1//===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Base ARM implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ARM.h"
15#include "ARMBaseInstrInfo.h"
16#include "ARMBaseRegisterInfo.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMFeatures.h"
19#include "ARMHazardRecognizer.h"
20#include "ARMMachineFunctionInfo.h"
21#include "MCTargetDesc/ARMAddressingModes.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineJumpTableInfo.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/SelectionDAGNodes.h"
31#include "llvm/CodeGen/TargetSchedule.h"
32#include "llvm/IR/Constants.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/GlobalValue.h"
35#include "llvm/MC/MCAsmInfo.h"
36#include "llvm/MC/MCExpr.h"
37#include "llvm/Support/BranchProbability.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42
43using namespace llvm;
44
45#define DEBUG_TYPE "arm-instrinfo"
46
47#define GET_INSTRINFO_CTOR_DTOR
48#include "ARMGenInstrInfo.inc"
49
50static cl::opt<bool>
51EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
52               cl::desc("Enable ARM 2-addr to 3-addr conv"));
53
54/// ARM_MLxEntry - Record information about MLA / MLS instructions.
55struct ARM_MLxEntry {
56  uint16_t MLxOpc;     // MLA / MLS opcode
57  uint16_t MulOpc;     // Expanded multiplication opcode
58  uint16_t AddSubOpc;  // Expanded add / sub opcode
59  bool NegAcc;         // True if the acc is negated before the add / sub.
60  bool HasLane;        // True if instruction has an extra "lane" operand.
61};
62
63static const ARM_MLxEntry ARM_MLxTable[] = {
64  // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
65  // fp scalar ops
66  { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
67  { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
68  { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
69  { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
70  { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
71  { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
72  { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
73  { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
74
75  // fp SIMD ops
76  { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
77  { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
78  { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
79  { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
80  { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
81  { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
82  { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
83  { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
84};
85
86ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
87  : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
88    Subtarget(STI) {
89  for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
90    if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
91      llvm_unreachable("Duplicated entries?");
92    MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
93    MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
94  }
95}
96
97// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
98// currently defaults to no prepass hazard recognizer.
99ScheduleHazardRecognizer *
100ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
101                                               const ScheduleDAG *DAG) const {
102  if (usePreRAHazardRecognizer()) {
103    const InstrItineraryData *II =
104        static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
105    return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
106  }
107  return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
108}
109
110ScheduleHazardRecognizer *ARMBaseInstrInfo::
111CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
112                                   const ScheduleDAG *DAG) const {
113  if (Subtarget.isThumb2() || Subtarget.hasVFP2())
114    return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
115  return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
116}
117
118MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
119    MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
120  // FIXME: Thumb2 support.
121
122  if (!EnableARM3Addr)
123    return nullptr;
124
125  MachineFunction &MF = *MI.getParent()->getParent();
126  uint64_t TSFlags = MI.getDesc().TSFlags;
127  bool isPre = false;
128  switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
129  default: return nullptr;
130  case ARMII::IndexModePre:
131    isPre = true;
132    break;
133  case ARMII::IndexModePost:
134    break;
135  }
136
137  // Try splitting an indexed load/store to an un-indexed one plus an add/sub
138  // operation.
139  unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
140  if (MemOpc == 0)
141    return nullptr;
142
143  MachineInstr *UpdateMI = nullptr;
144  MachineInstr *MemMI = nullptr;
145  unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
146  const MCInstrDesc &MCID = MI.getDesc();
147  unsigned NumOps = MCID.getNumOperands();
148  bool isLoad = !MI.mayStore();
149  const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
150  const MachineOperand &Base = MI.getOperand(2);
151  const MachineOperand &Offset = MI.getOperand(NumOps - 3);
152  unsigned WBReg = WB.getReg();
153  unsigned BaseReg = Base.getReg();
154  unsigned OffReg = Offset.getReg();
155  unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
156  ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
157  switch (AddrMode) {
158  default: llvm_unreachable("Unknown indexed op!");
159  case ARMII::AddrMode2: {
160    bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
161    unsigned Amt = ARM_AM::getAM2Offset(OffImm);
162    if (OffReg == 0) {
163      if (ARM_AM::getSOImmVal(Amt) == -1)
164        // Can't encode it in a so_imm operand. This transformation will
165        // add more than 1 instruction. Abandon!
166        return nullptr;
167      UpdateMI = BuildMI(MF, MI.getDebugLoc(),
168                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
169                     .addReg(BaseReg)
170                     .addImm(Amt)
171                     .addImm(Pred)
172                     .addReg(0)
173                     .addReg(0);
174    } else if (Amt != 0) {
175      ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
176      unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
177      UpdateMI = BuildMI(MF, MI.getDebugLoc(),
178                         get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
179                     .addReg(BaseReg)
180                     .addReg(OffReg)
181                     .addReg(0)
182                     .addImm(SOOpc)
183                     .addImm(Pred)
184                     .addReg(0)
185                     .addReg(0);
186    } else
187      UpdateMI = BuildMI(MF, MI.getDebugLoc(),
188                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
189                     .addReg(BaseReg)
190                     .addReg(OffReg)
191                     .addImm(Pred)
192                     .addReg(0)
193                     .addReg(0);
194    break;
195  }
196  case ARMII::AddrMode3 : {
197    bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
198    unsigned Amt = ARM_AM::getAM3Offset(OffImm);
199    if (OffReg == 0)
200      // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
201      UpdateMI = BuildMI(MF, MI.getDebugLoc(),
202                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
203                     .addReg(BaseReg)
204                     .addImm(Amt)
205                     .addImm(Pred)
206                     .addReg(0)
207                     .addReg(0);
208    else
209      UpdateMI = BuildMI(MF, MI.getDebugLoc(),
210                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
211                     .addReg(BaseReg)
212                     .addReg(OffReg)
213                     .addImm(Pred)
214                     .addReg(0)
215                     .addReg(0);
216    break;
217  }
218  }
219
220  std::vector<MachineInstr*> NewMIs;
221  if (isPre) {
222    if (isLoad)
223      MemMI =
224          BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
225              .addReg(WBReg)
226              .addImm(0)
227              .addImm(Pred);
228    else
229      MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
230                  .addReg(MI.getOperand(1).getReg())
231                  .addReg(WBReg)
232                  .addReg(0)
233                  .addImm(0)
234                  .addImm(Pred);
235    NewMIs.push_back(MemMI);
236    NewMIs.push_back(UpdateMI);
237  } else {
238    if (isLoad)
239      MemMI =
240          BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
241              .addReg(BaseReg)
242              .addImm(0)
243              .addImm(Pred);
244    else
245      MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
246                  .addReg(MI.getOperand(1).getReg())
247                  .addReg(BaseReg)
248                  .addReg(0)
249                  .addImm(0)
250                  .addImm(Pred);
251    if (WB.isDead())
252      UpdateMI->getOperand(0).setIsDead();
253    NewMIs.push_back(UpdateMI);
254    NewMIs.push_back(MemMI);
255  }
256
257  // Transfer LiveVariables states, kill / dead info.
258  if (LV) {
259    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
260      MachineOperand &MO = MI.getOperand(i);
261      if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
262        unsigned Reg = MO.getReg();
263
264        LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
265        if (MO.isDef()) {
266          MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
267          if (MO.isDead())
268            LV->addVirtualRegisterDead(Reg, *NewMI);
269        }
270        if (MO.isUse() && MO.isKill()) {
271          for (unsigned j = 0; j < 2; ++j) {
272            // Look at the two new MI's in reverse order.
273            MachineInstr *NewMI = NewMIs[j];
274            if (!NewMI->readsRegister(Reg))
275              continue;
276            LV->addVirtualRegisterKilled(Reg, *NewMI);
277            if (VI.removeKill(MI))
278              VI.Kills.push_back(NewMI);
279            break;
280          }
281        }
282      }
283    }
284  }
285
286  MachineBasicBlock::iterator MBBI = MI.getIterator();
287  MFI->insert(MBBI, NewMIs[1]);
288  MFI->insert(MBBI, NewMIs[0]);
289  return NewMIs[0];
290}
291
292// Branch analysis.
293bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
294                                     MachineBasicBlock *&TBB,
295                                     MachineBasicBlock *&FBB,
296                                     SmallVectorImpl<MachineOperand> &Cond,
297                                     bool AllowModify) const {
298  TBB = nullptr;
299  FBB = nullptr;
300
301  MachineBasicBlock::iterator I = MBB.end();
302  if (I == MBB.begin())
303    return false; // Empty blocks are easy.
304  --I;
305
306  // Walk backwards from the end of the basic block until the branch is
307  // analyzed or we give up.
308  while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
309
310    // Flag to be raised on unanalyzeable instructions. This is useful in cases
311    // where we want to clean up on the end of the basic block before we bail
312    // out.
313    bool CantAnalyze = false;
314
315    // Skip over DEBUG values and predicated nonterminators.
316    while (I->isDebugValue() || !I->isTerminator()) {
317      if (I == MBB.begin())
318        return false;
319      --I;
320    }
321
322    if (isIndirectBranchOpcode(I->getOpcode()) ||
323        isJumpTableBranchOpcode(I->getOpcode())) {
324      // Indirect branches and jump tables can't be analyzed, but we still want
325      // to clean up any instructions at the tail of the basic block.
326      CantAnalyze = true;
327    } else if (isUncondBranchOpcode(I->getOpcode())) {
328      TBB = I->getOperand(0).getMBB();
329    } else if (isCondBranchOpcode(I->getOpcode())) {
330      // Bail out if we encounter multiple conditional branches.
331      if (!Cond.empty())
332        return true;
333
334      assert(!FBB && "FBB should have been null.");
335      FBB = TBB;
336      TBB = I->getOperand(0).getMBB();
337      Cond.push_back(I->getOperand(1));
338      Cond.push_back(I->getOperand(2));
339    } else if (I->isReturn()) {
340      // Returns can't be analyzed, but we should run cleanup.
341      CantAnalyze = !isPredicated(*I);
342    } else {
343      // We encountered other unrecognized terminator. Bail out immediately.
344      return true;
345    }
346
347    // Cleanup code - to be run for unpredicated unconditional branches and
348    //                returns.
349    if (!isPredicated(*I) &&
350          (isUncondBranchOpcode(I->getOpcode()) ||
351           isIndirectBranchOpcode(I->getOpcode()) ||
352           isJumpTableBranchOpcode(I->getOpcode()) ||
353           I->isReturn())) {
354      // Forget any previous condition branch information - it no longer applies.
355      Cond.clear();
356      FBB = nullptr;
357
358      // If we can modify the function, delete everything below this
359      // unconditional branch.
360      if (AllowModify) {
361        MachineBasicBlock::iterator DI = std::next(I);
362        while (DI != MBB.end()) {
363          MachineInstr &InstToDelete = *DI;
364          ++DI;
365          InstToDelete.eraseFromParent();
366        }
367      }
368    }
369
370    if (CantAnalyze)
371      return true;
372
373    if (I == MBB.begin())
374      return false;
375
376    --I;
377  }
378
379  // We made it past the terminators without bailing out - we must have
380  // analyzed this branch successfully.
381  return false;
382}
383
384
385unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
386  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
387  if (I == MBB.end())
388    return 0;
389
390  if (!isUncondBranchOpcode(I->getOpcode()) &&
391      !isCondBranchOpcode(I->getOpcode()))
392    return 0;
393
394  // Remove the branch.
395  I->eraseFromParent();
396
397  I = MBB.end();
398
399  if (I == MBB.begin()) return 1;
400  --I;
401  if (!isCondBranchOpcode(I->getOpcode()))
402    return 1;
403
404  // Remove the branch.
405  I->eraseFromParent();
406  return 2;
407}
408
409unsigned ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB,
410                                        MachineBasicBlock *TBB,
411                                        MachineBasicBlock *FBB,
412                                        ArrayRef<MachineOperand> Cond,
413                                        const DebugLoc &DL) const {
414  ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
415  int BOpc   = !AFI->isThumbFunction()
416    ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
417  int BccOpc = !AFI->isThumbFunction()
418    ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
419  bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
420
421  // Shouldn't be a fall through.
422  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
423  assert((Cond.size() == 2 || Cond.size() == 0) &&
424         "ARM branch conditions have two components!");
425
426  // For conditional branches, we use addOperand to preserve CPSR flags.
427
428  if (!FBB) {
429    if (Cond.empty()) { // Unconditional branch?
430      if (isThumb)
431        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
432      else
433        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
434    } else
435      BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
436        .addImm(Cond[0].getImm()).addOperand(Cond[1]);
437    return 1;
438  }
439
440  // Two-way conditional branch.
441  BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
442    .addImm(Cond[0].getImm()).addOperand(Cond[1]);
443  if (isThumb)
444    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
445  else
446    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
447  return 2;
448}
449
450bool ARMBaseInstrInfo::
451ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
452  ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
453  Cond[0].setImm(ARMCC::getOppositeCondition(CC));
454  return false;
455}
456
457bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
458  if (MI.isBundle()) {
459    MachineBasicBlock::const_instr_iterator I = MI.getIterator();
460    MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
461    while (++I != E && I->isInsideBundle()) {
462      int PIdx = I->findFirstPredOperandIdx();
463      if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
464        return true;
465    }
466    return false;
467  }
468
469  int PIdx = MI.findFirstPredOperandIdx();
470  return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
471}
472
473bool ARMBaseInstrInfo::PredicateInstruction(
474    MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
475  unsigned Opc = MI.getOpcode();
476  if (isUncondBranchOpcode(Opc)) {
477    MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
478    MachineInstrBuilder(*MI.getParent()->getParent(), MI)
479      .addImm(Pred[0].getImm())
480      .addReg(Pred[1].getReg());
481    return true;
482  }
483
484  int PIdx = MI.findFirstPredOperandIdx();
485  if (PIdx != -1) {
486    MachineOperand &PMO = MI.getOperand(PIdx);
487    PMO.setImm(Pred[0].getImm());
488    MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
489    return true;
490  }
491  return false;
492}
493
494bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
495                                         ArrayRef<MachineOperand> Pred2) const {
496  if (Pred1.size() > 2 || Pred2.size() > 2)
497    return false;
498
499  ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
500  ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
501  if (CC1 == CC2)
502    return true;
503
504  switch (CC1) {
505  default:
506    return false;
507  case ARMCC::AL:
508    return true;
509  case ARMCC::HS:
510    return CC2 == ARMCC::HI;
511  case ARMCC::LS:
512    return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
513  case ARMCC::GE:
514    return CC2 == ARMCC::GT;
515  case ARMCC::LE:
516    return CC2 == ARMCC::LT;
517  }
518}
519
520bool ARMBaseInstrInfo::DefinesPredicate(
521    MachineInstr &MI, std::vector<MachineOperand> &Pred) const {
522  bool Found = false;
523  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
524    const MachineOperand &MO = MI.getOperand(i);
525    if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
526        (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
527      Pred.push_back(MO);
528      Found = true;
529    }
530  }
531
532  return Found;
533}
534
535static bool isCPSRDefined(const MachineInstr *MI) {
536  for (const auto &MO : MI->operands())
537    if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
538      return true;
539  return false;
540}
541
542static bool isEligibleForITBlock(const MachineInstr *MI) {
543  switch (MI->getOpcode()) {
544  default: return true;
545  case ARM::tADC:   // ADC (register) T1
546  case ARM::tADDi3: // ADD (immediate) T1
547  case ARM::tADDi8: // ADD (immediate) T2
548  case ARM::tADDrr: // ADD (register) T1
549  case ARM::tAND:   // AND (register) T1
550  case ARM::tASRri: // ASR (immediate) T1
551  case ARM::tASRrr: // ASR (register) T1
552  case ARM::tBIC:   // BIC (register) T1
553  case ARM::tEOR:   // EOR (register) T1
554  case ARM::tLSLri: // LSL (immediate) T1
555  case ARM::tLSLrr: // LSL (register) T1
556  case ARM::tLSRri: // LSR (immediate) T1
557  case ARM::tLSRrr: // LSR (register) T1
558  case ARM::tMUL:   // MUL T1
559  case ARM::tMVN:   // MVN (register) T1
560  case ARM::tORR:   // ORR (register) T1
561  case ARM::tROR:   // ROR (register) T1
562  case ARM::tRSB:   // RSB (immediate) T1
563  case ARM::tSBC:   // SBC (register) T1
564  case ARM::tSUBi3: // SUB (immediate) T1
565  case ARM::tSUBi8: // SUB (immediate) T2
566  case ARM::tSUBrr: // SUB (register) T1
567    return !isCPSRDefined(MI);
568  }
569}
570
571/// isPredicable - Return true if the specified instruction can be predicated.
572/// By default, this returns true for every instruction with a
573/// PredicateOperand.
574bool ARMBaseInstrInfo::isPredicable(MachineInstr &MI) const {
575  if (!MI.isPredicable())
576    return false;
577
578  if (!isEligibleForITBlock(&MI))
579    return false;
580
581  ARMFunctionInfo *AFI =
582      MI.getParent()->getParent()->getInfo<ARMFunctionInfo>();
583
584  if (AFI->isThumb2Function()) {
585    if (getSubtarget().restrictIT())
586      return isV8EligibleForIT(&MI);
587  } else { // non-Thumb
588    if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
589      return false;
590  }
591
592  return true;
593}
594
595namespace llvm {
596template <> bool IsCPSRDead<MachineInstr>(MachineInstr *MI) {
597  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
598    const MachineOperand &MO = MI->getOperand(i);
599    if (!MO.isReg() || MO.isUndef() || MO.isUse())
600      continue;
601    if (MO.getReg() != ARM::CPSR)
602      continue;
603    if (!MO.isDead())
604      return false;
605  }
606  // all definitions of CPSR are dead
607  return true;
608}
609}
610
611/// GetInstSize - Return the size of the specified MachineInstr.
612///
613unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr &MI) const {
614  const MachineBasicBlock &MBB = *MI.getParent();
615  const MachineFunction *MF = MBB.getParent();
616  const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
617
618  const MCInstrDesc &MCID = MI.getDesc();
619  if (MCID.getSize())
620    return MCID.getSize();
621
622  // If this machine instr is an inline asm, measure it.
623  if (MI.getOpcode() == ARM::INLINEASM)
624    return getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
625  unsigned Opc = MI.getOpcode();
626  switch (Opc) {
627  default:
628    // pseudo-instruction sizes are zero.
629    return 0;
630  case TargetOpcode::BUNDLE:
631    return getInstBundleLength(MI);
632  case ARM::MOVi16_ga_pcrel:
633  case ARM::MOVTi16_ga_pcrel:
634  case ARM::t2MOVi16_ga_pcrel:
635  case ARM::t2MOVTi16_ga_pcrel:
636    return 4;
637  case ARM::MOVi32imm:
638  case ARM::t2MOVi32imm:
639    return 8;
640  case ARM::CONSTPOOL_ENTRY:
641  case ARM::JUMPTABLE_INSTS:
642  case ARM::JUMPTABLE_ADDRS:
643  case ARM::JUMPTABLE_TBB:
644  case ARM::JUMPTABLE_TBH:
645    // If this machine instr is a constant pool entry, its size is recorded as
646    // operand #2.
