1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the interfaces that Mips uses to lower LLVM code into a 11// selection DAG. 12// 13//===----------------------------------------------------------------------===// 14#include "MipsISelLowering.h" 15#include "InstPrinter/MipsInstPrinter.h" 16#include "MCTargetDesc/MipsBaseInfo.h" 17#include "MipsCCState.h" 18#include "MipsMachineFunction.h" 19#include "MipsSubtarget.h" 20#include "MipsTargetMachine.h" 21#include "MipsTargetObjectFile.h" 22#include "llvm/ADT/Statistic.h" 23#include "llvm/ADT/StringSwitch.h" 24#include "llvm/CodeGen/CallingConvLower.h" 25#include "llvm/CodeGen/MachineFrameInfo.h" 26#include "llvm/CodeGen/MachineFunction.h" 27#include "llvm/CodeGen/MachineInstrBuilder.h" 28#include "llvm/CodeGen/MachineJumpTableInfo.h" 29#include "llvm/CodeGen/MachineRegisterInfo.h" 30#include "llvm/CodeGen/FunctionLoweringInfo.h" 31#include "llvm/CodeGen/SelectionDAGISel.h" 32#include "llvm/CodeGen/ValueTypes.h" 33#include "llvm/IR/CallingConv.h" 34#include "llvm/IR/DerivedTypes.h" 35#include "llvm/IR/GlobalVariable.h" 36#include "llvm/Support/CommandLine.h" 37#include "llvm/Support/Debug.h" 38#include "llvm/Support/ErrorHandling.h" 39#include "llvm/Support/raw_ostream.h" 40#include <cctype> 41 42using namespace llvm; 43 44#define DEBUG_TYPE "mips-lower" 45 46STATISTIC(NumTailCalls, "Number of tail calls"); 47 48static cl::opt<bool> 49LargeGOT("mxgot", cl::Hidden, 50 cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false)); 51 52static cl::opt<bool> 53NoZeroDivCheck("mno-check-zero-division", cl::Hidden, 54 cl::desc("MIPS: Don't trap on integer division by zero."), 55 cl::init(false)); 56 57static const MCPhysReg Mips64DPRegs[8] = { 58 Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64, 59 Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64 60}; 61 62// If I is a shifted mask, set the size (Size) and the first bit of the 63// mask (Pos), and return true. 64// For example, if I is 0x003ff800, (Pos, Size) = (11, 11). 65static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) { 66 if (!isShiftedMask_64(I)) 67 return false; 68 69 Size = countPopulation(I); 70 Pos = countTrailingZeros(I); 71 return true; 72} 73 74SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const { 75 MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>(); 76 return DAG.getRegister(FI->getGlobalBaseReg(), Ty); 77} 78 79SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty, 80 SelectionDAG &DAG, 81 unsigned Flag) const { 82 return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag); 83} 84 85SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty, 86 SelectionDAG &DAG, 87 unsigned Flag) const { 88 return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag); 89} 90 91SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty, 92 SelectionDAG &DAG, 93 unsigned Flag) const { 94 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag); 95} 96 97SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty, 98 SelectionDAG &DAG, 99 unsigned Flag) const { 100 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag); 101} 102 103SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty, 104 SelectionDAG &DAG, 105 unsigned Flag) const { 106 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), 107 N->getOffset(), Flag); 108} 109 110const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const { 111 switch ((MipsISD::NodeType)Opcode) { 112 case MipsISD::FIRST_NUMBER: break; 113 case MipsISD::JmpLink: return "MipsISD::JmpLink"; 114 case MipsISD::TailCall: return "MipsISD::TailCall"; 115 case MipsISD::Hi: return "MipsISD::Hi"; 116 case MipsISD::Lo: return "MipsISD::Lo"; 117 case MipsISD::GPRel: return "MipsISD::GPRel"; 118 case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer"; 119 case MipsISD::Ret: return "MipsISD::Ret"; 120 case MipsISD::ERet: return "MipsISD::ERet"; 121 case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN"; 122 case MipsISD::FPBrcond: return "MipsISD::FPBrcond"; 123 case MipsISD::FPCmp: return "MipsISD::FPCmp"; 124 case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T"; 125 case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F"; 126 case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP"; 127 case MipsISD::MFHI: return "MipsISD::MFHI"; 128 case MipsISD::MFLO: return "MipsISD::MFLO"; 129 case MipsISD::MTLOHI: return "MipsISD::MTLOHI"; 130 case MipsISD::Mult: return "MipsISD::Mult"; 131 case MipsISD::Multu: return "MipsISD::Multu"; 132 case MipsISD::MAdd: return "MipsISD::MAdd"; 133 case MipsISD::MAddu: return "MipsISD::MAddu"; 134 case MipsISD::MSub: return "MipsISD::MSub"; 135 case MipsISD::MSubu: return "MipsISD::MSubu"; 136 case MipsISD::DivRem: return "MipsISD::DivRem"; 137 case MipsISD::DivRemU: return "MipsISD::DivRemU"; 138 case MipsISD::DivRem16: return "MipsISD::DivRem16"; 139 case MipsISD::DivRemU16: return "MipsISD::DivRemU16"; 140 case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64"; 141 case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64"; 142 case MipsISD::Wrapper: return "MipsISD::Wrapper"; 143 case MipsISD::DynAlloc: return "MipsISD::DynAlloc"; 144 case MipsISD::Sync: return "MipsISD::Sync"; 145 case MipsISD::Ext: return "MipsISD::Ext"; 146 case MipsISD::Ins: return "MipsISD::Ins"; 147 case MipsISD::LWL: return "MipsISD::LWL"; 148 case MipsISD::LWR: return "MipsISD::LWR"; 149 case MipsISD::SWL: return "MipsISD::SWL"; 150 case MipsISD::SWR: return "MipsISD::SWR"; 151 case MipsISD::LDL: return "MipsISD::LDL"; 152 case MipsISD::LDR: return "MipsISD::LDR"; 153 case MipsISD::SDL: return "MipsISD::SDL"; 154 case MipsISD::SDR: return "MipsISD::SDR"; 155 case MipsISD::EXTP: return "MipsISD::EXTP"; 156 case MipsISD::EXTPDP: return "MipsISD::EXTPDP"; 157 case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H"; 158 case MipsISD::EXTR_W: return "MipsISD::EXTR_W"; 159 case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W"; 160 case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W"; 161 case MipsISD::SHILO: return "MipsISD::SHILO"; 162 case MipsISD::MTHLIP: return "MipsISD::MTHLIP"; 163 case MipsISD::MULSAQ_S_W_PH: return "MipsISD::MULSAQ_S_W_PH"; 164 case