1//===--- HexagonBitTracker.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/CodeGen/MachineRegisterInfo.h"
11#include "llvm/IR/Module.h"
12#include "llvm/Support/Debug.h"
13#include "llvm/Support/raw_ostream.h"
14
15#include "Hexagon.h"
16#include "HexagonInstrInfo.h"
17#include "HexagonRegisterInfo.h"
18#include "HexagonTargetMachine.h"
19#include "HexagonBitTracker.h"
20
21using namespace llvm;
22
23typedef BitTracker BT;
24
25HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
26                                   MachineRegisterInfo &mri,
27                                   const HexagonInstrInfo &tii,
28                                   MachineFunction &mf)
29    : MachineEvaluator(tri, mri), MF(mf), MFI(*mf.getFrameInfo()), TII(tii) {
30  // Populate the VRX map (VR to extension-type).
31  // Go over all the formal parameters of the function. If a given parameter
32  // P is sign- or zero-extended, locate the virtual register holding that
33  // parameter and create an entry in the VRX map indicating the type of ex-
34  // tension (and the source type).
35  // This is a bit complicated to do accurately, since the memory layout in-
36  // formation is necessary to precisely determine whether an aggregate para-
37  // meter will be passed in a register or in memory. What is given in MRI
38  // is the association between the physical register that is live-in (i.e.
39  // holds an argument), and the virtual register that this value will be
40  // copied into. This, by itself, is not sufficient to map back the virtual
41  // register to a formal parameter from Function (since consecutive live-ins
42  // from MRI may not correspond to consecutive formal parameters from Func-
43  // tion). To avoid the complications with in-memory arguments, only consi-
44  // der the initial sequence of formal parameters that are known to be
45  // passed via registers.
46  unsigned AttrIdx = 0;
47  unsigned InVirtReg, InPhysReg = 0;
48  const Function &F = *MF.getFunction();
49  typedef Function::const_arg_iterator arg_iterator;
50  for (arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
51    AttrIdx++;
52    const Argument &Arg = *I;
53    Type *ATy = Arg.getType();
54    unsigned Width = 0;
55    if (ATy->isIntegerTy())
56      Width = ATy->getIntegerBitWidth();
57    else if (ATy->isPointerTy())
58      Width = 32;
59    // If pointer size is not set through target data, it will default to
60    // Module::AnyPointerSize.
61    if (Width == 0 || Width > 64)
62      break;
63    InPhysReg = getNextPhysReg(InPhysReg, Width);
64    if (!InPhysReg)
65      break;
66    InVirtReg = getVirtRegFor(InPhysReg);
67    if (!InVirtReg)
68      continue;
69    AttributeSet Attrs = F.getAttributes();
70    if (Attrs.hasAttribute(AttrIdx, Attribute::SExt))
71      VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
72    else if (Attrs.hasAttribute(AttrIdx, Attribute::ZExt))
73      VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
74  }
75}
76
77
78BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const {
79  if (Sub == 0)
80    return MachineEvaluator::mask(Reg, 0);
81  using namespace Hexagon;
82  const TargetRegisterClass *RC = MRI.getRegClass(Reg);
83  unsigned ID = RC->getID();
84  uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
85  switch (ID) {
86    case DoubleRegsRegClassID:
87    case VecDblRegsRegClassID:
88    case VecDblRegs128BRegClassID:
89      return (Sub == subreg_loreg) ? BT::BitMask(0, RW-1)
90                                   : BT::BitMask(RW, 2*RW-1);
91    default:
92      break;
93  }
94#ifndef NDEBUG
95  dbgs() << PrintReg(Reg, &TRI, Sub) << '\n';
96#endif
97  llvm_unreachable("Unexpected register/subregister");
98}
99
100namespace {
101class RegisterRefs {
102  std::vector<BT::RegisterRef> Vector;
103
104public:
105  RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
106    for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
107      const MachineOperand &MO = MI.getOperand(i);
108      if (MO.isReg())
109        Vector[i] = BT::RegisterRef(MO);
110      // For indices that don't correspond to registers, the entry will
111      // remain constructed via the default constructor.
112    }
113  }
114
115  size_t size() const { return Vector.size(); }
116  const BT::RegisterRef &operator[](unsigned n) const {
117    // The main purpose of this operator is to assert with bad argument.
118    assert(n < Vector.size());
119    return Vector[n];
120  }
121};
122}
123
124bool HexagonEvaluator::evaluate(const MachineInstr &MI,
125                                const CellMapType &Inputs,
126                                CellMapType &Outputs) const {
127  unsigned NumDefs = 0;
128
129  // Sanity verification: there should not be any defs with subregisters.