647    return MI.getOperand(2).getImm();
648  case ARM::Int_eh_sjlj_longjmp:
649    return 16;
650  case ARM::tInt_eh_sjlj_longjmp:
651    return 10;
652  case ARM::tInt_WIN_eh_sjlj_longjmp:
653    return 12;
654  case ARM::Int_eh_sjlj_setjmp:
655  case ARM::Int_eh_sjlj_setjmp_nofp:
656    return 20;
657  case ARM::tInt_eh_sjlj_setjmp:
658  case ARM::t2Int_eh_sjlj_setjmp:
659  case ARM::t2Int_eh_sjlj_setjmp_nofp:
660    return 12;
661  case ARM::SPACE:
662    return MI.getOperand(1).getImm();
663  }
664}
665
666unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
667  unsigned Size = 0;
668  MachineBasicBlock::const_instr_iterator I = MI.getIterator();
669  MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
670  while (++I != E && I->isInsideBundle()) {
671    assert(!I->isBundle() && "No nested bundle!");
672    Size += GetInstSizeInBytes(*I);
673  }
674  return Size;
675}
676
677void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
678                                    MachineBasicBlock::iterator I,
679                                    unsigned DestReg, bool KillSrc,
680                                    const ARMSubtarget &Subtarget) const {
681  unsigned Opc = Subtarget.isThumb()
682                     ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
683                     : ARM::MRS;
684
685  MachineInstrBuilder MIB =
686      BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
687
688  // There is only 1 A/R class MRS instruction, and it always refers to
689  // APSR. However, there are lots of other possibilities on M-class cores.
690  if (Subtarget.isMClass())
691    MIB.addImm(0x800);
692
693  AddDefaultPred(MIB);
694
695  MIB.addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
696}
697
698void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
699                                  MachineBasicBlock::iterator I,
700                                  unsigned SrcReg, bool KillSrc,
701                                  const ARMSubtarget &Subtarget) const {
702  unsigned Opc = Subtarget.isThumb()
703                     ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
704                     : ARM::MSR;
705
706  MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
707
708  if (Subtarget.isMClass())
709    MIB.addImm(0x800);
710  else
711    MIB.addImm(8);
712
713  MIB.addReg(SrcReg, getKillRegState(KillSrc));
714
715  AddDefaultPred(MIB);
716
717  MIB.addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
718}
719
720void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
721                                   MachineBasicBlock::iterator I,
722                                   const DebugLoc &DL, unsigned DestReg,
723                                   unsigned SrcReg, bool KillSrc) const {
724  bool GPRDest = ARM::GPRRegClass.contains(DestReg);
725  bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
726
727  if (GPRDest && GPRSrc) {
728    AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
729                                    .addReg(SrcReg, getKillRegState(KillSrc))));
730    return;
731  }
732
733  bool SPRDest = ARM::SPRRegClass.contains(DestReg);
734  bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
735
736  unsigned Opc = 0;
737  if (SPRDest && SPRSrc)
738    Opc = ARM::VMOVS;
739  else if (GPRDest && SPRSrc)
740    Opc = ARM::VMOVRS;
741  else if (SPRDest && GPRSrc)
742    Opc = ARM::VMOVSR;
743  else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP())
744    Opc = ARM::VMOVD;
745  else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
746    Opc = ARM::VORRq;
747
748  if (Opc) {
749    MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
750    MIB.addReg(SrcReg, getKillRegState(KillSrc));
751    if (Opc == ARM::VORRq)
752      MIB.addReg(SrcReg, getKillRegState(KillSrc));
753    AddDefaultPred(MIB);
754    return;
755  }
756
757  // Handle register classes that require multiple instructions.
758  unsigned BeginIdx = 0;
759  unsigned SubRegs = 0;
760  int Spacing = 1;
761
762  // Use VORRq when possible.
763  if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
764    Opc = ARM::VORRq;
765    BeginIdx = ARM::qsub_0;
766    SubRegs = 2;
767  } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
768    Opc = ARM::VORRq;
769    BeginIdx = ARM::qsub_0;
770    SubRegs = 4;
771  // Fall back to VMOVD.
772  } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
773    Opc = ARM::VMOVD;
774    BeginIdx = ARM::dsub_0;
775    SubRegs = 2;
776  } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
777    Opc = ARM::VMOVD;
778    BeginIdx = ARM::dsub_0;
779    SubRegs = 3;
780  } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
781    Opc = ARM::VMOVD;
782    BeginIdx = ARM::dsub_0;
783    SubRegs = 4;
784  } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
785    Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
786    BeginIdx = ARM::gsub_0;
787    SubRegs = 2;
788  } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
789    Opc = ARM::VMOVD;
790    BeginIdx = ARM::dsub_0;
791    SubRegs = 2;
792    Spacing = 2;
793  } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
794    Opc = ARM::VMOVD;
795    BeginIdx = ARM::dsub_0;
796    SubRegs = 3;
797    Spacing = 2;
798  } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
799    Opc = ARM::VMOVD;
800    BeginIdx = ARM::dsub_0;
801    SubRegs = 4;
802    Spacing = 2;
803  } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) {
804    Opc = ARM::VMOVS;
805    BeginIdx = ARM::ssub_0;
806    SubRegs = 2;
807  } else if (SrcReg == ARM::CPSR) {
808    copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
809    return;
810  } else if (DestReg == ARM::CPSR) {
811    copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
812    return;
813  }
814
815  assert(Opc && "Impossible reg-to-reg copy");
816
817  const TargetRegisterInfo *TRI = &getRegisterInfo();
818  MachineInstrBuilder Mov;
819
820  // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
821  if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
822    BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
823    Spacing = -Spacing;
824  }
825#ifndef NDEBUG
826  SmallSet<unsigned, 4> DstRegs;
827#endif
828  for (unsigned i = 0; i != SubRegs; ++i) {
829    unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
830    unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
831    assert(Dst && Src && "Bad sub-register");
832#ifndef NDEBUG
833    assert(!DstRegs.count(Src) && "destructive vector copy");
834    DstRegs.insert(Dst);
835#endif
836    Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
837    // VORR takes two source operands.
838    if (Opc == ARM::VORRq)
839      Mov.addReg(Src);
840    Mov = AddDefaultPred(Mov);
841    // MOVr can set CC.
842    if (Opc == ARM::MOVr)
843      Mov = AddDefaultCC(Mov);
844  }
845  // Add implicit super-register defs and kills to the last instruction.
846  Mov->addRegisterDefined(DestReg, TRI);
847  if (KillSrc)
848    Mov->addRegisterKilled(SrcReg, TRI);
849}
850
851const MachineInstrBuilder &
852ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
853                          unsigned SubIdx, unsigned State,
854                          const TargetRegisterInfo *TRI) const {
855  if (!SubIdx)
856    return MIB.addReg(Reg, State);
857
858  if (TargetRegisterInfo::isPhysicalRegister(Reg))
859    return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
860  return MIB.addReg(Reg, State, SubIdx);
861}
862
863void ARMBaseInstrInfo::
864storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
865                    unsigned SrcReg, bool isKill, int FI,
866                    const TargetRegisterClass *RC,
867                    const TargetRegisterInfo *TRI) const {
868  DebugLoc DL;
869  if (I != MBB.end()) DL = I->getDebugLoc();
870  MachineFunction &MF = *MBB.getParent();
871  MachineFrameInfo &MFI = *MF.getFrameInfo();
872  unsigned Align = MFI.getObjectAlignment(FI);
873
874  MachineMemOperand *MMO = MF.getMachineMemOperand(
875      MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
876      MFI.getObjectSize(FI), Align);
877
878  switch (RC->getSize()) {
879    case 4:
880      if (ARM::GPRRegClass.hasSubClassEq(RC)) {
881        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
882                   .addReg(SrcReg, getKillRegState(isKill))
883                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
884      } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
885        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
886                   .addReg(SrcReg, getKillRegState(isKill))
887                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
888      } else
889        llvm_unreachable("Unknown reg class!");
890      break;
891    case 8:
892      if (ARM::DPRRegClass.hasSubClassEq(RC)) {
893        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
894                   .addReg(SrcReg, getKillRegState(isKill))
895                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
896      } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
897        if (Subtarget.hasV5TEOps()) {
898          MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD));
899          AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
900          AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
901          MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
902
903          AddDefaultPred(MIB);
904        } else {
905          // Fallback to STM instruction, which has existed since the dawn of
906          // time.
907          MachineInstrBuilder MIB =
908            AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STMIA))
909                             .addFrameIndex(FI).addMemOperand(MMO));
910          AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
911          AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
912        }
913      } else
914        llvm_unreachable("Unknown reg class!");
915      break;
916    case 16:
917      if (ARM::DPairRegClass.hasSubClassEq(RC)) {
918        // Use aligned spills if the stack can be realigned.
919        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
920          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
921                     .addFrameIndex(FI).addImm(16)
922                     .addReg(SrcReg, getKillRegState(isKill))
923                     .addMemOperand(MMO));
924        } else {
925          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
926                     .addReg(SrcReg, getKillRegState(isKill))
927                     .addFrameIndex(FI)
928                     .addMemOperand(MMO));
929        }
930      } else
931        llvm_unreachable("Unknown reg class!");
932      break;
933    case 24:
934      if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
935        // Use aligned spills if the stack can be realigned.
936        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
937          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
938                     .addFrameIndex(FI).addImm(16)
939                     .addReg(SrcReg, getKillRegState(isKill))
940                     .addMemOperand(MMO));
941        } else {
942          MachineInstrBuilder MIB =
943          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
944                       .addFrameIndex(FI))
945                       .addMemOperand(MMO);
946          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
947          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
948          AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
949        }
950      } else
951        llvm_unreachable("Unknown reg class!");
952      break;
953    case 32:
954      if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
955        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
956          // FIXME: It's possible to only store part of the QQ register if the
957          // spilled def has a sub-register index.
958          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
959                     .addFrameIndex(FI).addImm(16)
960                     .addReg(SrcReg, getKillRegState(isKill))
961                     .addMemOperand(MMO));
962        } else {
963          MachineInstrBuilder MIB =
964          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
965                       .addFrameIndex(FI))
966                       .addMemOperand(MMO);
967          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
968          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
969          MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
970                AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
971        }
972      } else
973        llvm_unreachable("Unknown reg class!");
974      break;
975    case 64:
976      if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
977        MachineInstrBuilder MIB =
978          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
979                         .addFrameIndex(FI))
980                         .addMemOperand(MMO);
981        MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
982        MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
983        MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
984        MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
985        MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
986        MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
987        MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
988              AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
989      } else
990        llvm_unreachable("Unknown reg class!");
991      break;
992    default:
993      llvm_unreachable("Unknown reg class!");
994  }
995}
996
997unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
998                                              int &FrameIndex) const {
999  switch (MI.getOpcode()) {
1000  default: break;
1001  case ARM::STRrs:
1002  case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1003    if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1004        MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1005        MI.getOperand(3).getImm() == 0) {
1006      FrameIndex = MI.getOperand(1).getIndex();
1007      return MI.getOperand(0).getReg();
1008    }
1009    break;
1010  case ARM::STRi12:
1011  case ARM::t2STRi12:
1012  case ARM::tSTRspi:
1013  case ARM::VSTRD:
1014  case ARM::VSTRS:
1015    if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1016        MI.getOperand(2).getImm() == 0) {
1017      FrameIndex = MI.getOperand(1).getIndex();
1018      return MI.getOperand(0).getReg();
1019    }
1020    break;
1021  case ARM::VST1q64:
1022  case ARM::VST1d64TPseudo:
1023  case ARM::VST1d64QPseudo:
1024    if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1025      FrameIndex = MI.getOperand(0).getIndex();
1026      return MI.getOperand(2).getReg();
1027    }
1028    break;
1029  case ARM::VSTMQIA:
1030    if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1031      FrameIndex = MI.getOperand(1).getIndex();
1032      return MI.getOperand(0).getReg();
1033    }
1034    break;
1035  }
1036
1037  return 0;
1038}
1039
1040unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1041                                                    int &FrameIndex) const {
1042  const MachineMemOperand *Dummy;
1043  return MI.mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
1044}
1045
1046void ARMBaseInstrInfo::
1047loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1048                     unsigned DestReg, int FI,
1049                     const TargetRegisterClass *RC,
1050                     const TargetRegisterInfo *TRI) const {
1051  DebugLoc DL;
1052  if (I != MBB.end()) DL = I->getDebugLoc();
1053  MachineFunction &MF = *MBB.getParent();
1054  MachineFrameInfo &MFI = *MF.getFrameInfo();
1055  unsigned Align = MFI.getObjectAlignment(FI);
1056  MachineMemOperand *MMO = MF.getMachineMemOperand(
1057      MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1058      MFI.getObjectSize(FI), Align);
1059
1060  switch (RC->getSize()) {
1061  case 4:
1062    if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1063      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1064                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
1065
1066    } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1067      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1068                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
1069    } else
1070      llvm_unreachable("Unknown reg class!");
1071    break;
1072  case 8:
1073    if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1074      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1075                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
1076    } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1077      MachineInstrBuilder MIB;
1078
1079      if (Subtarget.hasV5TEOps()) {
1080        MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1081        AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1082        AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1083        MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
1084
1085        AddDefaultPred(MIB);
1086      } else {
1087        // Fallback to LDM instruction, which has existed since the dawn of
1088        // time.
1089        MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDMIA))
1090                                 .addFrameIndex(FI).addMemOperand(MMO));
1091        MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1092        MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1093      }
1094
1095      if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1096        MIB.addReg(DestReg, RegState::ImplicitDefine);
1097    } else
1098      llvm_unreachable("Unknown reg class!");
1099    break;
1100  case 16:
1101    if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1102      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1103        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1104                     .addFrameIndex(FI).addImm(16)
1105                     .addMemOperand(MMO));
1106      } else {
1107        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1108                       .addFrameIndex(FI)
1109                       .addMemOperand(MMO));
1110      }
1111    } else
1112      llvm_unreachable("Unknown reg class!");
1113    break;
1114  case 24:
1115    if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1116      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1117        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1118                     .addFrameIndex(FI).addImm(16)
1119                     .addMemOperand(MMO));
1120      } else {
1121        MachineInstrBuilder MIB =
1122          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1123                         .addFrameIndex(FI)
1124                         .addMemOperand(MMO));
1125        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1126        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1127        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1128        if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1129          MIB.addReg(DestReg, RegState::ImplicitDefine);
1130      }
1131    } else
1132      llvm_unreachable("Unknown reg class!");
1133    break;
1134   case 32:
1135    if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1136      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1137        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1138                     .addFrameIndex(FI).addImm(16)
1139                     .addMemOperand(MMO));
1140      } else {
1141        MachineInstrBuilder MIB =
1142        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1143                       .addFrameIndex(FI))
1144                       .addMemOperand(MMO);
1145        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1146        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1147        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1148        MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1149        if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1150          MIB.addReg(DestReg, RegState::ImplicitDefine);
1151      }
1152    } else
1153      llvm_unreachable("Unknown reg class!");
1154    break;
1155  case 64:
1156    if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1157      MachineInstrBuilder MIB =
1158      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1159                     .addFrameIndex(FI))
1160                     .addMemOperand(MMO);
1161      MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1162      MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1163      MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1164      MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1165      MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1166      MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1167      MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1168      MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1169      if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1170        MIB.addReg(DestReg, RegState::ImplicitDefine);
1171    } else
1172      llvm_unreachable("Unknown reg class!");
1173    break;
1174  default:
1175    llvm_unreachable("Unknown regclass!");
1176  }
1177}
1178
1179unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1180                                               int &FrameIndex) const {
1181  switch (MI.getOpcode()) {
1182  default: break;
1183  case ARM::LDRrs:
1184  case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1185    if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1186        MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1187        MI.getOperand(3).getImm() == 0) {
1188      FrameIndex = MI.getOperand(1).getIndex();
1189      return MI.getOperand(0).getReg();
1190    }
1191    break;
1192  case ARM::LDRi12:
1193  case ARM::t2LDRi12:
1194  case ARM::tLDRspi:
1195  case ARM::VLDRD:
1196  case ARM::VLDRS:
1197    if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1198        MI.getOperand(2).getImm() == 0) {
1199      FrameIndex = MI.getOperand(1).getIndex();
1200      return MI.getOperand(0).getReg();
1201    }
1202    break;
1203  case ARM::VLD1q64:
1204  case ARM::VLD1d64TPseudo:
1205  case ARM::VLD1d64QPseudo:
1206    if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1207      FrameIndex = MI.getOperand(1).getIndex();
1208      return MI.getOperand(0).getReg();
1209    }
1210    break;
1211  case ARM::VLDMQIA:
1212    if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1213      FrameIndex = MI.getOperand(1).getIndex();
1214      return MI.getOperand(0).getReg();
1215    }
1216    break;
1217  }
1218
1219  return 0;
1220}
1221
1222unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1223                                                     int &FrameIndex) const {
1224  const MachineMemOperand *Dummy;
1225  return MI.mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1226}
1227
1228/// \brief Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1229/// depending on whether the result is used.
1230void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1231  bool isThumb1 = Subtarget.isThumb1Only();
1232  bool isThumb2 = Subtarget.isThumb2();
1233  const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1234
1235  DebugLoc dl = MI->getDebugLoc();
1236  MachineBasicBlock *BB = MI->getParent();
1237
1238  MachineInstrBuilder LDM, STM;
1239  if (isThumb1 || !MI->getOperand(1).isDead()) {
1240    LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1241                                                 : isThumb1 ? ARM::tLDMIA_UPD
1242                                                            : ARM::LDMIA_UPD))
1243             .addOperand(MI->getOperand(1));
1244  } else {
1245    LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1246  }
1247
1248  if (isThumb1 || !MI->getOperand(0).isDead()) {
1249    STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1250                                                 : isThumb1 ? ARM::tSTMIA_UPD
1251                                                            : ARM::STMIA_UPD))
1252             .addOperand(MI->getOperand(0));
1253  } else {
1254    STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1255  }
1256
1257  AddDefaultPred(LDM.addOperand(MI->getOperand(3)));
1258  AddDefaultPred(STM.addOperand(MI->getOperand(2)));
1259
1260  // Sort the scratch registers into ascending order.
1261  const TargetRegisterInfo &TRI = getRegisterInfo();
1262  llvm::SmallVector<unsigned, 6> ScratchRegs;
1263  for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1264    ScratchRegs.push_back(MI->getOperand(I).getReg());
1265  std::sort(ScratchRegs.begin(), ScratchRegs.end(),
1266            [&TRI](const unsigned &Reg1,
1267                   const unsigned &Reg2) -> bool {
1268              return TRI.getEncodingValue(Reg1) <
1269                     TRI.getEncodingValue(Reg2);
1270            });
1271
1272  for (const auto &Reg : ScratchRegs) {
1273    LDM.addReg(Reg, RegState::Define);
1274    STM.addReg(Reg, RegState::Kill);
1275  }
1276
1277  BB->erase(MI);
1278}
1279
1280
1281bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1282  if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1283    assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1284           "LOAD_STACK_GUARD currently supported only for MachO.");
1285    expandLoadStackGuard(MI);
1286    MI.getParent()->erase(MI);
1287    return true;
1288  }
1289
1290  if (MI.getOpcode() == ARM::MEMCPY) {
1291    expandMEMCPY(MI);
1292    return true;
1293  }
1294
1295  // This hook gets to expand COPY instructions before they become
1296  // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1297  // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1298  // changed into a VORR that can go down the NEON pipeline.
1299  if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || Subtarget.isFPOnlySP())
1300    return false;
1301
1302  // Look for a copy between even S-registers.  That is where we keep floats
1303  // when using NEON v2f32 instructions for f32 arithmetic.
1304  unsigned DstRegS = MI.getOperand(0).getReg();
1305  unsigned SrcRegS = MI.getOperand(1).getReg();
1306  if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1307    return false;
1308
1309  const TargetRegisterInfo *TRI = &getRegisterInfo();
1310  unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1311                                              &ARM::DPRRegClass);
1312  unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1313                                              &ARM::DPRRegClass);
1314  if (!DstRegD || !SrcRegD)
1315    return false;
1316
1317  // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1318  // legal if the COPY already defines the full DstRegD, and it isn't a
1319  // sub-register insertion.