MipsISD::MAQ_S_W_PHL: return "MipsISD::MAQ_S_W_PHL"; 165 case MipsISD::MAQ_S_W_PHR: return "MipsISD::MAQ_S_W_PHR"; 166 case MipsISD::MAQ_SA_W_PHL: return "MipsISD::MAQ_SA_W_PHL"; 167 case MipsISD::MAQ_SA_W_PHR: return "MipsISD::MAQ_SA_W_PHR"; 168 case MipsISD::DPAU_H_QBL: return "MipsISD::DPAU_H_QBL"; 169 case MipsISD::DPAU_H_QBR: return "MipsISD::DPAU_H_QBR"; 170 case MipsISD::DPSU_H_QBL: return "MipsISD::DPSU_H_QBL"; 171 case MipsISD::DPSU_H_QBR: return "MipsISD::DPSU_H_QBR"; 172 case MipsISD::DPAQ_S_W_PH: return "MipsISD::DPAQ_S_W_PH"; 173 case MipsISD::DPSQ_S_W_PH: return "MipsISD::DPSQ_S_W_PH"; 174 case MipsISD::DPAQ_SA_L_W: return "MipsISD::DPAQ_SA_L_W"; 175 case MipsISD::DPSQ_SA_L_W: return "MipsISD::DPSQ_SA_L_W"; 176 case MipsISD::DPA_W_PH: return "MipsISD::DPA_W_PH"; 177 case MipsISD::DPS_W_PH: return "MipsISD::DPS_W_PH"; 178 case MipsISD::DPAQX_S_W_PH: return "MipsISD::DPAQX_S_W_PH"; 179 case MipsISD::DPAQX_SA_W_PH: return "MipsISD::DPAQX_SA_W_PH"; 180 case MipsISD::DPAX_W_PH: return "MipsISD::DPAX_W_PH"; 181 case MipsISD::DPSX_W_PH: return "MipsISD::DPSX_W_PH"; 182 case MipsISD::DPSQX_S_W_PH: return "MipsISD::DPSQX_S_W_PH"; 183 case MipsISD::DPSQX_SA_W_PH: return "MipsISD::DPSQX_SA_W_PH"; 184 case MipsISD::MULSA_W_PH: return "MipsISD::MULSA_W_PH"; 185 case MipsISD::MULT: return "MipsISD::MULT"; 186 case MipsISD::MULTU: return "MipsISD::MULTU"; 187 case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP"; 188 case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP"; 189 case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP"; 190 case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP"; 191 case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP"; 192 case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP"; 193 case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP"; 194 case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP"; 195 case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP"; 196 case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO"; 197 case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO"; 198 case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO"; 199 case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO"; 200 case MipsISD::VCEQ: return "MipsISD::VCEQ"; 201 case MipsISD::VCLE_S: return "MipsISD::VCLE_S"; 202 case MipsISD::VCLE_U: return "MipsISD::VCLE_U"; 203 case MipsISD::VCLT_S: return "MipsISD::VCLT_S"; 204 case MipsISD::VCLT_U: return "MipsISD::VCLT_U"; 205 case MipsISD::VSMAX: return "MipsISD::VSMAX"; 206 case MipsISD::VSMIN: return "MipsISD::VSMIN"; 207 case MipsISD::VUMAX: return "MipsISD::VUMAX"; 208 case MipsISD::VUMIN: return "MipsISD::VUMIN"; 209 case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT"; 210 case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT"; 211 case MipsISD::VNOR: return "MipsISD::VNOR"; 212 case MipsISD::VSHF: return "MipsISD::VSHF"; 213 case MipsISD::SHF: return "MipsISD::SHF"; 214 case MipsISD::ILVEV: return "MipsISD::ILVEV"; 215 case MipsISD::ILVOD: return "MipsISD::ILVOD"; 216 case MipsISD::ILVL: return "MipsISD::ILVL"; 217 case MipsISD::ILVR: return "MipsISD::ILVR"; 218 case MipsISD::PCKEV: return "MipsISD::PCKEV"; 219 case MipsISD::PCKOD: return "MipsISD::PCKOD"; 220 case MipsISD::INSVE: return "MipsISD::INSVE"; 221 } 222 return nullptr; 223} 224 225MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM, 226 const MipsSubtarget &STI) 227 : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) { 228 // Mips does not have i1 type, so use i32 for 229 // setcc operations results (slt, sgt, ...). 230 setBooleanContents(ZeroOrOneBooleanContent); 231 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 232 // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA 233 // does. Integer booleans still use 0 and 1. 234 if (Subtarget.hasMips32r6()) 235 setBooleanContents(ZeroOrOneBooleanContent, 236 ZeroOrNegativeOneBooleanContent); 237 238 // Load extented operations for i1 types must be promoted 239 for (MVT VT : MVT::integer_valuetypes()) { 240 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 241 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 242 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 243 } 244 245 // MIPS doesn't have extending float->double load/store. Set LoadExtAction 246 // for f32, f16 247 for (MVT VT : MVT::fp_valuetypes()) { 248 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 249 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); 250 } 251 252 // Set LoadExtAction for f16 vectors to Expand 253 for (MVT VT : MVT::fp_vector_valuetypes()) { 254 MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements()); 255 if (F16VT.isValid()) 256 setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand); 257 } 258 259 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 260 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 261 262 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 263 264 // Used by legalize types to correctly generate the setcc result. 265 // Without this, every float setcc comes with a AND/OR with the result, 266 // we don't want this, since the fpcmp result goes to a flag register, 267 // which is used implicitly by brcond and select operations. 268 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 269 270 // Mips Custom Operations 271 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 272 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 273 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 274 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 275 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 276 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 277 setOperationAction(ISD::SELECT, MVT::f32, Custom); 278 setOperationAction(ISD::SELECT, MVT::f64, Custom); 279 setOperationAction(ISD::SELECT, MVT::i32, Custom); 280 setOperationAction(ISD::SETCC, MVT::f32, Custom); 281 setOperationAction(ISD::SETCC, MVT::f64, Custom); 282 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 283 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 284 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); 285 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 286 287 if (Subtarget.isGP64bit()) { 288 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 289 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 290 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 291 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 292 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 293 setOperationAction(ISD::SELECT, MVT::i64, Custom); 294 setOperationAction(ISD::LOAD, MVT::i64, Custom); 295 setOperationAction(ISD::STORE, MVT::i64, Custom); 296 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 297 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 298 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 299 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 300 } 301 302 if (!Subtarget.isGP64bit()) { 303 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 304 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 305 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 306 } 307 308 setOperationAction(ISD::ADD, MVT::i32, Custom); 309 if (Subtarget.isGP64bit()) 310 setOperationAction(ISD::ADD, MVT::i64, Custom); 311 312 setOperationAction(ISD::SDIV, MVT::i32, Expand); 313 setOperationAction(ISD::SREM, MVT::i32, Expand); 314 setOperationAction(ISD::UDIV, MVT::i32, Expand); 315 setOperationAction(ISD::UREM, MVT::i32, Expand); 316 setOperationAction(ISD::SDIV, MVT::i64, Expand); 317 setOperationAction(ISD::SREM, MVT::i64, Expand); 318 setOperationAction(ISD::UDIV, MVT::i64, Expand); 319 setOperationAction(ISD::UREM, MVT::i64, Expand); 320 321 // Operations not directly supported by Mips. 322 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 323 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 324 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 325 setOperationAction(ISD::BR_CC, MVT::i64, Expand); 326 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 327 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 328 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 329 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 330 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 331 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 332 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 333 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 334 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 335 if (Subtarget.hasCnMips()) { 336 setOperationAction(ISD::CTPOP, MVT::i32, Legal); 337 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 338 } else { 339 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 340 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 341 } 342 setOperationAction(ISD::CTTZ, MVT::i32, Expand); 343 setOperationAction(ISD::CTTZ, MVT::i64, Expand); 344 setOperationAction(ISD::ROTL, MVT::i32, Expand); 345 setOperationAction(ISD::ROTL, MVT::i64, Expand); 346 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 347 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); 348 349 if (!Subtarget.hasMips32r2()) 350 setOperationAction(ISD::ROTR, MVT::i32, Expand); 351 352 if (!Subtarget.hasMips64r2()) 353 setOperationAction(ISD::ROTR, MVT::i64, Expand); 354 355 setOperationAction(ISD::FSIN, MVT::f32, Expand); 356 setOperationAction(ISD::FSIN, MVT::f64, Expand); 357 setOperationAction(ISD::FCOS, MVT::f32, Expand); 358 setOperationAction(ISD::FCOS, MVT::f64, Expand); 359 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 360 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 361 setOperationAction(ISD::FPOWI, MVT::f32, Expand); 362 setOperationAction(ISD::FPOW, MVT::f32, Expand); 363 setOperationAction(ISD::FPOW, MVT::f64, Expand); 364 setOperationAction(ISD::FLOG, MVT::f32, Expand); 365 setOperationAction(ISD::FLOG2, MVT::f32, Expand); 366 setOperationAction(ISD::FLOG10, MVT::f32, Expand); 367 setOperationAction(ISD::FEXP, MVT::f32, Expand); 368 setOperationAction(ISD::FMA, MVT::f32, Expand); 369 setOperationAction(ISD::FMA, MVT::f64, Expand); 370 setOperationAction(ISD::FREM, MVT::f32, Expand); 371 setOperationAction(ISD::FREM, MVT::f64, Expand); 372 373 // Lower f16 conversion operations into library calls 374 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 375 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 376 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 377 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 378 379 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); 380 381 setOperationAction(ISD::VASTART, MVT::Other, Custom); 382 setOperationAction(ISD::VAARG, MVT::Other, Custom); 383 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 384 setOperationAction(ISD::VAEND, MVT::Other, Expand); 385 386 // Use the default for now 387 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 388 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 389 390 if (!Subtarget.isGP64bit()) { 391 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 392 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 393 } 394 395 396 if (!Subtarget.hasMips32r2()) { 397 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 398 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 399 } 400 401 // MIPS16 lacks MIPS32's clz and clo instructions. 402 if (!Subtarget.hasMips32() || Subtarget.inMips16Mode()) 403 setOperationAction(ISD::CTLZ, MVT::i32, Expand); 404 if (!Subtarget.hasMips64()) 405 setOperationAction(ISD::CTLZ, MVT::i64, Expand); 406 407 if (!Subtarget.hasMips32r2()) 408 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 409 if (!Subtarget.hasMips64r2()) 410 setOperationAction(ISD::BSWAP, MVT::i64, Expand); 411 412 if (Subtarget.isGP64bit()) { 413 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom); 414 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom); 415 setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom); 416 setTruncStoreAction(MVT::i64, MVT::i32, Custom); 417 } 418 419 setOperationAction(ISD::TRAP, MVT::Other, Legal); 420 421 setTargetDAGCombine(ISD::SDIVREM); 422 setTargetDAGCombine(ISD::UDIVREM); 423 setTargetDAGCombine(ISD::SELECT); 424 setTargetDAGCombine(ISD::AND); 425 setTargetDAGCombine(ISD::OR); 426 setTargetDAGCombine(ISD::ADD); 427 setTargetDAGCombine(ISD::AssertZext); 428 429 setMinFunctionAlignment(Subtarget.isGP64bit() ? 