HasAnyUndefs;
5736  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5737    unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5738
5739    for (unsigned i = 0; i < NumSplats; ++i) {
5740      CnstBits <<= SplatBitSize;
5741      UndefBits <<= SplatBitSize;
5742      CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5743      UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5744    }
5745
5746    return true;
5747  }
5748
5749  return false;
5750}
5751
5752SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5753                                              SelectionDAG &DAG) const {
5754  BuildVectorSDNode *BVN =
5755      dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5756  SDValue LHS = Op.getOperand(0);
5757  SDLoc dl(Op);
5758  EVT VT = Op.getValueType();
5759
5760  if (!BVN)
5761    return Op;
5762
5763  APInt CnstBits(VT.getSizeInBits(), 0);
5764  APInt UndefBits(VT.getSizeInBits(), 0);
5765  if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5766    // We only have BIC vector immediate instruction, which is and-not.
5767    CnstBits = ~CnstBits;
5768
5769    // We make use of a little bit of goto ickiness in order to avoid having to
5770    // duplicate the immediate matching logic for the undef toggled case.
5771    bool SecondTry = false;
5772  AttemptModImm:
5773
5774    if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5775      CnstBits = CnstBits.zextOrTrunc(64);
5776      uint64_t CnstVal = CnstBits.getZExtValue();
5777
5778      if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5779        CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5780        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5781        SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5782                                  DAG.getConstant(CnstVal, dl, MVT::i32),
5783                                  DAG.getConstant(0, dl, MVT::i32));
5784        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5785      }
5786
5787      if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5788        CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5789        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5790        SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5791                                  DAG.getConstant(CnstVal, dl, MVT::i32),
5792                                  DAG.getConstant(8, dl, MVT::i32));
5793        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5794      }
5795
5796      if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5797        CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5798        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5799        SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5800                                  DAG.getConstant(CnstVal, dl, MVT::i32),
5801                                  DAG.getConstant(16, dl, MVT::i32));
5802        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5803      }
5804
5805      if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5806        CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5807        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5808        SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5809                                  DAG.getConstant(CnstVal, dl, MVT::i32),
5810                                  DAG.getConstant(24, dl, MVT::i32));
5811        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5812      }
5813
5814      if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5815        CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5816        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5817        SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5818                                  DAG.getConstant(CnstVal, dl, MVT::i32),
5819                                  DAG.getConstant(0, dl, MVT::i32));
5820        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5821      }
5822
5823      if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5824        CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5825        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5826        SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5827                                  DAG.getConstant(CnstVal, dl, MVT::i32),
5828                                  DAG.getConstant(8, dl, MVT::i32));
5829        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5830      }
5831    }
5832
5833    if (SecondTry)
5834      goto FailedModImm;
5835    SecondTry = true;
5836    CnstBits = ~UndefBits;
5837    goto AttemptModImm;
5838  }
5839
5840// We can always fall back to a non-immediate AND.
5841FailedModImm:
5842  return Op;
5843}
5844
5845// Specialized code to quickly find if PotentialBVec is a BuildVector that
5846// consists of only the same constant int value, returned in reference arg
5847// ConstVal
5848static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5849                                     uint64_t &ConstVal) {
5850  BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5851  if (!Bvec)
5852    return false;
5853  ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5854  if (!FirstElt)
5855    return false;
5856  EVT VT = Bvec->getValueType(0);
5857  unsigned NumElts = VT.getVectorNumElements();
5858  for (unsigned i = 1; i < NumElts; ++i)
5859    if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5860      return false;
5861  ConstVal = FirstElt->getZExtValue();
5862  return true;
5863}
5864
5865static unsigned getIntrinsicID(const SDNode *N) {
5866  unsigned Opcode = N->getOpcode();
5867  switch (Opcode) {
5868  default:
5869    return Intrinsic::not_intrinsic;
5870  case ISD::INTRINSIC_WO_CHAIN: {
5871    unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5872    if (IID < Intrinsic::num_intrinsics)
5873      return IID;
5874    return Intrinsic::not_intrinsic;
5875  }
5876  }
5877}
5878
5879// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5880// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5881// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5882// Also, logical shift right -> sri, with the same structure.
5883static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5884  EVT VT = N->getValueType(0);
5885
5886  if (!VT.isVector())
5887    return SDValue();
5888
5889  SDLoc DL(N);
5890
5891  // Is the first op an AND?
5892  const SDValue And = N->getOperand(0);
5893  if (And.getOpcode() != ISD::AND)
5894    return SDValue();
5895
5896  // Is the second op an shl or lshr?
5897  SDValue Shift = N->getOperand(1);
5898  // This will have been turned into: AArch64ISD::VSHL vector, #shift
5899  // or AArch64ISD::VLSHR vector, #shift
5900  unsigned ShiftOpc = Shift.getOpcode();
5901  if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5902    return SDValue();
5903  bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5904
5905  // Is the shift amount constant?
5906  ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5907  if (!C2node)
5908    return SDValue();
5909
5910  // Is the and mask vector all constant?
5911  uint64_t C1;
5912  if (!isAllConstantBuildVector(And.getOperand(1), C1))
5913    return SDValue();
5914
5915  // Is C1 == ~C2, taking into account how much one can shift elements of a
5916  // particular size?
5917  uint64_t C2 = C2node->getZExtValue();
5918  unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5919  if (C2 > ElemSizeInBits)
5920    return SDValue();
5921  unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5922  if ((C1 & ElemMask) != (~C2 & ElemMask))
5923    return SDValue();
5924
5925  SDValue X = And.getOperand(0);
5926  SDValue Y = Shift.getOperand(0);
5927
5928  unsigned Intrin =
5929      IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5930  SDValue ResultSLI =
5931      DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5932                  DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
5933                  Shift.getOperand(1));
5934
5935  DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5936  DEBUG(N->dump(&DAG));
5937  DEBUG(dbgs() << "into: \n");
5938  DEBUG(ResultSLI->dump(&DAG));
5939
5940  ++NumShiftInserts;
5941  return ResultSLI;
5942}
5943
5944SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5945                                             SelectionDAG &DAG) const {
5946  // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5947  if (EnableAArch64SlrGeneration) {
5948    if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
5949      return Res;
5950  }
5951
5952  BuildVectorSDNode *BVN =
5953      dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5954  SDValue LHS = Op.getOperand(1);
5955  SDLoc dl(Op);
5956  EVT VT = Op.getValueType();
5957
5958  // OR commutes, so try swapping the operands.
5959  if (!BVN) {
5960    LHS = Op.getOperand(0);
5961    BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5962  }
5963  if (!BVN)
5964    return Op;
5965
5966  APInt CnstBits(VT.getSizeInBits(), 0);
5967  APInt UndefBits(VT.getSizeInBits(), 0);
5968  if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5969    // We make use of a little bit of goto ickiness in order to avoid having to
5970    // duplicate the immediate matching logic for the undef toggled case.
5971    bool SecondTry = false;
5972  AttemptModImm:
5973
5974    if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5975      CnstBits = CnstBits.zextOrTrunc(64);
5976      uint64_t CnstVal = CnstBits.getZExtValue();
5977
5978      if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5979        CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5980        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5981        SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5982                                  DAG.getConstant(CnstVal, dl, MVT::i32),
5983                                  DAG.getConstant(0, dl, MVT::i32));
5984        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5985      }
5986
5987      if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5988        CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5989        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5990        SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5991                                  DAG.getConstant(CnstVal, dl, MVT::i32),
5992                                  DAG.getConstant(8, dl, MVT::i32));
5993        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5994      }
5995
5996      if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5997        CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5998        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5999        SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
6000                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6001                                  DAG.getConstant(16, dl, MVT::i32));
6002        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6003      }
6004
6005      if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6006        CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6007        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6008        SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
6009                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6010                                  DAG.getConstant(24, dl, MVT::i32));
6011        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6012      }
6013
6014      if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6015        CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6016        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6017        SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
6018                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6019                                  DAG.getConstant(0, dl, MVT::i32));
6020        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6021      }
6022
6023      if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6024        CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6025        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6026        SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
6027                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6028                                  DAG.getConstant(8, dl, MVT::i32));
6029        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6030      }
6031    }
6032
6033    if (SecondTry)
6034      goto FailedModImm;
6035    SecondTry = true;
6036    CnstBits = UndefBits;
6037    goto AttemptModImm;
6038  }
6039
6040// We can always fall back to a non-immediate OR.
6041FailedModImm:
6042  return Op;
6043}
6044
6045// Normalize the operands of BUILD_VECTOR. The value of constant operands will
6046// be truncated to fit element width.
6047static SDValue NormalizeBuildVector(SDValue Op,
6048                                    SelectionDAG &DAG) {
6049  assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
6050  SDLoc dl(Op);
6051  EVT VT = Op.getValueType();
6052  EVT EltTy= VT.getVectorElementType();
6053
6054  if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
6055    return Op;
6056
6057  SmallVector<SDValue, 16> Ops;
6058  for (SDValue Lane : Op->ops()) {
6059    if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
6060      APInt LowBits(EltTy.getSizeInBits(),
6061                    CstLane->getZExtValue());
6062      Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
6063    }
6064    Ops.push_back(Lane);
6065  }
6066  return DAG.getBuildVector(VT, dl, Ops);
6067}
6068
6069SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
6070                                                 SelectionDAG &DAG) const {
6071  SDLoc dl(Op);
6072  EVT VT = Op.getValueType();
6073  Op = NormalizeBuildVector(Op, DAG);
6074  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
6075
6076  APInt CnstBits(VT.getSizeInBits(), 0);
6077  APInt UndefBits(VT.getSizeInBits(), 0);
6078  if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
6079    // We make use of a little bit of goto ickiness in order to avoid having to
6080    // duplicate the immediate matching logic for the undef toggled case.
6081    bool SecondTry = false;
6082  AttemptModImm:
6083
6084    if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
6085      CnstBits = CnstBits.zextOrTrunc(64);
6086      uint64_t CnstVal = CnstBits.getZExtValue();
6087
6088      // Certain magic vector constants (used to express things like NOT
6089      // and NEG) are passed through unmodified.  This allows codegen patterns
6090      // for these operations to match.  Special-purpose patterns will lower
6091      // these immediates to MOVIs if it proves necessary.
6092      if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
6093        return Op;
6094
6095      // The many faces of MOVI...
6096      if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
6097        CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
6098        if (VT.getSizeInBits() == 128) {
6099          SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
6100                                    DAG.getConstant(CnstVal, dl, MVT::i32));
6101          return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6102        }
6103
6104        // Support the V64 version via subregister insertion.
6105        SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
6106                                  DAG.getConstant(CnstVal, dl, MVT::i32));
6107        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6108      }
6109
6110      if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
6111        CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
6112        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6113        SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6114                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6115                                  DAG.getConstant(0, dl, MVT::i32));
6116        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6117      }
6118
6119      if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
6120        CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
6121        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6122        SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6123                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6124                                  DAG.getConstant(8, dl, MVT::i32));
6125        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6126      }
6127
6128      if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
6129        CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
6130        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6131        SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6132                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6133                                  DAG.getConstant(16, dl, MVT::i32));
6134        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6135      }
6136
6137      if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6138        CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6139        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6140        SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6141                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6142                                  DAG.getConstant(24, dl, MVT::i32));
6143        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6144      }
6145
6146      if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6147        CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6148        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6149        SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6150                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6151                                  DAG.getConstant(0, dl, MVT::i32));
6152        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6153      }
6154
6155      if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6156        CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6157        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6158        SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6159                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6160                                  DAG.getConstant(8, dl, MVT::i32));
6161        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6162      }
6163
6164      if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
6165        CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
6166        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6167        SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
6168                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6169                                  DAG.getConstant(264, dl, MVT::i32));
6170        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6171      }
6172
6173      if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
6174        CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
6175        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6176        SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
6177                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6178                                  DAG.getConstant(272, dl, MVT::i32));
6179        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6180      }
6181
6182      if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
6183        CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
6184        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
6185        SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
6186                                  DAG.getConstant(CnstVal, dl, MVT::i32));
6187        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6188      }
6189
6190      // The few faces of FMOV...
6191      if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
6192        CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
6193        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
6194        SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
6195                                  DAG.getConstant(CnstVal, dl, MVT::i32));
6196        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6197      }
6198
6199      if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
6200          VT.getSizeInBits() == 128) {
6201        CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
6202        SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
6203                                  DAG.getConstant(CnstVal, dl, MVT::i32));
6204        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6205      }
6206
6207      // The many faces of MVNI...
6208      CnstVal = ~CnstVal;
6209      if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
6210        CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
6211        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6212        SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6213                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6214                                  DAG.getConstant(0, dl, MVT::i32));
6215        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6216      }
6217
6218      if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
6219        CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
6220        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6221        SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6222                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6223                                  DAG.getConstant(8, dl, MVT::i32));
6224        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6225      }
6226
6227      if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
6228        CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
6229        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6230        SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6231                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6232                                  DAG.getConstant(16, dl, MVT::i32));
6233        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6234      }
6235
6236      if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6237        CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6238        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6239        SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6240                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6241                                  DAG.getConstant(24, dl, MVT::i32));
6242        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6243      }
6244
6245      if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6246        CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6247        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6248        SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6249                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6250                                  DAG.getConstant(0, dl, MVT::i32));
6251        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6252      }
6253
6254      if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6255        CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6256        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6257        SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6258                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6259                                  DAG.getConstant(8, dl, MVT::i32));
6260        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6261      }
6262
6263      if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
6264        CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
6265        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6266        SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
6267                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6268                                  DAG.getConstant(264, dl, MVT::i32));
6269        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6270      }
6271
6272      if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
6273        CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
6274        MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6275        SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
6276                                  DAG.getConstant(CnstVal, dl, MVT::i32),
6277                                  DAG.getConstant(272, dl, MVT::i32));
6278        return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6279      }
6280    }
6281
6282    if (SecondTry)
6283      goto FailedModImm;
6284    SecondTry = true;
6285    CnstBits = UndefBits;
6286    goto AttemptModImm;
6287  }
6288FailedModImm:
6289
6290  // Scan through the operands to find some interesting properties we can
6291  // exploit:
6292  //   1) If only one value is used, we can use a DUP, or
6293  //   2) if only the low element is not undef, we can just insert that, or
6294  //   3) if only one constant value is used (w/ some non-constant lanes),
6295  //      we can splat the constant value into the whole vector then fill
6296  //      in the non-constant lanes.
6297  //   4) FIXME: If different constant values are used, but we can intelligently
6298  //             select the values we'll be overwriting for the non-constant
6299  //             lanes such that we can directly materialize the vector
6300  //             some other way (MOVI, e.g.), we can be sneaky.
6301  unsigned NumElts = VT.getVectorNumElements();
6302  bool isOnlyLowElement = true;
6303  bool usesOnlyOneValue = true;
6304  bool usesOnlyOneConstantValue = true;
6305  bool isConstant = true;
6306  unsigned NumConstantLanes = 0;
6307  SDValue Value;
6308  SDValue ConstantValue;
6309  for (unsigned i = 0; i < NumElts; ++i) {
6310    SDValue V = Op.getOperand(i);
6311    if (V.isUndef())
6312      continue;
6313    if (i > 0)
6314      isOnlyLowElement = false;
6315    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6316      isConstant = false;
6317
6318    if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
6319      ++NumConstantLanes;
6320      if (!ConstantValue.getNode())
6321        ConstantValue = V;
6322      else if (ConstantValue != V)
6323        usesOnlyOneConstantValue = false;
6324    }
6325
6326    if (!Value.getNode())
6327      Value = V;
6328    else if (V != Value)
6329      usesOnlyOneValue = false;
6330  }
6331
6332  if (!Value.getNode())
6333    return DAG.getUNDEF(VT);
6334
6335  if (isOnlyLowElement)
6336    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6337
6338  // Use DUP for non-constant splats.  For f32 constant splats, reduce to
6339  // i32 and try again.
6340  if (usesOnlyOneValue) {
6341    if (!isConstant) {
6342      if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6343          Value.getValueType() != VT)
6344        return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
6345
6346      // This is actually a DUPLANExx operation, which keeps everything vectory.
6347
6348      // DUPLANE works on 128-bit vectors, widen it if necessary.
6349      SDValue Lane = Value.getOperand(1);
6350      Value = Value.getOperand(0);
6351      if (Value.getValueType().getSizeInBits() == 64)
6352        Value = WidenVector(Value, DAG);
6353
6354      unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
6355      return DAG.getNode(Opcode, dl, VT, Value, Lane);
6356    }
6357
6358    if (VT.getVectorElementType().isFloatingPoint()) {
6359      SmallVector<SDValue, 8> Ops;
6360      EVT EltTy = VT.getVectorElementType();
6361      assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
6362              "Unsupported floating-point vector type");
6363      MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
6364      for (unsigned i = 0; i < NumElts; ++i)
6365        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
6366      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
6367      SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
6368      Val = LowerBUILD_VECTOR(Val, DAG);
6369      if (Val.getNode())
6370        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6371    }
6372  }
6373
6374  // If there was only one constant value used and for more than one lane,
6375  // start by splatting that value, then replace the non-constant lanes. This
6376  // is better than the default, which will perform a separate initialization
6377  // for each lane.
6378  if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
6379    SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
6380    // Now insert the non-constant lanes.
6381    for (unsigned i = 0; i < NumElts; ++i) {
6382      SDValue V = Op.getOperand(i);
6383      SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
6384      if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
6385        // Note that type legalization likely mucked about with the VT of the
6386        // source operand, so we may have to convert it here before inserting.
6387        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
6388      }
6389    }
6390    return Val;
6391  }
6392
6393  // If all elements are constants and the case above didn't get hit, fall back
6394  // to the default expansion, which will generate a load from the constant
6395  // pool.
6396  if (isConstant)
6397    return SDValue();
6398
6399  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6400  if (NumElts >= 4) {
6401    if (SDValue shuffle = ReconstructShuffle(Op, DAG))
6402      return shuffle;
6403  }
6404
6405  // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6406  // know the default expansion would otherwise fall back on something even
6407  // worse. For a vector with one or two non-undef values, that's
6408  // scalar_to_vector for the elements followed by a shuffle (provided the
6409  // shuffle is valid for the target) and materialization element by element
6410  // on the stack followed by a load for everything else.
6411  if (!isConstant && !usesOnlyOneValue) {
6412    SDValue Vec = DAG.getUNDEF(VT);
6413    SDValue Op0 = Op.getOperand(0);
6414    unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
6415    unsigned i = 0;
6416    // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
6417    // a) Avoid a RMW dependency on the full vector register, and
6418    // b) Allow the register coalescer to fold away the copy if the
6419    //    value is already in an S or D register.
6420    // Do not do this for UNDEF/LOAD nodes because we have better patterns
6421    // for those avoiding the SCALAR_TO_VECTOR/BUILD_VECTOR.
6422    if (!Op0.isUndef() && Op0.getOpcode() != ISD::LOAD &&
6423        (ElemSize == 32 || ElemSize == 64)) {
6424      unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
6425      MachineSDNode *N =
6426          DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
6427                             DAG.getTargetConstant(SubIdx, dl, MVT::i32));
6428      Vec = SDValue(N, 0);
6429      ++i;
6430    }
6431    for (; i < NumElts; ++i) {
6432      SDValue V = Op.getOperand(i);
6433      if (V.isUndef())
6434        continue;
6435      SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
6436      Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6437    }
6438    return Vec;
6439  }
6440
6441  // Just use the default expansion. We failed to find a better alternative.
6442  return SDValue();
6443}
6444
6445SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
6446                                                      SelectionDAG &DAG) const {
6447  assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
6448
6449  // Check for non-constant or out of range lane.
6450  EVT VT = Op.getOperand(0).getValueType();
6451  ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
6452  if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
6453    return SDValue();
6454
6455
6456  // Insertion/extraction are legal for V128 types.