1320  if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1321    return false;
1322
1323  // A dead copy shouldn't show up here, but reject it just in case.
1324  if (MI.getOperand(0).isDead())
1325    return false;
1326
1327  // All clear, widen the COPY.
1328  DEBUG(dbgs() << "widening:    " << MI);
1329  MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1330
1331  // Get rid of the old <imp-def> of DstRegD.  Leave it if it defines a Q-reg
1332  // or some other super-register.
1333  int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1334  if (ImpDefIdx != -1)
1335    MI.RemoveOperand(ImpDefIdx);
1336
1337  // Change the opcode and operands.
1338  MI.setDesc(get(ARM::VMOVD));
1339  MI.getOperand(0).setReg(DstRegD);
1340  MI.getOperand(1).setReg(SrcRegD);
1341  AddDefaultPred(MIB);
1342
1343  // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1344  // register scavenger and machine verifier, so we need to indicate that we
1345  // are reading an undefined value from SrcRegD, but a proper value from
1346  // SrcRegS.
1347  MI.getOperand(1).setIsUndef();
1348  MIB.addReg(SrcRegS, RegState::Implicit);
1349
1350  // SrcRegD may actually contain an unrelated value in the ssub_1
1351  // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1352  if (MI.getOperand(1).isKill()) {
1353    MI.getOperand(1).setIsKill(false);
1354    MI.addRegisterKilled(SrcRegS, TRI, true);
1355  }
1356
1357  DEBUG(dbgs() << "replaced by: " << MI);
1358  return true;
1359}
1360
1361/// Create a copy of a const pool value. Update CPI to the new index and return
1362/// the label UID.
1363static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1364  MachineConstantPool *MCP = MF.getConstantPool();
1365  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1366
1367  const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1368  assert(MCPE.isMachineConstantPoolEntry() &&
1369         "Expecting a machine constantpool entry!");
1370  ARMConstantPoolValue *ACPV =
1371    static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1372
1373  unsigned PCLabelId = AFI->createPICLabelUId();
1374  ARMConstantPoolValue *NewCPV = nullptr;
1375
1376  // FIXME: The below assumes PIC relocation model and that the function
1377  // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1378  // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1379  // instructions, so that's probably OK, but is PIC always correct when
1380  // we get here?
1381  if (ACPV->isGlobalValue())
1382    NewCPV = ARMConstantPoolConstant::Create(
1383        cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1384        4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1385  else if (ACPV->isExtSymbol())
1386    NewCPV = ARMConstantPoolSymbol::
1387      Create(MF.getFunction()->getContext(),
1388             cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1389  else if (ACPV->isBlockAddress())
1390    NewCPV = ARMConstantPoolConstant::
1391      Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1392             ARMCP::CPBlockAddress, 4);
1393  else if (ACPV->isLSDA())
1394    NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
1395                                             ARMCP::CPLSDA, 4);
1396  else if (ACPV->isMachineBasicBlock())
1397    NewCPV = ARMConstantPoolMBB::
1398      Create(MF.getFunction()->getContext(),
1399             cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1400  else
1401    llvm_unreachable("Unexpected ARM constantpool value type!!");
1402  CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1403  return PCLabelId;
1404}
1405
1406void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1407                                     MachineBasicBlock::iterator I,
1408                                     unsigned DestReg, unsigned SubIdx,
1409                                     const MachineInstr &Orig,
1410                                     const TargetRegisterInfo &TRI) const {
1411  unsigned Opcode = Orig.getOpcode();
1412  switch (Opcode) {
1413  default: {
1414    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1415    MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1416    MBB.insert(I, MI);
1417    break;
1418  }
1419  case ARM::tLDRpci_pic:
1420  case ARM::t2LDRpci_pic: {
1421    MachineFunction &MF = *MBB.getParent();
1422    unsigned CPI = Orig.getOperand(1).getIndex();
1423    unsigned PCLabelId = duplicateCPV(MF, CPI);
1424    MachineInstrBuilder MIB =
1425        BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1426            .addConstantPoolIndex(CPI)
1427            .addImm(PCLabelId);
1428    MIB->setMemRefs(Orig.memoperands_begin(), Orig.memoperands_end());
1429    break;
1430  }
1431  }
1432}
1433
1434MachineInstr *ARMBaseInstrInfo::duplicate(MachineInstr &Orig,
1435                                          MachineFunction &MF) const {
1436  MachineInstr *MI = TargetInstrInfo::duplicate(Orig, MF);
1437  switch (Orig.getOpcode()) {
1438  case ARM::tLDRpci_pic:
1439  case ARM::t2LDRpci_pic: {
1440    unsigned CPI = Orig.getOperand(1).getIndex();
1441    unsigned PCLabelId = duplicateCPV(MF, CPI);
1442    Orig.getOperand(1).setIndex(CPI);
1443    Orig.getOperand(2).setImm(PCLabelId);
1444    break;
1445  }
1446  }
1447  return MI;
1448}
1449
1450bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1451                                        const MachineInstr &MI1,
1452                                        const MachineRegisterInfo *MRI) const {
1453  unsigned Opcode = MI0.getOpcode();
1454  if (Opcode == ARM::t2LDRpci ||
1455      Opcode == ARM::t2LDRpci_pic ||
1456      Opcode == ARM::tLDRpci ||
1457      Opcode == ARM::tLDRpci_pic ||
1458      Opcode == ARM::LDRLIT_ga_pcrel ||
1459      Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1460      Opcode == ARM::tLDRLIT_ga_pcrel ||
1461      Opcode == ARM::MOV_ga_pcrel ||
1462      Opcode == ARM::MOV_ga_pcrel_ldr ||
1463      Opcode == ARM::t2MOV_ga_pcrel) {
1464    if (MI1.getOpcode() != Opcode)
1465      return false;
1466    if (MI0.getNumOperands() != MI1.getNumOperands())
1467      return false;
1468
1469    const MachineOperand &MO0 = MI0.getOperand(1);
1470    const MachineOperand &MO1 = MI1.getOperand(1);
1471    if (MO0.getOffset() != MO1.getOffset())
1472      return false;
1473
1474    if (Opcode == ARM::LDRLIT_ga_pcrel ||
1475        Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1476        Opcode == ARM::tLDRLIT_ga_pcrel ||
1477        Opcode == ARM::MOV_ga_pcrel ||
1478        Opcode == ARM::MOV_ga_pcrel_ldr ||
1479        Opcode == ARM::t2MOV_ga_pcrel)
1480      // Ignore the PC labels.
1481      return MO0.getGlobal() == MO1.getGlobal();
1482
1483    const MachineFunction *MF = MI0.getParent()->getParent();
1484    const MachineConstantPool *MCP = MF->getConstantPool();
1485    int CPI0 = MO0.getIndex();
1486    int CPI1 = MO1.getIndex();
1487    const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1488    const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1489    bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1490    bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1491    if (isARMCP0 && isARMCP1) {
1492      ARMConstantPoolValue *ACPV0 =
1493        static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1494      ARMConstantPoolValue *ACPV1 =
1495        static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1496      return ACPV0->hasSameValue(ACPV1);
1497    } else if (!isARMCP0 && !isARMCP1) {
1498      return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1499    }
1500    return false;
1501  } else if (Opcode == ARM::PICLDR) {
1502    if (MI1.getOpcode() != Opcode)
1503      return false;
1504    if (MI0.getNumOperands() != MI1.getNumOperands())
1505      return false;
1506
1507    unsigned Addr0 = MI0.getOperand(1).getReg();
1508    unsigned Addr1 = MI1.getOperand(1).getReg();
1509    if (Addr0 != Addr1) {
1510      if (!MRI ||
1511          !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1512          !TargetRegisterInfo::isVirtualRegister(Addr1))
1513        return false;
1514
1515      // This assumes SSA form.
1516      MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1517      MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1518      // Check if the loaded value, e.g. a constantpool of a global address, are
1519      // the same.
1520      if (!produceSameValue(*Def0, *Def1, MRI))
1521        return false;
1522    }
1523
1524    for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1525      // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
1526      const MachineOperand &MO0 = MI0.getOperand(i);
1527      const MachineOperand &MO1 = MI1.getOperand(i);
1528      if (!MO0.isIdenticalTo(MO1))
1529        return false;
1530    }
1531    return true;
1532  }
1533
1534  return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1535}
1536
1537/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1538/// determine if two loads are loading from the same base address. It should
1539/// only return true if the base pointers are the same and the only differences
1540/// between the two addresses is the offset. It also returns the offsets by
1541/// reference.
1542///
1543/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1544/// is permanently disabled.
1545bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1546                                               int64_t &Offset1,
1547                                               int64_t &Offset2) const {
1548  // Don't worry about Thumb: just ARM and Thumb2.
1549  if (Subtarget.isThumb1Only()) return false;
1550
1551  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1552    return false;
1553
1554  switch (Load1->getMachineOpcode()) {
1555  default:
1556    return false;
1557  case ARM::LDRi12:
1558  case ARM::LDRBi12:
1559  case ARM::LDRD:
1560  case ARM::LDRH:
1561  case ARM::LDRSB:
1562  case ARM::LDRSH:
1563  case ARM::VLDRD:
1564  case ARM::VLDRS:
1565  case ARM::t2LDRi8:
1566  case ARM::t2LDRBi8:
1567  case ARM::t2LDRDi8:
1568  case ARM::t2LDRSHi8:
1569  case ARM::t2LDRi12:
1570  case ARM::t2LDRBi12:
1571  case ARM::t2LDRSHi12:
1572    break;
1573  }
1574
1575  switch (Load2->getMachineOpcode()) {
1576  default:
1577    return false;
1578  case ARM::LDRi12:
1579  case ARM::LDRBi12:
1580  case ARM::LDRD:
1581  case ARM::LDRH:
1582  case ARM::LDRSB:
1583  case ARM::LDRSH:
1584  case ARM::VLDRD:
1585  case ARM::VLDRS:
1586  case ARM::t2LDRi8:
1587  case ARM::t2LDRBi8:
1588  case ARM::t2LDRSHi8:
1589  case ARM::t2LDRi12:
1590  case ARM::t2LDRBi12:
1591  case ARM::t2LDRSHi12:
1592    break;
1593  }
1594
1595  // Check if base addresses and chain operands match.
1596  if (Load1->getOperand(0) != Load2->getOperand(0) ||
1597      Load1->getOperand(4) != Load2->getOperand(4))
1598    return false;
1599
1600  // Index should be Reg0.
1601  if (Load1->getOperand(3) != Load2->getOperand(3))
1602    return false;
1603
1604  // Determine the offsets.
1605  if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1606      isa<ConstantSDNode>(Load2->getOperand(1))) {
1607    Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1608    Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1609    return true;
1610  }
1611
1612  return false;
1613}
1614
1615/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1616/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1617/// be scheduled togther. On some targets if two loads are loading from
1618/// addresses in the same cache line, it's better if they are scheduled
1619/// together. This function takes two integers that represent the load offsets
1620/// from the common base address. It returns true if it decides it's desirable
1621/// to schedule the two loads together. "NumLoads" is the number of loads that
1622/// have already been scheduled after Load1.
1623///
1624/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1625/// is permanently disabled.
1626bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1627                                               int64_t Offset1, int64_t Offset2,
1628                                               unsigned NumLoads) const {
1629  // Don't worry about Thumb: just ARM and Thumb2.
1630  if (Subtarget.isThumb1Only()) return false;
1631
1632  assert(Offset2 > Offset1);
1633
1634  if ((Offset2 - Offset1) / 8 > 64)
1635    return false;
1636
1637  // Check if the machine opcodes are different. If they are different
1638  // then we consider them to not be of the same base address,
1639  // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1640  // In this case, they are considered to be the same because they are different
1641  // encoding forms of the same basic instruction.
1642  if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
1643      !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
1644         Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
1645        (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
1646         Load2->getMachineOpcode() == ARM::t2LDRBi8)))
1647    return false;  // FIXME: overly conservative?
1648
1649  // Four loads in a row should be sufficient.
1650  if (NumLoads >= 3)
1651    return false;
1652
1653  return true;
1654}
1655
1656bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1657                                            const MachineBasicBlock *MBB,
1658                                            const MachineFunction &MF) const {
1659  // Debug info is never a scheduling boundary. It's necessary to be explicit
1660  // due to the special treatment of IT instructions below, otherwise a
1661  // dbg_value followed by an IT will result in the IT instruction being
1662  // considered a scheduling hazard, which is wrong. It should be the actual
1663  // instruction preceding the dbg_value instruction(s), just like it is
1664  // when debug info is not present.
1665  if (MI.isDebugValue())
1666    return false;
1667
1668  // Terminators and labels can't be scheduled around.
1669  if (MI.isTerminator() || MI.isPosition())
1670    return true;
1671
1672  // Treat the start of the IT block as a scheduling boundary, but schedule
1673  // t2IT along with all instructions following it.
1674  // FIXME: This is a big hammer. But the alternative is to add all potential
1675  // true and anti dependencies to IT block instructions as implicit operands
1676  // to the t2IT instruction. The added compile time and complexity does not
1677  // seem worth it.
1678  MachineBasicBlock::const_iterator I = MI;
1679  // Make sure to skip any dbg_value instructions
1680  while (++I != MBB->end() && I->isDebugValue())
1681    ;
1682  if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1683    return true;
1684
1685  // Don't attempt to schedule around any instruction that defines
1686  // a stack-oriented pointer, as it's unlikely to be profitable. This
1687  // saves compile time, because it doesn't require every single
1688  // stack slot reference to depend on the instruction that does the
1689  // modification.
1690  // Calls don't actually change the stack pointer, even if they have imp-defs.
1691  // No ARM calling conventions change the stack pointer. (X86 calling
1692  // conventions sometimes do).
1693  if (!MI.isCall() && MI.definesRegister(ARM::SP))
1694    return true;
1695
1696  return false;
1697}
1698
1699bool ARMBaseInstrInfo::
1700isProfitableToIfCvt(MachineBasicBlock &MBB,
1701                    unsigned NumCycles, unsigned ExtraPredCycles,
1702                    BranchProbability Probability) const {
1703  if (!NumCycles)
1704    return false;
1705
1706  // If we are optimizing for size, see if the branch in the predecessor can be
1707  // lowered to cbn?z by the constant island lowering pass, and return false if
1708  // so. This results in a shorter instruction sequence.
1709  if (MBB.getParent()->getFunction()->optForSize()) {
1710    MachineBasicBlock *Pred = *MBB.pred_begin();
1711    if (!Pred->empty()) {
1712      MachineInstr *LastMI = &*Pred->rbegin();
1713      if (LastMI->getOpcode() == ARM::t2Bcc) {
1714        MachineBasicBlock::iterator CmpMI = LastMI;
1715        if (CmpMI != Pred->begin()) {
1716          --CmpMI;
1717          if (CmpMI->getOpcode() == ARM::tCMPi8 ||
1718              CmpMI->getOpcode() == ARM::t2CMPri) {
1719            unsigned Reg = CmpMI->getOperand(0).getReg();
1720            unsigned PredReg = 0;
1721            ARMCC::CondCodes P = getInstrPredicate(*CmpMI, PredReg);
1722            if (P == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 &&
1723                isARMLowRegister(Reg))
1724              return false;
1725          }
1726        }
1727      }
1728    }
1729  }
1730
1731  // Attempt to estimate the relative costs of predication versus branching.
1732  // Here we scale up each component of UnpredCost to avoid precision issue when
1733  // scaling NumCycles by Probability.
1734  const unsigned ScalingUpFactor = 1024;
1735  unsigned UnpredCost = Probability.scale(NumCycles * ScalingUpFactor);
1736  UnpredCost += ScalingUpFactor; // The branch itself
1737  UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
1738
1739  return (NumCycles + ExtraPredCycles) * ScalingUpFactor <= UnpredCost;
1740}
1741
1742bool ARMBaseInstrInfo::
1743isProfitableToIfCvt(MachineBasicBlock &TMBB,
1744                    unsigned TCycles, unsigned TExtra,
1745                    MachineBasicBlock &FMBB,
1746                    unsigned FCycles, unsigned FExtra,
1747                    BranchProbability Probability) const {
1748  if (!TCycles || !FCycles)
1749    return false;
1750
1751  // Attempt to estimate the relative costs of predication versus branching.
1752  // Here we scale up each component of UnpredCost to avoid precision issue when
1753  // scaling TCycles/FCycles by Probability.
1754  const unsigned ScalingUpFactor = 1024;
1755  unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
1756  unsigned FUnpredCost =
1757      Probability.getCompl().scale(FCycles * ScalingUpFactor);
1758  unsigned UnpredCost = TUnpredCost + FUnpredCost;
1759  UnpredCost += 1 * ScalingUpFactor; // The branch itself
1760  UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
1761
1762  return (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor <= UnpredCost;
1763}
1764
1765bool
1766ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
1767                                            MachineBasicBlock &FMBB) const {
1768  // Reduce false anti-dependencies to let the target's out-of-order execution
1769  // engine do its thing.
1770  return Subtarget.isProfitableToUnpredicate();
1771}
1772
1773/// getInstrPredicate - If instruction is predicated, returns its predicate
1774/// condition, otherwise returns AL. It also returns the condition code
1775/// register by reference.
1776ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
1777                                         unsigned &PredReg) {
1778  int PIdx = MI.findFirstPredOperandIdx();
1779  if (PIdx == -1) {
1780    PredReg = 0;
1781    return ARMCC::AL;
1782  }
1783
1784  PredReg = MI.getOperand(PIdx+1).getReg();
1785  return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
1786}
1787
1788
1789unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
1790  if (Opc == ARM::B)
1791    return ARM::Bcc;
1792  if (Opc == ARM::tB)
1793    return ARM::tBcc;
1794  if (Opc == ARM::t2B)
1795    return ARM::t2Bcc;
1796
1797  llvm_unreachable("Unknown unconditional branch opcode!");
1798}
1799
1800MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
1801                                                       bool NewMI,
1802                                                       unsigned OpIdx1,
1803                                                       unsigned OpIdx2) const {
1804  switch (MI.getOpcode()) {
1805  case ARM::MOVCCr:
1806  case ARM::t2MOVCCr: {
1807    // MOVCC can be commuted by inverting the condition.
1808    unsigned PredReg = 0;
1809    ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
1810    // MOVCC AL can't be inverted. Shouldn't happen.
1811    if (CC == ARMCC::AL || PredReg != ARM::CPSR)
1812      return nullptr;
1813    MachineInstr *CommutedMI =
1814        TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1815    if (!CommutedMI)
1816      return nullptr;
1817    // After swapping the MOVCC operands, also invert the condition.
1818    CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
1819        .setImm(ARMCC::getOppositeCondition(CC));
1820    return CommutedMI;
1821  }
1822  }
1823  return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1824}
1825
1826/// Identify instructions that can be folded into a MOVCC instruction, and
1827/// return the defining instruction.
1828static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
1829                                      const MachineRegisterInfo &MRI,
1830                                      const TargetInstrInfo *TII) {
1831  if (!TargetRegisterInfo::isVirtualRegister(Reg))
1832    return nullptr;
1833  if (!MRI.hasOneNonDBGUse(Reg))
1834    return nullptr;
1835  MachineInstr *MI = MRI.getVRegDef(Reg);
1836  if (!MI)
1837    return nullptr;
1838  // MI is folded into the MOVCC by predicating it.
1839  if (!MI->isPredicable())
1840    return nullptr;
1841  // Check if MI has any non-dead defs or physreg uses. This also detects
1842  // predicated instructions which will be reading CPSR.