3 : 2); 430 431 // The arguments on the stack are defined in terms of 4-byte slots on O32 432 // and 8-byte slots on N32/N64. 433 setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? 8 : 4); 434 435 setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP); 436 437 MaxStoresPerMemcpy = 16; 438 439 isMicroMips = Subtarget.inMicroMipsMode(); 440} 441 442const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM, 443 const MipsSubtarget &STI) { 444 if (STI.inMips16Mode()) 445 return llvm::createMips16TargetLowering(TM, STI); 446 447 return llvm::createMipsSETargetLowering(TM, STI); 448} 449 450// Create a fast isel object. 451FastISel * 452MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, 453 const TargetLibraryInfo *libInfo) const { 454 if (!funcInfo.MF->getTarget().Options.EnableFastISel) 455 return TargetLowering::createFastISel(funcInfo, libInfo); 456 return Mips::createFastISel(funcInfo, libInfo); 457} 458 459EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 460 EVT VT) const { 461 if (!VT.isVector()) 462 return MVT::i32; 463 return VT.changeVectorElementTypeToInteger(); 464} 465 466static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG, 467 TargetLowering::DAGCombinerInfo &DCI, 468 const MipsSubtarget &Subtarget) { 469 if (DCI.isBeforeLegalizeOps()) 470 return SDValue(); 471 472 EVT Ty = N->getValueType(0); 473 unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64; 474 unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64; 475 unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 : 476 MipsISD::DivRemU16; 477 SDLoc DL(N); 478 479 SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue, 480 N->getOperand(0), N->getOperand(1)); 481 SDValue InChain = DAG.getEntryNode(); 482 SDValue InGlue = DivRem; 483 484 // insert MFLO 485 if (N->hasAnyUseOfValue(0)) { 486 SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty, 487 InGlue); 488 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo); 489 InChain = CopyFromLo.getValue(1); 490 InGlue = CopyFromLo.getValue(2); 491 } 492 493 // insert MFHI 494 if (N->hasAnyUseOfValue(1)) { 495 SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL, 496 HI, Ty, InGlue); 497 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi); 498 } 499 500 return SDValue(); 501} 502 503static Mips::CondCode condCodeToFCC(ISD::CondCode CC) { 504 switch (CC) { 505 default: llvm_unreachable("Unknown fp condition code!"); 506 case ISD::SETEQ: 507 case ISD::SETOEQ: return Mips::FCOND_OEQ; 508 case ISD::SETUNE: return Mips::FCOND_UNE; 509 case ISD::SETLT: 510 case ISD::SETOLT: return Mips::FCOND_OLT; 511 case ISD::SETGT: 512 case ISD::SETOGT: return Mips::FCOND_OGT; 513 case ISD::SETLE: 514 case ISD::SETOLE: return Mips::FCOND_OLE; 515 case ISD::SETGE: 516 case ISD::SETOGE: return Mips::FCOND_OGE; 517 case ISD::SETULT: return Mips::FCOND_ULT; 518 case ISD::SETULE: return Mips::FCOND_ULE; 519 case ISD::SETUGT: return Mips::FCOND_UGT; 520 case ISD::SETUGE: return Mips::FCOND_UGE; 521 case ISD::SETUO: return Mips::FCOND_UN; 522 case ISD::SETO: return Mips::FCOND_OR; 523 case ISD::SETNE: 524 case ISD::SETONE: return Mips::FCOND_ONE; 525 case ISD::SETUEQ: return Mips::FCOND_UEQ; 526 } 527} 528 529 530/// This function returns true if the floating point conditional branches and 531/// conditional moves which use condition code CC should be inverted. 532static bool invertFPCondCodeUser(Mips::CondCode CC) { 533 if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT) 534 return false; 535 536 assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) && 537 "Illegal Condition Code"); 538 539 return true; 540} 541 542// Creates and returns an FPCmp node from a setcc node. 543// Returns Op if setcc is not a floating point comparison. 544static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) { 545 // must be a SETCC node 546 if (Op.getOpcode() != ISD::SETCC) 547 return Op; 548 549 SDValue LHS = Op.getOperand(0); 550 551 if (!LHS.getValueType().isFloatingPoint()) 552 return Op; 553 554 SDValue RHS = Op.getOperand(1); 555 SDLoc DL(Op); 556 557 // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of 558 // node if necessary. 559 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 560 561 return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS, 562 DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32)); 563} 564 565// Creates and returns a CMovFPT/F node. 566static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True, 567 SDValue False, const SDLoc &DL) { 568 ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2)); 569 bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue()); 570 SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32); 571 572 return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL, 573 True.getValueType(), True, FCC0, False, Cond); 574} 575 576static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG, 577 TargetLowering::DAGCombinerInfo &DCI, 578 const MipsSubtarget &Subtarget) { 579 if (DCI.isBeforeLegalizeOps()) 580 return SDValue(); 581 582 SDValue SetCC = N->getOperand(0); 583 584 if ((SetCC.getOpcode() != ISD::SETCC) || 585 !SetCC.getOperand(0).getValueType().isInteger()) 586 return SDValue(); 587 588 SDValue False = N->getOperand(2); 589 EVT FalseTy = False.getValueType(); 590 591 if (!FalseTy.isInteger()) 592 return SDValue(); 593 594 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False); 595 596 // If the RHS (False) is 0, we swap the order of the operands 597 // of ISD::SELECT (obviously also inverting the condition) so that we can 598 // take advantage of conditional moves using the $0 register. 599 // Example: 600 // return (a != 0) ? x : 0; 601 // load $reg, x 602 // movz $reg, $0, a 603 if (!FalseC) 604 return SDValue(); 605 606 const SDLoc DL(N); 607 608 if (!FalseC->getZExtValue()) { 609 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); 610 SDValue True = N->getOperand(1); 611 612 SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), 613 SetCC.getOperand(1), ISD::getSetCCInverse(CC, true)); 614 615 return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True); 616 } 617 618 // If both operands are integer constants there's a possibility that we 619 // can do some interesting optimizations. 