130  for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
131    const MachineOperand &MO = MI.getOperand(i);
132    if (!MO.isReg() || !MO.isDef())
133      continue;
134    NumDefs++;
135    assert(MO.getSubReg() == 0);
136  }
137
138  if (NumDefs == 0)
139    return false;
140
141  if (MI.mayLoad())
142    return evaluateLoad(MI, Inputs, Outputs);
143
144  // Check COPY instructions that copy formal parameters into virtual
145  // registers. Such parameters can be sign- or zero-extended at the
146  // call site, and we should take advantage of this knowledge. The MRI
147  // keeps a list of pairs of live-in physical and virtual registers,
148  // which provides information about which virtual registers will hold
149  // the argument values. The function will still contain instructions
150  // defining those virtual registers, and in practice those are COPY
151  // instructions from a physical to a virtual register. In such cases,
152  // applying the argument extension to the virtual register can be seen
153  // as simply mirroring the extension that had already been applied to
154  // the physical register at the call site. If the defining instruction
155  // was not a COPY, it would not be clear how to mirror that extension
156  // on the callee's side. For that reason, only check COPY instructions
157  // for potential extensions.
158  if (MI.isCopy()) {
159    if (evaluateFormalCopy(MI, Inputs, Outputs))
160      return true;
161  }
162
163  // Beyond this point, if any operand is a global, skip that instruction.
164  // The reason is that certain instructions that can take an immediate
165  // operand can also have a global symbol in that operand. To avoid
166  // checking what kind of operand a given instruction has individually
167  // for each instruction, do it here. Global symbols as operands gene-
168  // rally do not provide any useful information.
169  for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
170    const MachineOperand &MO = MI.getOperand(i);
171    if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
172        MO.isCPI())
173      return false;
174  }
175
176  RegisterRefs Reg(MI);
177  unsigned Opc = MI.getOpcode();
178  using namespace Hexagon;
179#define op(i) MI.getOperand(i)
180#define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
181#define im(i) MI.getOperand(i).getImm()
182
183  // If the instruction has no register operands, skip it.
184  if (Reg.size() == 0)
185    return false;
186
187  // Record result for register in operand 0.
188  auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
189        -> bool {
190    putCell(Reg[0], Val, Outputs);
191    return true;
192  };
193  // Get the cell corresponding to the N-th operand.
194  auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
195                                        uint16_t W) -> BT::RegisterCell {
196    const MachineOperand &Op = MI.getOperand(N);
197    if (Op.isImm())
198      return eIMM(Op.getImm(), W);
199    if (!Op.isReg())
200      return RegisterCell::self(0, W);
201    assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
202    return rc(N);
203  };
204  // Extract RW low bits of the cell.
205  auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
206        -> BT::RegisterCell {
207    assert(RW <= RC.width());
208    return eXTR(RC, 0, RW);
209  };
210  // Extract RW high bits of the cell.
211  auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
212        -> BT::RegisterCell {
213    uint16_t W = RC.width();
214    assert(RW <= W);
215    return eXTR(RC, W-RW, W);
216  };
217  // Extract N-th halfword (counting from the least significant position).
218  auto half = [this] (const BT::RegisterCell &RC, unsigned N)
219        -> BT::RegisterCell {
220    assert(N*16+16 <= RC.width());
221    return eXTR(RC, N*16, N*16+16);
222  };
223  // Shuffle bits (pick even/odd from cells and merge into result).
224  auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
225                         uint16_t BW, bool Odd) -> BT::RegisterCell {
226    uint16_t I = Odd, Ws = Rs.width();
227    assert(Ws == Rt.width());
228    RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
229    I += 2;
230    while (I*BW < Ws) {
231      RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
232      I += 2;
233    }
234    return RC;
235  };
236
237  // The bitwidth of the 0th operand. In most (if not all) of the
238  // instructions below, the 0th operand is the defined register.
239  // Pre-compute the bitwidth here, because it is needed in many cases
240  // cases below.