1843  for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
1844    const MachineOperand &MO = MI->getOperand(i);
1845    // Reject frame index operands, PEI can't handle the predicated pseudos.
1846    if (MO.isFI() || MO.isCPI() || MO.isJTI())
1847      return nullptr;
1848    if (!MO.isReg())
1849      continue;
1850    // MI can't have any tied operands, that would conflict with predication.
1851    if (MO.isTied())
1852      return nullptr;
1853    if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1854      return nullptr;
1855    if (MO.isDef() && !MO.isDead())
1856      return nullptr;
1857  }
1858  bool DontMoveAcrossStores = true;
1859  if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
1860    return nullptr;
1861  return MI;
1862}
1863
1864bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
1865                                     SmallVectorImpl<MachineOperand> &Cond,
1866                                     unsigned &TrueOp, unsigned &FalseOp,
1867                                     bool &Optimizable) const {
1868  assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
1869         "Unknown select instruction");
1870  // MOVCC operands:
1871  // 0: Def.
1872  // 1: True use.
1873  // 2: False use.
1874  // 3: Condition code.
1875  // 4: CPSR use.
1876  TrueOp = 1;
1877  FalseOp = 2;
1878  Cond.push_back(MI.getOperand(3));
1879  Cond.push_back(MI.getOperand(4));
1880  // We can always fold a def.
1881  Optimizable = true;
1882  return false;
1883}
1884
1885MachineInstr *
1886ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
1887                                 SmallPtrSetImpl<MachineInstr *> &SeenMIs,
1888                                 bool PreferFalse) const {
1889  assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
1890         "Unknown select instruction");
1891  MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
1892  MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
1893  bool Invert = !DefMI;
1894  if (!DefMI)
1895    DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
1896  if (!DefMI)
1897    return nullptr;
1898
1899  // Find new register class to use.
1900  MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
1901  unsigned DestReg = MI.getOperand(0).getReg();
1902  const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
1903  if (!MRI.constrainRegClass(DestReg, PreviousClass))
1904    return nullptr;
1905
1906  // Create a new predicated version of DefMI.
1907  // Rfalse is the first use.
1908  MachineInstrBuilder NewMI =
1909      BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
1910
1911  // Copy all the DefMI operands, excluding its (null) predicate.
1912  const MCInstrDesc &DefDesc = DefMI->getDesc();
1913  for (unsigned i = 1, e = DefDesc.getNumOperands();
1914       i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
1915    NewMI.addOperand(DefMI->getOperand(i));
1916
1917  unsigned CondCode = MI.getOperand(3).getImm();
1918  if (Invert)
1919    NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
1920  else
1921    NewMI.addImm(CondCode);
1922  NewMI.addOperand(MI.getOperand(4));
1923
1924  // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
1925  if (NewMI->hasOptionalDef())
1926    AddDefaultCC(NewMI);
1927
1928  // The output register value when the predicate is false is an implicit
1929  // register operand tied to the first def.
1930  // The tie makes the register allocator ensure the FalseReg is allocated the
1931  // same register as operand 0.
1932  FalseReg.setImplicit();
1933  NewMI.addOperand(FalseReg);
1934  NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
1935
1936  // Update SeenMIs set: register newly created MI and erase removed DefMI.
1937  SeenMIs.insert(NewMI);
1938  SeenMIs.erase(DefMI);
1939
1940  // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
1941  // DefMI would be invalid when tranferred inside the loop.  Checking for a
1942  // loop is expensive, but at least remove kill flags if they are in different
1943  // BBs.
1944  if (DefMI->getParent() != MI.getParent())
1945    NewMI->clearKillInfo();
1946
1947  // The caller will erase MI, but not DefMI.
1948  DefMI->eraseFromParent();
1949  return NewMI;
1950}
1951
1952/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
1953/// instruction is encoded with an 'S' bit is determined by the optional CPSR
1954/// def operand.
1955///
1956/// This will go away once we can teach tblgen how to set the optional CPSR def
1957/// operand itself.
1958struct AddSubFlagsOpcodePair {
1959  uint16_t PseudoOpc;
1960  uint16_t MachineOpc;
1961};
1962
1963static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
1964  {ARM::ADDSri, ARM::ADDri},
1965  {ARM::ADDSrr, ARM::ADDrr},
1966  {ARM::ADDSrsi, ARM::ADDrsi},
1967  {ARM::ADDSrsr, ARM::ADDrsr},
1968
1969  {ARM::SUBSri, ARM::SUBri},
1970  {ARM::SUBSrr, ARM::SUBrr},
1971  {ARM::SUBSrsi, ARM::SUBrsi},
1972  {ARM::SUBSrsr, ARM::SUBrsr},
1973
1974  {ARM::RSBSri, ARM::RSBri},
1975  {ARM::RSBSrsi, ARM::RSBrsi},
1976  {ARM::RSBSrsr, ARM::RSBrsr},
1977
1978  {ARM::t2ADDSri, ARM::t2ADDri},
1979  {ARM::t2ADDSrr, ARM::t2ADDrr},
1980  {ARM::t2ADDSrs, ARM::t2ADDrs},
1981
1982  {ARM::t2SUBSri, ARM::t2SUBri},
1983  {ARM::t2SUBSrr, ARM::t2SUBrr},
1984  {ARM::t2SUBSrs, ARM::t2SUBrs},
1985
1986  {ARM::t2RSBSri, ARM::t2RSBri},
1987  {ARM::t2RSBSrs, ARM::t2RSBrs},
1988};
1989
1990unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
1991  for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
1992    if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
1993      return AddSubFlagsOpcodeMap[i].MachineOpc;
1994  return 0;
1995}
1996
1997void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
1998                                   MachineBasicBlock::iterator &MBBI,
1999                                   const DebugLoc &dl, unsigned DestReg,
2000                                   unsigned BaseReg, int NumBytes,
2001                                   ARMCC::CondCodes Pred, unsigned PredReg,
2002                                   const ARMBaseInstrInfo &TII,
2003                                   unsigned MIFlags) {
2004  if (NumBytes == 0 && DestReg != BaseReg) {
2005    BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2006      .addReg(BaseReg, RegState::Kill)
2007      .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
2008      .setMIFlags(MIFlags);
2009    return;
2010  }
2011
2012  bool isSub = NumBytes < 0;
2013  if (isSub) NumBytes = -NumBytes;
2014
2015  while (NumBytes) {
2016    unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2017    unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2018    assert(ThisVal && "Didn't extract field correctly");
2019
2020    // We will handle these bits from offset, clear them.
2021    NumBytes &= ~ThisVal;
2022
2023    assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2024
2025    // Build the new ADD / SUB.
2026    unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2027    BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2028      .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
2029      .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
2030      .setMIFlags(MIFlags);
2031    BaseReg = DestReg;
2032  }
2033}
2034
2035bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2036                                      MachineFunction &MF, MachineInstr *MI,
2037                                      unsigned NumBytes) {
2038  // This optimisation potentially adds lots of load and store
2039  // micro-operations, it's only really a great benefit to code-size.
2040  if (!MF.getFunction()->optForMinSize())
2041    return false;
2042
2043  // If only one register is pushed/popped, LLVM can use an LDR/STR
2044  // instead. We can't modify those so make sure we're dealing with an
2045  // instruction we understand.
2046  bool IsPop = isPopOpcode(MI->getOpcode());
2047  bool IsPush = isPushOpcode(MI->getOpcode());
2048  if (!IsPush && !IsPop)
2049    return false;
2050
2051  bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2052                      MI->getOpcode() == ARM::VLDMDIA_UPD;
2053  bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2054                     MI->getOpcode() == ARM::tPOP ||
2055                     MI->getOpcode() == ARM::tPOP_RET;
2056
2057  assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2058                          MI->getOperand(1).getReg() == ARM::SP)) &&
2059         "trying to fold sp update into non-sp-updating push/pop");
2060
2061  // The VFP push & pop act on D-registers, so we can only fold an adjustment
2062  // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2063  // if this is violated.
2064  if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2065    return false;
2066
2067  // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2068  // pred) so the list starts at 4. Thumb1 starts after the predicate.
2069  int RegListIdx = IsT1PushPop ? 2 : 4;
2070
2071  // Calculate the space we'll need in terms of registers.
2072  unsigned FirstReg = MI->getOperand(RegListIdx).getReg();
2073  unsigned RD0Reg, RegsNeeded;
2074  if (IsVFPPushPop) {
2075    RD0Reg = ARM::D0;
2076    RegsNeeded = NumBytes / 8;
2077  } else {
2078    RD0Reg = ARM::R0;
2079    RegsNeeded = NumBytes / 4;
2080  }
2081
2082  // We're going to have to strip all list operands off before
2083  // re-adding them since the order matters, so save the existing ones
2084  // for later.
2085  SmallVector<MachineOperand, 4> RegList;
2086  for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2087    RegList.push_back(MI->getOperand(i));
2088
2089  const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2090  const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2091
2092  // Now try to find enough space in the reglist to allocate NumBytes.
2093  for (unsigned CurReg = FirstReg - 1; CurReg >= RD0Reg && RegsNeeded;
2094       --CurReg) {
2095    if (!IsPop) {
2096      // Pushing any register is completely harmless, mark the
2097      // register involved as undef since we don't care about it in
2098      // the slightest.
2099      RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2100                                                  false, false, true));
2101      --RegsNeeded;
2102      continue;
2103    }
2104
2105    // However, we can only pop an extra register if it's not live. For
2106    // registers live within the function we might clobber a return value
2107    // register; the other way a register can be live here is if it's
2108    // callee-saved.
2109    if (isCalleeSavedRegister(CurReg, CSRegs) ||
2110        MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2111        MachineBasicBlock::LQR_Dead) {
2112      // VFP pops don't allow holes in the register list, so any skip is fatal
2113      // for our transformation. GPR pops do, so we should just keep looking.
2114      if (IsVFPPushPop)
2115        return false;
2116      else
2117        continue;
2118    }
2119
2120    // Mark the unimportant registers as <def,dead> in the POP.
2121    RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2122                                                true));
2123    --RegsNeeded;
2124  }
2125
2126  if (RegsNeeded > 0)
2127    return false;
2128
2129  // Finally we know we can profitably perform the optimisation so go
2130  // ahead: strip all existing registers off and add them back again
2131  // in the right order.
2132  for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2133    MI->RemoveOperand(i);
2134
2135  // Add the complete list back in.
2136  MachineInstrBuilder MIB(MF, &*MI);
2137  for (int i = RegList.size() - 1; i >= 0; --i)
2138    MIB.addOperand(RegList[i]);
2139
2140  return true;
2141}
2142
2143bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2144                                unsigned FrameReg, int &Offset,
2145                                const ARMBaseInstrInfo &TII) {
2146  unsigned Opcode = MI.getOpcode();
2147  const MCInstrDesc &Desc = MI.getDesc();
2148  unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2149  bool isSub = false;
2150
2151  // Memory operands in inline assembly always use AddrMode2.
2152  if (Opcode == ARM::INLINEASM)
2153    AddrMode = ARMII::AddrMode2;
2154
2155  if (Opcode == ARM::ADDri) {
2156    Offset += MI.getOperand(FrameRegIdx+1).getImm();
2157    if (Offset == 0) {
2158      // Turn it into a move.
2159      MI.setDesc(TII.get(ARM::MOVr));
2160      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2161      MI.RemoveOperand(FrameRegIdx+1);
2162      Offset = 0;
2163      return true;
2164    } else if (Offset < 0) {
2165      Offset = -Offset;
2166      isSub = true;
2167      MI.setDesc(TII.get(ARM::SUBri));
2168    }
2169
2170    // Common case: small offset, fits into instruction.
2171    if (ARM_AM::getSOImmVal(Offset) != -1) {
2172      // Replace the FrameIndex with sp / fp
2173      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2174      MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2175      Offset = 0;
2176      return true;
2177    }
2178
2179    // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2180    // as possible.
2181    unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2182    unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2183
2184    // We will handle these bits from offset, clear them.
2185    Offset &= ~ThisImmVal;
2186
2187    // Get the properly encoded SOImmVal field.
2188    assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2189           "Bit extraction didn't work?");
2190    MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2191 } else {
2192    unsigned ImmIdx = 0;
2193    int InstrOffs = 0;
2194    unsigned NumBits = 0;
2195    unsigned Scale = 1;
2196    switch (AddrMode) {
2197    case ARMII::AddrMode_i12: {
2198      ImmIdx = FrameRegIdx + 1;
2199      InstrOffs = MI.getOperand(ImmIdx).getImm();
2200      NumBits = 12;
2201      break;
2202    }
2203    case ARMII::AddrMode2: {
2204      ImmIdx = FrameRegIdx+2;
2205      InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2206      if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2207        InstrOffs *= -1;
2208      NumBits = 12;
2209      break;
2210    }
2211    case ARMII::AddrMode3: {
2212      ImmIdx = FrameRegIdx+2;
2213      InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2214      if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2215        InstrOffs *= -1;
2216      NumBits = 8;
2217      break;
2218    }
2219    case ARMII::AddrMode4:
2220    case ARMII::AddrMode6:
2221      // Can't fold any offset even if it's zero.
2222      return false;
2223    case ARMII::AddrMode5: {
2224      ImmIdx = FrameRegIdx+1;
2225      InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2226      if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2227        InstrOffs *= -1;
2228      NumBits = 8;
2229      Scale = 4;
2230      break;
2231    }
2232    default:
2233      llvm_unreachable("Unsupported addressing mode!");
2234    }
2235
2236    Offset += InstrOffs * Scale;
2237    assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2238    if (Offset < 0) {
2239      Offset = -Offset;
2240      isSub = true;
2241    }
2242
2243    // Attempt to fold address comp. if opcode has offset bits
2244    if (NumBits > 0) {
2245      // Common case: small offset, fits into instruction.
2246      MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2247      int ImmedOffset = Offset / Scale;
2248      unsigned Mask = (1 << NumBits) - 1;
2249      if ((unsigned)Offset <= Mask * Scale) {
2250        // Replace the FrameIndex with sp
2251        MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2252        // FIXME: When addrmode2 goes away, this will simplify (like the
2253        // T2 version), as the LDR.i12 versions don't need the encoding
2254        // tricks for the offset value.
2255        if (isSub) {
2256          if (AddrMode == ARMII::AddrMode_i12)
2257            ImmedOffset = -ImmedOffset;
2258          else
2259            ImmedOffset |= 1 << NumBits;
2260        }
2261        ImmOp.ChangeToImmediate(ImmedOffset);
2262        Offset = 0;
2263        return true;
2264      }
2265
2266      // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2267      ImmedOffset = ImmedOffset & Mask;
2268      if (isSub) {
2269        if (AddrMode == ARMII::AddrMode_i12)
2270          ImmedOffset = -ImmedOffset;
2271        else
2272          ImmedOffset |= 1 << NumBits;
2273      }
2274      ImmOp.ChangeToImmediate(ImmedOffset);
2275      Offset &= ~(Mask*Scale);
2276    }
2277  }
2278
2279  Offset = (isSub) ? -Offset : Offset;
2280  return Offset == 0;
2281}
2282
2283/// analyzeCompare - For a comparison instruction, return the source registers
2284/// in SrcReg and SrcReg2 if having two register operands, and the value it
2285/// compares against in CmpValue. Return true if the comparison instruction
2286/// can be analyzed.
2287bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
2288                                      unsigned &SrcReg2, int &CmpMask,
2289                                      int &CmpValue) const {
2290  switch (MI.getOpcode()) {
2291  default: break;
2292  case ARM::CMPri:
2293  case ARM::t2CMPri:
2294    SrcReg = MI.getOperand(0).getReg();
2295    SrcReg2 = 0;
2296    CmpMask = ~0;
2297    CmpValue = MI.getOperand(1).getImm();
2298    return true;
2299  case ARM::CMPrr:
2300  case ARM::t2CMPrr:
2301    SrcReg = MI.getOperand(0).getReg();
2302    SrcReg2 = MI.getOperand(1).getReg();
2303    CmpMask = ~0;
2304    CmpValue = 0;
2305    return true;
2306  case ARM::TSTri:
2307  case ARM::t2TSTri:
2308    SrcReg = MI.getOperand(0).getReg();
2309    SrcReg2 = 0;
2310    CmpMask = MI.getOperand(1).getImm();
2311    CmpValue = 0;
2312    return true;
2313  }
2314
2315  return false;
2316}
2317
2318/// isSuitableForMask - Identify a suitable 'and' instruction that
2319/// operates on the given source register and applies the same mask
2320/// as a 'tst' instruction. Provide a limited look-through for copies.
2321/// When successful, MI will hold the found instruction.
2322static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
2323                              int CmpMask, bool CommonUse) {
2324  switch (MI->getOpcode()) {
2325    case ARM::ANDri:
2326    case ARM::t2ANDri:
2327      if (CmpMask != MI->getOperand(2).getImm())
2328        return false;
2329      if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2330        return true;
2331      break;
2332  }
2333
2334  return false;
2335}
2336
2337/// getSwappedCondition - assume the flags are set by MI(a,b), return
2338/// the condition code if we modify the instructions such that flags are
2339/// set by MI(b,a).
2340inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
2341  switch (CC) {
2342  default: return ARMCC::AL;
2343  case ARMCC::EQ: return ARMCC::EQ;
2344  case ARMCC::NE: return ARMCC::NE;
2345  case ARMCC::HS: return ARMCC::LS;
2346  case ARMCC::LO: return ARMCC::HI;
2347  case ARMCC::HI: return ARMCC::LO;
2348  case ARMCC::LS: return ARMCC::HS;
2349  case ARMCC::GE: return ARMCC::LE;
2350  case ARMCC::LT: return ARMCC::GT;
2351  case ARMCC::GT: return ARMCC::LT;
2352  case ARMCC::LE: return ARMCC::GE;
2353  }
2354}
2355
2356/// isRedundantFlagInstr - check whether the first instruction, whose only
2357/// purpose is to update flags, can be made redundant.
2358/// CMPrr can be made redundant by SUBrr if the operands are the same.
2359/// CMPri can be made redundant by SUBri if the operands are the same.
2360/// This function can be extended later on.
2361inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
2362                                        unsigned SrcReg2, int ImmValue,
2363                                        MachineInstr *OI) {
2364  if ((CmpI->getOpcode() == ARM::CMPrr ||
2365       CmpI->getOpcode() == ARM::t2CMPrr) &&
2366      (OI->getOpcode() == ARM::SUBrr ||
2367       OI->getOpcode() == ARM::t2SUBrr) &&
2368      ((OI->getOperand(1).getReg() == SrcReg &&
2369        OI->getOperand(2).getReg() == SrcReg2) ||
2370       (OI->getOperand(1).getReg() == SrcReg2 &&
2371        OI->getOperand(2).getReg() == SrcReg)))
2372    return true;
2373
2374  if ((CmpI->getOpcode() == ARM::CMPri ||
2375       CmpI->getOpcode() == ARM::t2CMPri) &&
2376      (OI->getOpcode() == ARM::SUBri ||
2377       OI->getOpcode() == ARM::t2SUBri) &&
2378      OI->getOperand(1).getReg() == SrcReg &&
2379      OI->getOperand(2).getImm() == ImmValue)
2380    return true;
2381  return false;
2382}
2383
2384/// optimizeCompareInstr - Convert the instruction supplying the argument to the
2385/// comparison into one that sets the zero bit in the flags register;
2386/// Remove a redundant Compare instruction if an earlier instruction can set the
2387/// flags in the same way as Compare.
2388/// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2389/// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2390/// condition code of instructions which use the flags.