620 SDValue True = N->getOperand(1); 621 ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True); 622 623 if (!TrueC || !True.getValueType().isInteger()) 624 return SDValue(); 625 626 // We'll also ignore MVT::i64 operands as this optimizations proves 627 // to be ineffective because of the required sign extensions as the result 628 // of a SETCC operator is always MVT::i32 for non-vector types. 629 if (True.getValueType() == MVT::i64) 630 return SDValue(); 631 632 int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue(); 633 634 // 1) (a < x) ? y : y-1 635 // slti $reg1, a, x 636 // addiu $reg2, $reg1, y-1 637 if (Diff == 1) 638 return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False); 639 640 // 2) (a < x) ? y-1 : y 641 // slti $reg1, a, x 642 // xor $reg1, $reg1, 1 643 // addiu $reg2, $reg1, y-1 644 if (Diff == -1) { 645 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); 646 SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), 647 SetCC.getOperand(1), ISD::getSetCCInverse(CC, true)); 648 return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True); 649 } 650 651 // Couldn't optimize. 652 return SDValue(); 653} 654 655static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG, 656 TargetLowering::DAGCombinerInfo &DCI, 657 const MipsSubtarget &Subtarget) { 658 if (DCI.isBeforeLegalizeOps()) 659 return SDValue(); 660 661 SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2); 662 663 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse); 664 if (!FalseC || FalseC->getZExtValue()) 665 return SDValue(); 666 667 // Since RHS (False) is 0, we swap the order of the True/False operands 668 // (obviously also inverting the condition) so that we can 669 // take advantage of conditional moves using the $0 register. 670 // Example: 671 // return (a != 0) ? x : 0; 672 // load $reg, x 673 // movz $reg, $0, a 674 unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F : 675 MipsISD::CMovFP_T; 676 677 SDValue FCC = N->getOperand(1), Glue = N->getOperand(3); 678 return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(), 679 ValueIfFalse, FCC, ValueIfTrue, Glue); 680} 681 682static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, 683 TargetLowering::DAGCombinerInfo &DCI, 684 const MipsSubtarget &Subtarget) { 685 // Pattern match EXT. 686 // $dst = and ((sra or srl) $src , pos), (2**size - 1) 687 // => ext $dst, $src, size, pos 688 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert()) 689 return SDValue(); 690 691 SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1); 692 unsigned ShiftRightOpc = ShiftRight.getOpcode(); 693 694 // Op's first operand must be a shift right. 695 if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL) 696 return SDValue(); 697 698 // The second operand of the shift must be an immediate. 699 ConstantSDNode *CN; 700 if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1)))) 701 return SDValue(); 702 703 uint64_t Pos = CN->getZExtValue(); 704 uint64_t SMPos, SMSize; 705 706 // Op's second operand must be a shifted mask. 707 if (!(CN = dyn_cast<ConstantSDNode>(Mask)) || 708 !isShiftedMask(CN->getZExtValue(), SMPos, SMSize)) 709 return SDValue(); 710 711 // Return if the shifted mask does not start at bit 0 or the sum of its size 712 // and Pos exceeds the word's size. 713 EVT ValTy = N->getValueType(0); 714 if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits()) 715 return SDValue(); 716 717 SDLoc DL(N); 718 return DAG.getNode(MipsISD::Ext, DL, ValTy, 719 ShiftRight.getOperand(0), 720 DAG.getConstant(Pos, DL, MVT::i32), 721 DAG.getConstant(SMSize, DL, MVT::i32)); 722} 723 724static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 725 TargetLowering::DAGCombinerInfo &DCI, 726 const MipsSubtarget &Subtarget) { 727 // Pattern match INS. 728 // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1), 729 // where mask1 = (2**size - 1) << pos, mask0 = ~mask1 730 // => ins $dst, $src, size, pos, $src1 731 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert()) 732 return SDValue(); 733 734 SDValue And0 = N->getOperand(0), And1 = N->getOperand(1); 735 uint64_t SMPos0, SMSize0, SMPos1, SMSize1; 736 ConstantSDNode *CN; 737 738 // See if Op's first operand matches (and $src1 , mask0). 739 if (And0.getOpcode() != ISD::AND) 740 return SDValue(); 741 742 if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) || 743 !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0)) 744 return SDValue(); 745 746 // See if Op's second operand matches (and (shl $src, pos), mask1). 747 if (And1.getOpcode() != ISD::AND) 748 return SDValue(); 749 750 if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) || 751 !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1)) 752 return SDValue(); 753 754 // The shift masks must have the same position and size. 755 if (SMPos0 != SMPos1 || SMSize0 != SMSize1) 756 return SDValue(); 757 758 SDValue Shl = And1.getOperand(0); 759 if (Shl.getOpcode() != ISD::SHL) 760 return SDValue(); 761 762 if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1)))) 763 return SDValue(); 764 765 unsigned Shamt = CN->getZExtValue(); 766 767 // Return if the shift amount and the first bit position of mask are not the 768 // same. 769 EVT ValTy = N->getValueType(0); 770 if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits())) 771 return SDValue(); 772 773 SDLoc DL(N); 774 return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0), 775 DAG.getConstant(SMPos0, DL, MVT::i32), 776 DAG.getConstant(SMSize0, DL, MVT::i32), 777 And0.getOperand(0)); 778} 779 780static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 781 TargetLowering::DAGCombinerInfo &DCI, 782 const MipsSubtarget &Subtarget) { 783 // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt)) 784 785 if (DCI.isBeforeLegalizeOps()) 786 return SDValue(); 787 788 SDValue Add = N->getOperand(1); 789 790 if (Add.getOpcode() != ISD::ADD) 791 return SDValue(); 792 793 SDValue Lo = Add.getOperand(1); 794 795 if ((Lo.getOpcode() != MipsISD::Lo) || 796 (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable)) 797 return SDValue(); 798 799 EVT ValTy = N->getValueType(0); 800 SDLoc DL(N); 801 802 SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0), 803 Add.getOperand(0)); 804 return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo); 805} 806 807static SDValue performAssertZextCombine(SDNode *N, SelectionDAG &DAG, 808 TargetLowering::DAGCombinerInfo &DCI, 809 const MipsSubtarget &Subtarget) { 810 SDValue N0 = N->getOperand(0); 811 EVT NarrowerVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 812 813 if (N0.getOpcode() != ISD::TRUNCATE) 814 return SDValue(); 815 816 if (N0.getOperand(0).getOpcode() != ISD::AssertZext) 817 return SDValue(); 818 819 // fold (AssertZext (trunc (AssertZext x))) -> (trunc (AssertZext x)) 820 // if the type of the extension of the innermost AssertZext node is 821 // smaller from that of the outermost node, eg: 822 // (AssertZext:i32 (trunc:i32 (AssertZext:i64 X, i32)), i8) 823 // -> (trunc:i32 (AssertZext X, i8)) 824 SDValue WiderAssertZext = N0.getOperand(0); 825 EVT WiderVT = cast<VTSDNode>(WiderAssertZext->getOperand(1))->getVT(); 826 827 if (NarrowerVT.bitsLT(WiderVT)) { 828 SDValue NewAssertZext = DAG.getNode( 829 ISD::AssertZext, SDLoc(N), WiderAssertZext.getValueType(), 830 WiderAssertZext.getOperand(0), DAG.getValueType(NarrowerVT)); 831 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), 832 NewAssertZext); 833 } 834 835 return SDValue(); 836} 837 838SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) 839 const { 840 SelectionDAG &DAG = DCI.DAG; 841 unsigned Opc = N->getOpcode(); 842 843 switch (Opc) { 844 default: break; 845 case ISD::SDIVREM: 846 case ISD::UDIVREM: 847 return performDivRemCombine(N, DAG, DCI, Subtarget); 848 case ISD::SELECT: 849 return performSELECTCombine(N, DAG, DCI, Subtarget); 850 case MipsISD::CMovFP_F: 851 case MipsISD::CMovFP_T: 852 return performCMovFPCombine(N, DAG, DCI, Subtarget); 853 case ISD::AND: 854 return performANDCombine(N, DAG, DCI, Subtarget); 855 case ISD::OR: 856 return performORCombine(N, DAG, DCI, Subtarget); 857 case ISD::ADD: 858 return performADDCombine(N, DAG, DCI, Subtarget); 859 case ISD::AssertZext: 860 return performAssertZextCombine(N, DAG, DCI, Subtarget); 861 } 862 863 return SDValue(); 864} 865 866bool MipsTargetLowering::isCheapToSpeculateCttz() const { 867 return Subtarget.hasMips32(); 868} 869 870bool MipsTargetLowering::isCheapToSpeculateCtlz() const { 871 return Subtarget.hasMips32(); 872} 873 874void 875MipsTargetLowering::LowerOperationWrapper(SDNode *N, 876 SmallVectorImpl<SDValue> &Results, 877 SelectionDAG &DAG) const { 878 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 879 880 for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I) 881 Results.push_back(Res.getValue(I)); 882} 883 884void 885MipsTargetLowering::ReplaceNodeResults(SDNode *N, 886 SmallVectorImpl<SDValue> &Results, 887 SelectionDAG &DAG) const { 888 return LowerOperationWrapper(N, Results, DAG); 889} 890 891SDValue MipsTargetLowering:: 892LowerOperation(SDValue Op, SelectionDAG &DAG) const 893{ 894 switch (Op.getOpcode()) 895 { 896 case ISD::BR_JT: return lowerBR_JT(Op, DAG); 897 case ISD::BRCOND: return lowerBRCOND(Op, DAG); 898 case ISD::ConstantPool: return lowerConstantPool(Op, DAG); 899 case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG); 900 case ISD::BlockAddress: return lowerBlockAddress(Op, DAG); 901 case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG); 902 case ISD::JumpTable: return lowerJumpTable(Op, DAG); 903 case ISD::SELECT: return lowerSELECT(Op, DAG); 904 case ISD::SETCC: return lowerSETCC(Op, DAG); 905 case ISD::VASTART: return lowerVASTART(Op, DAG); 906 case ISD::VAARG: return lowerVAARG(Op, DAG); 907 case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG); 908 case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG); 909 case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG); 910 case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG); 911 case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG); 912 case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG); 913 case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true); 914 case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false); 915 case ISD::LOAD: return lowerLOAD(Op, DAG); 916 case ISD::STORE: return lowerSTORE(Op, DAG); 917 case ISD::ADD: return lowerADD(Op, DAG); 918 case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG); 919 } 920 return SDValue(); 921} 922 923//===----------------------------------------------------------------------===// 924// Lower helper functions 925//===----------------------------------------------------------------------===// 926 927// addLiveIn - This helper function adds the specified physical register to the 928// MachineFunction as a live in value. It also creates a corresponding 929// virtual register for it. 930static unsigned 931addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC) 932{ 933 unsigned VReg = MF.getRegInfo().createVirtualRegister(RC); 934 MF.getRegInfo().addLiveIn(PReg, VReg); 935 return VReg; 936} 937 938static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI, 939 MachineBasicBlock &MBB, 940 const TargetInstrInfo &TII, 941 bool Is64Bit, bool IsMicroMips) { 942 if (NoZeroDivCheck) 943 return &MBB; 944 945 // Insert instruction "teq $divisor_reg, $zero, 7". 946 MachineBasicBlock::iterator I(MI); 947 MachineInstrBuilder MIB; 948 MachineOperand &Divisor = MI.getOperand(2); 949 MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(), 950 TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ)) 951 .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill())) 952 .addReg(Mips::ZERO) 953 .addImm(7); 954 955 // Use the 32-bit sub-register if this is a 64-bit division. 