241  uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
242
243  switch (Opc) {
244    // Transfer immediate:
245
246    case A2_tfrsi:
247    case A2_tfrpi:
248    case CONST32:
249    case CONST32_Float_Real:
250    case CONST32_Int_Real:
251    case CONST64_Float_Real:
252    case CONST64_Int_Real:
253      return rr0(eIMM(im(1), W0), Outputs);
254    case TFR_PdFalse:
255      return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
256    case TFR_PdTrue:
257      return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
258    case TFR_FI: {
259      int FI = op(1).getIndex();
260      int Off = op(2).getImm();
261      unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off);
262      unsigned L = Log2_32(A);
263      RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
264      RC.fill(0, L, BT::BitValue::Zero);
265      return rr0(RC, Outputs);
266    }
267
268    // Transfer register:
269
270    case A2_tfr:
271    case A2_tfrp:
272    case C2_pxfer_map:
273      return rr0(rc(1), Outputs);
274    case C2_tfrpr: {
275      uint16_t RW = W0;
276      uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
277      assert(PW <= RW);
278      RegisterCell PC = eXTR(rc(1), 0, PW);
279      RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
280      RC.fill(PW, RW, BT::BitValue::Zero);
281      return rr0(RC, Outputs);
282    }
283    case C2_tfrrp: {
284      RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
285      W0 = 8; // XXX Pred size
286      return rr0(eINS(RC, eXTR(rc(1), 0, W0), 0), Outputs);
287    }
288
289    // Arithmetic:
290
291    case A2_abs:
292    case A2_absp:
293      // TODO
294      break;
295
296    case A2_addsp: {
297      uint16_t W1 = getRegBitWidth(Reg[1]);
298      assert(W0 == 64 && W1 == 32);
299      RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
300      RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
301      return rr0(RC, Outputs);
302    }
303    case A2_add:
304    case A2_addp:
305      return rr0(eADD(rc(1), rc(2)), Outputs);
306    case A2_addi:
307      return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
308    case S4_addi_asl_ri: {
309      RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
310      return rr0(RC, Outputs);
311    }
312    case S4_addi_lsr_ri: {
313      RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
314      return rr0(RC, Outputs);
315    }
316    case S4_addaddi: {
317      RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
318      return rr0(RC, Outputs);
319    }
320    case M4_mpyri_addi: {
321      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
322      RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
323      return rr0(RC, Outputs);
324    }
325    case M4_mpyrr_addi: {
326      RegisterCell M = eMLS(rc(2), rc(3));
327      RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
328      return rr0(RC, Outputs);
329    }
330    case M4_mpyri_addr_u2: {
331      RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
332      RegisterCell RC = eADD(rc(1), lo(M, W0));
333      return rr0(RC, Outputs);
334    }
335    case M4_mpyri_addr: {
336      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
337      RegisterCell RC = eADD(rc(1), lo(M, W0));
338      return rr0(RC, Outputs);
339    }
340    case M4_mpyrr_addr: {
341      RegisterCell M = eMLS(rc(2), rc(3));
342      RegisterCell RC = eADD(rc(1), lo(M, W0));
343      return rr0(RC, Outputs);
344    }
345    case S4_subaddi: {
346      RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
347      return rr0(RC, Outputs);
348    }
349    case M2_accii: {
350      RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
351      return rr0(RC, Outputs);
352    }
353    case M2_acci: {
354      RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
355      return rr0(RC, Outputs);
356    }
357    case M2_subacc: {
358      RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
359      return rr0(RC, Outputs);
360    }
361    case S2_addasl_rrri: {
362      RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
363      return rr0(RC, Outputs);
364    }
365    case C4_addipc: {
366      RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
367      RPC.fill(0, 2, BT::BitValue::Zero);
368      return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
369    }
370    case A2_sub:
371    case A2_subp:
372      return rr0(eSUB(rc(1), rc(2)), Outputs);
373    case A2_subri:
374      return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
375    case S4_subi_asl_ri: {
376      RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
377      return rr0(RC, Outputs);
378    }
379    case S4_subi_lsr_ri: {
380      RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
381      return rr0(RC, Outputs);
382    }
383    case M2_naccii: {
384      RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
385      return rr0(RC, Outputs);
386    }
387    case M2_nacci: {
388      RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
389      return rr0(RC, Outputs);
390    }
391    // 32-bit negation is done by "Rd = A2_subri 0, Rs"
392    case A2_negp:
393      return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
394
395    case M2_mpy_up: {
396      RegisterCell M = eMLS(rc(1), rc(2));
397      return rr0(hi(M, W0), Outputs);
398    }
399    case M2_dpmpyss_s0:
400      return rr0(eMLS(rc(1), rc(2)), Outputs);
401    case M2_dpmpyss_acc_s0:
402      return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
403    case M2_dpmpyss_nac_s0:
404      return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
405    case M2_mpyi: {
406      RegisterCell M = eMLS(rc(1), rc(2));
407      return rr0(lo(M, W0), Outputs);
408    }
409    case M2_macsip: {