2391bool ARMBaseInstrInfo::optimizeCompareInstr(
2392    MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
2393    int CmpValue, const MachineRegisterInfo *MRI) const {
2394  // Get the unique definition of SrcReg.
2395  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2396  if (!MI) return false;
2397
2398  // Masked compares sometimes use the same register as the corresponding 'and'.
2399  if (CmpMask != ~0) {
2400    if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
2401      MI = nullptr;
2402      for (MachineRegisterInfo::use_instr_iterator
2403           UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
2404           UI != UE; ++UI) {
2405        if (UI->getParent() != CmpInstr.getParent())
2406          continue;
2407        MachineInstr *PotentialAND = &*UI;
2408        if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2409            isPredicated(*PotentialAND))
2410          continue;
2411        MI = PotentialAND;
2412        break;
2413      }
2414      if (!MI) return false;
2415    }
2416  }
2417
2418  // Get ready to iterate backward from CmpInstr.
2419  MachineBasicBlock::iterator I = CmpInstr, E = MI,
2420                              B = CmpInstr.getParent()->begin();
2421
2422  // Early exit if CmpInstr is at the beginning of the BB.
2423  if (I == B) return false;
2424
2425  // There are two possible candidates which can be changed to set CPSR:
2426  // One is MI, the other is a SUB instruction.
2427  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2428  // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2429  MachineInstr *Sub = nullptr;
2430  if (SrcReg2 != 0)
2431    // MI is not a candidate for CMPrr.
2432    MI = nullptr;
2433  else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
2434    // Conservatively refuse to convert an instruction which isn't in the same
2435    // BB as the comparison.
2436    // For CMPri w/ CmpValue != 0, a Sub may still be a candidate.
2437    // Thus we cannot return here.
2438    if (CmpInstr.getOpcode() == ARM::CMPri ||
2439        CmpInstr.getOpcode() == ARM::t2CMPri)
2440      MI = nullptr;
2441    else
2442      return false;
2443  }
2444
2445  // Check that CPSR isn't set between the comparison instruction and the one we
2446  // want to change. At the same time, search for Sub.
2447  const TargetRegisterInfo *TRI = &getRegisterInfo();
2448  --I;
2449  for (; I != E; --I) {
2450    const MachineInstr &Instr = *I;
2451
2452    if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2453        Instr.readsRegister(ARM::CPSR, TRI))
2454      // This instruction modifies or uses CPSR after the one we want to
2455      // change. We can't do this transformation.
2456      return false;
2457
2458    // Check whether CmpInstr can be made redundant by the current instruction.
2459    if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
2460      Sub = &*I;
2461      break;
2462    }
2463
2464    if (I == B)
2465      // The 'and' is below the comparison instruction.
2466      return false;
2467  }
2468
2469  // Return false if no candidates exist.
2470  if (!MI && !Sub)
2471    return false;
2472
2473  // The single candidate is called MI.
2474  if (!MI) MI = Sub;
2475
2476  // We can't use a predicated instruction - it doesn't always write the flags.
2477  if (isPredicated(*MI))
2478    return false;
2479
2480  switch (MI->getOpcode()) {
2481  default: break;
2482  case ARM::RSBrr:
2483  case ARM::RSBri:
2484  case ARM::RSCrr:
2485  case ARM::RSCri:
2486  case ARM::ADDrr:
2487  case ARM::ADDri:
2488  case ARM::ADCrr:
2489  case ARM::ADCri:
2490  case ARM::SUBrr:
2491  case ARM::SUBri:
2492  case ARM::SBCrr:
2493  case ARM::SBCri:
2494  case ARM::t2RSBri:
2495  case ARM::t2ADDrr:
2496  case ARM::t2ADDri:
2497  case ARM::t2ADCrr:
2498  case ARM::t2ADCri:
2499  case ARM::t2SUBrr:
2500  case ARM::t2SUBri:
2501  case ARM::t2SBCrr:
2502  case ARM::t2SBCri:
2503  case ARM::ANDrr:
2504  case ARM::ANDri:
2505  case ARM::t2ANDrr:
2506  case ARM::t2ANDri:
2507  case ARM::ORRrr:
2508  case ARM::ORRri:
2509  case ARM::t2ORRrr:
2510  case ARM::t2ORRri:
2511  case ARM::EORrr:
2512  case ARM::EORri:
2513  case ARM::t2EORrr:
2514  case ARM::t2EORri: {
2515    // Scan forward for the use of CPSR
2516    // When checking against MI: if it's a conditional code that requires
2517    // checking of the V bit or C bit, then this is not safe to do.
2518    // It is safe to remove CmpInstr if CPSR is redefined or killed.
2519    // If we are done with the basic block, we need to check whether CPSR is
2520    // live-out.
2521    SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
2522        OperandsToUpdate;
2523    bool isSafe = false;
2524    I = CmpInstr;
2525    E = CmpInstr.getParent()->end();
2526    while (!isSafe && ++I != E) {
2527      const MachineInstr &Instr = *I;
2528      for (unsigned IO = 0, EO = Instr.getNumOperands();
2529           !isSafe && IO != EO; ++IO) {
2530        const MachineOperand &MO = Instr.getOperand(IO);
2531        if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
2532          isSafe = true;
2533          break;
2534        }
2535        if (!MO.isReg() || MO.getReg() != ARM::CPSR)
2536          continue;
2537        if (MO.isDef()) {
2538          isSafe = true;
2539          break;
2540        }
2541        // Condition code is after the operand before CPSR except for VSELs.
2542        ARMCC::CondCodes CC;
2543        bool IsInstrVSel = true;
2544        switch (Instr.getOpcode()) {
2545        default:
2546          IsInstrVSel = false;
2547          CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
2548          break;
2549        case ARM::VSELEQD:
2550        case ARM::VSELEQS:
2551          CC = ARMCC::EQ;
2552          break;
2553        case ARM::VSELGTD:
2554        case ARM::VSELGTS:
2555          CC = ARMCC::GT;
2556          break;
2557        case ARM::VSELGED:
2558        case ARM::VSELGES:
2559          CC = ARMCC::GE;
2560          break;
2561        case ARM::VSELVSS:
2562        case ARM::VSELVSD:
2563          CC = ARMCC::VS;
2564          break;
2565        }
2566
2567        if (Sub) {
2568          ARMCC::CondCodes NewCC = getSwappedCondition(CC);
2569          if (NewCC == ARMCC::AL)
2570            return false;
2571          // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
2572          // on CMP needs to be updated to be based on SUB.
2573          // Push the condition code operands to OperandsToUpdate.
2574          // If it is safe to remove CmpInstr, the condition code of these
2575          // operands will be modified.
2576          if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2577              Sub->getOperand(2).getReg() == SrcReg) {
2578            // VSel doesn't support condition code update.
2579            if (IsInstrVSel)
2580              return false;
2581            OperandsToUpdate.push_back(
2582                std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
2583          }
2584        } else {
2585          // No Sub, so this is x = <op> y, z; cmp x, 0.
2586          switch (CC) {
2587          case ARMCC::EQ: // Z
2588          case ARMCC::NE: // Z
2589          case ARMCC::MI: // N
2590          case ARMCC::PL: // N
2591          case ARMCC::AL: // none
2592            // CPSR can be used multiple times, we should continue.
2593            break;
2594          case ARMCC::HS: // C
2595          case ARMCC::LO: // C
2596          case ARMCC::VS: // V
2597          case ARMCC::VC: // V
2598          case ARMCC::HI: // C Z
2599          case ARMCC::LS: // C Z
2600          case ARMCC::GE: // N V
2601          case ARMCC::LT: // N V
2602          case ARMCC::GT: // Z N V
2603          case ARMCC::LE: // Z N V
2604            // The instruction uses the V bit or C bit which is not safe.
2605            return false;
2606          }
2607        }
2608      }
2609    }
2610
2611    // If CPSR is not killed nor re-defined, we should check whether it is
2612    // live-out. If it is live-out, do not optimize.
2613    if (!isSafe) {
2614      MachineBasicBlock *MBB = CmpInstr.getParent();
2615      for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
2616               SE = MBB->succ_end(); SI != SE; ++SI)
2617        if ((*SI)->isLiveIn(ARM::CPSR))
2618          return false;
2619    }
2620
2621    // Toggle the optional operand to CPSR.
2622    MI->getOperand(5).setReg(ARM::CPSR);
2623    MI->getOperand(5).setIsDef(true);
2624    assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
2625    CmpInstr.eraseFromParent();
2626
2627    // Modify the condition code of operands in OperandsToUpdate.
2628    // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2629    // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2630    for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
2631      OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
2632    return true;
2633  }
2634  }
2635
2636  return false;
2637}
2638
2639bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2640                                     unsigned Reg,
2641                                     MachineRegisterInfo *MRI) const {
2642  // Fold large immediates into add, sub, or, xor.
2643  unsigned DefOpc = DefMI.getOpcode();
2644  if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
2645    return false;
2646  if (!DefMI.getOperand(1).isImm())
2647    // Could be t2MOVi32imm <ga:xx>
2648    return false;
2649
2650  if (!MRI->hasOneNonDBGUse(Reg))
2651    return false;
2652
2653  const MCInstrDesc &DefMCID = DefMI.getDesc();
2654  if (DefMCID.hasOptionalDef()) {
2655    unsigned NumOps = DefMCID.getNumOperands();
2656    const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
2657    if (MO.getReg() == ARM::CPSR && !MO.isDead())
2658      // If DefMI defines CPSR and it is not dead, it's obviously not safe
2659      // to delete DefMI.
2660      return false;
2661  }
2662
2663  const MCInstrDesc &UseMCID = UseMI.getDesc();
2664  if (UseMCID.hasOptionalDef()) {
2665    unsigned NumOps = UseMCID.getNumOperands();
2666    if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
2667      // If the instruction sets the flag, do not attempt this optimization
2668      // since it may change the semantics of the code.
2669      return false;
2670  }
2671
2672  unsigned UseOpc = UseMI.getOpcode();
2673  unsigned NewUseOpc = 0;
2674  uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
2675  uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
2676  bool Commute = false;
2677  switch (UseOpc) {
2678  default: return false;
2679  case ARM::SUBrr:
2680  case ARM::ADDrr:
2681  case ARM::ORRrr:
2682  case ARM::EORrr:
2683  case ARM::t2SUBrr:
2684  case ARM::t2ADDrr:
2685  case ARM::t2ORRrr:
2686  case ARM::t2EORrr: {
2687    Commute = UseMI.getOperand(2).getReg() != Reg;
2688    switch (UseOpc) {
2689    default: break;
2690    case ARM::ADDrr:
2691    case ARM::SUBrr: {
2692      if (UseOpc == ARM::SUBrr && Commute)
2693        return false;
2694
2695      // ADD/SUB are special because they're essentially the same operation, so
2696      // we can handle a larger range of immediates.
2697      if (ARM_AM::isSOImmTwoPartVal(ImmVal))
2698        NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
2699      else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
2700        ImmVal = -ImmVal;
2701        NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
2702      } else
2703        return false;
2704      SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
2705      SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
2706      break;
2707    }
2708    case ARM::ORRrr:
2709    case ARM::EORrr: {
2710      if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
2711        return false;
2712      SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
2713      SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
2714      switch (UseOpc) {
2715      default: break;
2716      case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
2717      case ARM::EORrr: NewUseOpc = ARM::EORri; break;
2718      }
2719      break;
2720    }
2721    case ARM::t2ADDrr:
2722    case ARM::t2SUBrr: {
2723      if (UseOpc == ARM::t2SUBrr && Commute)
2724        return false;
2725
2726      // ADD/SUB are special because they're essentially the same operation, so
2727      // we can handle a larger range of immediates.
2728      if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
2729        NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2ADDri : ARM::t2SUBri;
2730      else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
2731        ImmVal = -ImmVal;
2732        NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2SUBri : ARM::t2ADDri;
2733      } else
2734        return false;
2735      SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
2736      SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
2737      break;
2738    }
2739    case ARM::t2ORRrr:
2740    case ARM::t2EORrr: {
2741      if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
2742        return false;
2743      SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
2744      SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
2745      switch (UseOpc) {
2746      default: break;
2747      case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
2748      case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
2749      }
2750      break;
2751    }
2752    }
2753  }
2754  }
2755
2756  unsigned OpIdx = Commute ? 2 : 1;
2757  unsigned Reg1 = UseMI.getOperand(OpIdx).getReg();
2758  bool isKill = UseMI.getOperand(OpIdx).isKill();
2759  unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
2760  AddDefaultCC(
2761      AddDefaultPred(BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
2762                             get(NewUseOpc), NewReg)
2763                         .addReg(Reg1, getKillRegState(isKill))
2764                         .addImm(SOImmValV1)));
2765  UseMI.setDesc(get(NewUseOpc));
2766  UseMI.getOperand(1).setReg(NewReg);
2767  UseMI.getOperand(1).setIsKill();
2768  UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
2769  DefMI.eraseFromParent();
2770  return true;
2771}
2772
2773static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
2774                                        const MachineInstr &MI) {
2775  switch (MI.getOpcode()) {
2776  default: {
2777    const MCInstrDesc &Desc = MI.getDesc();
2778    int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
2779    assert(UOps >= 0 && "bad # UOps");
2780    return UOps;
2781  }
2782
2783  case ARM::LDRrs:
2784  case ARM::LDRBrs:
2785  case ARM::STRrs:
2786  case ARM::STRBrs: {
2787    unsigned ShOpVal = MI.getOperand(3).getImm();
2788    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2789    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2790    if (!isSub &&
2791        (ShImm == 0 ||
2792         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2793          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2794      return 1;
2795    return 2;
2796  }
2797
2798  case ARM::LDRH:
2799  case ARM::STRH: {
2800    if (!MI.getOperand(2).getReg())
2801      return 1;
2802
2803    unsigned ShOpVal = MI.getOperand(3).getImm();
2804    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2805    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2806    if (!isSub &&
2807        (ShImm == 0 ||
2808         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2809          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2810      return 1;
2811    return 2;
2812  }
2813
2814  case ARM::LDRSB:
2815  case ARM::LDRSH:
2816    return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
2817
2818  case ARM::LDRSB_POST:
2819  case ARM::LDRSH_POST: {
2820    unsigned Rt = MI.getOperand(0).getReg();
2821    unsigned Rm = MI.getOperand(3).getReg();
2822    return (Rt == Rm) ? 4 : 3;
2823  }
2824
2825  case ARM::LDR_PRE_REG:
2826  case ARM::LDRB_PRE_REG: {
2827    unsigned Rt = MI.getOperand(0).getReg();
2828    unsigned Rm = MI.getOperand(3).getReg();
2829    if (Rt == Rm)
2830      return 3;
2831    unsigned ShOpVal = MI.getOperand(4).getImm();
2832    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2833    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2834    if (!isSub &&
2835        (ShImm == 0 ||
2836         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2837          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2838      return 2;
2839    return 3;
2840  }
2841
2842  case ARM::STR_PRE_REG:
2843  case ARM::STRB_PRE_REG: {
2844    unsigned ShOpVal = MI.getOperand(4).getImm();
2845    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2846    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2847    if (!isSub &&
2848        (ShImm == 0 ||
2849         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2850          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2851      return 2;
2852    return 3;
2853  }
2854
2855  case ARM::LDRH_PRE:
2856  case ARM::STRH_PRE: {
2857    unsigned Rt = MI.getOperand(0).getReg();
2858    unsigned Rm = MI.getOperand(3).getReg();
2859    if (!Rm)
2860      return 2;
2861    if (Rt == Rm)
2862      return 3;
2863    return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
2864  }
2865
2866  case ARM::LDR_POST_REG:
2867  case ARM::LDRB_POST_REG:
2868  case ARM::LDRH_POST: {
2869    unsigned Rt = MI.getOperand(0).getReg();
2870    unsigned Rm = MI.getOperand(3).getReg();
2871    return (Rt == Rm) ? 3 : 2;
2872  }
2873
2874  case ARM::LDR_PRE_IMM:
2875  case ARM::LDRB_PRE_IMM:
2876  case ARM::LDR_POST_IMM:
2877  case ARM::LDRB_POST_IMM:
2878  case ARM::STRB_POST_IMM:
2879  case ARM::STRB_POST_REG:
2880  case ARM::STRB_PRE_IMM:
2881  case ARM::STRH_POST:
2882  case ARM::STR_POST_IMM:
2883  case ARM::STR_POST_REG:
2884  case ARM::STR_PRE_IMM:
2885    return 2;
2886
2887  case ARM::LDRSB_PRE:
2888  case ARM::LDRSH_PRE: {
2889    unsigned Rm = MI.getOperand(3).getReg();
2890    if (Rm == 0)
2891      return 3;
2892    unsigned Rt = MI.getOperand(0).getReg();
2893    if (Rt == Rm)
2894      return 4;
2895    unsigned ShOpVal = MI.getOperand(4).getImm();
2896    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2897    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2898    if (!isSub &&
2899        (ShImm == 0 ||
2900         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2901          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2902      return 3;
2903    return 4;
2904  }
2905
2906  case ARM::LDRD: {
2907    unsigned Rt = MI.getOperand(0).getReg();
2908    unsigned Rn = MI.getOperand(2).getReg();
2909    unsigned Rm = MI.getOperand(3).getReg();
2910    if (Rm)
2911      return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
2912                                                                          : 3;
2913    return (Rt == Rn) ? 3 : 2;
2914  }
2915
2916  case ARM::STRD: {
2917    unsigned Rm = MI.getOperand(3).getReg();
2918    if (Rm)
2919      return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
2920                                                                          : 3;
2921    return 2;
2922  }
2923
2924  case ARM::LDRD_POST:
2925  case ARM::t2LDRD_POST:
2926    return 3;
2927
2928  case ARM::STRD_POST:
2929  case ARM::t2STRD_POST:
2930    return 4;
2931
2932  case ARM::LDRD_PRE: {
2933    unsigned Rt = MI.getOperand(0).getReg();
2934    unsigned Rn = MI.getOperand(3).getReg();
2935    unsigned Rm = MI.getOperand(4).getReg();
2936    if (Rm)
2937      return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
2938                                                                          : 4;
2939    return (Rt == Rn) ? 4 : 3;
2940  }
2941
2942  case ARM::t2LDRD_PRE: {
2943    unsigned Rt = MI.getOperand(0).getReg();
2944    unsigned Rn = MI.getOperand(3).getReg();
2945    return (Rt == Rn) ? 4 : 3;
2946  }
2947
2948  case ARM::STRD_PRE: {
2949    unsigned Rm = MI.getOperand(4).getReg();
2950    if (Rm)
2951      return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
2952                                                                          : 4;
2953    return 3;
2954  }
2955
2956  case ARM::t2STRD_PRE:
2957    return 3;
2958
2959  case ARM::t2LDR_POST:
2960  case ARM::t2LDRB_POST:
2961  case ARM::t2LDRB_PRE:
2962  case ARM::t2LDRSBi12:
2963  case ARM::t2LDRSBi8:
2964  case ARM::t2LDRSBpci:
2965  case ARM::t2LDRSBs:
2966  case ARM::t2LDRH_POST:
2967  case ARM::t2LDRH_PRE:
2968  case ARM::t2LDRSBT:
2969  case ARM::t2LDRSB_POST:
2970  case ARM::t2LDRSB_PRE:
2971  case ARM::t2LDRSH_POST:
2972  case ARM::t2LDRSH_PRE:
2973  case ARM::t2LDRSHi12:
2974  case ARM::t2LDRSHi8:
2975  case ARM::t2LDRSHpci:
2976  case ARM::t2LDRSHs:
2977    return 2;
2978
2979  case ARM::t2LDRDi8: {
2980    unsigned Rt = MI.getOperand(0).getReg();
2981    unsigned Rn = MI.getOperand(2).getReg();
2982    return (Rt == Rn) ? 3 : 2;
2983  }
2984
2985  case ARM::t2STRB_POST:
2986  case ARM::t2STRB_PRE:
2987  case ARM::t2STRBs:
2988  case ARM::t2STRDi8:
2989  case ARM::t2STRH_POST:
2990  case ARM::t2STRH_PRE:
2991  case ARM::t2STRHs:
2992  case ARM::t2STR_POST:
2993  case ARM::t2STR_PRE:
2994  case ARM::t2STRs:
2995    return 2;
2996  }
2997}
2998
2999// Return the number of 32-bit words loaded by LDM or stored by STM. If this
3000// can't be easily determined return 0 (missing MachineMemOperand).