956 if (Is64Bit) 957 MIB->getOperand(0).setSubReg(Mips::sub_32); 958 959 // Clear Divisor's kill flag. 960 Divisor.setIsKill(false); 961 962 // We would normally delete the original instruction here but in this case 963 // we only needed to inject an additional instruction rather than replace it. 964 965 return &MBB; 966} 967 968MachineBasicBlock * 969MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 970 MachineBasicBlock *BB) const { 971 switch (MI.getOpcode()) { 972 default: 973 llvm_unreachable("Unexpected instr type to insert"); 974 case Mips::ATOMIC_LOAD_ADD_I8: 975 return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu); 976 case Mips::ATOMIC_LOAD_ADD_I16: 977 return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu); 978 case Mips::ATOMIC_LOAD_ADD_I32: 979 return emitAtomicBinary(MI, BB, 4, Mips::ADDu); 980 case Mips::ATOMIC_LOAD_ADD_I64: 981 return emitAtomicBinary(MI, BB, 8, Mips::DADDu); 982 983 case Mips::ATOMIC_LOAD_AND_I8: 984 return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND); 985 case Mips::ATOMIC_LOAD_AND_I16: 986 return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND); 987 case Mips::ATOMIC_LOAD_AND_I32: 988 return emitAtomicBinary(MI, BB, 4, Mips::AND); 989 case Mips::ATOMIC_LOAD_AND_I64: 990 return emitAtomicBinary(MI, BB, 8, Mips::AND64); 991 992 case Mips::ATOMIC_LOAD_OR_I8: 993 return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR); 994 case Mips::ATOMIC_LOAD_OR_I16: 995 return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR); 996 case Mips::ATOMIC_LOAD_OR_I32: 997 return emitAtomicBinary(MI, BB, 4, Mips::OR); 998 case Mips::ATOMIC_LOAD_OR_I64: 999 return emitAtomicBinary(MI, BB, 8, Mips::OR64); 1000 1001 case Mips::ATOMIC_LOAD_XOR_I8: 1002 return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR); 1003 case Mips::ATOMIC_LOAD_XOR_I16: 1004 return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR); 1005 case Mips::ATOMIC_LOAD_XOR_I32: 1006 return emitAtomicBinary(MI, BB, 4, Mips::XOR); 1007 case Mips::ATOMIC_LOAD_XOR_I64: 1008 return emitAtomicBinary(MI, BB, 8, Mips::XOR64); 1009 1010 case Mips::ATOMIC_LOAD_NAND_I8: 1011 return emitAtomicBinaryPartword(MI, BB, 1, 0, true); 1012 case Mips::ATOMIC_LOAD_NAND_I16: 1013 return emitAtomicBinaryPartword(MI, BB, 2, 0, true); 1014 case Mips::ATOMIC_LOAD_NAND_I32: 1015 return emitAtomicBinary(MI, BB, 4, 0, true); 1016 case Mips::ATOMIC_LOAD_NAND_I64: 1017 return emitAtomicBinary(MI, BB, 8, 0, true); 1018 1019 case Mips::ATOMIC_LOAD_SUB_I8: 1020 return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu); 1021 case Mips::ATOMIC_LOAD_SUB_I16: 1022 return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu); 1023 case Mips::ATOMIC_LOAD_SUB_I32: 1024 return emitAtomicBinary(MI, BB, 4, Mips::SUBu); 1025 case Mips::ATOMIC_LOAD_SUB_I64: 1026 return emitAtomicBinary(MI, BB, 8, Mips::DSUBu); 1027 1028 case Mips::ATOMIC_SWAP_I8: 1029 return emitAtomicBinaryPartword(MI, BB, 1, 0); 1030 case Mips::ATOMIC_SWAP_I16: 1031 return emitAtomicBinaryPartword(MI, BB, 2, 0); 1032 case Mips::ATOMIC_SWAP_I32: 1033 return emitAtomicBinary(MI, BB, 4, 0); 1034 case Mips::ATOMIC_SWAP_I64: 1035 return emitAtomicBinary(MI, BB, 8, 0); 1036 1037 case Mips::ATOMIC_CMP_SWAP_I8: 1038 return emitAtomicCmpSwapPartword(MI, BB, 1); 1039 case Mips::ATOMIC_CMP_SWAP_I16: 1040 return emitAtomicCmpSwapPartword(MI, BB, 2); 1041 case Mips::ATOMIC_CMP_SWAP_I32: 1042 return emitAtomicCmpSwap(MI, BB, 4); 1043 case Mips::ATOMIC_CMP_SWAP_I64: 1044 return emitAtomicCmpSwap(MI, BB, 8); 1045 case Mips::PseudoSDIV: 1046 case Mips::PseudoUDIV: 1047 case Mips::DIV: 1048 case Mips::DIVU: 1049 case Mips::MOD: 1050 case Mips::MODU: 1051 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, 1052 false); 1053 case Mips::SDIV_MM_Pseudo: 1054 case Mips::UDIV_MM_Pseudo: 1055 case Mips::SDIV_MM: 1056 case Mips::UDIV_MM: 1057 case Mips::DIV_MMR6: 1058 case Mips::DIVU_MMR6: 1059 case Mips::MOD_MMR6: 1060 case Mips::MODU_MMR6: 1061 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true); 1062 case Mips::PseudoDSDIV: 1063 case Mips::PseudoDUDIV: 1064 case Mips::DDIV: 1065 case Mips::DDIVU: 1066 case Mips::DMOD: 1067 case Mips::DMODU: 1068 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false); 1069 case Mips::DDIV_MM64R6: 1070 case Mips::DDIVU_MM64R6: 1071 case Mips::DMOD_MM64R6: 1072 case Mips::DMODU_MM64R6: 1073 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, true); 1074 case Mips::SEL_D: 1075 case Mips::SEL_D_MMR6: 1076 return emitSEL_D(MI, BB); 1077 1078 case Mips::PseudoSELECT_I: 1079 case Mips::PseudoSELECT_I64: 1080 case Mips::PseudoSELECT_S: 1081 case Mips::PseudoSELECT_D32: 1082 case Mips::PseudoSELECT_D64: 1083 return emitPseudoSELECT(MI, BB, false, Mips::BNE); 1084 case Mips::PseudoSELECTFP_F_I: 1085 case Mips::PseudoSELECTFP_F_I64: 1086 case Mips::PseudoSELECTFP_F_S: 1087 case Mips::PseudoSELECTFP_F_D32: 1088 case Mips::PseudoSELECTFP_F_D64: 1089 return emitPseudoSELECT(MI, BB, true, Mips::BC1F); 1090 case Mips::PseudoSELECTFP_T_I: 1091 case Mips::PseudoSELECTFP_T_I64: 1092 case Mips::PseudoSELECTFP_T_S: 1093 case Mips::PseudoSELECTFP_T_D32: 1094 case Mips::PseudoSELECTFP_T_D64: 1095 return emitPseudoSELECT(MI, BB, true, Mips::BC1T); 1096 } 1097} 1098 1099// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and 1100// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true) 1101MachineBasicBlock *MipsTargetLowering::emitAtomicBinary(MachineInstr &MI, 1102 MachineBasicBlock *BB, 1103 unsigned Size, 1104 unsigned BinOpcode, 1105 bool Nand) const { 1106 assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary."); 1107 1108 MachineFunction *MF = BB->getParent(); 1109 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1110 const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8)); 1111 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1112 const bool ArePtrs64bit = ABI.ArePtrs64bit(); 1113 DebugLoc DL = MI.getDebugLoc(); 1114 unsigned LL, SC, AND, NOR, ZERO, BEQ; 1115 1116 if (Size == 4) { 1117 if (isMicroMips) { 1118 LL = Mips::LL_MM; 1119 SC = Mips::SC_MM; 1120 } else { 1121 LL = Subtarget.hasMips32r6() 1122 ? (ArePtrs64bit ? Mips::LL64_R6 : Mips::LL_R6) 1123 : (ArePtrs64bit ? Mips::LL64 : Mips::LL); 1124 SC = Subtarget.hasMips32r6() 1125 ? (ArePtrs64bit ? Mips::SC64_R6 : Mips::SC_R6) 1126 : (ArePtrs64bit ? Mips::SC64 : Mips::SC); 1127 } 1128 1129 AND = Mips::AND; 1130 NOR = Mips::NOR; 1131 ZERO = Mips::ZERO; 1132 BEQ = Mips::BEQ; 1133 } else { 1134 LL = Subtarget.hasMips64r6() ? Mips::LLD_R6 : Mips::LLD; 1135 SC = Subtarget.hasMips64r6() ? Mips::SCD_R6 : Mips::SCD; 1136 AND = Mips::AND64; 1137 NOR = Mips::NOR64; 1138 ZERO = Mips::ZERO_64; 1139 BEQ = Mips::BEQ64; 1140 } 1141 1142 unsigned OldVal = MI.getOperand(0).getReg(); 1143 unsigned Ptr = MI.getOperand(1).getReg(); 1144 unsigned Incr = MI.getOperand(2).getReg(); 1145 1146 unsigned StoreVal = RegInfo.createVirtualRegister(RC); 1147 unsigned AndRes = RegInfo.createVirtualRegister(RC); 1148 unsigned Success = RegInfo.createVirtualRegister(RC); 1149 1150 // insert new blocks after the current block 1151 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1152 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1153 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1154 MachineFunction::iterator It = ++BB->getIterator(); 1155 MF->insert(It, loopMBB); 1156 MF->insert(It, exitMBB); 1157 1158 // Transfer the remainder of BB and its successor edges to exitMBB. 