410      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
411      RegisterCell RC = eADD(rc(1), lo(M, W0));
412      return rr0(RC, Outputs);
413    }
414    case M2_macsin: {
415      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
416      RegisterCell RC = eSUB(rc(1), lo(M, W0));
417      return rr0(RC, Outputs);
418    }
419    case M2_maci: {
420      RegisterCell M = eMLS(rc(2), rc(3));
421      RegisterCell RC = eADD(rc(1), lo(M, W0));
422      return rr0(RC, Outputs);
423    }
424    case M2_mpysmi: {
425      RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
426      return rr0(lo(M, 32), Outputs);
427    }
428    case M2_mpysin: {
429      RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
430      return rr0(lo(M, 32), Outputs);
431    }
432    case M2_mpysip: {
433      RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
434      return rr0(lo(M, 32), Outputs);
435    }
436    case M2_mpyu_up: {
437      RegisterCell M = eMLU(rc(1), rc(2));
438      return rr0(hi(M, W0), Outputs);
439    }
440    case M2_dpmpyuu_s0:
441      return rr0(eMLU(rc(1), rc(2)), Outputs);
442    case M2_dpmpyuu_acc_s0:
443      return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
444    case M2_dpmpyuu_nac_s0:
445      return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
446    //case M2_mpysu_up:
447
448    // Logical/bitwise:
449
450    case A2_andir:
451      return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
452    case A2_and:
453    case A2_andp:
454      return rr0(eAND(rc(1), rc(2)), Outputs);
455    case A4_andn:
456    case A4_andnp:
457      return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
458    case S4_andi_asl_ri: {
459      RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
460      return rr0(RC, Outputs);
461    }
462    case S4_andi_lsr_ri: {
463      RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
464      return rr0(RC, Outputs);
465    }
466    case M4_and_and:
467      return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
468    case M4_and_andn:
469      return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
470    case M4_and_or:
471      return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
472    case M4_and_xor:
473      return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
474    case A2_orir:
475      return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
476    case A2_or:
477    case A2_orp:
478      return rr0(eORL(rc(1), rc(2)), Outputs);
479    case A4_orn:
480    case A4_ornp:
481      return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
482    case S4_ori_asl_ri: {
483      RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
484      return rr0(RC, Outputs);
485    }
486    case S4_ori_lsr_ri: {
487      RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
488      return rr0(RC, Outputs);
489    }
490    case M4_or_and:
491      return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
492    case M4_or_andn:
493      return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
494    case S4_or_andi:
495    case S4_or_andix: {
496      RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
497      return rr0(RC, Outputs);
498    }
499    case S4_or_ori: {
500      RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
501      return rr0(RC, Outputs);
502    }
503    case M4_or_or:
504      return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
505    case M4_or_xor:
506      return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
507    case A2_xor:
508    case A2_xorp:
509      return rr0(eXOR(rc(1), rc(2)), Outputs);
510    case M4_xor_and:
511      return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
512    case M4_xor_andn:
513      return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
514    case M4_xor_or:
515      return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
516    case M4_xor_xacc:
517      return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
518    case A2_not:
519    case A2_notp:
520      return rr0(eNOT(rc(1)), Outputs);
521
522    case S2_asl_i_r:
523    case S2_asl_i_p:
524      return rr0(eASL(rc(1), im(2)), Outputs);
525    case A2_aslh:
526      return rr0(eASL(rc(1), 16), Outputs);
527    case S2_asl_i_r_acc:
528    case S2_asl_i_p_acc:
529      return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
530    case S2_asl_i_r_nac:
531    case S2_asl_i_p_nac:
532      return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
533    case S2_asl_i_r_and:
534    case S2_asl_i_p_and:
535      return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
536    case S2_asl_i_r_or:
537    case S2_asl_i_p_or:
538      return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
539    case S2_asl_i_r_xacc:
540    case S2_asl_i_p_xacc:
541      return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
542    case S2_asl_i_vh:
543    case S2_asl_i_vw:
544      // TODO
545      break;
546
547    case S2_asr_i_r:
548    case S2_asr_i_p:
549      return rr0(eASR(rc(1), im(2)), Outputs);
550    case A2_asrh:
551      return rr0(eASR(rc(1), 16), Outputs);
552    case S2_asr_i_r_acc:
553    case S2_asr_i_p_acc:
554      return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
555    case S2_asr_i_r_nac:
556    case S2_asr_i_p_nac:
557      return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
558    case S2_asr_i_r_and:
559    case S2_asr_i_p_and:
560      return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
561    case S2_asr_i_r_or:
562    case S2_asr_i_p_or:
563      return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
564    case S2_asr_i_r_rnd: {
565      // The input is first sign-extended to 64 bits, then the output
566      // is truncated back to 32 bits.