6457  if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
6458      VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6459      VT == MVT::v8f16)
6460    return Op;
6461
6462  if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
6463      VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
6464    return SDValue();
6465
6466  // For V64 types, we perform insertion by expanding the value
6467  // to a V128 type and perform the insertion on that.
6468  SDLoc DL(Op);
6469  SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6470  EVT WideTy = WideVec.getValueType();
6471
6472  SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
6473                             Op.getOperand(1), Op.getOperand(2));
6474  // Re-narrow the resultant vector.
6475  return NarrowVector(Node, DAG);
6476}
6477
6478SDValue
6479AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6480                                               SelectionDAG &DAG) const {
6481  assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
6482
6483  // Check for non-constant or out of range lane.
6484  EVT VT = Op.getOperand(0).getValueType();
6485  ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6486  if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
6487    return SDValue();
6488
6489
6490  // Insertion/extraction are legal for V128 types.
6491  if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
6492      VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6493      VT == MVT::v8f16)
6494    return Op;
6495
6496  if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
6497      VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
6498    return SDValue();
6499
6500  // For V64 types, we perform extraction by expanding the value
6501  // to a V128 type and perform the extraction on that.
6502  SDLoc DL(Op);
6503  SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6504  EVT WideTy = WideVec.getValueType();
6505
6506  EVT ExtrTy = WideTy.getVectorElementType();
6507  if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
6508    ExtrTy = MVT::i32;
6509
6510  // For extractions, we just return the result directly.
6511  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
6512                     Op.getOperand(1));
6513}
6514
6515SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
6516                                                      SelectionDAG &DAG) const {
6517  EVT VT = Op.getOperand(0).getValueType();
6518  SDLoc dl(Op);
6519  // Just in case...
6520  if (!VT.isVector())
6521    return SDValue();
6522
6523  ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6524  if (!Cst)
6525    return SDValue();
6526  unsigned Val = Cst->getZExtValue();
6527
6528  unsigned Size = Op.getValueType().getSizeInBits();
6529
6530  // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
6531  if (Val == 0)
6532    return Op;
6533
6534  // If this is extracting the upper 64-bits of a 128-bit vector, we match
6535  // that directly.
6536  if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
6537    return Op;
6538
6539  return SDValue();
6540}
6541
6542bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6543                                               EVT VT) const {
6544  if (VT.getVectorNumElements() == 4 &&
6545      (VT.is128BitVector() || VT.is64BitVector())) {
6546    unsigned PFIndexes[4];
6547    for (unsigned i = 0; i != 4; ++i) {
6548      if (M[i] < 0)
6549        PFIndexes[i] = 8;
6550      else
6551        PFIndexes[i] = M[i];
6552    }
6553
6554    // Compute the index in the perfect shuffle table.
6555    unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6556                            PFIndexes[2] * 9 + PFIndexes[3];
6557    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6558    unsigned Cost = (PFEntry >> 30);
6559
6560    if (Cost <= 4)
6561      return true;
6562  }
6563
6564  bool DummyBool;
6565  int DummyInt;
6566  unsigned DummyUnsigned;
6567
6568  return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
6569          isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
6570          isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
6571          // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
6572          isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
6573          isZIPMask(M, VT, DummyUnsigned) ||
6574          isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
6575          isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
6576          isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
6577          isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
6578          isConcatMask(M, VT, VT.getSizeInBits() == 128));
6579}
6580
6581/// getVShiftImm - Check if this is a valid build_vector for the immediate
6582/// operand of a vector shift operation, where all the elements of the
6583/// build_vector must have the same constant integer value.
6584static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6585  // Ignore bit_converts.
6586  while (Op.getOpcode() == ISD::BITCAST)
6587    Op = Op.getOperand(0);
6588  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6589  APInt SplatBits, SplatUndef;
6590  unsigned SplatBitSize;
6591  bool HasAnyUndefs;
6592  if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6593                                    HasAnyUndefs, ElementBits) ||
6594      SplatBitSize > ElementBits)
6595    return false;
6596  Cnt = SplatBits.getSExtValue();
6597  return true;
6598}
6599
6600/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6601/// operand of a vector shift left operation.  That value must be in the range:
6602///   0 <= Value < ElementBits for a left shift; or
6603///   0 <= Value <= ElementBits for a long left shift.
6604static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6605  assert(VT.isVector() && "vector shift count is not a vector type");
6606  int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
6607  if (!getVShiftImm(Op, ElementBits, Cnt))
6608    return false;
6609  return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6610}
6611
6612/// isVShiftRImm - Check if this is a valid build_vector for the immediate
6613/// operand of a vector shift right operation. The value must be in the range:
6614///   1 <= Value <= ElementBits for a right shift; or
6615static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
6616  assert(VT.isVector() && "vector shift count is not a vector type");
6617  int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
6618  if (!getVShiftImm(Op, ElementBits, Cnt))
6619    return false;
6620  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6621}
6622
6623SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6624                                                      SelectionDAG &DAG) const {
6625  EVT VT = Op.getValueType();
6626  SDLoc DL(Op);
6627  int64_t Cnt;
6628
6629  if (!Op.getOperand(1).getValueType().isVector())
6630    return Op;
6631  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6632
6633  switch (Op.getOpcode()) {
6634  default:
6635    llvm_unreachable("unexpected shift opcode");
6636
6637  case ISD::SHL:
6638    if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
6639      return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
6640                         DAG.getConstant(Cnt, DL, MVT::i32));
6641    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6642                       DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
6643                                       MVT::i32),
6644                       Op.getOperand(0), Op.getOperand(1));
6645  case ISD::SRA:
6646  case ISD::SRL:
6647    // Right shift immediate
6648    if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
6649      unsigned Opc =
6650          (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
6651      return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
6652                         DAG.getConstant(Cnt, DL, MVT::i32));
6653    }
6654
6655    // Right shift register.  Note, there is not a shift right register
6656    // instruction, but the shift left register instruction takes a signed
6657    // value, where negative numbers specify a right shift.
6658    unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6659                                                : Intrinsic::aarch64_neon_ushl;
6660    // negate the shift amount
6661    SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6662    SDValue NegShiftLeft =
6663        DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6664                    DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
6665                    NegShift);
6666    return NegShiftLeft;
6667  }
6668
6669  return SDValue();
6670}
6671
6672static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6673                                    AArch64CC::CondCode CC, bool NoNans, EVT VT,
6674                                    const SDLoc &dl, SelectionDAG &DAG) {
6675  EVT SrcVT = LHS.getValueType();
6676  assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
6677         "function only supposed to emit natural comparisons");
6678
6679  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6680  APInt CnstBits(VT.getSizeInBits(), 0);
6681  APInt UndefBits(VT.getSizeInBits(), 0);
6682  bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6683  bool IsZero = IsCnst && (CnstBits == 0);
6684
6685  if (SrcVT.getVectorElementType().isFloatingPoint()) {
6686    switch (CC) {
6687    default:
6688      return SDValue();
6689    case AArch64CC::NE: {
6690      SDValue Fcmeq;
6691      if (IsZero)
6692        Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6693      else
6694        Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6695      return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6696    }
6697    case AArch64CC::EQ:
6698      if (IsZero)
6699        return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6700      return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6701    case AArch64CC::GE:
6702      if (IsZero)
6703        return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6704      return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6705    case AArch64CC::GT:
6706      if (IsZero)
6707        return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6708      return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6709    case AArch64CC::LS:
6710      if (IsZero)
6711        return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6712      return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6713    case AArch64CC::LT:
6714      if (!NoNans)
6715        return SDValue();
6716    // If we ignore NaNs then we can use to the MI implementation.
6717    // Fallthrough.
6718    case AArch64CC::MI:
6719      if (IsZero)
6720        return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6721      return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6722    }
6723  }
6724
6725  switch (CC) {
6726  default:
6727    return SDValue();
6728  case AArch64CC::NE: {
6729    SDValue Cmeq;
6730    if (IsZero)
6731      Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6732    else
6733      Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6734    return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6735  }
6736  case AArch64CC::EQ:
6737    if (IsZero)
6738      return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6739    return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6740  case AArch64CC::GE:
6741    if (IsZero)
6742      return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6743    return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6744  case AArch64CC::GT:
6745    if (IsZero)
6746      return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6747    return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6748  case AArch64CC::LE:
6749    if (IsZero)
6750      return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6751    return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6752  case AArch64CC::LS:
6753    return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6754  case AArch64CC::LO:
6755    return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6756  case AArch64CC::LT:
6757    if (IsZero)
6758      return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6759    return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6760  case AArch64CC::HI:
6761    return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6762  case AArch64CC::HS:
6763    return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6764  }
6765}
6766
6767SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6768                                           SelectionDAG &DAG) const {
6769  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6770  SDValue LHS = Op.getOperand(0);
6771  SDValue RHS = Op.getOperand(1);
6772  EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
6773  SDLoc dl(Op);
6774
6775  if (LHS.getValueType().getVectorElementType().isInteger()) {
6776    assert(LHS.getValueType() == RHS.getValueType());
6777    AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
6778    SDValue Cmp =
6779        EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
6780    return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6781  }
6782
6783  if (LHS.getValueType().getVectorElementType() == MVT::f16)
6784    return SDValue();
6785
6786  assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6787         LHS.getValueType().getVectorElementType() == MVT::f64);
6788
6789  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6790  // clean.  Some of them require two branches to implement.
6791  AArch64CC::CondCode CC1, CC2;
6792  bool ShouldInvert;
6793  changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6794
6795  bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6796  SDValue Cmp =
6797      EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
6798  if (!Cmp.getNode())
6799    return SDValue();
6800
6801  if (CC2 != AArch64CC::AL) {
6802    SDValue Cmp2 =
6803        EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
6804    if (!Cmp2.getNode())
6805      return SDValue();
6806
6807    Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
6808  }
6809
6810  Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6811
6812  if (ShouldInvert)
6813    return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6814
6815  return Cmp;
6816}
6817
6818/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6819/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
6820/// specified in the intrinsic calls.
6821bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6822                                               const CallInst &I,
6823                                               unsigned Intrinsic) const {
6824  auto &DL = I.getModule()->getDataLayout();
6825  switch (Intrinsic) {
6826  case Intrinsic::aarch64_neon_ld2:
6827  case Intrinsic::aarch64_neon_ld3:
6828  case Intrinsic::aarch64_neon_ld4:
6829  case Intrinsic::aarch64_neon_ld1x2:
6830  case Intrinsic::aarch64_neon_ld1x3:
6831  case Intrinsic::aarch64_neon_ld1x4:
6832  case Intrinsic::aarch64_neon_ld2lane:
6833  case Intrinsic::aarch64_neon_ld3lane:
6834  case Intrinsic::aarch64_neon_ld4lane:
6835  case Intrinsic::aarch64_neon_ld2r:
6836  case Intrinsic::aarch64_neon_ld3r:
6837  case Intrinsic::aarch64_neon_ld4r: {
6838    Info.opc = ISD::INTRINSIC_W_CHAIN;
6839    // Conservatively set memVT to the entire set of vectors loaded.
6840    uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
6841    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6842    Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6843    Info.offset = 0;
6844    Info.align = 0;
6845    Info.vol = false; // volatile loads with NEON intrinsics not supported
6846    Info.readMem = true;
6847    Info.writeMem = false;
6848    return true;
6849  }
6850  case Intrinsic::aarch64_neon_st2:
6851  case Intrinsic::aarch64_neon_st3:
6852  case Intrinsic::aarch64_neon_st4:
6853  case Intrinsic::aarch64_neon_st1x2:
6854  case Intrinsic::aarch64_neon_st1x3:
6855  case Intrinsic::aarch64_neon_st1x4:
6856  case Intrinsic::aarch64_neon_st2lane:
6857  case Intrinsic::aarch64_neon_st3lane:
6858  case Intrinsic::aarch64_neon_st4lane: {
6859    Info.opc = ISD::INTRINSIC_VOID;
6860    // Conservatively set memVT to the entire set of vectors stored.
6861    unsigned NumElts = 0;
6862    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6863      Type *ArgTy = I.getArgOperand(ArgI)->getType();
6864      if (!ArgTy->isVectorTy())
6865        break;
6866      NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
6867    }
6868    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6869    Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6870    Info.offset = 0;
6871    Info.align = 0;
6872    Info.vol = false; // volatile stores with NEON intrinsics not supported
6873    Info.readMem = false;
6874    Info.writeMem = true;
6875    return true;
6876  }
6877  case Intrinsic::aarch64_ldaxr:
6878  case Intrinsic::aarch64_ldxr: {
6879    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6880    Info.opc = ISD::INTRINSIC_W_CHAIN;
6881    Info.memVT = MVT::getVT(PtrTy->getElementType());
6882    Info.ptrVal = I.getArgOperand(0);
6883    Info.offset = 0;
6884    Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
6885    Info.vol = true;
6886    Info.readMem = true;
6887    Info.writeMem = false;
6888    return true;
6889  }
6890  case Intrinsic::aarch64_stlxr:
6891  case Intrinsic::aarch64_stxr: {
6892    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6893    Info.opc = ISD::INTRINSIC_W_CHAIN;
6894    Info.memVT = MVT::getVT(PtrTy->getElementType());
6895    Info.ptrVal = I.getArgOperand(1);
6896    Info.offset = 0;
6897    Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
6898    Info.vol = true;
6899    Info.readMem = false;
6900    Info.writeMem = true;
6901    return true;
6902  }
6903  case Intrinsic::aarch64_ldaxp:
6904  case Intrinsic::aarch64_ldxp: {
6905    Info.opc = ISD::INTRINSIC_W_CHAIN;
6906    Info.memVT = MVT::i128;
6907    Info.ptrVal = I.getArgOperand(0);
6908    Info.offset = 0;
6909    Info.align = 16;
6910    Info.vol = true;
6911    Info.readMem = true;
6912    Info.writeMem = false;
6913    return true;
6914  }
6915  case Intrinsic::aarch64_stlxp:
6916  case Intrinsic::aarch64_stxp: {
6917    Info.opc = ISD::INTRINSIC_W_CHAIN;
6918    Info.memVT = MVT::i128;
6919    Info.ptrVal = I.getArgOperand(2);
6920    Info.offset = 0;
6921    Info.align = 16;
6922    Info.vol = true;
6923    Info.readMem = false;
6924    Info.writeMem = true;
6925    return true;
6926  }
6927  default:
6928    break;
6929  }
6930
6931  return false;
6932}
6933
6934// Truncations from 64-bit GPR to 32-bit GPR is free.
6935bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6936  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6937    return false;
6938  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6939  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6940  return NumBits1 > NumBits2;
6941}
6942bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
6943  if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
6944    return false;
6945  unsigned NumBits1 = VT1.getSizeInBits();
6946  unsigned NumBits2 = VT2.getSizeInBits();
6947  return NumBits1 > NumBits2;
6948}
6949
6950/// Check if it is profitable to hoist instruction in then/else to if.
6951/// Not profitable if I and it's user can form a FMA instruction
6952/// because we prefer FMSUB/FMADD.
6953bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
6954  if (I->getOpcode() != Instruction::FMul)
6955    return true;
6956
6957  if (I->getNumUses() != 1)
6958    return true;
6959
6960  Instruction *User = I->user_back();
6961
6962  if (User &&
6963      !(User->getOpcode() == Instruction::FSub ||
6964        User->getOpcode() == Instruction::FAdd))
6965    return true;
6966
6967  const TargetOptions &Options = getTargetMachine().Options;
6968  const DataLayout &DL = I->getModule()->getDataLayout();
6969  EVT VT = getValueType(DL, User->getOperand(0)->getType());
6970
6971  return !(isFMAFasterThanFMulAndFAdd(VT) &&
6972           isOperationLegalOrCustom(ISD::FMA, VT) &&
6973           (Options.AllowFPOpFusion == FPOpFusion::Fast ||
6974            Options.UnsafeFPMath));
6975}
6976
6977// All 32-bit GPR operations implicitly zero the high-half of the corresponding
6978// 64-bit GPR.
6979bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6980  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6981    return false;
6982  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6983  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6984  return NumBits1 == 32 && NumBits2 == 64;
6985}
6986bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
6987  if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
6988    return false;
6989  unsigned NumBits1 = VT1.getSizeInBits();
6990  unsigned NumBits2 = VT2.getSizeInBits();
6991  return NumBits1 == 32 && NumBits2 == 64;
6992}
6993
6994bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6995  EVT VT1 = Val.getValueType();
6996  if (isZExtFree(VT1, VT2)) {
6997    return true;
6998  }
6999
7000  if (Val.getOpcode() != ISD::LOAD)
7001    return false;
7002
7003  // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
7004  return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
7005          VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
7006          VT1.getSizeInBits() <= 32);
7007}
7008
7009bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
7010  if (isa<FPExtInst>(Ext))
7011    return false;
7012
7013  // Vector types are next free.
7014  if (Ext->getType()->isVectorTy())
7015    return false;
7016
7017  for (const Use &U : Ext->uses()) {
7018    // The extension is free if we can fold it with a left shift in an
7019    // addressing mode or an arithmetic operation: add, sub, and cmp.
7020
7021    // Is there a shift?
7022    const Instruction *Instr = cast<Instruction>(U.getUser());
7023
7024    // Is this a constant shift?
7025    switch (Instr->getOpcode()) {
7026    case Instruction::Shl:
7027      if (!isa<ConstantInt>(Instr->getOperand(1)))
7028        return false;
7029      break;
7030    case Instruction::GetElementPtr: {
7031      gep_type_iterator GTI = gep_type_begin(Instr);
7032      auto &DL = Ext->getModule()->getDataLayout();
7033      std::advance(GTI, U.getOperandNo());
7034      Type *IdxTy = *GTI;
7035      // This extension will end up with a shift because of the scaling factor.
7036      // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
7037      // Get the shift amount based on the scaling factor:
7038      // log2(sizeof(IdxTy)) - log2(8).
7039      uint64_t ShiftAmt =
7040          countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3;
7041      // Is the constant foldable in the shift of the addressing mode?
7042      // I.e., shift amount is between 1 and 4 inclusive.
7043      if (ShiftAmt == 0 || ShiftAmt > 4)
7044        return false;
7045      break;
7046    }
7047    case Instruction::Trunc:
7048      // Check if this is a noop.
7049      // trunc(sext ty1 to ty2) to ty1.
7050      if (Instr->getType() == Ext->getOperand(0)->getType())
7051        continue;
7052    // FALL THROUGH.
7053    default:
7054      return false;
7055    }
7056
7057    // At this point we can use the bfm family, so this extension is free
7058    // for that use.
7059  }
7060  return true;
7061}
7062
7063bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
7064                                          unsigned &RequiredAligment) const {
7065  if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
7066    return false;
7067  // Cyclone supports unaligned accesses.
7068  RequiredAligment = 0;
7069  unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
7070  return NumBits == 32 || NumBits == 64;
7071}
7072
7073bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
7074                                          unsigned &RequiredAligment) const {
7075  if (!LoadedType.isSimple() ||
7076      (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
7077    return false;
7078  // Cyclone supports unaligned accesses.
7079  RequiredAligment = 0;
7080  unsigned NumBits = LoadedType.getSizeInBits();
7081  return NumBits == 32 || NumBits == 64;
7082}
7083
7084/// \brief Lower an interleaved load into a ldN intrinsic.
7085///
7086/// E.g. Lower an interleaved load (Factor = 2):
7087///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
7088///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
7089///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
7090///
7091///      Into:
7092///        %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
7093///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
7094///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
7095bool AArch64TargetLowering::lowerInterleavedLoad(
7096    LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
7097    ArrayRef<unsigned> Indices, unsigned Factor) const {
7098  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
7099         "Invalid interleave factor");
7100  assert(!Shuffles.empty() && "Empty shufflevector input");
7101  assert(Shuffles.size() == Indices.size() &&
7102         "Unmatched number of shufflevectors and indices");
7103
7104  const DataLayout &DL = LI->getModule()->getDataLayout();
7105
7106  VectorType *VecTy = Shuffles[0]->getType();
7107  unsigned VecSize = DL.getTypeSizeInBits(VecTy);
7108
7109  // Skip if we do not have NEON and skip illegal vector types.