3001//
3002// FIXME: The current MachineInstr design does not support relying on machine
3003// mem operands to determine the width of a memory access. Instead, we expect
3004// the target to provide this information based on the instruction opcode and
3005// operands. However, using MachineMemOperand is the best solution now for
3006// two reasons:
3007//
3008// 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3009// operands. This is much more dangerous than using the MachineMemOperand
3010// sizes because CodeGen passes can insert/remove optional machine operands. In
3011// fact, it's totally incorrect for preRA passes and appears to be wrong for
3012// postRA passes as well.
3013//
3014// 2) getNumLDMAddresses is only used by the scheduling machine model and any
3015// machine model that calls this should handle the unknown (zero size) case.
3016//
3017// Long term, we should require a target hook that verifies MachineMemOperand
3018// sizes during MC lowering. That target hook should be local to MC lowering
3019// because we can't ensure that it is aware of other MI forms. Doing this will
3020// ensure that MachineMemOperands are correctly propagated through all passes.
3021unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3022  unsigned Size = 0;
3023  for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3024                                  E = MI.memoperands_end();
3025       I != E; ++I) {
3026    Size += (*I)->getSize();
3027  }
3028  return Size / 4;
3029}
3030
3031static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3032                                                    unsigned NumRegs) {
3033  unsigned UOps = 1 + NumRegs; // 1 for address computation.
3034  switch (Opc) {
3035  default:
3036    break;
3037  case ARM::VLDMDIA_UPD:
3038  case ARM::VLDMDDB_UPD:
3039  case ARM::VLDMSIA_UPD:
3040  case ARM::VLDMSDB_UPD:
3041  case ARM::VSTMDIA_UPD:
3042  case ARM::VSTMDDB_UPD:
3043  case ARM::VSTMSIA_UPD:
3044  case ARM::VSTMSDB_UPD:
3045  case ARM::LDMIA_UPD:
3046  case ARM::LDMDA_UPD:
3047  case ARM::LDMDB_UPD:
3048  case ARM::LDMIB_UPD:
3049  case ARM::STMIA_UPD:
3050  case ARM::STMDA_UPD:
3051  case ARM::STMDB_UPD:
3052  case ARM::STMIB_UPD:
3053  case ARM::tLDMIA_UPD:
3054  case ARM::tSTMIA_UPD:
3055  case ARM::t2LDMIA_UPD:
3056  case ARM::t2LDMDB_UPD:
3057  case ARM::t2STMIA_UPD:
3058  case ARM::t2STMDB_UPD:
3059    ++UOps; // One for base register writeback.
3060    break;
3061  case ARM::LDMIA_RET:
3062  case ARM::tPOP_RET:
3063  case ARM::t2LDMIA_RET:
3064    UOps += 2; // One for base reg wb, one for write to pc.
3065    break;
3066  }
3067  return UOps;
3068}
3069
3070unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3071                                          const MachineInstr &MI) const {
3072  if (!ItinData || ItinData->isEmpty())
3073    return 1;
3074
3075  const MCInstrDesc &Desc = MI.getDesc();
3076  unsigned Class = Desc.getSchedClass();
3077  int ItinUOps = ItinData->getNumMicroOps(Class);
3078  if (ItinUOps >= 0) {
3079    if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3080      return getNumMicroOpsSwiftLdSt(ItinData, MI);
3081
3082    return ItinUOps;
3083  }
3084
3085  unsigned Opc = MI.getOpcode();
3086  switch (Opc) {
3087  default:
3088    llvm_unreachable("Unexpected multi-uops instruction!");
3089  case ARM::VLDMQIA:
3090  case ARM::VSTMQIA:
3091    return 2;
3092
3093  // The number of uOps for load / store multiple are determined by the number
3094  // registers.
3095  //
3096  // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3097  // same cycle. The scheduling for the first load / store must be done
3098  // separately by assuming the address is not 64-bit aligned.
3099  //
3100  // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3101  // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
3102  // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3103  case ARM::VLDMDIA:
3104  case ARM::VLDMDIA_UPD:
3105  case ARM::VLDMDDB_UPD:
3106  case ARM::VLDMSIA:
3107  case ARM::VLDMSIA_UPD:
3108  case ARM::VLDMSDB_UPD:
3109  case ARM::VSTMDIA:
3110  case ARM::VSTMDIA_UPD:
3111  case ARM::VSTMDDB_UPD:
3112  case ARM::VSTMSIA:
3113  case ARM::VSTMSIA_UPD:
3114  case ARM::VSTMSDB_UPD: {
3115    unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3116    return (NumRegs / 2) + (NumRegs % 2) + 1;
3117  }
3118
3119  case ARM::LDMIA_RET:
3120  case ARM::LDMIA:
3121  case ARM::LDMDA:
3122  case ARM::LDMDB:
3123  case ARM::LDMIB:
3124  case ARM::LDMIA_UPD:
3125  case ARM::LDMDA_UPD:
3126  case ARM::LDMDB_UPD:
3127  case ARM::LDMIB_UPD:
3128  case ARM::STMIA:
3129  case ARM::STMDA:
3130  case ARM::STMDB:
3131  case ARM::STMIB:
3132  case ARM::STMIA_UPD:
3133  case ARM::STMDA_UPD:
3134  case ARM::STMDB_UPD:
3135  case ARM::STMIB_UPD:
3136  case ARM::tLDMIA:
3137  case ARM::tLDMIA_UPD:
3138  case ARM::tSTMIA_UPD:
3139  case ARM::tPOP_RET:
3140  case ARM::tPOP:
3141  case ARM::tPUSH:
3142  case ARM::t2LDMIA_RET:
3143  case ARM::t2LDMIA:
3144  case ARM::t2LDMDB:
3145  case ARM::t2LDMIA_UPD:
3146  case ARM::t2LDMDB_UPD:
3147  case ARM::t2STMIA:
3148  case ARM::t2STMDB:
3149  case ARM::t2STMIA_UPD:
3150  case ARM::t2STMDB_UPD: {
3151    unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3152    switch (Subtarget.getLdStMultipleTiming()) {
3153    case ARMSubtarget::SingleIssuePlusExtras:
3154      return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3155    case ARMSubtarget::SingleIssue:
3156      // Assume the worst.
3157      return NumRegs;
3158    case ARMSubtarget::DoubleIssue: {
3159      if (NumRegs < 4)
3160        return 2;
3161      // 4 registers would be issued: 2, 2.
3162      // 5 registers would be issued: 2, 2, 1.
3163      unsigned UOps = (NumRegs / 2);
3164      if (NumRegs % 2)
3165        ++UOps;
3166      return UOps;
3167    }
3168    case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3169      unsigned UOps = (NumRegs / 2);
3170      // If there are odd number of registers or if it's not 64-bit aligned,
3171      // then it takes an extra AGU (Address Generation Unit) cycle.
3172      if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3173          (*MI.memoperands_begin())->getAlignment() < 8)
3174        ++UOps;
3175      return UOps;
3176      }
3177    }
3178  }
3179  }
3180  llvm_unreachable("Didn't find the number of microops");
3181}
3182
3183int
3184ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3185                                  const MCInstrDesc &DefMCID,
3186                                  unsigned DefClass,
3187                                  unsigned DefIdx, unsigned DefAlign) const {
3188  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3189  if (RegNo <= 0)
3190    // Def is the address writeback.
3191    return ItinData->getOperandCycle(DefClass, DefIdx);
3192
3193  int DefCycle;
3194  if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3195    // (regno / 2) + (regno % 2) + 1
3196    DefCycle = RegNo / 2 + 1;
3197    if (RegNo % 2)
3198      ++DefCycle;
3199  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3200    DefCycle = RegNo;
3201    bool isSLoad = false;
3202
3203    switch (DefMCID.getOpcode()) {
3204    default: break;
3205    case ARM::VLDMSIA:
3206    case ARM::VLDMSIA_UPD:
3207    case ARM::VLDMSDB_UPD:
3208      isSLoad = true;
3209      break;
3210    }
3211
3212    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3213    // then it takes an extra cycle.
3214    if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3215      ++DefCycle;
3216  } else {
3217    // Assume the worst.
3218    DefCycle = RegNo + 2;
3219  }
3220
3221  return DefCycle;
3222}
3223
3224int
3225ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3226                                 const MCInstrDesc &DefMCID,
3227                                 unsigned DefClass,
3228                                 unsigned DefIdx, unsigned DefAlign) const {
3229  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3230  if (RegNo <= 0)
3231    // Def is the address writeback.
3232    return ItinData->getOperandCycle(DefClass, DefIdx);
3233
3234  int DefCycle;
3235  if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3236    // 4 registers would be issued: 1, 2, 1.
3237    // 5 registers would be issued: 1, 2, 2.
3238    DefCycle = RegNo / 2;
3239    if (DefCycle < 1)
3240      DefCycle = 1;
3241    // Result latency is issue cycle + 2: E2.
3242    DefCycle += 2;
3243  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3244    DefCycle = (RegNo / 2);
3245    // If there are odd number of registers or if it's not 64-bit aligned,
3246    // then it takes an extra AGU (Address Generation Unit) cycle.
3247    if ((RegNo % 2) || DefAlign < 8)
3248      ++DefCycle;
3249    // Result latency is AGU cycles + 2.
3250    DefCycle += 2;
3251  } else {
3252    // Assume the worst.
3253    DefCycle = RegNo + 2;
3254  }
3255
3256  return DefCycle;
3257}
3258
3259int
3260ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3261                                  const MCInstrDesc &UseMCID,
3262                                  unsigned UseClass,
3263                                  unsigned UseIdx, unsigned UseAlign) const {
3264  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3265  if (RegNo <= 0)
3266    return ItinData->getOperandCycle(UseClass, UseIdx);
3267
3268  int UseCycle;
3269  if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3270    // (regno / 2) + (regno % 2) + 1
3271    UseCycle = RegNo / 2 + 1;
3272    if (RegNo % 2)
3273      ++UseCycle;
3274  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3275    UseCycle = RegNo;
3276    bool isSStore = false;
3277
3278    switch (UseMCID.getOpcode()) {
3279    default: break;
3280    case ARM::VSTMSIA:
3281    case ARM::VSTMSIA_UPD:
3282    case ARM::VSTMSDB_UPD:
3283      isSStore = true;
3284      break;
3285    }
3286
3287    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3288    // then it takes an extra cycle.
3289    if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3290      ++UseCycle;
3291  } else {
3292    // Assume the worst.
3293    UseCycle = RegNo + 2;
3294  }
3295
3296  return UseCycle;
3297}
3298
3299int
3300ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3301                                 const MCInstrDesc &UseMCID,
3302                                 unsigned UseClass,
3303                                 unsigned UseIdx, unsigned UseAlign) const {
3304  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3305  if (RegNo <= 0)
3306    return ItinData->getOperandCycle(UseClass, UseIdx);
3307
3308  int UseCycle;
3309  if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3310    UseCycle = RegNo / 2;
3311    if (UseCycle < 2)
3312      UseCycle = 2;
3313    // Read in E3.
3314    UseCycle += 2;
3315  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3316    UseCycle = (RegNo / 2);
3317    // If there are odd number of registers or if it's not 64-bit aligned,
3318    // then it takes an extra AGU (Address Generation Unit) cycle.
3319    if ((RegNo % 2) || UseAlign < 8)
3320      ++UseCycle;
3321  } else {
3322    // Assume the worst.
3323    UseCycle = 1;
3324  }
3325  return UseCycle;
3326}
3327
3328int
3329ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3330                                    const MCInstrDesc &DefMCID,
3331                                    unsigned DefIdx, unsigned DefAlign,
3332                                    const MCInstrDesc &UseMCID,
3333                                    unsigned UseIdx, unsigned UseAlign) const {
3334  unsigned DefClass = DefMCID.getSchedClass();
3335  unsigned UseClass = UseMCID.getSchedClass();
3336
3337  if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
3338    return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
3339
3340  // This may be a def / use of a variable_ops instruction, the operand
3341  // latency might be determinable dynamically. Let the target try to
3342  // figure it out.
3343  int DefCycle = -1;
3344  bool LdmBypass = false;
3345  switch (DefMCID.getOpcode()) {
3346  default:
3347    DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3348    break;
3349
3350  case ARM::VLDMDIA:
3351  case ARM::VLDMDIA_UPD:
3352  case ARM::VLDMDDB_UPD:
3353  case ARM::VLDMSIA:
3354  case ARM::VLDMSIA_UPD:
3355  case ARM::VLDMSDB_UPD:
3356    DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3357    break;
3358
3359  case ARM::LDMIA_RET:
3360  case ARM::LDMIA:
3361  case ARM::LDMDA:
3362  case ARM::LDMDB:
3363  case ARM::LDMIB:
3364  case ARM::LDMIA_UPD:
3365  case ARM::LDMDA_UPD:
3366  case ARM::LDMDB_UPD:
3367  case ARM::LDMIB_UPD:
3368  case ARM::tLDMIA:
3369  case ARM::tLDMIA_UPD:
3370  case ARM::tPUSH:
3371  case ARM::t2LDMIA_RET:
3372  case ARM::t2LDMIA:
3373  case ARM::t2LDMDB:
3374  case ARM::t2LDMIA_UPD:
3375  case ARM::t2LDMDB_UPD:
3376    LdmBypass = 1;
3377    DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3378    break;
3379  }
3380
3381  if (DefCycle == -1)
3382    // We can't seem to determine the result latency of the def, assume it's 2.
3383    DefCycle = 2;
3384
3385  int UseCycle = -1;
3386  switch (UseMCID.getOpcode()) {
3387  default:
3388    UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
3389    break;
3390
3391  case ARM::VSTMDIA:
3392  case ARM::VSTMDIA_UPD:
3393  case ARM::VSTMDDB_UPD:
3394  case ARM::VSTMSIA:
3395  case ARM::VSTMSIA_UPD:
3396  case ARM::VSTMSDB_UPD:
3397    UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3398    break;
3399
3400  case ARM::STMIA:
3401  case ARM::STMDA:
3402  case ARM::STMDB:
3403  case ARM::STMIB:
3404  case ARM::STMIA_UPD:
3405  case ARM::STMDA_UPD:
3406  case ARM::STMDB_UPD:
3407  case ARM::STMIB_UPD:
3408  case ARM::tSTMIA_UPD:
3409  case ARM::tPOP_RET:
3410  case ARM::tPOP:
3411  case ARM::t2STMIA:
3412  case ARM::t2STMDB:
3413  case ARM::t2STMIA_UPD:
3414  case ARM::t2STMDB_UPD:
3415    UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3416    break;
3417  }
3418
3419  if (UseCycle == -1)
3420    // Assume it's read in the first stage.
3421    UseCycle = 1;
3422
3423  UseCycle = DefCycle - UseCycle + 1;
3424  if (UseCycle > 0) {
3425    if (LdmBypass) {
3426      // It's a variable_ops instruction so we can't use DefIdx here. Just use
3427      // first def operand.
3428      if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
3429                                          UseClass, UseIdx))
3430        --UseCycle;
3431    } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
3432                                               UseClass, UseIdx)) {
3433      --UseCycle;
3434    }
3435  }
3436
3437  return UseCycle;
3438}
3439
3440static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
3441                                           const MachineInstr *MI, unsigned Reg,
3442                                           unsigned &DefIdx, unsigned &Dist) {
3443  Dist = 0;
3444
3445  MachineBasicBlock::const_iterator I = MI; ++I;
3446  MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
3447  assert(II->isInsideBundle() && "Empty bundle?");
3448
3449  int Idx = -1;
3450  while (II->isInsideBundle()) {
3451    Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
3452    if (Idx != -1)
3453      break;
3454    --II;
3455    ++Dist;
3456  }
3457
3458  assert(Idx != -1 && "Cannot find bundled definition!");
3459  DefIdx = Idx;
3460  return &*II;
3461}
3462
3463static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
3464                                           const MachineInstr &MI, unsigned Reg,
3465                                           unsigned &UseIdx, unsigned &Dist) {
3466  Dist = 0;
3467
3468  MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
3469  assert(II->isInsideBundle() && "Empty bundle?");
3470  MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
3471
3472  // FIXME: This doesn't properly handle multiple uses.
3473  int Idx = -1;
3474  while (II != E && II->isInsideBundle()) {
3475    Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
3476    if (Idx != -1)
3477      break;
3478    if (II->getOpcode() != ARM::t2IT)
3479      ++Dist;
3480    ++II;
3481  }
3482
3483  if (Idx == -1) {
3484    Dist = 0;
3485    return nullptr;
3486  }
3487
3488  UseIdx = Idx;
3489  return &*II;
3490}
3491
3492/// Return the number of cycles to add to (or subtract from) the static
3493/// itinerary based on the def opcode and alignment. The caller will ensure that
3494/// adjusted latency is at least one cycle.
3495static int adjustDefLatency(const ARMSubtarget &Subtarget,
3496                            const MachineInstr &DefMI,
3497                            const MCInstrDesc &DefMCID, unsigned DefAlign) {
3498  int Adjust = 0;
3499  if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
3500    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3501    // variants are one cycle cheaper.
3502    switch (DefMCID.getOpcode()) {
3503    default: break;
3504    case ARM::LDRrs:
3505    case ARM::LDRBrs: {
3506      unsigned ShOpVal = DefMI.getOperand(3).getImm();
3507      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3508      if (ShImm == 0 ||
3509          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3510        --Adjust;
3511      break;
3512    }
3513    case ARM::t2LDRs:
3514    case ARM::t2LDRBs:
3515    case ARM::t2LDRHs:
3516    case ARM::t2LDRSHs: {
3517      // Thumb2 mode: lsl only.
3518      unsigned ShAmt = DefMI.getOperand(3).getImm();
3519      if (ShAmt == 0 || ShAmt == 2)
3520        --Adjust;
3521      break;
3522    }
3523    }
3524  } else if (Subtarget.isSwift()) {
3525    // FIXME: Properly handle all of the latency adjustments for address
3526    // writeback.
3527    switch (DefMCID.getOpcode()) {
3528    default: break;
3529    case ARM::LDRrs:
3530    case ARM::LDRBrs: {
3531      unsigned ShOpVal = DefMI.getOperand(3).getImm();
3532      bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3533      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3534      if (!isSub &&
3535          (ShImm == 0 ||
3536           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3537            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3538        Adjust -= 2;
3539      else if (!isSub &&
3540               ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3541        --Adjust;
3542      break;
3543    }
3544    case ARM::t2LDRs:
3545    case ARM::t2LDRBs:
3546    case ARM::t2LDRHs:
3547    case ARM::t2LDRSHs: {
3548      // Thumb2 mode: lsl only.