567      assert(W0 == 32);
568      RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
569      RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
570      return rr0(eXTR(RC, 0, W0), Outputs);
571    }
572    case S2_asr_i_r_rnd_goodsyntax: {
573      int64_t S = im(2);
574      if (S == 0)
575        return rr0(rc(1), Outputs);
576      // Result: S2_asr_i_r_rnd Rs, u5-1
577      RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
578      RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
579      return rr0(eXTR(RC, 0, W0), Outputs);
580    }
581    case S2_asr_r_vh:
582    case S2_asr_i_vw:
583    case S2_asr_i_svw_trun:
584      // TODO
585      break;
586
587    case S2_lsr_i_r:
588    case S2_lsr_i_p:
589      return rr0(eLSR(rc(1), im(2)), Outputs);
590    case S2_lsr_i_r_acc:
591    case S2_lsr_i_p_acc:
592      return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
593    case S2_lsr_i_r_nac:
594    case S2_lsr_i_p_nac:
595      return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
596    case S2_lsr_i_r_and:
597    case S2_lsr_i_p_and:
598      return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
599    case S2_lsr_i_r_or:
600    case S2_lsr_i_p_or:
601      return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
602    case S2_lsr_i_r_xacc:
603    case S2_lsr_i_p_xacc:
604      return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
605
606    case S2_clrbit_i: {
607      RegisterCell RC = rc(1);
608      RC[im(2)] = BT::BitValue::Zero;
609      return rr0(RC, Outputs);
610    }
611    case S2_setbit_i: {
612      RegisterCell RC = rc(1);
613      RC[im(2)] = BT::BitValue::One;
614      return rr0(RC, Outputs);
615    }
616    case S2_togglebit_i: {
617      RegisterCell RC = rc(1);
618      uint16_t BX = im(2);
619      RC[BX] = RC[BX].is(0) ? BT::BitValue::One
620                            : RC[BX].is(1) ? BT::BitValue::Zero
621                                           : BT::BitValue::self();
622      return rr0(RC, Outputs);
623    }
624
625    case A4_bitspliti: {
626      uint16_t W1 = getRegBitWidth(Reg[1]);
627      uint16_t BX = im(2);
628      // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
629      const BT::BitValue Zero = BT::BitValue::Zero;
630      RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
631                                        .fill(W1+(W1-BX), W0, Zero);
632      RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
633      RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
634      return rr0(RC, Outputs);
635    }
636    case S4_extract:
637    case S4_extractp:
638    case S2_extractu:
639    case S2_extractup: {
640      uint16_t Wd = im(2), Of = im(3);
641      assert(Wd <= W0);
642      if (Wd == 0)
643        return rr0(eIMM(0, W0), Outputs);
644      // If the width extends beyond the register size, pad the register
645      // with 0 bits.
646      RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
647      RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
648      // Ext is short, need to extend it with 0s or sign bit.
649      RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
650      if (Opc == S2_extractu || Opc == S2_extractup)
651        return rr0(eZXT(RC, Wd), Outputs);
652      return rr0(eSXT(RC, Wd), Outputs);
653    }
654    case S2_insert:
655    case S2_insertp: {
656      uint16_t Wd = im(3), Of = im(4);
657      assert(Wd < W0 && Of < W0);
658      // If Wd+Of exceeds W0, the inserted bits are truncated.
659      if (Wd+Of > W0)
660        Wd = W0-Of;
661      if (Wd == 0)
662        return rr0(rc(1), Outputs);
663      return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
664    }
665
666    // Bit permutations:
667
668    case A2_combineii:
669    case A4_combineii:
670    case A4_combineir:
671    case A4_combineri:
672    case A2_combinew:
673      assert(W0 % 2 == 0);
674      return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
675    case A2_combine_ll:
676    case A2_combine_lh:
677    case A2_combine_hl:
678    case A2_combine_hh: {
679      assert(W0 == 32);
680      assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
681      // Low half in the output is 0 for _ll and _hl, 1 otherwise:
682      unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
683      // High half in the output is 0 for _ll and _lh, 1 otherwise:
684      unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
685      RegisterCell R1 = rc(1);
686      RegisterCell R2 = rc(2);
687      RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
688      return rr0(RC, Outputs);
689    }
690    case S2_packhl: {
691      assert(W0 == 64);
692      assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
693      RegisterCell R1 = rc(1);
694      RegisterCell R2 = rc(2);
695      RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
696                                   .cat(half(R1, 1));
697      return rr0(RC, Outputs);
698    }
699    case S2_shuffeb: {
700      RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
701      return rr0(RC, Outputs);
702    }
703    case S2_shuffeh: {
704      RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
705      return rr0(RC, Outputs);
706    }
707    case S2_shuffob: {
708      RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
709      return rr0(RC, Outputs);
710    }
711    case S2_shuffoh: {
712      RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
713      return rr0(RC, Outputs);
714    }
715    case C2_mask: {
716      uint16_t WR = W0;
717      uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
718      assert(WR == 64 && WP == 8);
719      RegisterCell R1 = rc(1);
720      RegisterCell RC(WR);
721      for (uint16_t i = 0; i < WP; ++i) {
722        const BT::BitValue &V = R1[i];
723        BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
724        RC.fill(i*8, i*8+8, F);
725      }
726      return rr0(RC, Outputs);
727    }
728
729    // Mux:
730
731    case C2_muxii:
732    case C2_muxir:
733    case C2_muxri:
734    case C2_mux: {
735      BT::BitValue PC0 = rc(1)[0];
736      RegisterCell R2 = cop(2, W0);
737      RegisterCell R3 = cop(3, W0);
738      if (PC0.is(0) || PC0.is(1))
739        return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
740      R2.meet(R3, Reg[0].Reg);
741      return rr0(R2, Outputs);
742    }
743    case C2_vmux:
744      // TODO
745      break;
746
747    // Sign- and zero-extension:
748
749    case A2_sxtb:
750      return rr0(eSXT(rc(1), 8), Outputs);
751    case A2_sxth:
752      return rr0(eSXT(rc(1), 16), Outputs);
753    case A2_sxtw: {
754      uint16_t W1 = getRegBitWidth(Reg[1]);
755      assert(W0 == 64 && W1 == 32);
756      RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
757      return rr0(RC, Outputs);
758    }
759    case A2_zxtb:
760      return rr0(eZXT(rc(1), 8), Outputs);
761    case A2_zxth:
762      return rr0(eZXT(rc(1), 16), Outputs);
763
764    // Bit count:
765
766    case S2_cl0:
767    case S2_cl0p:
768      // Always produce a 32-bit result.