7110  if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128))
7111    return false;
7112
7113  // A pointer vector can not be the return type of the ldN intrinsics. Need to
7114  // load integer vectors first and then convert to pointer vectors.
7115  Type *EltTy = VecTy->getVectorElementType();
7116  if (EltTy->isPointerTy())
7117    VecTy =
7118        VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
7119
7120  Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
7121  Type *Tys[2] = {VecTy, PtrTy};
7122  static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
7123                                            Intrinsic::aarch64_neon_ld3,
7124                                            Intrinsic::aarch64_neon_ld4};
7125  Function *LdNFunc =
7126      Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
7127
7128  IRBuilder<> Builder(LI);
7129  Value *Ptr = Builder.CreateBitCast(LI->getPointerOperand(), PtrTy);
7130
7131  CallInst *LdN = Builder.CreateCall(LdNFunc, Ptr, "ldN");
7132
7133  // Replace uses of each shufflevector with the corresponding vector loaded
7134  // by ldN.
7135  for (unsigned i = 0; i < Shuffles.size(); i++) {
7136    ShuffleVectorInst *SVI = Shuffles[i];
7137    unsigned Index = Indices[i];
7138
7139    Value *SubVec = Builder.CreateExtractValue(LdN, Index);
7140
7141    // Convert the integer vector to pointer vector if the element is pointer.
7142    if (EltTy->isPointerTy())
7143      SubVec = Builder.CreateIntToPtr(SubVec, SVI->getType());
7144
7145    SVI->replaceAllUsesWith(SubVec);
7146  }
7147
7148  return true;
7149}
7150
7151/// \brief Get a mask consisting of sequential integers starting from \p Start.
7152///
7153/// I.e. <Start, Start + 1, ..., Start + NumElts - 1>
7154static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start,
7155                                   unsigned NumElts) {
7156  SmallVector<Constant *, 16> Mask;
7157  for (unsigned i = 0; i < NumElts; i++)
7158    Mask.push_back(Builder.getInt32(Start + i));
7159
7160  return ConstantVector::get(Mask);
7161}
7162
7163/// \brief Lower an interleaved store into a stN intrinsic.
7164///
7165/// E.g. Lower an interleaved store (Factor = 3):
7166///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
7167///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
7168///        store <12 x i32> %i.vec, <12 x i32>* %ptr
7169///
7170///      Into:
7171///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
7172///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
7173///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
7174///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
7175///
7176/// Note that the new shufflevectors will be removed and we'll only generate one
7177/// st3 instruction in CodeGen.
7178bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
7179                                                  ShuffleVectorInst *SVI,
7180                                                  unsigned Factor) const {
7181  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
7182         "Invalid interleave factor");
7183
7184  VectorType *VecTy = SVI->getType();
7185  assert(VecTy->getVectorNumElements() % Factor == 0 &&
7186         "Invalid interleaved store");
7187
7188  unsigned NumSubElts = VecTy->getVectorNumElements() / Factor;
7189  Type *EltTy = VecTy->getVectorElementType();
7190  VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts);
7191
7192  const DataLayout &DL = SI->getModule()->getDataLayout();
7193  unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
7194
7195  // Skip if we do not have NEON and skip illegal vector types.
7196  if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128))
7197    return false;
7198
7199  Value *Op0 = SVI->getOperand(0);
7200  Value *Op1 = SVI->getOperand(1);
7201  IRBuilder<> Builder(SI);
7202
7203  // StN intrinsics don't support pointer vectors as arguments. Convert pointer
7204  // vectors to integer vectors.
7205  if (EltTy->isPointerTy()) {
7206    Type *IntTy = DL.getIntPtrType(EltTy);
7207    unsigned NumOpElts =
7208        dyn_cast<VectorType>(Op0->getType())->getVectorNumElements();
7209
7210    // Convert to the corresponding integer vector.
7211    Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
7212    Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
7213    Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
7214
7215    SubVecTy = VectorType::get(IntTy, NumSubElts);
7216  }
7217
7218  Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
7219  Type *Tys[2] = {SubVecTy, PtrTy};
7220  static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
7221                                             Intrinsic::aarch64_neon_st3,
7222                                             Intrinsic::aarch64_neon_st4};
7223  Function *StNFunc =
7224      Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
7225
7226  SmallVector<Value *, 5> Ops;
7227
7228  // Split the shufflevector operands into sub vectors for the new stN call.
7229  for (unsigned i = 0; i < Factor; i++)
7230    Ops.push_back(Builder.CreateShuffleVector(
7231        Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts)));
7232
7233  Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), PtrTy));
7234  Builder.CreateCall(StNFunc, Ops);
7235  return true;
7236}
7237
7238static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
7239                       unsigned AlignCheck) {
7240  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
7241          (DstAlign == 0 || DstAlign % AlignCheck == 0));
7242}
7243
7244EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
7245                                               unsigned SrcAlign, bool IsMemset,
7246                                               bool ZeroMemset,
7247                                               bool MemcpyStrSrc,
7248                                               MachineFunction &MF) const {
7249  // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
7250  // instruction to materialize the v2i64 zero and one store (with restrictive
7251  // addressing mode). Just do two i64 store of zero-registers.
7252  bool Fast;
7253  const Function *F = MF.getFunction();
7254  if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
7255      !F->hasFnAttribute(Attribute::NoImplicitFloat) &&
7256      (memOpAlign(SrcAlign, DstAlign, 16) ||
7257       (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
7258    return MVT::f128;
7259
7260  if (Size >= 8 &&
7261      (memOpAlign(SrcAlign, DstAlign, 8) ||
7262       (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast)))
7263    return MVT::i64;
7264
7265  if (Size >= 4 &&
7266      (memOpAlign(SrcAlign, DstAlign, 4) ||
7267       (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast)))
7268    return MVT::i32;
7269
7270  return MVT::Other;
7271}
7272
7273// 12-bit optionally shifted immediates are legal for adds.
7274bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
7275  // Avoid UB for INT64_MIN.
7276  if (Immed == std::numeric_limits<int64_t>::min())
7277    return false;
7278  // Same encoding for add/sub, just flip the sign.
7279  Immed = std::abs(Immed);
7280  return ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0));
7281}
7282
7283// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
7284// immediates is the same as for an add or a sub.
7285bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
7286  return isLegalAddImmediate(Immed);
7287}
7288
7289/// isLegalAddressingMode - Return true if the addressing mode represented
7290/// by AM is legal for this target, for a load/store of the specified type.
7291bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
7292                                                  const AddrMode &AM, Type *Ty,
7293                                                  unsigned AS) const {
7294  // AArch64 has five basic addressing modes:
7295  //  reg
7296  //  reg + 9-bit signed offset
7297  //  reg + SIZE_IN_BYTES * 12-bit unsigned offset
7298  //  reg1 + reg2
7299  //  reg + SIZE_IN_BYTES * reg
7300
7301  // No global is ever allowed as a base.
7302  if (AM.BaseGV)
7303    return false;
7304
7305  // No reg+reg+imm addressing.
7306  if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
7307    return false;
7308
7309  // check reg + imm case:
7310  // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
7311  uint64_t NumBytes = 0;
7312  if (Ty->isSized()) {
7313    uint64_t NumBits = DL.getTypeSizeInBits(Ty);
7314    NumBytes = NumBits / 8;
7315    if (!isPowerOf2_64(NumBits))
7316      NumBytes = 0;
7317  }
7318
7319  if (!AM.Scale) {
7320    int64_t Offset = AM.BaseOffs;
7321
7322    // 9-bit signed offset
7323    if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
7324      return true;
7325
7326    // 12-bit unsigned offset
7327    unsigned shift = Log2_64(NumBytes);
7328    if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
7329        // Must be a multiple of NumBytes (NumBytes is a power of 2)
7330        (Offset >> shift) << shift == Offset)
7331      return true;
7332    return false;
7333  }
7334
7335  // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
7336
7337  return !AM.Scale || AM.Scale == 1 ||
7338         (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes);
7339}
7340
7341int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
7342                                                const AddrMode &AM, Type *Ty,
7343                                                unsigned AS) const {
7344  // Scaling factors are not free at all.
7345  // Operands                     | Rt Latency
7346  // -------------------------------------------
7347  // Rt, [Xn, Xm]                 | 4
7348  // -------------------------------------------
7349  // Rt, [Xn, Xm, lsl #imm]       | Rn: 4 Rm: 5
7350  // Rt, [Xn, Wm, <extend> #imm]  |
7351  if (isLegalAddressingMode(DL, AM, Ty, AS))
7352    // Scale represents reg2 * scale, thus account for 1 if
7353    // it is not equal to 0 or 1.
7354    return AM.Scale != 0 && AM.Scale != 1;
7355  return -1;
7356}
7357
7358bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
7359  VT = VT.getScalarType();
7360
7361  if (!VT.isSimple())
7362    return false;
7363
7364  switch (VT.getSimpleVT().SimpleTy) {
7365  case MVT::f32:
7366  case MVT::f64:
7367    return true;
7368  default:
7369    break;
7370  }
7371
7372  return false;
7373}
7374
7375const MCPhysReg *
7376AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
7377  // LR is a callee-save register, but we must treat it as clobbered by any call
7378  // site. Hence we include LR in the scratch registers, which are in turn added
7379  // as implicit-defs for stackmaps and patchpoints.
7380  static const MCPhysReg ScratchRegs[] = {
7381    AArch64::X16, AArch64::X17, AArch64::LR, 0
7382  };
7383  return ScratchRegs;
7384}
7385
7386bool
7387AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
7388  EVT VT = N->getValueType(0);
7389    // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
7390    // it with shift to let it be lowered to UBFX.
7391  if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
7392      isa<ConstantSDNode>(N->getOperand(1))) {
7393    uint64_t TruncMask = N->getConstantOperandVal(1);
7394    if (isMask_64(TruncMask) &&
7395      N->getOperand(0).getOpcode() == ISD::SRL &&
7396      isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
7397      return false;
7398  }
7399  return true;
7400}
7401
7402bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
7403                                                              Type *Ty) const {
7404  assert(Ty->isIntegerTy());
7405
7406  unsigned BitSize = Ty->getPrimitiveSizeInBits();
7407  if (BitSize == 0)
7408    return false;
7409
7410  int64_t Val = Imm.getSExtValue();
7411  if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
7412    return true;
7413
7414  if ((int64_t)Val < 0)
7415    Val = ~Val;
7416  if (BitSize == 32)
7417    Val &= (1LL << 32) - 1;
7418
7419  unsigned LZ = countLeadingZeros((uint64_t)Val);
7420  unsigned Shift = (63 - LZ) / 16;
7421  // MOVZ is free so return true for one or fewer MOVK.
7422  return Shift < 3;
7423}
7424
7425/// Turn vector tests of the signbit in the form of:
7426///   xor (sra X, elt_size(X)-1), -1
7427/// into:
7428///   cmge X, X, #0
7429static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
7430                                         const AArch64Subtarget *Subtarget) {
7431  EVT VT = N->getValueType(0);
7432  if (!Subtarget->hasNEON() || !VT.isVector())
7433    return SDValue();
7434
7435  // There must be a shift right algebraic before the xor, and the xor must be a
7436  // 'not' operation.
7437  SDValue Shift = N->getOperand(0);
7438  SDValue Ones = N->getOperand(1);
7439  if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
7440      !ISD::isBuildVectorAllOnes(Ones.getNode()))
7441    return SDValue();
7442
7443  // The shift should be smearing the sign bit across each vector element.
7444  auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
7445  EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
7446  if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
7447    return SDValue();
7448
7449  return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
7450}
7451
7452// Generate SUBS and CSEL for integer abs.
7453static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
7454  EVT VT = N->getValueType(0);
7455
7456  SDValue N0 = N->getOperand(0);
7457  SDValue N1 = N->getOperand(1);
7458  SDLoc DL(N);
7459
7460  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
7461  // and change it to SUB and CSEL.
7462  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
7463      N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
7464      N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
7465    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
7466      if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
7467        SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
7468                                  N0.getOperand(0));
7469        // Generate SUBS & CSEL.
7470        SDValue Cmp =
7471            DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
7472                        N0.getOperand(0), DAG.getConstant(0, DL, VT));
7473        return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
7474                           DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
7475                           SDValue(Cmp.getNode(), 1));
7476      }
7477  return SDValue();
7478}
7479
7480static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
7481                                 TargetLowering::DAGCombinerInfo &DCI,
7482                                 const AArch64Subtarget *Subtarget) {
7483  if (DCI.isBeforeLegalizeOps())
7484    return SDValue();
7485
7486  if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
7487    return Cmp;
7488
7489  return performIntegerAbsCombine(N, DAG);
7490}
7491
7492SDValue
7493AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
7494                                     SelectionDAG &DAG,
7495                                     std::vector<SDNode *> *Created) const {
7496  AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
7497  if (isIntDivCheap(N->getValueType(0), Attr))
7498    return SDValue(N,0); // Lower SDIV as SDIV
7499
7500  // fold (sdiv X, pow2)
7501  EVT VT = N->getValueType(0);
7502  if ((VT != MVT::i32 && VT != MVT::i64) ||
7503      !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
7504    return SDValue();
7505
7506  SDLoc DL(N);
7507  SDValue N0 = N->getOperand(0);
7508  unsigned Lg2 = Divisor.countTrailingZeros();
7509  SDValue Zero = DAG.getConstant(0, DL, VT);
7510  SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
7511
7512  // Add (N0 < 0) ? Pow2 - 1 : 0;
7513  SDValue CCVal;
7514  SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
7515  SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
7516  SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
7517
7518  if (Created) {
7519    Created->push_back(Cmp.getNode());
7520    Created->push_back(Add.getNode());
7521    Created->push_back(CSel.getNode());
7522  }
7523
7524  // Divide by pow2.
7525  SDValue SRA =
7526      DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
7527
7528  // If we're dividing by a positive value, we're done.  Otherwise, we must
7529  // negate the result.
7530  if (Divisor.isNonNegative())
7531    return SRA;
7532
7533  if (Created)
7534    Created->push_back(SRA.getNode());
7535  return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
7536}
7537
7538static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
7539                                 TargetLowering::DAGCombinerInfo &DCI,
7540                                 const AArch64Subtarget *Subtarget) {
7541  if (DCI.isBeforeLegalizeOps())
7542    return SDValue();
7543
7544  // Multiplication of a power of two plus/minus one can be done more
7545  // cheaply as as shift+add/sub. For now, this is true unilaterally. If
7546  // future CPUs have a cheaper MADD instruction, this may need to be
7547  // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
7548  // 64-bit is 5 cycles, so this is always a win.
7549  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7550    const APInt &Value = C->getAPIntValue();
7551    EVT VT = N->getValueType(0);
7552    SDLoc DL(N);
7553    if (Value.isNonNegative()) {
7554      // (mul x, 2^N + 1) => (add (shl x, N), x)
7555      APInt VM1 = Value - 1;
7556      if (VM1.isPowerOf2()) {
7557        SDValue ShiftedVal =
7558            DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7559                        DAG.getConstant(VM1.logBase2(), DL, MVT::i64));
7560        return DAG.getNode(ISD::ADD, DL, VT, ShiftedVal,
7561                           N->getOperand(0));
7562      }
7563      // (mul x, 2^N - 1) => (sub (shl x, N), x)
7564      APInt VP1 = Value + 1;
7565      if (VP1.isPowerOf2()) {
7566        SDValue ShiftedVal =
7567            DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7568                        DAG.getConstant(VP1.logBase2(), DL, MVT::i64));
7569        return DAG.getNode(ISD::SUB, DL, VT, ShiftedVal,
7570                           N->getOperand(0));
7571      }
7572    } else {
7573      // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
7574      APInt VNP1 = -Value + 1;
7575      if (VNP1.isPowerOf2()) {
7576        SDValue ShiftedVal =
7577            DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7578                        DAG.getConstant(VNP1.logBase2(), DL, MVT::i64));
7579        return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0),
7580                           ShiftedVal);
7581      }
7582      // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
7583      APInt VNM1 = -Value - 1;
7584      if (VNM1.isPowerOf2()) {
7585        SDValue ShiftedVal =
7586            DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7587                        DAG.getConstant(VNM1.logBase2(), DL, MVT::i64));
7588        SDValue Add =
7589            DAG.getNode(ISD::ADD, DL, VT, ShiftedVal, N->getOperand(0));
7590        return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Add);
7591      }
7592    }
7593  }
7594  return SDValue();
7595}
7596
7597static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
7598                                                         SelectionDAG &DAG) {
7599  // Take advantage of vector comparisons producing 0 or -1 in each lane to
7600  // optimize away operation when it's from a constant.
7601  //
7602  // The general transformation is:
7603  //    UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
7604  //       AND(VECTOR_CMP(x,y), constant2)
7605  //    constant2 = UNARYOP(constant)
7606
7607  // Early exit if this isn't a vector operation, the operand of the
7608  // unary operation isn't a bitwise AND, or if the sizes of the operations
7609  // aren't the same.
7610  EVT VT = N->getValueType(0);
7611  if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
7612      N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
7613      VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
7614    return SDValue();
7615
7616  // Now check that the other operand of the AND is a constant. We could
7617  // make the transformation for non-constant splats as well, but it's unclear
7618  // that would be a benefit as it would not eliminate any operations, just
7619  // perform one more step in scalar code before moving to the vector unit.
7620  if (BuildVectorSDNode *BV =
7621          dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
7622    // Bail out if the vector isn't a constant.
7623    if (!BV->isConstant())
7624      return SDValue();
7625
7626    // Everything checks out. Build up the new and improved node.
7627    SDLoc DL(N);
7628    EVT IntVT = BV->getValueType(0);
7629    // Create a new constant of the appropriate type for the transformed
7630    // DAG.
7631    SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
7632    // The AND node needs bitcasts to/from an integer vector type around it.
7633    SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
7634    SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
7635                                 N->getOperand(0)->getOperand(0), MaskConst);
7636    SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
7637    return Res;
7638  }
7639
7640  return SDValue();
7641}
7642
7643static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
7644                                     const AArch64Subtarget *Subtarget) {
7645  // First try to optimize away the conversion when it's conditionally from
7646  // a constant. Vectors only.
7647  if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
7648    return Res;
7649
7650  EVT VT = N->getValueType(0);
7651  if (VT != MVT::f32 && VT != MVT::f64)
7652    return SDValue();
7653
7654  // Only optimize when the source and destination types have the same width.
7655  if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
7656    return SDValue();
7657
7658  // If the result of an integer load is only used by an integer-to-float
7659  // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
7660  // This eliminates an "integer-to-vector-move" UOP and improves throughput.
7661  SDValue N0 = N->getOperand(0);
7662  if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7663      // Do not change the width of a volatile load.
7664      !cast<LoadSDNode>(N0)->isVolatile()) {
7665    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7666    SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
7667                               LN0->getPointerInfo(), LN0->isVolatile(),
7668                               LN0->isNonTemporal(), LN0->isInvariant(),
7669                               LN0->getAlignment());
7670
7671    // Make sure successors of the original load stay after it by updating them
7672    // to use the new Chain.
7673    DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
7674
7675    unsigned Opcode =
7676        (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
7677    return DAG.getNode(Opcode, SDLoc(N), VT, Load);
7678  }
7679
7680  return SDValue();
7681}
7682
7683/// Fold a floating-point multiply by power of two into floating-point to
7684/// fixed-point conversion.