3549      unsigned ShAmt = DefMI.getOperand(3).getImm();
3550      if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
3551        Adjust -= 2;
3552      break;
3553    }
3554    }
3555  }
3556
3557  if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
3558    switch (DefMCID.getOpcode()) {
3559    default: break;
3560    case ARM::VLD1q8:
3561    case ARM::VLD1q16:
3562    case ARM::VLD1q32:
3563    case ARM::VLD1q64:
3564    case ARM::VLD1q8wb_fixed:
3565    case ARM::VLD1q16wb_fixed:
3566    case ARM::VLD1q32wb_fixed:
3567    case ARM::VLD1q64wb_fixed:
3568    case ARM::VLD1q8wb_register:
3569    case ARM::VLD1q16wb_register:
3570    case ARM::VLD1q32wb_register:
3571    case ARM::VLD1q64wb_register:
3572    case ARM::VLD2d8:
3573    case ARM::VLD2d16:
3574    case ARM::VLD2d32:
3575    case ARM::VLD2q8:
3576    case ARM::VLD2q16:
3577    case ARM::VLD2q32:
3578    case ARM::VLD2d8wb_fixed:
3579    case ARM::VLD2d16wb_fixed:
3580    case ARM::VLD2d32wb_fixed:
3581    case ARM::VLD2q8wb_fixed:
3582    case ARM::VLD2q16wb_fixed:
3583    case ARM::VLD2q32wb_fixed:
3584    case ARM::VLD2d8wb_register:
3585    case ARM::VLD2d16wb_register:
3586    case ARM::VLD2d32wb_register:
3587    case ARM::VLD2q8wb_register:
3588    case ARM::VLD2q16wb_register:
3589    case ARM::VLD2q32wb_register:
3590    case ARM::VLD3d8:
3591    case ARM::VLD3d16:
3592    case ARM::VLD3d32:
3593    case ARM::VLD1d64T:
3594    case ARM::VLD3d8_UPD:
3595    case ARM::VLD3d16_UPD:
3596    case ARM::VLD3d32_UPD:
3597    case ARM::VLD1d64Twb_fixed:
3598    case ARM::VLD1d64Twb_register:
3599    case ARM::VLD3q8_UPD:
3600    case ARM::VLD3q16_UPD:
3601    case ARM::VLD3q32_UPD:
3602    case ARM::VLD4d8:
3603    case ARM::VLD4d16:
3604    case ARM::VLD4d32:
3605    case ARM::VLD1d64Q:
3606    case ARM::VLD4d8_UPD:
3607    case ARM::VLD4d16_UPD:
3608    case ARM::VLD4d32_UPD:
3609    case ARM::VLD1d64Qwb_fixed:
3610    case ARM::VLD1d64Qwb_register:
3611    case ARM::VLD4q8_UPD:
3612    case ARM::VLD4q16_UPD:
3613    case ARM::VLD4q32_UPD:
3614    case ARM::VLD1DUPq8:
3615    case ARM::VLD1DUPq16:
3616    case ARM::VLD1DUPq32:
3617    case ARM::VLD1DUPq8wb_fixed:
3618    case ARM::VLD1DUPq16wb_fixed:
3619    case ARM::VLD1DUPq32wb_fixed:
3620    case ARM::VLD1DUPq8wb_register:
3621    case ARM::VLD1DUPq16wb_register:
3622    case ARM::VLD1DUPq32wb_register:
3623    case ARM::VLD2DUPd8:
3624    case ARM::VLD2DUPd16:
3625    case ARM::VLD2DUPd32:
3626    case ARM::VLD2DUPd8wb_fixed:
3627    case ARM::VLD2DUPd16wb_fixed:
3628    case ARM::VLD2DUPd32wb_fixed:
3629    case ARM::VLD2DUPd8wb_register:
3630    case ARM::VLD2DUPd16wb_register:
3631    case ARM::VLD2DUPd32wb_register:
3632    case ARM::VLD4DUPd8:
3633    case ARM::VLD4DUPd16:
3634    case ARM::VLD4DUPd32:
3635    case ARM::VLD4DUPd8_UPD:
3636    case ARM::VLD4DUPd16_UPD:
3637    case ARM::VLD4DUPd32_UPD:
3638    case ARM::VLD1LNd8:
3639    case ARM::VLD1LNd16:
3640    case ARM::VLD1LNd32:
3641    case ARM::VLD1LNd8_UPD:
3642    case ARM::VLD1LNd16_UPD:
3643    case ARM::VLD1LNd32_UPD:
3644    case ARM::VLD2LNd8:
3645    case ARM::VLD2LNd16:
3646    case ARM::VLD2LNd32:
3647    case ARM::VLD2LNq16:
3648    case ARM::VLD2LNq32:
3649    case ARM::VLD2LNd8_UPD:
3650    case ARM::VLD2LNd16_UPD:
3651    case ARM::VLD2LNd32_UPD:
3652    case ARM::VLD2LNq16_UPD:
3653    case ARM::VLD2LNq32_UPD:
3654    case ARM::VLD4LNd8:
3655    case ARM::VLD4LNd16:
3656    case ARM::VLD4LNd32:
3657    case ARM::VLD4LNq16:
3658    case ARM::VLD4LNq32:
3659    case ARM::VLD4LNd8_UPD:
3660    case ARM::VLD4LNd16_UPD:
3661    case ARM::VLD4LNd32_UPD:
3662    case ARM::VLD4LNq16_UPD:
3663    case ARM::VLD4LNq32_UPD:
3664      // If the address is not 64-bit aligned, the latencies of these
3665      // instructions increases by one.
3666      ++Adjust;
3667      break;
3668    }
3669  }
3670  return Adjust;
3671}
3672
3673int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3674                                        const MachineInstr &DefMI,
3675                                        unsigned DefIdx,
3676                                        const MachineInstr &UseMI,
3677                                        unsigned UseIdx) const {
3678  // No operand latency. The caller may fall back to getInstrLatency.
3679  if (!ItinData || ItinData->isEmpty())
3680    return -1;
3681
3682  const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
3683  unsigned Reg = DefMO.getReg();
3684
3685  const MachineInstr *ResolvedDefMI = &DefMI;
3686  unsigned DefAdj = 0;
3687  if (DefMI.isBundle())
3688    ResolvedDefMI =
3689        getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
3690  if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
3691      ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
3692    return 1;
3693  }
3694
3695  const MachineInstr *ResolvedUseMI = &UseMI;
3696  unsigned UseAdj = 0;
3697  if (UseMI.isBundle()) {
3698    ResolvedUseMI =
3699        getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
3700    if (!ResolvedUseMI)
3701      return -1;
3702  }
3703
3704  return getOperandLatencyImpl(
3705      ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
3706      Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
3707}
3708
3709int ARMBaseInstrInfo::getOperandLatencyImpl(
3710    const InstrItineraryData *ItinData, const MachineInstr &DefMI,
3711    unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
3712    const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
3713    unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
3714  if (Reg == ARM::CPSR) {
3715    if (DefMI.getOpcode() == ARM::FMSTAT) {
3716      // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
3717      return Subtarget.isLikeA9() ? 1 : 20;
3718    }
3719
3720    // CPSR set and branch can be paired in the same cycle.
3721    if (UseMI.isBranch())
3722      return 0;
3723
3724    // Otherwise it takes the instruction latency (generally one).
3725    unsigned Latency = getInstrLatency(ItinData, DefMI);
3726
3727    // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
3728    // its uses. Instructions which are otherwise scheduled between them may
3729    // incur a code size penalty (not able to use the CPSR setting 16-bit
3730    // instructions).
3731    if (Latency > 0 && Subtarget.isThumb2()) {
3732      const MachineFunction *MF = DefMI.getParent()->getParent();
3733      // FIXME: Use Function::optForSize().
3734      if (MF->getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
3735        --Latency;
3736    }
3737    return Latency;
3738  }
3739
3740  if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
3741    return -1;
3742
3743  unsigned DefAlign = DefMI.hasOneMemOperand()
3744                          ? (*DefMI.memoperands_begin())->getAlignment()
3745                          : 0;
3746  unsigned UseAlign = UseMI.hasOneMemOperand()
3747                          ? (*UseMI.memoperands_begin())->getAlignment()
3748                          : 0;
3749
3750  // Get the itinerary's latency if possible, and handle variable_ops.
3751  int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
3752                                  UseIdx, UseAlign);
3753  // Unable to find operand latency. The caller may resort to getInstrLatency.
3754  if (Latency < 0)
3755    return Latency;
3756
3757  // Adjust for IT block position.
3758  int Adj = DefAdj + UseAdj;
3759
3760  // Adjust for dynamic def-side opcode variants not captured by the itinerary.
3761  Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
3762  if (Adj >= 0 || (int)Latency > -Adj) {
3763    return Latency + Adj;
3764  }
3765  // Return the itinerary latency, which may be zero but not less than zero.
3766  return Latency;
3767}
3768
3769int
3770ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3771                                    SDNode *DefNode, unsigned DefIdx,
3772                                    SDNode *UseNode, unsigned UseIdx) const {
3773  if (!DefNode->isMachineOpcode())
3774    return 1;
3775
3776  const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
3777
3778  if (isZeroCost(DefMCID.Opcode))
3779    return 0;
3780
3781  if (!ItinData || ItinData->isEmpty())
3782    return DefMCID.mayLoad() ? 3 : 1;
3783
3784  if (!UseNode->isMachineOpcode()) {
3785    int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
3786    int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
3787    int Threshold = 1 + Adj;
3788    return Latency <= Threshold ? 1 : Latency - Adj;
3789  }
3790
3791  const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
3792  const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
3793  unsigned DefAlign = !DefMN->memoperands_empty()
3794    ? (*DefMN->memoperands_begin())->getAlignment() : 0;
3795  const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
3796  unsigned UseAlign = !UseMN->memoperands_empty()
3797    ? (*UseMN->memoperands_begin())->getAlignment() : 0;
3798  int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
3799                                  UseMCID, UseIdx, UseAlign);
3800
3801  if (Latency > 1 &&
3802      (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
3803       Subtarget.isCortexA7())) {
3804    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3805    // variants are one cycle cheaper.
3806    switch (DefMCID.getOpcode()) {
3807    default: break;
3808    case ARM::LDRrs:
3809    case ARM::LDRBrs: {
3810      unsigned ShOpVal =
3811        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3812      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3813      if (ShImm == 0 ||
3814          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3815        --Latency;
3816      break;
3817    }
3818    case ARM::t2LDRs:
3819    case ARM::t2LDRBs:
3820    case ARM::t2LDRHs:
3821    case ARM::t2LDRSHs: {
3822      // Thumb2 mode: lsl only.
3823      unsigned ShAmt =
3824        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3825      if (ShAmt == 0 || ShAmt == 2)
3826        --Latency;
3827      break;
3828    }
3829    }
3830  } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
3831    // FIXME: Properly handle all of the latency adjustments for address
3832    // writeback.
3833    switch (DefMCID.getOpcode()) {
3834    default: break;
3835    case ARM::LDRrs:
3836    case ARM::LDRBrs: {
3837      unsigned ShOpVal =
3838        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3839      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3840      if (ShImm == 0 ||
3841          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3842           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3843        Latency -= 2;
3844      else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3845        --Latency;
3846      break;
3847    }
3848    case ARM::t2LDRs:
3849    case ARM::t2LDRBs:
3850    case ARM::t2LDRHs:
3851    case ARM::t2LDRSHs: {
3852      // Thumb2 mode: lsl 0-3 only.
3853      Latency -= 2;
3854      break;
3855    }
3856    }
3857  }
3858
3859  if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
3860    switch (DefMCID.getOpcode()) {
3861    default: break;
3862    case ARM::VLD1q8:
3863    case ARM::VLD1q16:
3864    case ARM::VLD1q32:
3865    case ARM::VLD1q64:
3866    case ARM::VLD1q8wb_register:
3867    case ARM::VLD1q16wb_register:
3868    case ARM::VLD1q32wb_register:
3869    case ARM::VLD1q64wb_register:
3870    case ARM::VLD1q8wb_fixed:
3871    case ARM::VLD1q16wb_fixed:
3872    case ARM::VLD1q32wb_fixed:
3873    case ARM::VLD1q64wb_fixed:
3874    case ARM::VLD2d8:
3875    case ARM::VLD2d16:
3876    case ARM::VLD2d32:
3877    case ARM::VLD2q8Pseudo:
3878    case ARM::VLD2q16Pseudo:
3879    case ARM::VLD2q32Pseudo:
3880    case ARM::VLD2d8wb_fixed:
3881    case ARM::VLD2d16wb_fixed:
3882    case ARM::VLD2d32wb_fixed:
3883    case ARM::VLD2q8PseudoWB_fixed:
3884    case ARM::VLD2q16PseudoWB_fixed:
3885    case ARM::VLD2q32PseudoWB_fixed:
3886    case ARM::VLD2d8wb_register:
3887    case ARM::VLD2d16wb_register:
3888    case ARM::VLD2d32wb_register:
3889    case ARM::VLD2q8PseudoWB_register:
3890    case ARM::VLD2q16PseudoWB_register:
3891    case ARM::VLD2q32PseudoWB_register:
3892    case ARM::VLD3d8Pseudo:
3893    case ARM::VLD3d16Pseudo:
3894    case ARM::VLD3d32Pseudo:
3895    case ARM::VLD1d64TPseudo:
3896    case ARM::VLD1d64TPseudoWB_fixed:
3897    case ARM::VLD3d8Pseudo_UPD:
3898    case ARM::VLD3d16Pseudo_UPD:
3899    case ARM::VLD3d32Pseudo_UPD:
3900    case ARM::VLD3q8Pseudo_UPD:
3901    case ARM::VLD3q16Pseudo_UPD:
3902    case ARM::VLD3q32Pseudo_UPD:
3903    case ARM::VLD3q8oddPseudo:
3904    case ARM::VLD3q16oddPseudo:
3905    case ARM::VLD3q32oddPseudo:
3906    case ARM::VLD3q8oddPseudo_UPD:
3907    case ARM::VLD3q16oddPseudo_UPD:
3908    case ARM::VLD3q32oddPseudo_UPD:
3909    case ARM::VLD4d8Pseudo:
3910    case ARM::VLD4d16Pseudo:
3911    case ARM::VLD4d32Pseudo:
3912    case ARM::VLD1d64QPseudo:
3913    case ARM::VLD1d64QPseudoWB_fixed:
3914    case ARM::VLD4d8Pseudo_UPD:
3915    case ARM::VLD4d16Pseudo_UPD:
3916    case ARM::VLD4d32Pseudo_UPD:
3917    case ARM::VLD4q8Pseudo_UPD:
3918    case ARM::VLD4q16Pseudo_UPD:
3919    case ARM::VLD4q32Pseudo_UPD:
3920    case ARM::VLD4q8oddPseudo:
3921    case ARM::VLD4q16oddPseudo:
3922    case ARM::VLD4q32oddPseudo:
3923    case ARM::VLD4q8oddPseudo_UPD:
3924    case ARM::VLD4q16oddPseudo_UPD:
3925    case ARM::VLD4q32oddPseudo_UPD:
3926    case ARM::VLD1DUPq8:
3927    case ARM::VLD1DUPq16:
3928    case ARM::VLD1DUPq32:
3929    case ARM::VLD1DUPq8wb_fixed:
3930    case ARM::VLD1DUPq16wb_fixed:
3931    case ARM::VLD1DUPq32wb_fixed:
3932    case ARM::VLD1DUPq8wb_register:
3933    case ARM::VLD1DUPq16wb_register:
3934    case ARM::VLD1DUPq32wb_register:
3935    case ARM::VLD2DUPd8:
3936    case ARM::VLD2DUPd16:
3937    case ARM::VLD2DUPd32:
3938    case ARM::VLD2DUPd8wb_fixed:
3939    case ARM::VLD2DUPd16wb_fixed:
3940    case ARM::VLD2DUPd32wb_fixed:
3941    case ARM::VLD2DUPd8wb_register:
3942    case ARM::VLD2DUPd16wb_register:
3943    case ARM::VLD2DUPd32wb_register:
3944    case ARM::VLD4DUPd8Pseudo:
3945    case ARM::VLD4DUPd16Pseudo:
3946    case ARM::VLD4DUPd32Pseudo:
3947    case ARM::VLD4DUPd8Pseudo_UPD:
3948    case ARM::VLD4DUPd16Pseudo_UPD:
3949    case ARM::VLD4DUPd32Pseudo_UPD:
3950    case ARM::VLD1LNq8Pseudo:
3951    case ARM::VLD1LNq16Pseudo:
3952    case ARM::VLD1LNq32Pseudo:
3953    case ARM::VLD1LNq8Pseudo_UPD:
3954    case ARM::VLD1LNq16Pseudo_UPD:
3955    case ARM::VLD1LNq32Pseudo_UPD:
3956    case ARM::VLD2LNd8Pseudo:
3957    case ARM::VLD2LNd16Pseudo:
3958    case ARM::VLD2LNd32Pseudo:
3959    case ARM::VLD2LNq16Pseudo:
3960    case ARM::VLD2LNq32Pseudo:
3961    case ARM::VLD2LNd8Pseudo_UPD:
3962    case ARM::VLD2LNd16Pseudo_UPD:
3963    case ARM::VLD2LNd32Pseudo_UPD:
3964    case ARM::VLD2LNq16Pseudo_UPD:
3965    case ARM::VLD2LNq32Pseudo_UPD:
3966    case ARM::VLD4LNd8Pseudo:
3967    case ARM::VLD4LNd16Pseudo:
3968    case ARM::VLD4LNd32Pseudo:
3969    case ARM::VLD4LNq16Pseudo:
3970    case ARM::VLD4LNq32Pseudo:
3971    case ARM::VLD4LNd8Pseudo_UPD:
3972    case ARM::VLD4LNd16Pseudo_UPD:
3973    case ARM::VLD4LNd32Pseudo_UPD:
3974    case ARM::VLD4LNq16Pseudo_UPD:
3975    case ARM::VLD4LNq32Pseudo_UPD:
3976      // If the address is not 64-bit aligned, the latencies of these
3977      // instructions increases by one.
3978      ++Latency;
3979      break;
3980    }
3981
3982  return Latency;
3983}
3984
3985unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
3986  if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
3987      MI.isImplicitDef())
3988    return 0;
3989
3990  if (MI.isBundle())
3991    return 0;
3992
3993  const MCInstrDesc &MCID = MI.getDesc();
3994
3995  if (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR)) {
3996    // When predicated, CPSR is an additional source operand for CPSR updating
3997    // instructions, this apparently increases their latencies.
3998    return 1;
3999  }
4000  return 0;
4001}
4002
4003unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4004                                           const MachineInstr &MI,
4005                                           unsigned *PredCost) const {
4006  if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4007      MI.isImplicitDef())
4008    return 1;
4009
4010  // An instruction scheduler typically runs on unbundled instructions, however
4011  // other passes may query the latency of a bundled instruction.
4012  if (MI.isBundle()) {
4013    unsigned Latency = 0;
4014    MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4015    MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4016    while (++I != E && I->isInsideBundle()) {
4017      if (I->getOpcode() != ARM::t2IT)
4018        Latency += getInstrLatency(ItinData, *I, PredCost);
4019    }
4020    return Latency;
4021  }
4022
4023  const MCInstrDesc &MCID = MI.getDesc();
4024  if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) {
4025    // When predicated, CPSR is an additional source operand for CPSR updating
4026    // instructions, this apparently increases their latencies.
4027    *PredCost = 1;
4028  }
4029  // Be sure to call getStageLatency for an empty itinerary in case it has a
4030  // valid MinLatency property.
4031  if (!ItinData)
4032    return MI.mayLoad() ? 3 : 1;
4033
4034  unsigned Class = MCID.getSchedClass();
4035
4036  // For instructions with variable uops, use uops as latency.
4037  if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4038    return getNumMicroOps(ItinData, MI);
4039
4040  // For the common case, fall back on the itinerary's latency.