769      return rr0(eCLB(rc(1), 0/*bit*/, 32), Outputs);
770    case S2_cl1:
771    case S2_cl1p:
772      return rr0(eCLB(rc(1), 1/*bit*/, 32), Outputs);
773    case S2_clb:
774    case S2_clbp: {
775      uint16_t W1 = getRegBitWidth(Reg[1]);
776      RegisterCell R1 = rc(1);
777      BT::BitValue TV = R1[W1-1];
778      if (TV.is(0) || TV.is(1))
779        return rr0(eCLB(R1, TV, 32), Outputs);
780      break;
781    }
782    case S2_ct0:
783    case S2_ct0p:
784      return rr0(eCTB(rc(1), 0/*bit*/, 32), Outputs);
785    case S2_ct1:
786    case S2_ct1p:
787      return rr0(eCTB(rc(1), 1/*bit*/, 32), Outputs);
788    case S5_popcountp:
789      // TODO
790      break;
791
792    case C2_all8: {
793      RegisterCell P1 = rc(1);
794      bool Has0 = false, All1 = true;
795      for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
796        if (!P1[i].is(1))
797          All1 = false;
798        if (!P1[i].is(0))
799          continue;
800        Has0 = true;
801        break;
802      }
803      if (!Has0 && !All1)
804        break;
805      RegisterCell RC(W0);
806      RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
807      return rr0(RC, Outputs);
808    }
809    case C2_any8: {
810      RegisterCell P1 = rc(1);
811      bool Has1 = false, All0 = true;
812      for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
813        if (!P1[i].is(0))
814          All0 = false;
815        if (!P1[i].is(1))
816          continue;
817        Has1 = true;
818        break;
819      }
820      if (!Has1 && !All0)
821        break;
822      RegisterCell RC(W0);
823      RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
824      return rr0(RC, Outputs);
825    }
826    case C2_and:
827      return rr0(eAND(rc(1), rc(2)), Outputs);
828    case C2_andn:
829      return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
830    case C2_not:
831      return rr0(eNOT(rc(1)), Outputs);
832    case C2_or:
833      return rr0(eORL(rc(1), rc(2)), Outputs);
834    case C2_orn:
835      return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
836    case C2_xor:
837      return rr0(eXOR(rc(1), rc(2)), Outputs);
838    case C4_and_and:
839      return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
840    case C4_and_andn:
841      return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
842    case C4_and_or:
843      return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
844    case C4_and_orn:
845      return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
846    case C4_or_and:
847      return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
848    case C4_or_andn:
849      return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
850    case C4_or_or:
851      return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
852    case C4_or_orn:
853      return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
854    case C2_bitsclr:
855    case C2_bitsclri:
856    case C2_bitsset:
857    case C4_nbitsclr:
858    case C4_nbitsclri:
859    case C4_nbitsset:
860      // TODO
861      break;
862    case S2_tstbit_i:
863    case S4_ntstbit_i: {
864      BT::BitValue V = rc(1)[im(2)];
865      if (V.is(0) || V.is(1)) {
866        // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
867        bool TV = (Opc == S2_tstbit_i);
868        BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
869        return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
870      }
871      break;
872    }
873
874    default:
875      return MachineEvaluator::evaluate(MI, Inputs, Outputs);
876  }
877  #undef im
878  #undef rc
879  #undef op
880  return false;
881}
882
883bool HexagonEvaluator::evaluate(const MachineInstr &BI,
884                                const CellMapType &Inputs,
885                                BranchTargetList &Targets,
886                                bool &FallsThru) const {
887  // We need to evaluate one branch at a time. TII::AnalyzeBranch checks
888  // all the branches in a basic block at once, so we cannot use it.