7685static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
7686                                     TargetLowering::DAGCombinerInfo &DCI,
7687                                     const AArch64Subtarget *Subtarget) {
7688  if (!Subtarget->hasNEON())
7689    return SDValue();
7690
7691  SDValue Op = N->getOperand(0);
7692  if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
7693      Op.getOpcode() != ISD::FMUL)
7694    return SDValue();
7695
7696  SDValue ConstVec = Op->getOperand(1);
7697  if (!isa<BuildVectorSDNode>(ConstVec))
7698    return SDValue();
7699
7700  MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
7701  uint32_t FloatBits = FloatTy.getSizeInBits();
7702  if (FloatBits != 32 && FloatBits != 64)
7703    return SDValue();
7704
7705  MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
7706  uint32_t IntBits = IntTy.getSizeInBits();
7707  if (IntBits != 16 && IntBits != 32 && IntBits != 64)
7708    return SDValue();
7709
7710  // Avoid conversions where iN is larger than the float (e.g., float -> i64).
7711  if (IntBits > FloatBits)
7712    return SDValue();
7713
7714  BitVector UndefElements;
7715  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
7716  int32_t Bits = IntBits == 64 ? 64 : 32;
7717  int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
7718  if (C == -1 || C == 0 || C > Bits)
7719    return SDValue();
7720
7721  MVT ResTy;
7722  unsigned NumLanes = Op.getValueType().getVectorNumElements();
7723  switch (NumLanes) {
7724  default:
7725    return SDValue();
7726  case 2:
7727    ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
7728    break;
7729  case 4:
7730    ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
7731    break;
7732  }
7733
7734  if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
7735    return SDValue();
7736
7737  assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) &&
7738         "Illegal vector type after legalization");
7739
7740  SDLoc DL(N);
7741  bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
7742  unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
7743                                      : Intrinsic::aarch64_neon_vcvtfp2fxu;
7744  SDValue FixConv =
7745      DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
7746                  DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
7747                  Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
7748  // We can handle smaller integers by generating an extra trunc.
7749  if (IntBits < FloatBits)
7750    FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
7751
7752  return FixConv;
7753}
7754
7755/// Fold a floating-point divide by power of two into fixed-point to
7756/// floating-point conversion.
7757static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
7758                                  const AArch64Subtarget *Subtarget) {
7759  if (!Subtarget->hasNEON())
7760    return SDValue();
7761
7762  SDValue Op = N->getOperand(0);
7763  unsigned Opc = Op->getOpcode();
7764  if (!Op.getValueType().isVector() ||
7765      (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
7766    return SDValue();
7767
7768  SDValue ConstVec = N->getOperand(1);
7769  if (!isa<BuildVectorSDNode>(ConstVec))
7770    return SDValue();
7771
7772  MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
7773  int32_t IntBits = IntTy.getSizeInBits();
7774  if (IntBits != 16 && IntBits != 32 && IntBits != 64)
7775    return SDValue();
7776
7777  MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
7778  int32_t FloatBits = FloatTy.getSizeInBits();
7779  if (FloatBits != 32 && FloatBits != 64)
7780    return SDValue();
7781
7782  // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
7783  if (IntBits > FloatBits)
7784    return SDValue();
7785
7786  BitVector UndefElements;
7787  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
7788  int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
7789  if (C == -1 || C == 0 || C > FloatBits)
7790    return SDValue();
7791
7792  MVT ResTy;
7793  unsigned NumLanes = Op.getValueType().getVectorNumElements();
7794  switch (NumLanes) {
7795  default:
7796    return SDValue();
7797  case 2:
7798    ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
7799    break;
7800  case 4:
7801    ResTy = MVT::v4i32;
7802    break;
7803  }
7804
7805  SDLoc DL(N);
7806  SDValue ConvInput = Op.getOperand(0);
7807  bool IsSigned = Opc == ISD::SINT_TO_FP;
7808  if (IntBits < FloatBits)
7809    ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
7810                            ResTy, ConvInput);
7811
7812  unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
7813                                      : Intrinsic::aarch64_neon_vcvtfxu2fp;
7814  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
7815                     DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
7816                     DAG.getConstant(C, DL, MVT::i32));
7817}
7818
7819/// An EXTR instruction is made up of two shifts, ORed together. This helper
7820/// searches for and classifies those shifts.
7821static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
7822                         bool &FromHi) {
7823  if (N.getOpcode() == ISD::SHL)
7824    FromHi = false;
7825  else if (N.getOpcode() == ISD::SRL)
7826    FromHi = true;
7827  else
7828    return false;
7829
7830  if (!isa<ConstantSDNode>(N.getOperand(1)))
7831    return false;
7832
7833  ShiftAmount = N->getConstantOperandVal(1);
7834  Src = N->getOperand(0);
7835  return true;
7836}
7837
7838/// EXTR instruction extracts a contiguous chunk of bits from two existing
7839/// registers viewed as a high/low pair. This function looks for the pattern:
7840/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
7841/// EXTR. Can't quite be done in TableGen because the two immediates aren't
7842/// independent.
7843static SDValue tryCombineToEXTR(SDNode *N,
7844                                TargetLowering::DAGCombinerInfo &DCI) {
7845  SelectionDAG &DAG = DCI.DAG;
7846  SDLoc DL(N);
7847  EVT VT = N->getValueType(0);
7848
7849  assert(N->getOpcode() == ISD::OR && "Unexpected root");
7850
7851  if (VT != MVT::i32 && VT != MVT::i64)
7852    return SDValue();
7853
7854  SDValue LHS;
7855  uint32_t ShiftLHS = 0;
7856  bool LHSFromHi = 0;
7857  if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
7858    return SDValue();
7859
7860  SDValue RHS;
7861  uint32_t ShiftRHS = 0;
7862  bool RHSFromHi = 0;
7863  if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
7864    return SDValue();
7865
7866  // If they're both trying to come from the high part of the register, they're
7867  // not really an EXTR.
7868  if (LHSFromHi == RHSFromHi)
7869    return SDValue();
7870
7871  if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
7872    return SDValue();
7873
7874  if (LHSFromHi) {
7875    std::swap(LHS, RHS);
7876    std::swap(ShiftLHS, ShiftRHS);
7877  }
7878
7879  return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
7880                     DAG.getConstant(ShiftRHS, DL, MVT::i64));
7881}
7882
7883static SDValue tryCombineToBSL(SDNode *N,
7884                                TargetLowering::DAGCombinerInfo &DCI) {
7885  EVT VT = N->getValueType(0);
7886  SelectionDAG &DAG = DCI.DAG;
7887  SDLoc DL(N);
7888
7889  if (!VT.isVector())
7890    return SDValue();
7891
7892  SDValue N0 = N->getOperand(0);
7893  if (N0.getOpcode() != ISD::AND)
7894    return SDValue();
7895
7896  SDValue N1 = N->getOperand(1);
7897  if (N1.getOpcode() != ISD::AND)
7898    return SDValue();
7899
7900  // We only have to look for constant vectors here since the general, variable
7901  // case can be handled in TableGen.
7902  unsigned Bits = VT.getVectorElementType().getSizeInBits();
7903  uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
7904  for (int i = 1; i >= 0; --i)
7905    for (int j = 1; j >= 0; --j) {
7906      BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
7907      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
7908      if (!BVN0 || !BVN1)
7909        continue;
7910
7911      bool FoundMatch = true;
7912      for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
7913        ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
7914        ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
7915        if (!CN0 || !CN1 ||
7916            CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
7917          FoundMatch = false;
7918          break;
7919        }
7920      }
7921
7922      if (FoundMatch)
7923        return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
7924                           N0->getOperand(1 - i), N1->getOperand(1 - j));
7925    }
7926
7927  return SDValue();
7928}
7929
7930static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
7931                                const AArch64Subtarget *Subtarget) {
7932  // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
7933  SelectionDAG &DAG = DCI.DAG;
7934  EVT VT = N->getValueType(0);
7935
7936  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7937    return SDValue();
7938
7939  if (SDValue Res = tryCombineToEXTR(N, DCI))
7940    return Res;
7941
7942  if (SDValue Res = tryCombineToBSL(N, DCI))
7943    return Res;
7944
7945  return SDValue();
7946}
7947
7948static SDValue performSRLCombine(SDNode *N,
7949                                 TargetLowering::DAGCombinerInfo &DCI) {
7950  SelectionDAG &DAG = DCI.DAG;
7951  EVT VT = N->getValueType(0);
7952  if (VT != MVT::i32 && VT != MVT::i64)
7953    return SDValue();
7954
7955  // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
7956  // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
7957  // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
7958  SDValue N0 = N->getOperand(0);
7959  if (N0.getOpcode() == ISD::BSWAP) {
7960    SDLoc DL(N);
7961    SDValue N1 = N->getOperand(1);
7962    SDValue N00 = N0.getOperand(0);
7963    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
7964      uint64_t ShiftAmt = C->getZExtValue();
7965      if (VT == MVT::i32 && ShiftAmt == 16 &&
7966          DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16)))
7967        return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
7968      if (VT == MVT::i64 && ShiftAmt == 32 &&
7969          DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32)))
7970        return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
7971    }
7972  }
7973  return SDValue();
7974}
7975
7976static SDValue performBitcastCombine(SDNode *N,
7977                                     TargetLowering::DAGCombinerInfo &DCI,
7978                                     SelectionDAG &DAG) {
7979  // Wait 'til after everything is legalized to try this. That way we have
7980  // legal vector types and such.
7981  if (DCI.isBeforeLegalizeOps())
7982    return SDValue();
7983
7984  // Remove extraneous bitcasts around an extract_subvector.
7985  // For example,
7986  //    (v4i16 (bitconvert
7987  //             (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
7988  //  becomes
7989  //    (extract_subvector ((v8i16 ...), (i64 4)))
7990
7991  // Only interested in 64-bit vectors as the ultimate result.
7992  EVT VT = N->getValueType(0);
7993  if (!VT.isVector())
7994    return SDValue();
7995  if (VT.getSimpleVT().getSizeInBits() != 64)
7996    return SDValue();
7997  // Is the operand an extract_subvector starting at the beginning or halfway
7998  // point of the vector? A low half may also come through as an
7999  // EXTRACT_SUBREG, so look for that, too.
8000  SDValue Op0 = N->getOperand(0);
8001  if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
8002      !(Op0->isMachineOpcode() &&
8003        Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
8004    return SDValue();
8005  uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
8006  if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
8007    if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
8008      return SDValue();
8009  } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
8010    if (idx != AArch64::dsub)
8011      return SDValue();
8012    // The dsub reference is equivalent to a lane zero subvector reference.
8013    idx = 0;
8014  }
8015  // Look through the bitcast of the input to the extract.
8016  if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
8017    return SDValue();
8018  SDValue Source = Op0->getOperand(0)->getOperand(0);
8019  // If the source type has twice the number of elements as our destination
8020  // type, we know this is an extract of the high or low half of the vector.
8021  EVT SVT = Source->getValueType(0);
8022  if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
8023    return SDValue();
8024
8025  DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
8026
8027  // Create the simplified form to just extract the low or high half of the
8028  // vector directly rather than bothering with the bitcasts.
8029  SDLoc dl(N);
8030  unsigned NumElements = VT.getVectorNumElements();
8031  if (idx) {
8032    SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
8033    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
8034  } else {
8035    SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
8036    return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
8037                                      Source, SubReg),
8038                   0);
8039  }
8040}
8041
8042static SDValue performConcatVectorsCombine(SDNode *N,
8043                                           TargetLowering::DAGCombinerInfo &DCI,
8044                                           SelectionDAG &DAG) {
8045  SDLoc dl(N);
8046  EVT VT = N->getValueType(0);
8047  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
8048
8049  // Optimize concat_vectors of truncated vectors, where the intermediate
8050  // type is illegal, to avoid said illegality,  e.g.,
8051  //   (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
8052  //                          (v2i16 (truncate (v2i64)))))
8053  // ->
8054  //   (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
8055  //                                    (v4i32 (bitcast (v2i64))),
8056  //                                    <0, 2, 4, 6>)))
8057  // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
8058  // on both input and result type, so we might generate worse code.
8059  // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
8060  if (N->getNumOperands() == 2 &&
8061      N0->getOpcode() == ISD::TRUNCATE &&
8062      N1->getOpcode() == ISD::TRUNCATE) {
8063    SDValue N00 = N0->getOperand(0);
8064    SDValue N10 = N1->getOperand(0);
8065    EVT N00VT = N00.getValueType();
8066
8067    if (N00VT == N10.getValueType() &&
8068        (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
8069        N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
8070      MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
8071      SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
8072      for (size_t i = 0; i < Mask.size(); ++i)
8073        Mask[i] = i * 2;
8074      return DAG.getNode(ISD::TRUNCATE, dl, VT,
8075                         DAG.getVectorShuffle(
8076                             MidVT, dl,
8077                             DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
8078                             DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
8079    }
8080  }
8081
8082  // Wait 'til after everything is legalized to try this. That way we have
8083  // legal vector types and such.
8084  if (DCI.isBeforeLegalizeOps())
8085    return SDValue();
8086
8087  // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
8088  // splat. The indexed instructions are going to be expecting a DUPLANE64, so
8089  // canonicalise to that.
8090  if (N0 == N1 && VT.getVectorNumElements() == 2) {
8091    assert(VT.getVectorElementType().getSizeInBits() == 64);
8092    return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
8093                       DAG.getConstant(0, dl, MVT::i64));
8094  }
8095
8096  // Canonicalise concat_vectors so that the right-hand vector has as few
8097  // bit-casts as possible before its real operation. The primary matching
8098  // destination for these operations will be the narrowing "2" instructions,
8099  // which depend on the operation being performed on this right-hand vector.
8100  // For example,
8101  //    (concat_vectors LHS,  (v1i64 (bitconvert (v4i16 RHS))))
8102  // becomes
8103  //    (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
8104
8105  if (N1->getOpcode() != ISD::BITCAST)
8106    return SDValue();
8107  SDValue RHS = N1->getOperand(0);
8108  MVT RHSTy = RHS.getValueType().getSimpleVT();
8109  // If the RHS is not a vector, this is not the pattern we're looking for.
8110  if (!RHSTy.isVector())
8111    return SDValue();
8112
8113  DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
8114
8115  MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
8116                                  RHSTy.getVectorNumElements() * 2);
8117  return DAG.getNode(ISD::BITCAST, dl, VT,
8118                     DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
8119                                 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
8120                                 RHS));
8121}
8122
8123static SDValue tryCombineFixedPointConvert(SDNode *N,
8124                                           TargetLowering::DAGCombinerInfo &DCI,
8125                                           SelectionDAG &DAG) {
8126  // Wait 'til after everything is legalized to try this. That way we have
8127  // legal vector types and such.
8128  if (DCI.isBeforeLegalizeOps())
8129    return SDValue();
8130  // Transform a scalar conversion of a value from a lane extract into a
8131  // lane extract of a vector conversion. E.g., from foo1 to foo2:
8132  // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
8133  // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
8134  //
8135  // The second form interacts better with instruction selection and the
8136  // register allocator to avoid cross-class register copies that aren't
8137  // coalescable due to a lane reference.
8138
8139  // Check the operand and see if it originates from a lane extract.
8140  SDValue Op1 = N->getOperand(1);
8141  if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
8142    // Yep, no additional predication needed. Perform the transform.
8143    SDValue IID = N->getOperand(0);
8144    SDValue Shift = N->getOperand(2);
8145    SDValue Vec = Op1.getOperand(0);
8146    SDValue Lane = Op1.getOperand(1);
8147    EVT ResTy = N->getValueType(0);
8148    EVT VecResTy;
8149    SDLoc DL(N);
8150
8151    // The vector width should be 128 bits by the time we get here, even
8152    // if it started as 64 bits (the extract_vector handling will have
8153    // done so).
8154    assert(Vec.getValueType().getSizeInBits() == 128 &&
8155           "unexpected vector size on extract_vector_elt!");
8156    if (Vec.getValueType() == MVT::v4i32)
8157      VecResTy = MVT::v4f32;
8158    else if (Vec.getValueType() == MVT::v2i64)
8159      VecResTy = MVT::v2f64;
8160    else
8161      llvm_unreachable("unexpected vector type!");
8162
8163    SDValue Convert =
8164        DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
8165    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
8166  }
8167  return SDValue();
8168}
8169
8170// AArch64 high-vector "long" operations are formed by performing the non-high
8171// version on an extract_subvector of each operand which gets the high half:
8172//
8173//  (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
8174//
8175// However, there are cases which don't have an extract_high explicitly, but
8176// have another operation that can be made compatible with one for free. For
8177// example:
8178//
8179//  (dupv64 scalar) --> (extract_high (dup128 scalar))
8180//
8181// This routine does the actual conversion of such DUPs, once outer routines
8182// have determined that everything else is in order.
8183// It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
8184// similarly here.
8185static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
8186  switch (N.getOpcode()) {
8187  case AArch64ISD::DUP:
8188  case AArch64ISD::DUPLANE8:
8189  case AArch64ISD::DUPLANE16:
8190  case AArch64ISD::DUPLANE32:
8191  case AArch64ISD::DUPLANE64:
8192  case AArch64ISD::MOVI:
8193  case AArch64ISD::MOVIshift:
8194  case AArch64ISD::MOVIedit:
8195  case AArch64ISD::MOVImsl:
8196  case AArch64ISD::MVNIshift:
8197  case AArch64ISD::MVNImsl:
8198    break;
8199  default:
8200    // FMOV could be supported, but isn't very useful, as it would only occur
8201    // if you passed a bitcast' floating point immediate to an eligible long
8202    // integer op (addl, smull, ...).
8203    return SDValue();
8204  }
8205
8206  MVT NarrowTy = N.getSimpleValueType();
8207  if (!NarrowTy.is64BitVector())
8208    return SDValue();
8209
8210  MVT ElementTy = NarrowTy.getVectorElementType();
8211  unsigned NumElems = NarrowTy.getVectorNumElements();
8212  MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
8213
8214  SDLoc dl(N);
8215  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
8216                     DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
8217                     DAG.getConstant(NumElems, dl, MVT::i64));
8218}
8219
8220static bool isEssentiallyExtractSubvector(SDValue N) {
8221  if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8222    return true;
8223
8224  return N.getOpcode() == ISD::BITCAST &&
8225         N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
8226}
8227
8228/// \brief Helper structure to keep track of ISD::SET_CC operands.
8229struct GenericSetCCInfo {
8230  const SDValue *Opnd0;
8231  const SDValue *Opnd1;
8232  ISD::CondCode CC;
8233};
8234
8235/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
8236struct AArch64SetCCInfo {
8237  const SDValue *Cmp;
8238  AArch64CC::CondCode CC;
8239};
8240
8241/// \brief Helper structure to keep track of SetCC information.
8242union SetCCInfo {
8243  GenericSetCCInfo Generic;
8244  AArch64SetCCInfo AArch64;
8245};
8246
8247/// \brief Helper structure to be able to read SetCC information.  If set to
8248/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
8249/// GenericSetCCInfo.
8250struct SetCCInfoAndKind {
8251  SetCCInfo Info;
8252  bool IsAArch64;
8253};
8254
8255/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
8256/// an
8257/// AArch64 lowered one.
8258/// \p SetCCInfo is filled accordingly.
8259/// \post SetCCInfo is meanginfull only when this function returns true.
8260/// \return True when Op is a kind of SET_CC operation.
8261static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
8262  // If this is a setcc, this is straight forward.
8263  if (Op.getOpcode() == ISD::SETCC) {
8264    SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
8265    SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
8266    SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8267    SetCCInfo.IsAArch64 = false;
8268    return true;
8269  }
8270  // Otherwise, check if this is a matching csel instruction.