4041  unsigned Latency = ItinData->getStageLatency(Class);
4042
4043  // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4044  unsigned DefAlign =
4045      MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0;
4046  int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4047  if (Adj >= 0 || (int)Latency > -Adj) {
4048    return Latency + Adj;
4049  }
4050  return Latency;
4051}
4052
4053int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4054                                      SDNode *Node) const {
4055  if (!Node->isMachineOpcode())
4056    return 1;
4057
4058  if (!ItinData || ItinData->isEmpty())
4059    return 1;
4060
4061  unsigned Opcode = Node->getMachineOpcode();
4062  switch (Opcode) {
4063  default:
4064    return ItinData->getStageLatency(get(Opcode).getSchedClass());
4065  case ARM::VLDMQIA:
4066  case ARM::VSTMQIA:
4067    return 2;
4068  }
4069}
4070
4071bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4072                                             const MachineRegisterInfo *MRI,
4073                                             const MachineInstr &DefMI,
4074                                             unsigned DefIdx,
4075                                             const MachineInstr &UseMI,
4076                                             unsigned UseIdx) const {
4077  unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4078  unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4079  if (Subtarget.nonpipelinedVFP() &&
4080      (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4081    return true;
4082
4083  // Hoist VFP / NEON instructions with 4 or higher latency.
4084  unsigned Latency =
4085      SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4086  if (Latency <= 3)
4087    return false;
4088  return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4089         UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4090}
4091
4092bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4093                                        const MachineInstr &DefMI,
4094                                        unsigned DefIdx) const {
4095  const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4096  if (!ItinData || ItinData->isEmpty())
4097    return false;
4098
4099  unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4100  if (DDomain == ARMII::DomainGeneral) {
4101    unsigned DefClass = DefMI.getDesc().getSchedClass();
4102    int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4103    return (DefCycle != -1 && DefCycle <= 2);
4104  }
4105  return false;
4106}
4107
4108bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4109                                         StringRef &ErrInfo) const {
4110  if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4111    ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4112    return false;
4113  }
4114  return true;
4115}
4116
4117// LoadStackGuard has so far only been implemented for MachO. Different code
4118// sequence is needed for other targets.
4119void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4120                                                unsigned LoadImmOpc,
4121                                                unsigned LoadOpc) const {
4122  MachineBasicBlock &MBB = *MI->getParent();
4123  DebugLoc DL = MI->getDebugLoc();
4124  unsigned Reg = MI->getOperand(0).getReg();
4125  const GlobalValue *GV =
4126      cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4127  MachineInstrBuilder MIB;
4128
4129  BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4130      .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4131
4132  if (Subtarget.isGVIndirectSymbol(GV)) {
4133    MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4134    MIB.addReg(Reg, RegState::Kill).addImm(0);
4135    unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
4136    MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4137        MachinePointerInfo::getGOT(*MBB.getParent()), Flag, 4, 4);
4138    MIB.addMemOperand(MMO);
4139    AddDefaultPred(MIB);
4140  }
4141
4142  MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4143  MIB.addReg(Reg, RegState::Kill).addImm(0);
4144  MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
4145  AddDefaultPred(MIB);
4146}
4147
4148bool
4149ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4150                                     unsigned &AddSubOpc,
4151                                     bool &NegAcc, bool &HasLane) const {
4152  DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4153  if (I == MLxEntryMap.end())
4154    return false;
4155
4156  const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4157  MulOpc = Entry.MulOpc;
4158  AddSubOpc = Entry.AddSubOpc;
4159  NegAcc = Entry.NegAcc;
4160  HasLane = Entry.HasLane;
4161  return true;
4162}
4163
4164//===----------------------------------------------------------------------===//
4165// Execution domains.
4166//===----------------------------------------------------------------------===//
4167//
4168// Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4169// and some can go down both.  The vmov instructions go down the VFP pipeline,
4170// but they can be changed to vorr equivalents that are executed by the NEON
4171// pipeline.
4172//
4173// We use the following execution domain numbering:
4174//
4175enum ARMExeDomain {
4176  ExeGeneric = 0,
4177  ExeVFP = 1,
4178  ExeNEON = 2
4179};
4180//
4181// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4182//
4183std::pair<uint16_t, uint16_t>
4184ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
4185  // If we don't have access to NEON instructions then we won't be able
4186  // to swizzle anything to the NEON domain. Check to make sure.
4187  if (Subtarget.hasNEON()) {
4188    // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4189    // if they are not predicated.
4190    if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
4191      return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4192
4193    // CortexA9 is particularly picky about mixing the two and wants these
4194    // converted.
4195    if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
4196        (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
4197         MI.getOpcode() == ARM::VMOVS))
4198      return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4199  }
4200  // No other instructions can be swizzled, so just determine their domain.
4201  unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
4202
4203  if (Domain & ARMII::DomainNEON)
4204    return std::make_pair(ExeNEON, 0);
4205
4206  // Certain instructions can go either way on Cortex-A8.
4207  // Treat them as NEON instructions.
4208  if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4209    return std::make_pair(ExeNEON, 0);
4210
4211  if (Domain & ARMII::DomainVFP)
4212    return std::make_pair(ExeVFP, 0);
4213
4214  return std::make_pair(ExeGeneric, 0);
4215}
4216
4217static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4218                                            unsigned SReg, unsigned &Lane) {
4219  unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4220  Lane = 0;
4221
4222  if (DReg != ARM::NoRegister)
4223   return DReg;
4224
4225  Lane = 1;
4226  DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4227
4228  assert(DReg && "S-register with no D super-register?");
4229  return DReg;
4230}
4231
4232/// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4233/// set ImplicitSReg to a register number that must be marked as implicit-use or
4234/// zero if no register needs to be defined as implicit-use.
4235///
4236/// If the function cannot determine if an SPR should be marked implicit use or
4237/// not, it returns false.
4238///
4239/// This function handles cases where an instruction is being modified from taking
4240/// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4241/// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4242/// lane of the DPR).
4243///
4244/// If the other SPR is defined, an implicit-use of it should be added. Else,
4245/// (including the case where the DPR itself is defined), it should not.
4246///
4247static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
4248                                       MachineInstr &MI, unsigned DReg,
4249                                       unsigned Lane, unsigned &ImplicitSReg) {
4250  // If the DPR is defined or used already, the other SPR lane will be chained
4251  // correctly, so there is nothing to be done.
4252  if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
4253    ImplicitSReg = 0;
4254    return true;
4255  }
4256
4257  // Otherwise we need to go searching to see if the SPR is set explicitly.
4258  ImplicitSReg = TRI->getSubReg(DReg,
4259                                (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
4260  MachineBasicBlock::LivenessQueryResult LQR =
4261      MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
4262
4263  if (LQR == MachineBasicBlock::LQR_Live)
4264    return true;
4265  else if (LQR == MachineBasicBlock::LQR_Unknown)
4266    return false;
4267
4268  // If the register is known not to be live, there is no need to add an
4269  // implicit-use.
4270  ImplicitSReg = 0;
4271  return true;
4272}
4273
4274void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
4275                                          unsigned Domain) const {
4276  unsigned DstReg, SrcReg, DReg;
4277  unsigned Lane;
4278  MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4279  const TargetRegisterInfo *TRI = &getRegisterInfo();
4280  switch (MI.getOpcode()) {
4281  default:
4282    llvm_unreachable("cannot handle opcode!");
4283    break;
4284  case ARM::VMOVD:
4285    if (Domain != ExeNEON)
4286      break;
4287
4288    // Zap the predicate operands.
4289    assert(!isPredicated(MI) && "Cannot predicate a VORRd");
4290
4291    // Make sure we've got NEON instructions.
4292    assert(Subtarget.hasNEON() && "VORRd requires NEON");
4293
4294    // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4295    DstReg = MI.getOperand(0).getReg();
4296    SrcReg = MI.getOperand(1).getReg();
4297
4298    for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4299      MI.RemoveOperand(i - 1);
4300
4301    // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4302    MI.setDesc(get(ARM::VORRd));
4303    AddDefaultPred(
4304        MIB.addReg(DstReg, RegState::Define).addReg(SrcReg).addReg(SrcReg));
4305    break;
4306  case ARM::VMOVRS:
4307    if (Domain != ExeNEON)
4308      break;
4309    assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
4310
4311    // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4312    DstReg = MI.getOperand(0).getReg();
4313    SrcReg = MI.getOperand(1).getReg();
4314
4315    for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4316      MI.RemoveOperand(i - 1);
4317
4318    DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
4319
4320    // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
4321    // Note that DSrc has been widened and the other lane may be undef, which
4322    // contaminates the entire register.
4323    MI.setDesc(get(ARM::VGETLNi32));
4324    AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
4325                       .addReg(DReg, RegState::Undef)
4326                       .addImm(Lane));
4327
4328    // The old source should be an implicit use, otherwise we might think it
4329    // was dead before here.
4330    MIB.addReg(SrcReg, RegState::Implicit);
4331    break;
4332  case ARM::VMOVSR: {
4333    if (Domain != ExeNEON)
4334      break;
4335    assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
4336
4337    // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
4338    DstReg = MI.getOperand(0).getReg();
4339    SrcReg = MI.getOperand(1).getReg();
4340
4341    DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
4342
4343    unsigned ImplicitSReg;
4344    if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
4345      break;
4346
4347    for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4348      MI.RemoveOperand(i - 1);
4349
4350    // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
4351    // Again DDst may be undefined at the beginning of this instruction.
4352    MI.setDesc(get(ARM::VSETLNi32));
4353    MIB.addReg(DReg, RegState::Define)
4354        .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
4355        .addReg(SrcReg)
4356        .addImm(Lane);
4357    AddDefaultPred(MIB);
4358
4359    // The narrower destination must be marked as set to keep previous chains
4360    // in place.
4361    MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4362    if (ImplicitSReg != 0)
4363      MIB.addReg(ImplicitSReg, RegState::Implicit);
4364    break;
4365    }
4366    case ARM::VMOVS: {
4367      if (Domain != ExeNEON)
4368        break;
4369
4370      // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
4371      DstReg = MI.getOperand(0).getReg();
4372      SrcReg = MI.getOperand(1).getReg();
4373
4374      unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
4375      DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
4376      DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
4377
4378      unsigned ImplicitSReg;
4379      if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
4380        break;
4381
4382      for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4383        MI.RemoveOperand(i - 1);
4384
4385      if (DSrc == DDst) {
4386        // Destination can be:
4387        //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
4388        MI.setDesc(get(ARM::VDUPLN32d));
4389        MIB.addReg(DDst, RegState::Define)
4390            .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
4391            .addImm(SrcLane);
4392        AddDefaultPred(MIB);
4393
4394        // Neither the source or the destination are naturally represented any
4395        // more, so add them in manually.
4396        MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
4397        MIB.addReg(SrcReg, RegState::Implicit);
4398        if (ImplicitSReg != 0)
4399          MIB.addReg(ImplicitSReg, RegState::Implicit);
4400        break;
4401      }
4402
4403      // In general there's no single instruction that can perform an S <-> S
4404      // move in NEON space, but a pair of VEXT instructions *can* do the
4405      // job. It turns out that the VEXTs needed will only use DSrc once, with
4406      // the position based purely on the combination of lane-0 and lane-1
4407      // involved. For example
4408      //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
4409      //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
4410      //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
4411      //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
4412      //
4413      // Pattern of the MachineInstrs is:
4414      //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
4415      MachineInstrBuilder NewMIB;
4416      NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
4417                       DDst);
4418
4419      // On the first instruction, both DSrc and DDst may be <undef> if present.
4420      // Specifically when the original instruction didn't have them as an
4421      // <imp-use>.
4422      unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
4423      bool CurUndef = !MI.readsRegister(CurReg, TRI);
4424      NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4425
4426      CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
4427      CurUndef = !MI.readsRegister(CurReg, TRI);
4428      NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4429
4430      NewMIB.addImm(1);
4431      AddDefaultPred(NewMIB);
4432
4433      if (SrcLane == DstLane)
4434        NewMIB.addReg(SrcReg, RegState::Implicit);
4435
4436      MI.setDesc(get(ARM::VEXTd32));
4437      MIB.addReg(DDst, RegState::Define);
4438
4439      // On the second instruction, DDst has definitely been defined above, so
4440      // it is not <undef>. DSrc, if present, can be <undef> as above.
4441      CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
4442      CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
4443      MIB.addReg(CurReg, getUndefRegState(CurUndef));
4444
4445      CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
4446      CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
4447      MIB.addReg(CurReg, getUndefRegState(CurUndef));
4448
4449      MIB.addImm(1);
4450      AddDefaultPred(MIB);
4451
4452      if (SrcLane != DstLane)
4453        MIB.addReg(SrcReg, RegState::Implicit);
4454
4455      // As before, the original destination is no longer represented, add it
4456      // implicitly.
4457      MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4458      if (ImplicitSReg != 0)
4459        MIB.addReg(ImplicitSReg, RegState::Implicit);
4460      break;
4461    }
4462  }
4463
4464}
4465
4466//===----------------------------------------------------------------------===//
4467// Partial register updates
4468//===----------------------------------------------------------------------===//
4469//
4470// Swift renames NEON registers with 64-bit granularity.  That means any
4471// instruction writing an S-reg implicitly reads the containing D-reg.  The
4472// problem is mostly avoided by translating f32 operations to v2f32 operations
4473// on D-registers, but f32 loads are still a problem.
4474//
4475// These instructions can load an f32 into a NEON register:
4476//
4477// VLDRS - Only writes S, partial D update.
4478// VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
4479// VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
4480//
4481// FCONSTD can be used as a dependency-breaking instruction.
4482unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
4483    const MachineInstr &MI, unsigned OpNum,
4484    const TargetRegisterInfo *TRI) const {
4485  auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
4486  if (!PartialUpdateClearance)
4487    return 0;
4488
4489  assert(TRI && "Need TRI instance");
4490
4491  const MachineOperand &MO = MI.getOperand(OpNum);
4492  if (MO.readsReg())
4493    return 0;
4494  unsigned Reg = MO.getReg();
4495  int UseOp = -1;
4496
4497  switch (MI.getOpcode()) {
4498  // Normal instructions writing only an S-register.
4499  case ARM::VLDRS:
4500  case ARM::FCONSTS:
4501  case ARM::VMOVSR:
4502  case ARM::VMOVv8i8:
4503  case ARM::VMOVv4i16:
4504  case ARM::VMOVv2i32:
4505  case ARM::VMOVv2f32:
4506  case ARM::VMOVv1i64:
4507    UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
4508    break;
4509
4510    // Explicitly reads the dependency.
4511  case ARM::VLD1LNd32:
4512    UseOp = 3;
4513    break;
4514  default:
4515    return 0;
4516  }
4517
4518  // If this instruction actually reads a value from Reg, there is no unwanted
4519  // dependency.
4520  if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
4521    return 0;
4522
4523  // We must be able to clobber the whole D-reg.
4524  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4525    // Virtual register must be a foo:ssub_0<def,undef> operand.
4526    if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
4527      return 0;
4528  } else if (ARM::SPRRegClass.contains(Reg)) {
4529    // Physical register: MI must define the full D-reg.
4530    unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
4531                                             &ARM::DPRRegClass);
4532    if (!DReg || !MI.definesRegister(DReg, TRI))
4533      return 0;
4534  }
4535
4536  // MI has an unwanted D-register dependency.
4537  // Avoid defs in the previous N instructrions.
4538  return PartialUpdateClearance;
4539}
4540
4541// Break a partial register dependency after getPartialRegUpdateClearance
4542// returned non-zero.
4543void ARMBaseInstrInfo::breakPartialRegDependency(
4544    MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
4545  assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
4546  assert(TRI && "Need TRI instance");
4547
4548  const MachineOperand &MO = MI.getOperand(OpNum);
4549  unsigned Reg = MO.getReg();
4550  assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
4551         "Can't break virtual register dependencies.");
4552  unsigned DReg = Reg;
4553
4554  // If MI defines an S-reg, find the corresponding D super-register.
4555  if (ARM::SPRRegClass.contains(Reg)) {
4556    DReg = ARM::D0 + (Reg - ARM::S0) / 2;
4557    assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
4558  }
4559
4560  assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
4561  assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
4562
4563  // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
4564  // the full D-register by loading the same value to both lanes.  The
4565  // instruction is micro-coded with 2 uops, so don't do this until we can
4566  // properly schedule micro-coded instructions.  The dispatcher stalls cause
4567  // too big regressions.
4568
4569  // Insert the dependency-breaking FCONSTD before MI.
4570  // 96 is the encoding of 0.5, but the actual value doesn't matter here.
4571  AddDefaultPred(
4572      BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
4573          .addImm(96));
4574  MI.addRegisterKilled(DReg, TRI, true);
4575}
4576
4577bool ARMBaseInstrInfo::hasNOP() const {
4578  return Subtarget.getFeatureBits()[ARM::HasV6KOps];
4579}
4580
4581bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
4582  if (MI->getNumOperands() < 4)
4583    return true;
4584  unsigned ShOpVal = MI->getOperand(3).getImm();
4585  unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
4586  // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
4587  if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
4588      ((ShImm == 1 || ShImm == 2) &&
4589       ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
4590    return true;
4591
4592  return false;
4593}
4594
4595bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
4596    const MachineInstr &MI, unsigned DefIdx,
4597    SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
4598  assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
4599  assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
4600
4601  switch (MI.getOpcode()) {
4602  case ARM::VMOVDRR:
4603    // dX = VMOVDRR rY, rZ
4604    // is the same as:
4605    // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
4606    // Populate the InputRegs accordingly.
4607    // rY
4608    const MachineOperand *MOReg = &MI.getOperand(1);
4609    InputRegs.push_back(
4610        RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_0));
4611    // rZ
4612    MOReg = &MI.getOperand(2);
4613    InputRegs.push_back(
4614        RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_1));
4615    return true;
4616  }
4617  llvm_unreachable("Target dependent opcode missing");
4618}
4619
4620bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
4621    const MachineInstr &MI, unsigned DefIdx,
4622    RegSubRegPairAndIdx &InputReg) const {
4623  assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
4624  assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
4625
4626  switch (MI.getOpcode()) {
4627  case ARM::VMOVRRD:
4628    // rX, rY = VMOVRRD dZ
4629    // is the same as:
4630    // rX = EXTRACT_SUBREG dZ, ssub_0
4631    // rY = EXTRACT_SUBREG dZ, ssub_1
4632    const MachineOperand &MOReg = MI.getOperand(2);
4633    InputReg.Reg = MOReg.getReg();
4634    InputReg.SubReg = MOReg.getSubReg();
4635    InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
4636    return true;
4637  }
4638  llvm_unreachable("Target dependent opcode missing");
4639}
4640
4641bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
4642    const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
4643    RegSubRegPairAndIdx &InsertedReg) const {
4644  assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
4645  assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
4646
4647  switch (MI.getOpcode()) {
4648  case ARM::VSETLNi32:
4649    // dX = VSETLNi32 dY, rZ, imm
4650    const MachineOperand &MOBaseReg = MI.getOperand(1);
4651    const MachineOperand &MOInsertedReg = MI.getOperand(2);
4652    const MachineOperand &MOIndex = MI.getOperand(3);
4653    BaseReg.Reg = MOBaseReg.getReg();
4654    BaseReg.SubReg = MOBaseReg.getSubReg();
4655
4656    InsertedReg.Reg = MOInsertedReg.getReg();
4657    InsertedReg.SubReg = MOInsertedReg.getSubReg();
4658    InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
4659    return true;
4660  }
4661  llvm_unreachable("Target dependent opcode missing");
4662}
4663