889  unsigned Opc = BI.getOpcode();
890  bool SimpleBranch = false;
891  bool Negated = false;
892  switch (Opc) {
893    case Hexagon::J2_jumpf:
894    case Hexagon::J2_jumpfnew:
895    case Hexagon::J2_jumpfnewpt:
896      Negated = true;
897    case Hexagon::J2_jumpt:
898    case Hexagon::J2_jumptnew:
899    case Hexagon::J2_jumptnewpt:
900      // Simple branch:  if([!]Pn) jump ...
901      // i.e. Op0 = predicate, Op1 = branch target.
902      SimpleBranch = true;
903      break;
904    case Hexagon::J2_jump:
905      Targets.insert(BI.getOperand(0).getMBB());
906      FallsThru = false;
907      return true;
908    default:
909      // If the branch is of unknown type, assume that all successors are
910      // executable.
911      return false;
912  }
913
914  if (!SimpleBranch)
915    return false;
916
917  // BI is a conditional branch if we got here.
918  RegisterRef PR = BI.getOperand(0);
919  RegisterCell PC = getCell(PR, Inputs);
920  const BT::BitValue &Test = PC[0];
921
922  // If the condition is neither true nor false, then it's unknown.
923  if (!Test.is(0) && !Test.is(1))
924    return false;
925
926  // "Test.is(!Negated)" means "branch condition is true".
927  if (!Test.is(!Negated)) {
928    // Condition known to be false.
929    FallsThru = true;
930    return true;
931  }
932
933  Targets.insert(BI.getOperand(1).getMBB());
934  FallsThru = false;
935  return true;
936}
937
938bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
939                                    const CellMapType &Inputs,
940                                    CellMapType &Outputs) const {
941  if (TII.isPredicated(MI))
942    return false;
943  assert(MI.mayLoad() && "A load that mayn't?");
944  unsigned Opc = MI.getOpcode();
945
946  uint16_t BitNum;
947  bool SignEx;
948  using namespace Hexagon;
949
950  switch (Opc) {
951    default:
952      return false;
953
954#if 0
955    // memb_fifo
956    case L2_loadalignb_pbr:
957    case L2_loadalignb_pcr:
958    case L2_loadalignb_pi:
959    // memh_fifo
960    case L2_loadalignh_pbr:
961    case L2_loadalignh_pcr:
962    case L2_loadalignh_pi:
963    // membh
964    case L2_loadbsw2_pbr:
965    case L2_loadbsw2_pci:
966    case L2_loadbsw2_pcr:
967    case L2_loadbsw2_pi:
968    case L2_loadbsw4_pbr:
969    case L2_loadbsw4_pci:
970    case L2_loadbsw4_pcr:
971    case L2_loadbsw4_pi:
972    // memubh
973    case L2_loadbzw2_pbr:
974    case L2_loadbzw2_pci:
975    case L2_loadbzw2_pcr:
976    case L2_loadbzw2_pi:
977    case L2_loadbzw4_pbr:
978    case L2_loadbzw4_pci:
979    case L2_loadbzw4_pcr:
980    case L2_loadbzw4_pi:
981#endif
982
983    case L2_loadrbgp:
984    case L2_loadrb_io:
985    case L2_loadrb_pbr:
986    case L2_loadrb_pci:
987    case L2_loadrb_pcr:
988    case L2_loadrb_pi:
989    case L4_loadrb_abs:
990    case L4_loadrb_ap:
991    case L4_loadrb_rr:
992    case L4_loadrb_ur:
993      BitNum = 8;
994      SignEx = true;
995      break;
996
997    case L2_loadrubgp:
998    case L2_loadrub_io:
999    case L2_loadrub_pbr:
1000    case L2_loadrub_pci:
1001    case L2_loadrub_pcr:
1002    case L2_loadrub_pi:
1003    case L4_loadrub_abs:
1004    case L4_loadrub_ap:
1005    case L4_loadrub_rr:
1006    case L4_loadrub_ur:
1007      BitNum = 8;
1008      SignEx = false;
1009      break;
1010
1011    case L2_loadrhgp:
1012    case L2_loadrh_io:
1013    case L2_loadrh_pbr:
1014    case L2_loadrh_pci:
1015    case L2_loadrh_pcr:
1016    case L2_loadrh_pi:
1017    case L4_loadrh_abs:
1018    case L4_loadrh_ap:
1019    case L4_loadrh_rr:
1020    case L4_loadrh_ur:
1021      BitNum = 16;
1022      SignEx = true;
1023      break;
1024
1025    case L2_loadruhgp:
1026    case L2_loadruh_io:
1027    case L2_loadruh_pbr:
1028    case L2_loadruh_pci:
1029    case L2_loadruh_pcr:
1030    case L2_loadruh_pi:
1031    case L4_loadruh_rr:
1032    case L4_loadruh_abs:
1033    case L4_loadruh_ap:
1034    case L4_loadruh_ur:
1035      BitNum = 16;
1036      SignEx = false;
1037      break;
1038
1039    case L2_loadrigp:
1040    case L2_loadri_io:
1041    case L2_loadri_pbr:
1042    case L2_loadri_pci:
1043    case L2_loadri_pcr:
1044    case L2_loadri_pi:
1045    case L2_loadw_locked:
1046    case L4_loadri_abs:
1047    case L4_loadri_ap:
1048    case L4_loadri_rr:
1049    case L4_loadri_ur:
1050    case LDriw_pred:
1051      BitNum = 32;
1052      SignEx = true;
1053      break;
1054
1055    case L2_loadrdgp:
1056    case L2_loadrd_io:
1057    case L2_loadrd_pbr:
1058    case L2_loadrd_pci:
1059    case L2_loadrd_pcr:
1060    case L2_loadrd_pi:
1061    case L4_loadd_locked:
1062    case L4_loadrd_abs:
1063    case L4_loadrd_ap:
1064    case L4_loadrd_rr:
1065    case L4_loadrd_ur:
1066      BitNum = 64;
1067      SignEx = true;
1068      break;
1069  }
1070
1071  const MachineOperand &MD = MI.getOperand(0);
1072  assert(MD.isReg() && MD.isDef());
1073  RegisterRef RD = MD;
1074
1075  uint16_t W = getRegBitWidth(RD);
1076  assert(W >= BitNum && BitNum > 0);
1077  RegisterCell Res(W);
1078
1079  for (uint16_t i = 0; i < BitNum; ++i)
1080    Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
1081
1082  if (SignEx) {
1083    const BT::BitValue &Sign = Res[BitNum-1];
1084    for (uint16_t i = BitNum; i < W; ++i)
1085      Res[i] = BT::BitValue::ref(Sign);
1086  } else {
1087    for (uint16_t i = BitNum; i < W; ++i)
1088      Res[i] = BT::BitValue::Zero;
1089  }
1090
1091  putCell(RD, Res, Outputs);
1092  return true;
1093}
1094
1095bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
1096                                          const CellMapType &Inputs,
1097                                          CellMapType &Outputs) const {
1098  // If MI defines a formal parameter, but is not a copy (loads are handled
1099  // in evaluateLoad), then it's not clear what to do.
1100  assert(MI.isCopy());
1101
1102  RegisterRef RD = MI.getOperand(0);
1103  RegisterRef RS = MI.getOperand(1);
1104  assert(RD.Sub == 0);
1105  if (!TargetRegisterInfo::isPhysicalRegister(RS.Reg))
1106    return false;
1107  RegExtMap::const_iterator F = VRX.find(RD.Reg);
1108  if (F == VRX.end())
1109    return false;
1110
1111  uint16_t EW = F->second.Width;
1112  // Store RD's cell into the map. This will associate the cell with a virtual
1113  // register, and make zero-/sign-extends possible (otherwise we would be ex-
1114  // tending "self" bit values, which will have no effect, since "self" values
1115  // cannot be references to anything).
1116  putCell(RD, getCell(RS, Inputs), Outputs);
1117
1118  RegisterCell Res;
1119  // Read RD's cell from the outputs instead of RS's cell from the inputs:
1120  if (F->second.Type == ExtType::SExt)
1121    Res = eSXT(getCell(RD, Outputs), EW);
1122  else if (F->second.Type == ExtType::ZExt)
1123    Res = eZXT(getCell(RD, Outputs), EW);
1124
1125  putCell(RD, Res, Outputs);
1126  return true;
1127}
1128
1129
1130unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
1131  using namespace Hexagon;
1132  bool Is64 = DoubleRegsRegClass.contains(PReg);
1133  assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
1134
1135  static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
1136  static const unsigned Phys64[] = { D0, D1, D2 };
1137  const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
1138  const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
1139
1140  // Return the first parameter register of the required width.
1141  if (PReg == 0)
1142    return (Width <= 32) ? Phys32[0] : Phys64[0];
1143
1144  // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
1145  // next register.
1146  unsigned Idx32 = 0, Idx64 = 0;
1147  if (!Is64) {
1148    while (Idx32 < Num32) {
1149      if (Phys32[Idx32] == PReg)
1150        break;
1151      Idx32++;
1152    }
1153    Idx64 = Idx32/2;
1154  } else {
1155    while (Idx64 < Num64) {
1156      if (Phys64[Idx64] == PReg)
1157        break;
1158      Idx64++;
1159    }
1160    Idx32 = Idx64*2+1;
1161  }
1162
1163  if (Width <= 32)
1164    return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
1165  return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
1166}
1167
1168
1169unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
1170  typedef MachineRegisterInfo::livein_iterator iterator;
1171  for (iterator I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) {
1172    if (I->first == PReg)
1173      return I->second;
1174  }
1175  return 0;
1176}
1177