8271  // In other words:
8272  // - csel 1, 0, cc
8273  // - csel 0, 1, !cc
8274  if (Op.getOpcode() != AArch64ISD::CSEL)
8275    return false;
8276  // Set the information about the operands.
8277  // TODO: we want the operands of the Cmp not the csel
8278  SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
8279  SetCCInfo.IsAArch64 = true;
8280  SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
8281      cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
8282
8283  // Check that the operands matches the constraints:
8284  // (1) Both operands must be constants.
8285  // (2) One must be 1 and the other must be 0.
8286  ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
8287  ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8288
8289  // Check (1).
8290  if (!TValue || !FValue)
8291    return false;
8292
8293  // Check (2).
8294  if (!TValue->isOne()) {
8295    // Update the comparison when we are interested in !cc.
8296    std::swap(TValue, FValue);
8297    SetCCInfo.Info.AArch64.CC =
8298        AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
8299  }
8300  return TValue->isOne() && FValue->isNullValue();
8301}
8302
8303// Returns true if Op is setcc or zext of setcc.
8304static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
8305  if (isSetCC(Op, Info))
8306    return true;
8307  return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
8308    isSetCC(Op->getOperand(0), Info));
8309}
8310
8311// The folding we want to perform is:
8312// (add x, [zext] (setcc cc ...) )
8313//   -->
8314// (csel x, (add x, 1), !cc ...)
8315//
8316// The latter will get matched to a CSINC instruction.
8317static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
8318  assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
8319  SDValue LHS = Op->getOperand(0);
8320  SDValue RHS = Op->getOperand(1);
8321  SetCCInfoAndKind InfoAndKind;
8322
8323  // If neither operand is a SET_CC, give up.
8324  if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
8325    std::swap(LHS, RHS);
8326    if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
8327      return SDValue();
8328  }
8329
8330  // FIXME: This could be generatized to work for FP comparisons.
8331  EVT CmpVT = InfoAndKind.IsAArch64
8332                  ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
8333                  : InfoAndKind.Info.Generic.Opnd0->getValueType();
8334  if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
8335    return SDValue();
8336
8337  SDValue CCVal;
8338  SDValue Cmp;
8339  SDLoc dl(Op);
8340  if (InfoAndKind.IsAArch64) {
8341    CCVal = DAG.getConstant(
8342        AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
8343        MVT::i32);
8344    Cmp = *InfoAndKind.Info.AArch64.Cmp;
8345  } else
8346    Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
8347                      *InfoAndKind.Info.Generic.Opnd1,
8348                      ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
8349                      CCVal, DAG, dl);
8350
8351  EVT VT = Op->getValueType(0);
8352  LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
8353  return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
8354}
8355
8356// The basic add/sub long vector instructions have variants with "2" on the end
8357// which act on the high-half of their inputs. They are normally matched by
8358// patterns like:
8359//
8360// (add (zeroext (extract_high LHS)),
8361//      (zeroext (extract_high RHS)))
8362// -> uaddl2 vD, vN, vM
8363//
8364// However, if one of the extracts is something like a duplicate, this
8365// instruction can still be used profitably. This function puts the DAG into a
8366// more appropriate form for those patterns to trigger.
8367static SDValue performAddSubLongCombine(SDNode *N,
8368                                        TargetLowering::DAGCombinerInfo &DCI,
8369                                        SelectionDAG &DAG) {
8370  if (DCI.isBeforeLegalizeOps())
8371    return SDValue();
8372
8373  MVT VT = N->getSimpleValueType(0);
8374  if (!VT.is128BitVector()) {
8375    if (N->getOpcode() == ISD::ADD)
8376      return performSetccAddFolding(N, DAG);
8377    return SDValue();
8378  }
8379
8380  // Make sure both branches are extended in the same way.
8381  SDValue LHS = N->getOperand(0);
8382  SDValue RHS = N->getOperand(1);
8383  if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
8384       LHS.getOpcode() != ISD::SIGN_EXTEND) ||
8385      LHS.getOpcode() != RHS.getOpcode())
8386    return SDValue();
8387
8388  unsigned ExtType = LHS.getOpcode();
8389
8390  // It's not worth doing if at least one of the inputs isn't already an
8391  // extract, but we don't know which it'll be so we have to try both.
8392  if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
8393    RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
8394    if (!RHS.getNode())
8395      return SDValue();
8396
8397    RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
8398  } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
8399    LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
8400    if (!LHS.getNode())
8401      return SDValue();
8402
8403    LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
8404  }
8405
8406  return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
8407}
8408
8409// Massage DAGs which we can use the high-half "long" operations on into
8410// something isel will recognize better. E.g.
8411//
8412// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
8413//   (aarch64_neon_umull (extract_high (v2i64 vec)))
8414//                     (extract_high (v2i64 (dup128 scalar)))))
8415//
8416static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
8417                                       TargetLowering::DAGCombinerInfo &DCI,
8418                                       SelectionDAG &DAG) {
8419  if (DCI.isBeforeLegalizeOps())
8420    return SDValue();
8421
8422  SDValue LHS = N->getOperand(1);
8423  SDValue RHS = N->getOperand(2);
8424  assert(LHS.getValueType().is64BitVector() &&
8425         RHS.getValueType().is64BitVector() &&
8426         "unexpected shape for long operation");
8427
8428  // Either node could be a DUP, but it's not worth doing both of them (you'd
8429  // just as well use the non-high version) so look for a corresponding extract
8430  // operation on the other "wing".
8431  if (isEssentiallyExtractSubvector(LHS)) {
8432    RHS = tryExtendDUPToExtractHigh(RHS, DAG);
8433    if (!RHS.getNode())
8434      return SDValue();
8435  } else if (isEssentiallyExtractSubvector(RHS)) {
8436    LHS = tryExtendDUPToExtractHigh(LHS, DAG);
8437    if (!LHS.getNode())
8438      return SDValue();
8439  }
8440
8441  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
8442                     N->getOperand(0), LHS, RHS);
8443}
8444
8445static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
8446  MVT ElemTy = N->getSimpleValueType(0).getScalarType();
8447  unsigned ElemBits = ElemTy.getSizeInBits();
8448
8449  int64_t ShiftAmount;
8450  if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
8451    APInt SplatValue, SplatUndef;
8452    unsigned SplatBitSize;
8453    bool HasAnyUndefs;
8454    if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
8455                              HasAnyUndefs, ElemBits) ||
8456        SplatBitSize != ElemBits)
8457      return SDValue();
8458
8459    ShiftAmount = SplatValue.getSExtValue();
8460  } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
8461    ShiftAmount = CVN->getSExtValue();
8462  } else
8463    return SDValue();
8464
8465  unsigned Opcode;
8466  bool IsRightShift;
8467  switch (IID) {
8468  default:
8469    llvm_unreachable("Unknown shift intrinsic");
8470  case Intrinsic::aarch64_neon_sqshl:
8471    Opcode = AArch64ISD::SQSHL_I;
8472    IsRightShift = false;
8473    break;
8474  case Intrinsic::aarch64_neon_uqshl:
8475    Opcode = AArch64ISD::UQSHL_I;
8476    IsRightShift = false;
8477    break;
8478  case Intrinsic::aarch64_neon_srshl:
8479    Opcode = AArch64ISD::SRSHR_I;
8480    IsRightShift = true;
8481    break;
8482  case Intrinsic::aarch64_neon_urshl:
8483    Opcode = AArch64ISD::URSHR_I;
8484    IsRightShift = true;
8485    break;
8486  case Intrinsic::aarch64_neon_sqshlu:
8487    Opcode = AArch64ISD::SQSHLU_I;
8488    IsRightShift = false;
8489    break;
8490  }
8491
8492  if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
8493    SDLoc dl(N);
8494    return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
8495                       DAG.getConstant(-ShiftAmount, dl, MVT::i32));
8496  } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
8497    SDLoc dl(N);
8498    return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
8499                       DAG.getConstant(ShiftAmount, dl, MVT::i32));
8500  }
8501
8502  return SDValue();
8503}
8504
8505// The CRC32[BH] instructions ignore the high bits of their data operand. Since
8506// the intrinsics must be legal and take an i32, this means there's almost
8507// certainly going to be a zext in the DAG which we can eliminate.
8508static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
8509  SDValue AndN = N->getOperand(2);
8510  if (AndN.getOpcode() != ISD::AND)
8511    return SDValue();
8512
8513  ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
8514  if (!CMask || CMask->getZExtValue() != Mask)
8515    return SDValue();
8516
8517  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
8518                     N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
8519}
8520
8521static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
8522                                           SelectionDAG &DAG) {
8523  SDLoc dl(N);
8524  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
8525                     DAG.getNode(Opc, dl,
8526                                 N->getOperand(1).getSimpleValueType(),
8527                                 N->getOperand(1)),
8528                     DAG.getConstant(0, dl, MVT::i64));
8529}
8530
8531static SDValue performIntrinsicCombine(SDNode *N,
8532                                       TargetLowering::DAGCombinerInfo &DCI,
8533                                       const AArch64Subtarget *Subtarget) {
8534  SelectionDAG &DAG = DCI.DAG;
8535  unsigned IID = getIntrinsicID(N);
8536  switch (IID) {
8537  default:
8538    break;
8539  case Intrinsic::aarch64_neon_vcvtfxs2fp:
8540  case Intrinsic::aarch64_neon_vcvtfxu2fp:
8541    return tryCombineFixedPointConvert(N, DCI, DAG);
8542  case Intrinsic::aarch64_neon_saddv:
8543    return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
8544  case Intrinsic::aarch64_neon_uaddv:
8545    return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
8546  case Intrinsic::aarch64_neon_sminv:
8547    return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
8548  case Intrinsic::aarch64_neon_uminv:
8549    return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
8550  case Intrinsic::aarch64_neon_smaxv:
8551    return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
8552  case Intrinsic::aarch64_neon_umaxv:
8553    return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
8554  case Intrinsic::aarch64_neon_fmax:
8555    return DAG.getNode(ISD::FMAXNAN, SDLoc(N), N->getValueType(0),
8556                       N->getOperand(1), N->getOperand(2));
8557  case Intrinsic::aarch64_neon_fmin:
8558    return DAG.getNode(ISD::FMINNAN, SDLoc(N), N->getValueType(0),
8559                       N->getOperand(1), N->getOperand(2));
8560  case Intrinsic::aarch64_neon_fmaxnm:
8561    return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
8562                       N->getOperand(1), N->getOperand(2));
8563  case Intrinsic::aarch64_neon_fminnm:
8564    return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
8565                       N->getOperand(1), N->getOperand(2));
8566  case Intrinsic::aarch64_neon_smull:
8567  case Intrinsic::aarch64_neon_umull:
8568  case Intrinsic::aarch64_neon_pmull:
8569  case Intrinsic::aarch64_neon_sqdmull:
8570    return tryCombineLongOpWithDup(IID, N, DCI, DAG);
8571  case Intrinsic::aarch64_neon_sqshl:
8572  case Intrinsic::aarch64_neon_uqshl:
8573  case Intrinsic::aarch64_neon_sqshlu:
8574  case Intrinsic::aarch64_neon_srshl:
8575  case Intrinsic::aarch64_neon_urshl:
8576    return tryCombineShiftImm(IID, N, DAG);
8577  case Intrinsic::aarch64_crc32b:
8578  case Intrinsic::aarch64_crc32cb:
8579    return tryCombineCRC32(0xff, N, DAG);
8580  case Intrinsic::aarch64_crc32h:
8581  case Intrinsic::aarch64_crc32ch:
8582    return tryCombineCRC32(0xffff, N, DAG);
8583  }
8584  return SDValue();
8585}
8586
8587static SDValue performExtendCombine(SDNode *N,
8588                                    TargetLowering::DAGCombinerInfo &DCI,
8589                                    SelectionDAG &DAG) {
8590  // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
8591  // we can convert that DUP into another extract_high (of a bigger DUP), which
8592  // helps the backend to decide that an sabdl2 would be useful, saving a real
8593  // extract_high operation.
8594  if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
8595      N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
8596    SDNode *ABDNode = N->getOperand(0).getNode();
8597    unsigned IID = getIntrinsicID(ABDNode);
8598    if (IID == Intrinsic::aarch64_neon_sabd ||
8599        IID == Intrinsic::aarch64_neon_uabd) {
8600      SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
8601      if (!NewABD.getNode())
8602        return SDValue();
8603
8604      return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
8605                         NewABD);
8606    }
8607  }
8608
8609  // This is effectively a custom type legalization for AArch64.
8610  //
8611  // Type legalization will split an extend of a small, legal, type to a larger
8612  // illegal type by first splitting the destination type, often creating
8613  // illegal source types, which then get legalized in isel-confusing ways,
8614  // leading to really terrible codegen. E.g.,
8615  //   %result = v8i32 sext v8i8 %value
8616  // becomes
8617  //   %losrc = extract_subreg %value, ...
8618  //   %hisrc = extract_subreg %value, ...
8619  //   %lo = v4i32 sext v4i8 %losrc
8620  //   %hi = v4i32 sext v4i8 %hisrc
8621  // Things go rapidly downhill from there.
8622  //
8623  // For AArch64, the [sz]ext vector instructions can only go up one element
8624  // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
8625  // take two instructions.
8626  //
8627  // This implies that the most efficient way to do the extend from v8i8
8628  // to two v4i32 values is to first extend the v8i8 to v8i16, then do
8629  // the normal splitting to happen for the v8i16->v8i32.
8630
8631  // This is pre-legalization to catch some cases where the default
8632  // type legalization will create ill-tempered code.
8633  if (!DCI.isBeforeLegalizeOps())
8634    return SDValue();
8635
8636  // We're only interested in cleaning things up for non-legal vector types
8637  // here. If both the source and destination are legal, things will just
8638  // work naturally without any fiddling.
8639  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8640  EVT ResVT = N->getValueType(0);
8641  if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
8642    return SDValue();
8643  // If the vector type isn't a simple VT, it's beyond the scope of what
8644  // we're  worried about here. Let legalization do its thing and hope for
8645  // the best.
8646  SDValue Src = N->getOperand(0);
8647  EVT SrcVT = Src->getValueType(0);
8648  if (!ResVT.isSimple() || !SrcVT.isSimple())
8649    return SDValue();
8650
8651  // If the source VT is a 64-bit vector, we can play games and get the
8652  // better results we want.
8653  if (SrcVT.getSizeInBits() != 64)
8654    return SDValue();
8655
8656  unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
8657  unsigned ElementCount = SrcVT.getVectorNumElements();
8658  SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
8659  SDLoc DL(N);
8660  Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
8661
8662  // Now split the rest of the operation into two halves, each with a 64
8663  // bit source.
8664  EVT LoVT, HiVT;
8665  SDValue Lo, Hi;
8666  unsigned NumElements = ResVT.getVectorNumElements();
8667  assert(!(NumElements & 1) && "Splitting vector, but not in half!");
8668  LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
8669                                 ResVT.getVectorElementType(), NumElements / 2);
8670
8671  EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
8672                               LoVT.getVectorNumElements());
8673  Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
8674                   DAG.getConstant(0, DL, MVT::i64));
8675  Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
8676                   DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
8677  Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
8678  Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
8679
8680  // Now combine the parts back together so we still have a single result
8681  // like the combiner expects.
8682  return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
8683}
8684
8685/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
8686/// value. The load store optimizer pass will merge them to store pair stores.
8687/// This has better performance than a splat of the scalar followed by a split
8688/// vector store. Even if the stores are not merged it is four stores vs a dup,
8689/// followed by an ext.b and two stores.
8690static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
8691  SDValue StVal = St->getValue();
8692  EVT VT = StVal.getValueType();
8693
8694  // Don't replace floating point stores, they possibly won't be transformed to
8695  // stp because of the store pair suppress pass.
8696  if (VT.isFloatingPoint())
8697    return SDValue();
8698
8699  // Check for insert vector elements.
8700  if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
8701    return SDValue();
8702
8703  // We can express a splat as store pair(s) for 2 or 4 elements.
8704  unsigned NumVecElts = VT.getVectorNumElements();
8705  if (NumVecElts != 4 && NumVecElts != 2)
8706    return SDValue();
8707  SDValue SplatVal = StVal.getOperand(1);
8708  unsigned RemainInsertElts = NumVecElts - 1;
8709
8710  // Check that this is a splat.
8711  while (--RemainInsertElts) {
8712    SDValue NextInsertElt = StVal.getOperand(0);
8713    if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
8714      return SDValue();
8715    if (NextInsertElt.getOperand(1) != SplatVal)
8716      return SDValue();
8717    StVal = NextInsertElt;
8718  }
8719  unsigned OrigAlignment = St->getAlignment();
8720  unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
8721  unsigned Alignment = std::min(OrigAlignment, EltOffset);
8722
8723  // Create scalar stores. This is at least as good as the code sequence for a
8724  // split unaligned store which is a dup.s, ext.b, and two stores.
8725  // Most of the time the three stores should be replaced by store pair
8726  // instructions (stp).
8727  SDLoc DL(St);
8728  SDValue BasePtr = St->getBasePtr();
8729  SDValue NewST1 =
8730      DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
8731                   St->isVolatile(), St->isNonTemporal(), St->getAlignment());
8732
8733  unsigned Offset = EltOffset;
8734  while (--NumVecElts) {
8735    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
8736                                    DAG.getConstant(Offset, DL, MVT::i64));
8737    NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
8738                          St->getPointerInfo(), St->isVolatile(),
8739                          St->isNonTemporal(), Alignment);
8740    Offset += EltOffset;
8741  }
8742  return NewST1;
8743}
8744
8745static SDValue split16BStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
8746                              SelectionDAG &DAG,
8747                              const AArch64Subtarget *Subtarget) {
8748  if (!DCI.isBeforeLegalize())
8749    return SDValue();
8750
8751  StoreSDNode *S = cast<StoreSDNode>(N);
8752  if (S->isVolatile())
8753    return SDValue();
8754
8755  // FIXME: The logic for deciding if an unaligned store should be split should
8756  // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
8757  // a call to that function here.
8758
8759  if (!Subtarget->isMisaligned128StoreSlow())
8760    return SDValue();
8761
8762  // Don't split at -Oz.
8763  if (DAG.getMachineFunction().getFunction()->optForMinSize())
8764    return SDValue();
8765
8766  SDValue StVal = S->getValue();
8767  EVT VT = StVal.getValueType();
8768
8769  // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
8770  // those up regresses performance on micro-benchmarks and olden/bh.
8771  if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
8772    return SDValue();
8773
8774  // Split unaligned 16B stores. They are terrible for performance.
8775  // Don't split stores with alignment of 1 or 2. Code that uses clang vector
8776  // extensions can use this to mark that it does not want splitting to happen
8777  // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
8778  // eliminating alignment hazards is only 1 in 8 for alignment of 2.
8779  if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
8780      S->getAlignment() <= 2)
8781    return SDValue();
8782
8783  // If we get a splat of a scalar convert this vector store to a store of
8784  // scalars. They will be merged into store pairs thereby removing two
8785  // instructions.
8786  if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S))
8787    return ReplacedSplat;
8788
8789  SDLoc DL(S);
8790  unsigned NumElts = VT.getVectorNumElements() / 2;
8791  // Split VT into two.
8792  EVT HalfVT =
8793      EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
8794  SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
8795                                   DAG.getConstant(0, DL, MVT::i64));
8796  SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
8797                                   DAG.getConstant(NumElts, DL, MVT::i64));
8798  SDValue BasePtr = S->getBasePtr();
8799  SDValue NewST1 =
8800      DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
8801                   S->isVolatile(), S->isNonTemporal(), S->getAlignment());
8802  SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
8803                                  DAG.getConstant(8, DL, MVT::i64));
8804  return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
8805                      S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
8806                      S->getAlignment());
8807}
8808
8809/// Target-specific DAG combine function for post-increment LD1 (lane) and
8810/// post-increment LD1R.
8811static SDValue performPostLD1Combine(SDNode *N,
8812                                     TargetLowering::DAGCombinerInfo &DCI,
8813                                     bool IsLaneOp) {
8814  if (DCI.isBeforeLegalizeOps())
8815    return SDValue();
8816
8817  SelectionDAG &DAG = DCI.DAG;
8818  EVT VT = N->getValueType(0);
8819
8820  unsigned LoadIdx = IsLaneOp ? 1 : 0;
8821  SDNode *LD = N->getOperand(LoadIdx).getNode();
8822  // If it is not LOAD, can not do such combine.
8823  if (LD->getOpcode() != ISD::LOAD)
8824    return SDValue();
8825
8826  LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
8827  EVT MemVT = LoadSDN->getMemoryVT();
8828  // Check if memory operand is the same type as the vector element.
8829  if (MemVT != VT.getVectorElementType())
8830    return SDValue();
8831
8832  // Check if there are other uses. If so, do not combine as it will introduce
8833  // an extra load.
8834  for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
8835       ++UI) {
8836    if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
8837      continue;
8838    if (*UI != N)
8839      return SDValue();
8840  }
8841
8842  SDValue Addr = LD->getOperand(1);
8843  SDValue Vector = N->getOperand(0);
8844  // Search for a use of the address operand that is an increment.
8845  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
8846       Addr.getNode()->use_end(); UI != UE; ++UI) {
8847    SDNode *User = *UI;
8848    if (User->getOpcode() != ISD::ADD
8849        || UI.getUse().getResNo() != Addr.getResNo())
8850      continue;
8851
8852    // Check that the add is independent of the load.  Otherwise, folding it
8853    // would create a cycle.
8854    if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
8855      continue;
8856    // Also check that add is not used in the vector operand.  This would also
8857    // create a cycle.
8858    if (User->isPredecessorOf(Vector.getNode()))
8859      continue;
8860
8861    // If the increment is a constant, it must match the memory ref size.
8862    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8863    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8864      uint32_t IncVal = CInc->getZExtValue();
8865      unsigned NumBytes = VT.getScalarSizeInBits() / 8;
8866      if (IncVal != NumBytes)
8867        continue;
8868      Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8869    }
8870
8871    // Finally, check that the vector doesn't depend on the load.
8872    // Again, this would create a cycle.
8873    // The load depending on the vector is fine, as that's the case for the
8874    // LD1*post we'll eventually generate anyway.
8875    if (LoadSDN->isPredecessorOf(Vector.getNode()))
8876      continue;
8877
8878    SmallVector<SDValue, 8> Ops;
8879    Ops.push_back(LD->getOperand(0));  // Chain
8880    if (IsLaneOp) {
8881      Ops.push_back(Vector);           // The vector to be inserted
8882      Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
8883    }
8884    Ops.push_back(Addr);
8885    Ops.push_back(Inc);
8886
8887    EVT Tys[3] = { VT, MVT::i64, MVT::Other };
8888    SDVTList SDTys = DAG.getVTList(Tys);
8889    unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
8890    SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
8891                                           MemVT,
8892                                           LoadSDN->getMemOperand());
8893
8894    // Update the uses.
8895    SDValue NewResults[] = {
8896        SDValue(LD, 0),            // The result of load
8897        SDValue(UpdN.getNode(), 2) // Chain
8898    };
8899    DCI.CombineTo(LD, NewResults);
8900    DCI.CombineTo(N, SDValue(UpdN.getNode(), 0));     // Dup/Inserted Result
8901    DCI.CombineTo(User, SDValue(UpdN.getNode(), 1));  // Write back register
8902
8903    break;
8904  }
8905  return SDValue();
8906}
8907
8908/// Simplify \Addr given that the top byte of it is ignored by HW during
8909/// address translation.
8910static bool performTBISimplification(SDValue Addr,
8911                                     TargetLowering::DAGCombinerInfo &DCI,
8912                                     SelectionDAG &DAG) {
8913  APInt DemandedMask = APInt::getLowBitsSet(64, 56);
8914  APInt KnownZero, KnownOne;
8915  TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
8916                                        DCI.isBeforeLegalizeOps());
8917  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8918  if (TLI.SimplifyDemandedBits(Addr, DemandedMask, KnownZero, KnownOne, TLO)) {
8919    DCI.CommitTargetLoweringOpt(TLO);
8920    return true;
8921  }
8922  return false;
8923}
8924
8925static SDValue performSTORECombine(SDNode *N,
8926                                   TargetLowering::DAGCombinerInfo &DCI,
8927                                   SelectionDAG &DAG,
8928                                   const AArch64Subtarget *Subtarget) {
8929  if (SDValue Split = split16BStores(N, DCI, DAG, Subtarget))
8930    return Split;
8931
8932  if (Subtarget->supportsAddressTopByteIgnored() &&
8933      performTBISimplification(N->getOperand(2), DCI, DAG))
8934    return SDValue(N, 0);
8935
8936  return SDValue();
8937}
8938
8939  /// This function handles the log2-shuffle pattern produced by the
8940/// LoopVectorizer for the across vector reduction. It consists of
8941/// log2(NumVectorElements) steps and, in each step, 2^(s) elements
8942/// are reduced, where s is an induction variable from 0 to
8943/// log2(NumVectorElements).
8944static SDValue tryMatchAcrossLaneShuffleForReduction(SDNode *N, SDValue OpV,
8945                                                     unsigned Op,
8946                                                     SelectionDAG &DAG) {
8947  EVT VTy = OpV->getOperand(0).getValueType();
8948  if (!VTy.isVector())
8949    return SDValue();
8950
8951  int NumVecElts = VTy.getVectorNumElements();
8952  if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) {
8953    if (NumVecElts != 4)
8954      return SDValue();
8955  } else {
8956    if (NumVecElts != 4 && NumVecElts != 8 && NumVecElts != 16)
8957      return SDValue();
8958  }
8959
8960  int NumExpectedSteps = APInt(8, NumVecElts).logBase2();
8961  SDValue PreOp = OpV;
8962  // Iterate over each step of the across vector reduction.
8963  for (int CurStep = 0; CurStep != NumExpectedSteps; ++CurStep) {
8964    SDValue CurOp = PreOp.getOperand(0);
8965    SDValue Shuffle = PreOp.getOperand(1);
8966    if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE) {
8967      // Try to swap the 1st and 2nd operand as add and min/max instructions
8968      // are commutative.
8969      CurOp = PreOp.getOperand(1);
8970      Shuffle = PreOp.getOperand(0);
8971      if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE)
8972        return SDValue();
8973    }
8974
8975    // Check if the input vector is fed by the operator we want to handle,
8976    // except the last step; the very first input vector is not necessarily
8977    // the same operator we are handling.
8978    if (CurOp.getOpcode() != Op && (CurStep != (NumExpectedSteps - 1)))
8979      return SDValue();
8980
8981    // Check if it forms one step of the across vector reduction.
8982    // E.g.,
8983    //   %cur = add %1, %0
8984    //   %shuffle = vector_shuffle %cur, <2, 3, u, u>
8985    //   %pre = add %cur, %shuffle
8986    if (Shuffle.getOperand(0) != CurOp)
8987      return SDValue();
8988
8989    int NumMaskElts = 1 << CurStep;
8990    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Shuffle)->getMask();
8991    // Check mask values in each step.
8992    // We expect the shuffle mask in each step follows a specific pattern
8993    // denoted here by the <M, U> form, where M is a sequence of integers
8994    // starting from NumMaskElts, increasing by 1, and the number integers
8995    // in M should be NumMaskElts. U is a sequence of UNDEFs and the number
8996    // of undef in U should be NumVecElts - NumMaskElts.
8997    // E.g., for <8 x i16>, mask values in each step should be :
8998    //   step 0 : <1,u,u,u,u,u,u,u>
8999    //   step 1 : <2,3,u,u,u,u,u,u>
9000    //   step 2 : <4,5,6,7,u,u,u,u>
9001    for (int i = 0; i < NumVecElts; ++i)
9002      if ((i < NumMaskElts && Mask[i] != (NumMaskElts + i)) ||
9003          (i >= NumMaskElts && !(Mask[i] < 0)))
9004        return SDValue();
9005
9006    PreOp = CurOp;
9007  }
9008  unsigned Opcode;
9009  bool IsIntrinsic = false;
9010
9011  switch (Op) {
9012  default:
9013    llvm_unreachable("Unexpected operator for across vector reduction");
9014  case ISD::ADD:
9015    Opcode = AArch64ISD::UADDV;
9016    break;
9017  case ISD::SMAX:
9018    Opcode = AArch64ISD::SMAXV;
9019    break;
9020  case ISD::UMAX:
9021    Opcode = AArch64ISD::UMAXV;
9022    break;
9023  case ISD::SMIN:
9024    Opcode = AArch64ISD::SMINV;
9025    break;
9026  case ISD::UMIN:
9027    Opcode = AArch64ISD::UMINV;
9028    break;
9029  case ISD::FMAXNUM:
9030    Opcode = Intrinsic::aarch64_neon_fmaxnmv;
9031    IsIntrinsic = true;
9032    break;
9033  case ISD::FMINNUM:
9034    Opcode = Intrinsic::aarch64_neon_fminnmv;
9035    IsIntrinsic = true;
9036    break;
9037  }
9038  SDLoc DL(N);
9039
9040  return IsIntrinsic
9041             ? DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, N->getValueType(0),
9042                           DAG.getConstant(Opcode, DL, MVT::i32), PreOp)
9043             : DAG.getNode(
9044                   ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0),
9045                   DAG.getNode(Opcode, DL, PreOp.getSimpleValueType(), PreOp),
9046                   DAG.getConstant(0, DL, MVT::i64));
9047}
9048
9049/// Target-specific DAG combine for the across vector min/max reductions.
9050/// This function specifically handles the final clean-up step of the vector
9051/// min/max reductions produced by the LoopVectorizer. It is the log2-shuffle
9052/// pattern, which narrows down and finds the final min/max value from all
9053/// elements of the vector.
9054/// For example, for a <16 x i8> vector :
9055///   svn0 = vector_shuffle %0, undef<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u>
9056///   %smax0 = smax %arr, svn0
9057///   %svn1 = vector_shuffle %smax0, undef<4,5,6,7,u,u,u,u,u,u,u,u,u,u,u,u>
9058///   %smax1 = smax %smax0, %svn1
9059///   %svn2 = vector_shuffle %smax1, undef<2,3,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
9060///   %smax2 = smax %smax1, svn2
9061///   %svn3 = vector_shuffle %smax2, undef<1,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
9062///   %sc = setcc %smax2, %svn3, gt
9063///   %n0 = extract_vector_elt %sc, #0
9064///   %n1 = extract_vector_elt %smax2, #0
9065///   %n2 = extract_vector_elt $smax2, #1
9066///   %result = select %n0, %n1, n2
9067///     becomes :
9068///   %1 = smaxv %0
9069///   %result = extract_vector_elt %1, 0
9070static SDValue
9071performAcrossLaneMinMaxReductionCombine(SDNode *N, SelectionDAG &DAG,
9072                                        const AArch64Subtarget *Subtarget) {
9073  if (!Subtarget->hasNEON())
9074    return SDValue();
9075
9076  SDValue N0 = N->getOperand(0);
9077  SDValue IfTrue = N->getOperand(1);
9078  SDValue IfFalse = N->getOperand(2);
9079
9080  // Check if the SELECT merges up the final result of the min/max
9081  // from a vector.
9082  if (N0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9083      IfTrue.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9084      IfFalse.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9085    return SDValue();
9086
9087  // Expect N0 is fed by SETCC.
9088  SDValue SetCC = N0.getOperand(0);
9089  EVT SetCCVT = SetCC.getValueType();
9090  if (SetCC.getOpcode() != ISD::SETCC || !SetCCVT.isVector() ||
9091      SetCCVT.getVectorElementType() != MVT::i1)
9092    return SDValue();
9093
9094  SDValue VectorOp = SetCC.getOperand(0);
9095  unsigned Op = VectorOp->getOpcode();
9096  // Check if the input vector is fed by the operator we want to handle.
9097  if (Op != ISD::SMAX && Op != ISD::UMAX && Op != ISD::SMIN &&
9098      Op != ISD::UMIN && Op != ISD::FMAXNUM && Op != ISD::FMINNUM)
9099    return SDValue();
9100
9101  EVT VTy = VectorOp.getValueType();
9102  if (!VTy.isVector())
9103    return SDValue();
9104
9105  if (VTy.getSizeInBits() < 64)
9106    return SDValue();
9107
9108  EVT EltTy = VTy.getVectorElementType();
9109  if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) {
9110    if (EltTy != MVT::f32)
9111      return SDValue();
9112  } else {
9113    if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8)
9114      return SDValue();
9115  }
9116
9117  // Check if extracting from the same vector.
9118  // For example,
9119  //   %sc = setcc %vector, %svn1, gt
9120  //   %n0 = extract_vector_elt %sc, #0
9121  //   %n1 = extract_vector_elt %vector, #0
9122  //   %n2 = extract_vector_elt $vector, #1
9123  if (!(VectorOp == IfTrue->getOperand(0) &&
9124        VectorOp == IfFalse->getOperand(0)))
9125    return SDValue();
9126
9127  // Check if the condition code is matched with the operator type.
9128  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
9129  if ((Op == ISD::SMAX && CC != ISD::SETGT && CC != ISD::SETGE) ||
9130      (Op == ISD::UMAX && CC != ISD::SETUGT && CC != ISD::SETUGE) ||
9131      (Op == ISD::SMIN && CC != ISD::SETLT && CC != ISD::SETLE) ||
9132      (Op == ISD::UMIN && CC != ISD::SETULT && CC != ISD::SETULE) ||
9133      (Op == ISD::FMAXNUM && CC != ISD::SETOGT && CC != ISD::SETOGE &&
9134       CC != ISD::SETUGT && CC != ISD::SETUGE && CC != ISD::SETGT &&
9135       CC != ISD::SETGE) ||
9136      (Op == ISD::FMINNUM && CC != ISD::SETOLT && CC != ISD::SETOLE &&
9137       CC != ISD::SETULT && CC != ISD::SETULE && CC != ISD::SETLT &&
9138       CC != ISD::SETLE))
9139    return SDValue();
9140
9141  // Expect to check only lane 0 from the vector SETCC.
9142  if (!isNullConstant(N0.getOperand(1)))
9143    return SDValue();
9144
9145  // Expect to extract the true value from lane 0.
9146  if (!isNullConstant(IfTrue.getOperand(1)))
9147    return SDValue();
9148
9149  // Expect to extract the false value from lane 1.
9150  if (!isOneConstant(IfFalse.getOperand(1)))
9151    return SDValue();
9152
9153  return tryMatchAcrossLaneShuffleForReduction(N, SetCC, Op, DAG);
9154}
9155
9156/// Target-specific DAG combine for the across vector add reduction.
9157/// This function specifically handles the final clean-up step of the vector
9158/// add reduction produced by the LoopVectorizer. It is the log2-shuffle
9159/// pattern, which adds all elements of a vector together.
9160/// For example, for a <4 x i32> vector :
9161///   %1 = vector_shuffle %0, <2,3,u,u>
9162///   %2 = add %0, %1
9163///   %3 = vector_shuffle %2, <1,u,u,u>
9164///   %4 = add %2, %3
9165///   %result = extract_vector_elt %4, 0
9166/// becomes :
9167///   %0 = uaddv %0
9168///   %result = extract_vector_elt %0, 0
9169static SDValue
9170performAcrossLaneAddReductionCombine(SDNode *N, SelectionDAG &DAG,
9171                                     const AArch64Subtarget *Subtarget) {
9172  if (!Subtarget->hasNEON())
9173    return SDValue();
9174  SDValue N0 = N->getOperand(0);
9175  SDValue N1 = N->getOperand(1);
9176
9177  // Check if the input vector is fed by the ADD.
9178  if (N0->getOpcode() != ISD::ADD)
9179    return SDValue();
9180
9181  // The vector extract idx must constant zero because we only expect the final
9182  // result of the reduction is placed in lane 0.
9183  if (!isNullConstant(N1))
9184    return SDValue();
9185
9186  EVT VTy = N0.getValueType();
9187  if (!VTy.isVector())
9188    return SDValue();
9189
9190  EVT EltTy = VTy.getVectorElementType();
9191  if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8)
9192    return SDValue();
9193
9194  if (VTy.getSizeInBits() < 64)
9195    return SDValue();
9196
9197  return tryMatchAcrossLaneShuffleForReduction(N, N0, ISD::ADD, DAG);
9198}
9199
9200/// Target-specific DAG combine function for NEON load/store intrinsics
9201/// to merge base address updates.
9202static SDValue performNEONPostLDSTCombine(SDNode *N,
9203                                          TargetLowering::DAGCombinerInfo &DCI,
9204                                          SelectionDAG &DAG) {
9205  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9206    return SDValue();
9207
9208  unsigned AddrOpIdx = N->getNumOperands() - 1;
9209  SDValue Addr = N->getOperand(AddrOpIdx);
9210
9211  // Search for a use of the address operand that is an increment.
9212  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
9213       UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
9214    SDNode *User = *UI;
9215    if (User->getOpcode() != ISD::ADD ||
9216        UI.getUse().getResNo() != Addr.getResNo())
9217      continue;
9218
9219    // Check that the add is independent of the load/store.  Otherwise, folding
9220    // it would create a cycle.
9221    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
9222      continue;
9223
9224    // Find the new opcode for the updating load/store.
9225    bool IsStore = false;
9226    bool IsLaneOp = false;
9227    bool IsDupOp = false;
9228    unsigned NewOpc = 0;
9229    unsigned NumVecs = 0;
9230    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9231    switch (IntNo) {
9232    default: llvm_unreachable("unexpected intrinsic for Neon base update");
9233    case Intrinsic::aarch64_neon_ld2:       NewOpc = AArch64ISD::LD2post;
9234      NumVecs = 2; break;
9235    case Intrinsic::aarch64_neon_ld3:       NewOpc = AArch64ISD::LD3post;
9236      NumVecs = 3; break;
9237    case Intrinsic::aarch64_neon_ld4:       NewOpc = AArch64ISD::LD4post;
9238      NumVecs = 4; break;
9239    case Intrinsic::aarch64_neon_st2:       NewOpc = AArch64ISD::ST2post;
9240      NumVecs = 2; IsStore = true; break;
9241    case Intrinsic::aarch64_neon_st3:       NewOpc = AArch64ISD::ST3post;
9242      NumVecs = 3; IsStore = true; break;
9243    case Intrinsic::aarch64_neon_st4:       NewOpc = AArch64ISD::ST4post;
9244      NumVecs = 4; IsStore = true; break;
9245    case Intrinsic::aarch64_neon_ld1x2:     NewOpc = AArch64ISD::LD1x2post;
9246      NumVecs = 2; break;
9247    case Intrinsic::aarch64_neon_ld1x3:     NewOpc = AArch64ISD::LD1x3post;
9248      NumVecs = 3; break;
9249    case Intrinsic::aarch64_neon_ld1x4:     NewOpc = AArch64ISD::LD1x4post;
9250      NumVecs = 4; break;
9251    case Intrinsic::aarch64_neon_st1x2:     NewOpc = AArch64ISD::ST1x2post;
9252      NumVecs = 2; IsStore = true; break;
9253    case Intrinsic::aarch64_neon_st1x3:     NewOpc = AArch64ISD::ST1x3post;
9254      NumVecs = 3; IsStore = true; break;
9255    case Intrinsic::aarch64_neon_st1x4:     NewOpc = AArch64ISD::ST1x4post;
9256      NumVecs = 4; IsStore = true; break;
9257    case Intrinsic::aarch64_neon_ld2r:      NewOpc = AArch64ISD::LD2DUPpost;
9258      NumVecs = 2; IsDupOp = true; break;
9259    case Intrinsic::aarch64_neon_ld3r:      NewOpc = AArch64ISD::LD3DUPpost;
9260      NumVecs = 3; IsDupOp = true; break;
9261    case Intrinsic::aarch64_neon_ld4r:      NewOpc = AArch64ISD::LD4DUPpost;
9262      NumVecs = 4; IsDupOp = true; break;
9263    case Intrinsic::aarch64_neon_ld2lane:   NewOpc = AArch64ISD::LD2LANEpost;
9264      NumVecs = 2; IsLaneOp = true; break;
9265    case Intrinsic::aarch64_neon_ld3lane:   NewOpc = AArch64ISD::LD3LANEpost;
9266      NumVecs = 3; IsLaneOp = true; break;
9267    case Intrinsic::aarch64_neon_ld4lane:   NewOpc = AArch64ISD::LD4LANEpost;
9268      NumVecs = 4; IsLaneOp = true; break;
9269    case Intrinsic::aarch64_neon_st2lane:   NewOpc = AArch64ISD::ST2LANEpost;
9270      NumVecs = 2; IsStore = true; IsLaneOp = true; break;
9271    case Intrinsic::aarch64_neon_st3lane:   NewOpc = AArch64ISD::ST3LANEpost;
9272      NumVecs = 3; IsStore = true; IsLaneOp = true; break;
9273    case Intrinsic::aarch64_neon_st4lane:   NewOpc = AArch64ISD::ST4LANEpost;
9274      NumVecs = 4; IsStore = true; IsLaneOp = true; break;
9275    }
9276
9277    EVT VecTy;
9278    if (IsStore)
9279      VecTy = N->getOperand(2).getValueType();
9280    else
9281      VecTy = N->getValueType(0);
9282
9283    // If the increment is a constant, it must match the memory ref size.
9284    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
9285    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
9286      uint32_t IncVal = CInc->getZExtValue();
9287      unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
9288      if (IsLaneOp || IsDupOp)
9289        NumBytes /= VecTy.getVectorNumElements();
9290      if (IncVal != NumBytes)
9291        continue;
9292      Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
9293    }
9294    SmallVector<SDValue, 8> Ops;
9295    Ops.push_back(N->getOperand(0)); // Incoming chain
9296    // Load lane and store have vector list as input.
9297    if (IsLaneOp || IsStore)
9298      for (unsigned i = 2; i < AddrOpIdx; ++i)
9299        Ops.push_back(N->getOperand(i));
9300    Ops.push_back(Addr); // Base register
9301    Ops.push_back(Inc);
9302
9303    // Return Types.
9304    EVT Tys[6];
9305    unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
9306    unsigned n;
9307    for (n = 0; n < NumResultVecs; ++n)
9308      Tys[n] = VecTy;
9309    Tys[n++] = MVT::i64;  // Type of write back register
9310    Tys[n] = MVT::Other;  // Type of the chain
9311    SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
9312
9313    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
9314    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
9315                                           MemInt->getMemoryVT(),
9316                                           MemInt->getMemOperand());
9317
9318    // Update the uses.
9319    std::vector<SDValue> NewResults;
9320    for (unsigned i = 0; i < NumResultVecs; ++i) {
9321      NewResults.push_back(SDValue(UpdN.getNode(), i));
9322    }
9323    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
9324    DCI.CombineTo(N, NewResults);
9325    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
9326
9327    break;
9328  }
9329  return SDValue();
9330}
9331
9332// Checks to see if the value is the prescribed width and returns information
9333// about its extension mode.
9334static
9335bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
9336  ExtType = ISD::NON_EXTLOAD;
9337  switch(V.getNode()->getOpcode()) {
9338  default:
9339    return false;
9340  case ISD::LOAD: {
9341    LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
9342    if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
9343       || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
9344      ExtType = LoadNode->getExtensionType();
9345      return true;
9346    }
9347    return false;
9348  }
9349  case ISD::AssertSext: {
9350    VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
9351    if ((TypeNode->getVT() == MVT::i8 && width == 8)
9352       || (TypeNode->getVT() == MVT::i16 && width == 16)) {
9353      ExtType = ISD::SEXTLOAD;
9354      return true;
9355    }
9356    return false;
9357  }
9358  case ISD::AssertZext: {
9359    VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
9360    if ((TypeNode->getVT() == MVT::i8 && width == 8)
9361       || (TypeNode->getVT() == MVT::i16 && width == 16)) {
9362      ExtType = ISD::ZEXTLOAD;
9363      return true;
9364    }
9365    return false;
9366  }
9367  case ISD::Constant:
9368  case ISD::TargetConstant: {
9369    return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
9370           1LL << (width - 1);
9371  }
9372  }
9373
9374  return true;
9375}
9376
9377// This function does a whole lot of voodoo to determine if the tests are
9378// equivalent without and with a mask. Essentially what happens is that given a
9379// DAG resembling:
9380//
9381//  +-------------+ +-------------+ +-------------+ +-------------+
9382//  |    Input    | | AddConstant | | CompConstant| |     CC      |
9383//  +-------------+ +-------------+ +-------------+ +-------------+
9384//           |           |           |               |
9385//           V           V           |    +----------+
9386//          +-------------+  +----+  |    |
9387//          |     ADD     |  |0xff|  |    |
9388//          +-------------+  +----+  |    |
9389//                  |           |    |    |
9390//                  V           V    |    |
9391//                 +-------------+   |    |
9392//                 |     AND     |   |    |
9393//                 +-------------+   |    |
9394//                      |            |    |
9395//                      +-----+      |    |
9396//                            |      |    |
9397//                            V      V    V
9398//                           +-------------+
9399//                           |     CMP     |
9400//                           +-------------+
9401//
9402// The AND node may be safely removed for some combinations of inputs. In
9403// particular we need to take into account the extension type of the Input,
9404// the exact values of AddConstant, CompConstant, and CC, along with the nominal
9405// width of the input (this can work for any width inputs, the above graph is
9406// specific to 8 bits.
9407//
9408// The specific equations were worked out by generating output tables for each
9409// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
9410// problem was simplified by working with 4 bit inputs, which means we only
9411// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
9412// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
9413// patterns present in both extensions (0,7). For every distinct set of
9414// AddConstant and CompConstants bit patterns we can consider the masked and
9415// unmasked versions to be equivalent if the result of this function is true for
9416// all 16 distinct bit patterns of for the current extension type of Input (w0).
9417//
9418//   sub      w8, w0, w1
9419//   and      w10, w8, #0x0f
9420//   cmp      w8, w2
9421//   cset     w9, AArch64CC
9422//   cmp      w10, w2
9423//   cset     w11, AArch64CC
9424//   cmp      w9, w11
9425//   cset     w0, eq
9426//   ret
9427//
9428// Since the above function shows when the outputs are equivalent it defines
9429// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
9430// would be expensive to run during compiles. The equations below were written
9431// in a test harness that confirmed they gave equivalent outputs to the above
9432// for all inputs function, so they can be used determine if the removal is
9433// legal instead.
9434//
9435// isEquivalentMaskless() is the code for testing if the AND can be removed
9436// factored out of the DAG recognition as the DAG can take several forms.
9437
9438static bool isEquivalentMaskless(unsigned CC, unsigned width,
9439                                 ISD::LoadExtType ExtType, int AddConstant,
9440                                 int CompConstant) {
9441  // By being careful about our equations and only writing the in term
9442  // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
9443  // make them generally applicable to all bit widths.
9444  int MaxUInt = (1 << width);
9445
9446  // For the purposes of these comparisons sign extending the type is
9447  // equivalent to zero extending the add and displacing it by half the integer
9448  // width. Provided we are careful and make sure our equations are valid over
9449  // the whole range we can just adjust the input and avoid writing equations
9450  // for sign extended inputs.
9451  if (ExtType == ISD::SEXTLOAD)
9452    AddConstant -= (1 << (width-1));
9453
9454  switch(CC) {
9455  case AArch64CC::LE:
9456  case AArch64CC::GT: {
9457    if ((AddConstant == 0) ||
9458        (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
9459        (AddConstant >= 0 && CompConstant < 0) ||
9460        (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
9461      return true;
9462  } break;
9463  case AArch64CC::LT:
9464  case AArch64CC::GE: {
9465    if ((AddConstant == 0) ||
9466        (AddConstant >= 0 && CompConstant <= 0) ||
9467        (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
9468      return true;
9469  } break;
9470  case AArch64CC::HI:
9471  case AArch64CC::LS: {
9472    if ((AddConstant >= 0 && CompConstant < 0) ||
9473       (AddConstant <= 0 && CompConstant >= -1 &&
9474        CompConstant < AddConstant + MaxUInt))
9475      return true;
9476  } break;
9477  case AArch64CC::PL:
9478  case AArch64CC::MI: {
9479    if ((AddConstant == 0) ||
9480        (AddConstant > 0 && CompConstant <= 0) ||
9481        (AddConstant < 0 && CompConstant <= AddConstant))
9482      return true;
9483  } break;
9484  case AArch64CC::LO:
9485  case AArch64CC::HS: {
9486    if ((AddConstant >= 0 && CompConstant <= 0) ||
9487        (AddConstant <= 0 && CompConstant >= 0 &&
9488         CompConstant <= AddConstant + MaxUInt))
9489      return true;
9490  } break;
9491  case AArch64CC::EQ:
9492  case AArch64CC::NE: {
9493    if ((AddConstant > 0 && CompConstant < 0) ||
9494        (AddConstant < 0 && CompConstant >= 0 &&
9495         CompConstant < AddConstant + MaxUInt) ||
9496        (AddConstant >= 0 && CompConstant >= 0 &&
9497         CompConstant >= AddConstant) ||
9498        (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
9499
9500      return true;
9501  } break;
9502  case AArch64CC::VS:
9503  case AArch64CC::VC:
9504  case AArch64CC::AL:
9505  case AArch64CC::NV:
9506    return true;
9507  case AArch64CC::Invalid:
9508    break;
9509  }
9510
9511  return false;
9512}
9513
9514static
9515SDValue performCONDCombine(SDNode *N,
9516                           TargetLowering::DAGCombinerInfo &DCI,
9517                           SelectionDAG &DAG, unsigned CCIndex,
9518                           unsigned CmpIndex) {
9519  unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
9520  SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
9521  unsigned CondOpcode = SubsNode->getOpcode();
9522
9523  if (CondOpcode != AArch64ISD::SUBS)
9524    return SDValue();
9525
9526  // There is a SUBS feeding this condition. Is it fed by a mask we can
9527  // use?
9528
9529  SDNode *AndNode = SubsNode->getOperand(0).getNode();
9530  unsigned MaskBits = 0;
9531
9532  if (AndNode->getOpcode() != ISD::AND)
9533    return SDValue();
9534
9535  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
9536    uint32_t CNV = CN->getZExtValue();
9537    if (CNV == 255)
9538      MaskBits = 8;
9539    else if (CNV == 65535)
9540      MaskBits = 16;
9541  }
9542
9543  if (!MaskBits)
9544    return SDValue();
9545
9546  SDValue AddValue = AndNode->getOperand(0);
9547
9548  if (AddValue.getOpcode() != ISD::ADD)
9549    return SDValue();
9550
9551  // The basic dag structure is correct, grab the inputs and validate them.
9552
9553  SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
9554  SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
9555  SDValue SubsInputValue = SubsNode->getOperand(1);
9556
9557  // The mask is present and the provenance of all the values is a smaller type,
9558  // lets see if the mask is superfluous.
9559
9560  if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
9561      !isa<ConstantSDNode>(SubsInputValue.getNode()))
9562    return SDValue();
9563
9564  ISD::LoadExtType ExtType;
9565
9566  if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
9567      !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
9568      !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
9569    return SDValue();
9570
9571  if(!isEquivalentMaskless(CC, MaskBits, ExtType,
9572                cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
9573                cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
9574    return SDValue();
9575
9576  // The AND is not necessary, remove it.
9577
9578  SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
9579                               SubsNode->getValueType(1));
9580  SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
9581
9582  SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
9583  DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
9584
9585  return SDValue(N, 0);
9586}
9587
9588// Optimize compare with zero and branch.
9589static SDValue performBRCONDCombine(SDNode *N,
9590                                    TargetLowering::DAGCombinerInfo &DCI,
9591                                    SelectionDAG &DAG) {
9592  if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
9593    N = NV.getNode();
9594  SDValue Chain = N->getOperand(0);
9595  SDValue Dest = N->getOperand(1);
9596  SDValue CCVal = N->getOperand(2);
9597  SDValue Cmp = N->getOperand(3);
9598
9599  assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
9600  unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
9601  if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
9602    return SDValue();
9603
9604  unsigned CmpOpc = Cmp.getOpcode();
9605  if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
9606    return SDValue();
9607
9608  // Only attempt folding if there is only one use of the flag and no use of the
9609  // value.
9610  if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
9611    return SDValue();
9612
9613  SDValue LHS = Cmp.getOperand(0);
9614  SDValue RHS = Cmp.getOperand(1);
9615
9616  assert(LHS.getValueType() == RHS.getValueType() &&
9617         "Expected the value type to be the same for both operands!");
9618  if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
9619    return SDValue();
9620
9621  if (isNullConstant(LHS))
9622    std::swap(LHS, RHS);
9623
9624  if (!isNullConstant(RHS))
9625    return SDValue();
9626
9627  if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
9628      LHS.getOpcode() == ISD::SRL)
9629    return SDValue();
9630
9631  // Fold the compare into the branch instruction.
9632  SDValue BR;
9633  if (CC == AArch64CC::EQ)
9634    BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
9635  else
9636    BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
9637
9638  // Do not add new nodes to DAG combiner worklist.
9639  DCI.CombineTo(N, BR, false);
9640
9641  return SDValue();
9642}
9643
9644// Optimize some simple tbz/tbnz cases.  Returns the new operand and bit to test
9645// as well as whether the test should be inverted.  This code is required to
9646// catch these cases (as opposed to standard dag combines) because
9647// AArch64ISD::TBZ is matched during legalization.
9648static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
9649                                 SelectionDAG &DAG) {
9650
9651  if (!Op->hasOneUse())
9652    return Op;
9653
9654  // We don't handle undef/constant-fold cases below, as they should have
9655  // already been taken care of (e.g. and of 0, test of undefined shifted bits,
9656  // etc.)
9657
9658  // (tbz (trunc x), b) -> (tbz x, b)
9659  // This case is just here to enable more of the below cases to be caught.
9660  if (Op->getOpcode() == ISD::TRUNCATE &&
9661      Bit < Op->getValueType(0).getSizeInBits()) {
9662    return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9663  }
9664
9665  if (Op->getNumOperands() != 2)
9666    return Op;
9667
9668  auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
9669  if (!C)
9670    return Op;
9671
9672  switch (Op->getOpcode()) {
9673  default:
9674    return Op;
9675
9676  // (tbz (and x, m), b) -> (tbz x, b)
9677  case ISD::AND:
9678    if ((C->getZExtValue() >> Bit) & 1)
9679      return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9680    return Op;
9681
9682  // (tbz (shl x, c), b) -> (tbz x, b-c)
9683  case ISD::SHL:
9684    if (C->getZExtValue() <= Bit &&
9685        (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
9686      Bit = Bit - C->getZExtValue();
9687      return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9688    }
9689    return Op;
9690
9691  // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
9692  case ISD::SRA:
9693    Bit = Bit + C->getZExtValue();
9694    if (Bit >= Op->getValueType(0).getSizeInBits())
9695      Bit = Op->getValueType(0).getSizeInBits() - 1;
9696    return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9697
9698  // (tbz (srl x, c), b) -> (tbz x, b+c)
9699  case ISD::SRL:
9700    if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
9701      Bit = Bit + C->getZExtValue();
9702      return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9703    }
9704    return Op;
9705
9706  // (tbz (xor x, -1), b) -> (tbnz x, b)
9707  case ISD::XOR:
9708    if ((C->getZExtValue() >> Bit) & 1)
9709      Invert = !Invert;
9710    return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9711  }
9712}
9713
9714// Optimize test single bit zero/non-zero and branch.
9715static SDValue performTBZCombine(SDNode *N,
9716                                 TargetLowering::DAGCombinerInfo &DCI,
9717                                 SelectionDAG &DAG) {
9718  unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
9719  bool Invert = false;
9720  SDValue TestSrc = N->getOperand(1);
9721  SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);
9722
9723  if (TestSrc == NewTestSrc)
9724    return SDValue();
9725
9726  unsigned NewOpc = N->getOpcode();
9727  if (Invert) {
9728    if (NewOpc == AArch64ISD::TBZ)
9729      NewOpc = AArch64ISD::TBNZ;
9730    else {
9731      assert(NewOpc == AArch64ISD::TBNZ);
9732      NewOpc = AArch64ISD::TBZ;
9733    }
9734  }
9735
9736  SDLoc DL(N);
9737  return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
9738                     DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
9739}
9740
9741// vselect (v1i1 setcc) ->
9742//     vselect (v1iXX setcc)  (XX is the size of the compared operand type)
9743// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
9744// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
9745// such VSELECT.
9746static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
9747  SDValue N0 = N->getOperand(0);
9748  EVT CCVT = N0.getValueType();
9749
9750  if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
9751      CCVT.getVectorElementType() != MVT::i1)
9752    return SDValue();
9753
9754  EVT ResVT = N->getValueType(0);
9755  EVT CmpVT = N0.getOperand(0).getValueType();
9756  // Only combine when the result type is of the same size as the compared
9757  // operands.
9758  if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
9759    return SDValue();
9760
9761  SDValue IfTrue = N->getOperand(1);
9762  SDValue IfFalse = N->getOperand(2);
9763  SDValue SetCC =
9764      DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
9765                   N0.getOperand(0), N0.getOperand(1),
9766                   cast<CondCodeSDNode>(N0.getOperand(2))->get());
9767  return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
9768                     IfTrue, IfFalse);
9769}
9770
9771/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
9772/// the compare-mask instructions rather than going via NZCV, even if LHS and
9773/// RHS are really scalar. This replaces any scalar setcc in the above pattern
9774/// with a vector one followed by a DUP shuffle on the result.
9775static SDValue performSelectCombine(SDNode *N,
9776                                    TargetLowering::DAGCombinerInfo &DCI) {
9777  SelectionDAG &DAG = DCI.DAG;
9778  SDValue N0 = N->getOperand(0);
9779  EVT ResVT = N->getValueType(0);
9780
9781  if (N0.getOpcode() != ISD::SETCC)
9782    return SDValue();
9783
9784  // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
9785  // scalar SetCCResultType. We also don't expect vectors, because we assume
9786  // that selects fed by vector SETCCs are canonicalized to VSELECT.
9787  assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
9788         "Scalar-SETCC feeding SELECT has unexpected result type!");
9789
9790  // If NumMaskElts == 0, the comparison is larger than select result. The
9791  // largest real NEON comparison is 64-bits per lane, which means the result is
9792  // at most 32-bits and an illegal vector. Just bail out for now.
9793  EVT SrcVT = N0.getOperand(0).getValueType();
9794
9795  // Don't try to do this optimization when the setcc itself has i1 operands.
9796  // There are no legal vectors of i1, so this would be pointless.
9797  if (SrcVT == MVT::i1)
9798    return SDValue();
9799
9800  int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
9801  if (!ResVT.isVector() || NumMaskElts == 0)
9802    return SDValue();
9803
9804  SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
9805  EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
9806
9807  // Also bail out if the vector CCVT isn't the same size as ResVT.
9808  // This can happen if the SETCC operand size doesn't divide the ResVT size
9809  // (e.g., f64 vs v3f32).
9810  if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
9811    return SDValue();
9812
9813  // Make sure we didn't create illegal types, if we're not supposed to.
9814  assert(DCI.isBeforeLegalize() ||
9815         DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
9816
9817  // First perform a vector comparison, where lane 0 is the one we're interested
9818  // in.
9819  SDLoc DL(N0);
9820  SDValue LHS =
9821      DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
9822  SDValue RHS =
9823      DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
9824  SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
9825
9826  // Now duplicate the comparison mask we want across all other lanes.
9827  SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
9828  SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
9829  Mask = DAG.getNode(ISD::BITCAST, DL,
9830                     ResVT.changeVectorElementTypeToInteger(), Mask);
9831
9832  return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
9833}
9834
9835/// Get rid of unnecessary NVCASTs (that don't change the type).
9836static SDValue performNVCASTCombine(SDNode *N) {
9837  if (N->getValueType(0) == N->getOperand(0).getValueType())
9838    return N->getOperand(0);
9839
9840  return SDValue();
9841}
9842
9843SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
9844                                                 DAGCombinerInfo &DCI) const {
9845  SelectionDAG &DAG = DCI.DAG;
9846  switch (N->getOpcode()) {
9847  default:
9848    break;
9849  case ISD::ADD:
9850  case ISD::SUB:
9851    return performAddSubLongCombine(N, DCI, DAG);
9852  case ISD::XOR:
9853    return performXorCombine(N, DAG, DCI, Subtarget);
9854  case ISD::MUL:
9855    return performMulCombine(N, DAG, DCI, Subtarget);
9856  case ISD::SINT_TO_FP:
9857  case ISD::UINT_TO_FP:
9858    return performIntToFpCombine(N, DAG, Subtarget);
9859  case ISD::FP_TO_SINT:
9860  case ISD::FP_TO_UINT:
9861    return performFpToIntCombine(N, DAG, DCI, Subtarget);
9862  case ISD::FDIV:
9863    return performFDivCombine(N, DAG, Subtarget);
9864  case ISD::OR:
9865    return performORCombine(N, DCI, Subtarget);
9866  case ISD::SRL:
9867    return performSRLCombine(N, DCI);
9868  case ISD::INTRINSIC_WO_CHAIN:
9869    return performIntrinsicCombine(N, DCI, Subtarget);
9870  case ISD::ANY_EXTEND:
9871  case ISD::ZERO_EXTEND:
9872  case ISD::SIGN_EXTEND:
9873    return performExtendCombine(N, DCI, DAG);
9874  case ISD::BITCAST:
9875    return performBitcastCombine(N, DCI, DAG);
9876  case ISD::CONCAT_VECTORS:
9877    return performConcatVectorsCombine(N, DCI, DAG);
9878  case ISD::SELECT: {
9879    SDValue RV = performSelectCombine(N, DCI);
9880    if (!RV.getNode())
9881      RV = performAcrossLaneMinMaxReductionCombine(N, DAG, Subtarget);
9882    return RV;
9883  }
9884  case ISD::VSELECT:
9885    return performVSelectCombine(N, DCI.DAG);
9886  case ISD::LOAD:
9887    if (performTBISimplification(N->getOperand(1), DCI, DAG))
9888      return SDValue(N, 0);
9889    break;
9890  case ISD::STORE:
9891    return performSTORECombine(N, DCI, DAG, Subtarget);
9892  case AArch64ISD::BRCOND:
9893    return performBRCONDCombine(N, DCI, DAG);
9894  case AArch64ISD::TBNZ:
9895  case AArch64ISD::TBZ:
9896    return performTBZCombine(N, DCI, DAG);
9897  case AArch64ISD::CSEL:
9898    return performCONDCombine(N, DCI, DAG, 2, 3);
9899  case AArch64ISD::DUP:
9900    return performPostLD1Combine(N, DCI, false);
9901  case AArch64ISD::NVCAST:
9902    return performNVCASTCombine(N);
9903  case ISD::INSERT_VECTOR_ELT:
9904    return performPostLD1Combine(N, DCI, true);
9905  case ISD::EXTRACT_VECTOR_ELT:
9906    return performAcrossLaneAddReductionCombine(N, DAG, Subtarget);
9907  case ISD::INTRINSIC_VOID:
9908  case ISD::INTRINSIC_W_CHAIN:
9909    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9910    case Intrinsic::aarch64_neon_ld2:
9911    case Intrinsic::aarch64_neon_ld3:
9912    case Intrinsic::aarch64_neon_ld4:
9913    case Intrinsic::aarch64_neon_ld1x2:
9914    case Intrinsic::aarch64_neon_ld1x3:
9915    case Intrinsic::aarch64_neon_ld1x4:
9916    case Intrinsic::aarch64_neon_ld2lane:
9917    case Intrinsic::aarch64_neon_ld3lane:
9918    case Intrinsic::aarch64_neon_ld4lane:
9919    case Intrinsic::aarch64_neon_ld2r:
9920    case Intrinsic::aarch64_neon_ld3r:
9921    case Intrinsic::aarch64_neon_ld4r:
9922    case Intrinsic::aarch64_neon_st2:
9923    case Intrinsic::aarch64_neon_st3:
9924    case Intrinsic::aarch64_neon_st4:
9925    case Intrinsic::aarch64_neon_st1x2:
9926    case Intrinsic::aarch64_neon_st1x3:
9927    case Intrinsic::aarch64_neon_st1x4:
9928    case Intrinsic::aarch64_neon_st2lane:
9929    case Intrinsic::aarch64_neon_st3lane:
9930    case Intrinsic::aarch64_neon_st4lane:
9931      return performNEONPostLDSTCombine(N, DCI, DAG);
9932    default:
9933      break;
9934    }
9935  }
9936  return SDValue();
9937}
9938
9939// Check if the return value is used as only a return value, as otherwise
9940// we can't perform a tail-call. In particular, we need to check for
9941// target ISD nodes that are returns and any other "odd" constructs
9942// that the generic analysis code won't necessarily catch.
9943bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
9944                                               SDValue &Chain) const {
9945  if (N->getNumValues() != 1)
9946    return false;
9947  if (!N->hasNUsesOfValue(1, 0))
9948    return false;
9949
9950  SDValue TCChain = Chain;
9951  SDNode *Copy = *N->use_begin();
9952  if (Copy->getOpcode() == ISD::CopyToReg) {
9953    // If the copy has a glue operand, we conservatively assume it isn't safe to
9954    // perform a tail call.
9955    if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
9956        MVT::Glue)
9957      return false;
9958    TCChain = Copy->getOperand(0);
9959  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
9960    return false;
9961
9962  bool HasRet = false;
9963  for (SDNode *Node : Copy->uses()) {
9964    if (Node->getOpcode() != AArch64ISD::RET_FLAG)
9965      return false;
9966    HasRet = true;
9967  }
9968
9969  if (!HasRet)
9970    return false;
9971
9972  Chain = TCChain;
9973  return true;
9974}
9975
9976// Return whether the an instruction can potentially be optimized to a tail
9977// call. This will cause the optimizers to attempt to move, or duplicate,
9978// return instructions to help enable tail call optimizations for this
9979// instruction.
9980bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
9981  return CI->isTailCall();
9982}
9983
9984bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
9985                                                   SDValue &Offset,
9986                                                   ISD::MemIndexedMode &AM,
9987                                                   bool &IsInc,
9988                                                   SelectionDAG &DAG) const {
9989  if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
9990    return false;
9991
9992  Base = Op->getOperand(0);
9993  // All of the indexed addressing mode instructions take a signed
9994  // 9 bit immediate offset.
9995  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
9996    int64_t RHSC = (int64_t)RHS->getZExtValue();
9997    if (RHSC >= 256 || RHSC <= -256)
9998      return false;
9999    IsInc = (Op->getOpcode() == ISD::ADD);
10000    Offset = Op->getOperand(1);
10001    return true;
10002  }
10003  return false;
10004}
10005
10006bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
10007                                                      SDValue &Offset,
10008                                                      ISD::MemIndexedMode &AM,
10009                                                      SelectionDAG &DAG) const {
10010  EVT VT;
10011  SDValue Ptr;
10012  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10013    VT = LD->getMemoryVT();
10014    Ptr = LD->getBasePtr();
10015  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10016    VT = ST->getMemoryVT();
10017    Ptr = ST->getBasePtr();
10018  } else
10019    return false;
10020
10021  bool IsInc;
10022  if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
10023    return false;
10024  AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
10025  return true;
10026}
10027
10028bool AArch64TargetLowering::getPostIndexedAddressParts(
10029    SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
10030    ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
10031  EVT VT;
10032  SDValue Ptr;
10033  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10034    VT = LD->getMemoryVT();
10035    Ptr = LD->getBasePtr();
10036  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10037    VT = ST->getMemoryVT();
10038    Ptr = ST->getBasePtr();
10039  } else
10040    return false;
10041
10042  bool IsInc;
10043  if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
10044    return false;
10045  // Post-indexing updates the base, so it's not a valid transform
10046  // if that's not the same as the load's pointer.
10047  if (Ptr != Base)
10048    return false;
10049  AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
10050  return true;
10051}
10052
10053static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
10054                                  SelectionDAG &DAG) {
10055  SDLoc DL(N);
10056  SDValue Op = N->getOperand(0);
10057
10058  if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
10059    return;
10060
10061  Op = SDValue(
10062      DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
10063                         DAG.getUNDEF(MVT::i32), Op,
10064                         DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
10065      0);
10066  Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
10067  Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
10068}
10069
10070static void ReplaceReductionResults(SDNode *N,
10071                                    SmallVectorImpl<SDValue> &Results,
10072                                    SelectionDAG &DAG, unsigned InterOp,
10073                                    unsigned AcrossOp) {
10074  EVT LoVT, HiVT;
10075  SDValue Lo, Hi;
10076  SDLoc dl(N);
10077  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
10078  std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
10079  SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
10080  SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
10081  Results.push_back(SplitVal);
10082}
10083
10084static void ReplaceCMP_SWAP_128Results(SDNode *N,
10085                                       SmallVectorImpl<SDValue> & Results,
10086                                       SelectionDAG &DAG) {
10087  assert(N->getValueType(0) == MVT::i128 &&
10088         "AtomicCmpSwap on types less than 128 should be legal");
10089  SDValue Ops[] = {N->getOperand(1),
10090                   N->getOperand(2)->getOperand(0),
10091                   N->getOperand(2)->getOperand(1),
10092                   N->getOperand(3)->getOperand(0),
10093                   N->getOperand(3)->getOperand(1),
10094                   N->getOperand(0)};
10095  SDNode *CmpSwap = DAG.getMachineNode(
10096      AArch64::CMP_SWAP_128, SDLoc(N),
10097      DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops);
10098
10099  MachineFunction &MF = DAG.getMachineFunction();
10100  MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
10101  MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
10102  cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
10103
10104  Results.push_back(SDValue(CmpSwap, 0));
10105  Results.push_back(SDValue(CmpSwap, 1));
10106  Results.push_back(SDValue(CmpSwap, 3));
10107}
10108
10109void AArch64TargetLowering::ReplaceNodeResults(
10110    SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
10111  switch (N->getOpcode()) {
10112  default:
10113    llvm_unreachable("Don't know how to custom expand this");
10114  case ISD::BITCAST:
10115    ReplaceBITCASTResults(N, Results, DAG);
10116    return;
10117  case AArch64ISD::SADDV:
10118    ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
10119    return;
10120  case AArch64ISD::UADDV:
10121    ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
10122    return;
10123  case AArch64ISD::SMINV:
10124    ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
10125    return;
10126  case AArch64ISD::UMINV:
10127    ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
10128    return;
10129  case AArch64ISD::SMAXV:
10130    ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
10131    return;
10132  case AArch64ISD::UMAXV:
10133    ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
10134    return;
10135  case ISD::FP_TO_UINT:
10136  case ISD::FP_TO_SINT:
10137    assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
10138    // Let normal code take care of it by not adding anything to Results.
10139    return;
10140  case ISD::ATOMIC_CMP_SWAP:
10141    ReplaceCMP_SWAP_128Results(N, Results, DAG);
10142    return;
10143  }
10144}
10145
10146bool AArch64TargetLowering::useLoadStackGuardNode() const {
10147  if (!Subtarget->isTargetAndroid())
10148    return true;
10149  return TargetLowering::useLoadStackGuardNode();
10150}
10151
10152unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
10153  // Combine multiple FDIVs with the same divisor into multiple FMULs by the
10154  // reciprocal if there are three or more FDIVs.
10155  return 3;
10156}
10157
10158TargetLoweringBase::LegalizeTypeAction
10159AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
10160  MVT SVT = VT.getSimpleVT();
10161  // During type legalization, we prefer to widen v1i8, v1i16, v1i32  to v8i8,
10162  // v4i16, v2i32 instead of to promote.
10163  if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
10164      || SVT == MVT::v1f32)
10165    return TypeWidenVector;
10166
10167  return TargetLoweringBase::getPreferredVectorAction(VT);
10168}
10169
10170// Loads and stores less than 128-bits are already atomic; ones above that
10171// are doomed anyway, so defer to the default libcall and blame the OS when
10172// things go wrong.
10173bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
10174  unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
10175  return Size == 128;
10176}
10177
10178// Loads and stores less than 128-bits are already atomic; ones above that
10179// are doomed anyway, so defer to the default libcall and blame the OS when
10180// things go wrong.
10181TargetLowering::AtomicExpansionKind
10182AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
10183  unsigned Size = LI->getType()->getPrimitiveSizeInBits();
10184  return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
10185}
10186
10187// For the real atomic operations, we have ldxr/stxr up to 128 bits,
10188TargetLowering::AtomicExpansionKind
10189AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
10190  unsigned Size = AI->getType()->getPrimitiveSizeInBits();
10191  return Size <= 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
10192}
10193
10194bool AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
10195    AtomicCmpXchgInst *AI) const {
10196  // At -O0, fast-regalloc cannot cope with the live vregs necessary to
10197  // implement cmpxchg without spilling. If the address being exchanged is also
10198  // on the stack and close enough to the spill slot, this can lead to a
10199  // situation where the monitor always gets cleared and the atomic operation
10200  // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
10201  return getTargetMachine().getOptLevel() != 0;
10202}
10203
10204Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
10205                                             AtomicOrdering Ord) const {
10206  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10207  Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
10208  bool IsAcquire = isAcquireOrStronger(Ord);
10209
10210  // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
10211  // intrinsic must return {i64, i64} and we have to recombine them into a
10212  // single i128 here.
10213  if (ValTy->getPrimitiveSizeInBits() == 128) {
10214    Intrinsic::ID Int =
10215        IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
10216    Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
10217
10218    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
10219    Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
10220
10221    Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
10222    Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
10223    Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
10224    Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
10225    return Builder.CreateOr(
10226        Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
10227  }
10228
10229  Type *Tys[] = { Addr->getType() };
10230  Intrinsic::ID Int =
10231      IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
10232  Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
10233
10234  return Builder.CreateTruncOrBitCast(
10235      Builder.CreateCall(Ldxr, Addr),
10236      cast<PointerType>(Addr->getType())->getElementType());
10237}
10238
10239void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
10240    IRBuilder<> &Builder) const {
10241  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10242  Builder.CreateCall(
10243      llvm::Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
10244}
10245
10246Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
10247                                                   Value *Val, Value *Addr,
10248                                                   AtomicOrdering Ord) const {
10249  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10250  bool IsRelease = isReleaseOrStronger(Ord);
10251
10252  // Since the intrinsics must have legal type, the i128 intrinsics take two
10253  // parameters: "i64, i64". We must marshal Val into the appropriate form
10254  // before the call.
10255  if (Val->getType()->getPrimitiveSizeInBits() == 128) {
10256    Intrinsic::ID Int =
10257        IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
10258    Function *Stxr = Intrinsic::getDeclaration(M, Int);
10259    Type *Int64Ty = Type::getInt64Ty(M->getContext());
10260
10261    Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
10262    Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
10263    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
10264    return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
10265  }
10266
10267  Intrinsic::ID Int =
10268      IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
10269  Type *Tys[] = { Addr->getType() };
10270  Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
10271
10272  return Builder.CreateCall(Stxr,
10273                            {Builder.CreateZExtOrBitCast(
10274                                 Val, Stxr->getFunctionType()->getParamType(0)),
10275                             Addr});
10276}
10277
10278bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
10279    Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
10280  return Ty->isArrayTy();
10281}
10282
10283bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
10284                                                            EVT) const {
10285  return false;
10286}
10287
10288Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
10289  if (!Subtarget->isTargetAndroid())
10290    return TargetLowering::getIRStackGuard(IRB);
10291
10292  // Android provides a fixed TLS slot for the stack cookie. See the definition
10293  // of TLS_SLOT_STACK_GUARD in
10294  // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
10295  const unsigned TlsOffset = 0x28;
10296  Module *M = IRB.GetInsertBlock()->getParent()->getParent();
10297  Function *ThreadPointerFunc =
10298      Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
10299  return IRB.CreatePointerCast(
10300      IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), TlsOffset),
10301      Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0));
10302}
10303
10304Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
10305  if (!Subtarget->isTargetAndroid())
10306    return TargetLowering::getSafeStackPointerLocation(IRB);
10307
10308  // Android provides a fixed TLS slot for the SafeStack pointer. See the
10309  // definition of TLS_SLOT_SAFESTACK in
10310  // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
10311  const unsigned TlsOffset = 0x48;
10312  Module *M = IRB.GetInsertBlock()->getParent()->getParent();
10313  Function *ThreadPointerFunc =
10314      Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
10315  return IRB.CreatePointerCast(
10316      IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), TlsOffset),
10317      Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0));
10318}
10319
10320void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
10321  // Update IsSplitCSR in AArch64unctionInfo.
10322  AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
10323  AFI->setIsSplitCSR(true);
10324}
10325
10326void AArch64TargetLowering::insertCopiesSplitCSR(
10327    MachineBasicBlock *Entry,
10328    const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
10329  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
10330  const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
10331  if (!IStart)
10332    return;
10333
10334  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10335  MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
10336  MachineBasicBlock::iterator MBBI = Entry->begin();
10337  for (const MCPhysReg *I = IStart; *I; ++I) {
10338    const TargetRegisterClass *RC = nullptr;
10339    if (AArch64::GPR64RegClass.contains(*I))
10340      RC = &AArch64::GPR64RegClass;
10341    else if (AArch64::FPR64RegClass.contains(*I))
10342      RC = &AArch64::FPR64RegClass;
10343    else
10344      llvm_unreachable("Unexpected register class in CSRsViaCopy!");
10345
10346    unsigned NewVR = MRI->createVirtualRegister(RC);
10347    // Create copy from CSR to a virtual register.
10348    // FIXME: this currently does not emit CFI pseudo-instructions, it works
10349    // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
10350    // nounwind. If we want to generalize this later, we may need to emit
10351    // CFI pseudo-instructions.
10352    assert(Entry->getParent()->getFunction()->hasFnAttribute(
10353               Attribute::NoUnwind) &&
10354           "Function should be nounwind in insertCopiesSplitCSR!");
10355    Entry->addLiveIn(*I);
10356    BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
10357        .addReg(*I);
10358
10359    // Insert the copy-back instructions right before the terminator.
10360    for (auto *Exit : Exits)
10361      BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
10362              TII->get(TargetOpcode::COPY), *I)
10363          .addReg(NewVR);
10364  }
10365}
10366
10367bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeSet Attr) const {
10368  // Integer division on AArch64 is expensive. However, when aggressively
10369  // optimizing for code size, we prefer to use a div instruction, as it is
10370  // usually smaller than the alternative sequence.
10371  // The exception to this is vector division. Since AArch64 doesn't have vector
10372  // integer division, leaving the division as-is is a loss even in terms of
10373  // size, because it will have to be scalarized, while the alternative code
10374  // sequence can be performed in vector form.
10375  bool OptSize =
10376      Attr.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
10377  return OptSize && !VT.isVector();
10378}
10379