1159 exitMBB->splice(exitMBB->begin(), BB, 1160 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1161 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 1162 1163 // thisMBB: 1164 // ... 1165 // fallthrough --> loopMBB 1166 BB->addSuccessor(loopMBB); 1167 loopMBB->addSuccessor(loopMBB); 1168 loopMBB->addSuccessor(exitMBB); 1169 1170 // loopMBB: 1171 // ll oldval, 0(ptr) 1172 // <binop> storeval, oldval, incr 1173 // sc success, storeval, 0(ptr) 1174 // beq success, $0, loopMBB 1175 BB = loopMBB; 1176 BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0); 1177 if (Nand) { 1178 // and andres, oldval, incr 1179 // nor storeval, $0, andres 1180 BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr); 1181 BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes); 1182 } else if (BinOpcode) { 1183 // <binop> storeval, oldval, incr 1184 BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr); 1185 } else { 1186 StoreVal = Incr; 1187 } 1188 BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0); 1189 BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB); 1190 1191 MI.eraseFromParent(); // The instruction is gone now. 1192 1193 return exitMBB; 1194} 1195 1196MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg( 1197 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg, 1198 unsigned SrcReg) const { 1199 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1200 const DebugLoc &DL = MI.getDebugLoc(); 1201 1202 if (Subtarget.hasMips32r2() && Size == 1) { 1203 BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg); 1204 return BB; 1205 } 1206 1207 if (Subtarget.hasMips32r2() && Size == 2) { 1208 BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg); 1209 return BB; 1210 } 1211 1212 MachineFunction *MF = BB->getParent(); 1213 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1214 const TargetRegisterClass *RC = getRegClassFor(MVT::i32); 1215 unsigned ScrReg = RegInfo.createVirtualRegister(RC); 1216 1217 assert(Size < 32); 1218 int64_t ShiftImm = 32 - (Size * 8); 1219 1220 BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm); 1221 BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm); 1222 1223 return BB; 1224} 1225 1226MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword( 1227 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode, 1228 bool Nand) const { 1229 assert((Size == 1 || Size == 2) && 1230 "Unsupported size for EmitAtomicBinaryPartial."); 1231 1232 MachineFunction *MF = BB->getParent(); 1233 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1234 const TargetRegisterClass *RC = getRegClassFor(MVT::i32); 1235 const bool ArePtrs64bit = ABI.ArePtrs64bit(); 1236 const TargetRegisterClass *RCp = 1237 getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32); 1238 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1239 DebugLoc DL = MI.getDebugLoc(); 1240 1241 unsigned Dest = MI.getOperand(0).getReg(); 1242 unsigned Ptr = MI.getOperand(1).getReg(); 1243 unsigned Incr = MI.getOperand(2).getReg(); 1244 1245 unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp); 1246 unsigned ShiftAmt = RegInfo.createVirtualRegister(RC); 1247 unsigned Mask = RegInfo.createVirtualRegister(RC); 1248 unsigned Mask2 = RegInfo.createVirtualRegister(RC); 1249 unsigned NewVal = RegInfo.createVirtualRegister(RC); 1250 unsigned OldVal = RegInfo.createVirtualRegister(RC); 1251 unsigned Incr2 = RegInfo.createVirtualRegister(RC); 1252 unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp); 1253 unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC); 1254 unsigned MaskUpper = RegInfo.createVirtualRegister(RC); 1255 unsigned AndRes = RegInfo.createVirtualRegister(RC); 1256 unsigned BinOpRes = RegInfo.createVirtualRegister(RC); 1257 unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC); 1258 unsigned StoreVal = RegInfo.createVirtualRegister(RC); 1259 unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC); 1260 unsigned SrlRes = RegInfo.createVirtualRegister(RC); 1261 unsigned Success = RegInfo.createVirtualRegister(RC); 1262 1263 unsigned LL, SC; 1264 if (isMicroMips) { 1265 LL = Mips::LL_MM; 1266 SC = Mips::SC_MM; 1267 } else { 1268 LL = Subtarget.hasMips32r6() ? (ArePtrs64bit ? Mips::LL64_R6 : Mips::LL_R6) 1269 : (ArePtrs64bit ? Mips::LL64 : Mips::LL); 1270 SC = Subtarget.hasMips32r6() ? (ArePtrs64bit ? Mips::SC64_R6 : Mips::SC_R6) 1271 : (ArePtrs64bit ? Mips::SC64 : Mips::SC); 1272 } 1273 1274 // insert new blocks after the current block 1275 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1276 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1277 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1278 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1279 MachineFunction::iterator It = ++BB->getIterator(); 1280 MF->insert(It, loopMBB); 1281 MF->insert(It, sinkMBB); 1282 MF->insert(It, exitMBB); 1283 1284 // Transfer the remainder of BB and its successor edges to exitMBB. 1285 exitMBB->splice(exitMBB->begin(), BB, 1286 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1287 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 1288 1289 BB->addSuccessor(loopMBB); 1290 loopMBB->addSuccessor(loopMBB); 1291 loopMBB->addSuccessor(sinkMBB); 1292 sinkMBB->addSuccessor(exitMBB); 1293 1294 // thisMBB: 1295 // addiu masklsb2,$0,-4 # 0xfffffffc 1296 // and alignedaddr,ptr,masklsb2 1297 // andi ptrlsb2,ptr,3 1298 // sll shiftamt,ptrlsb2,3 1299 // ori maskupper,$0,255 # 0xff 1300 // sll mask,maskupper,shiftamt 1301 // nor mask2,$0,mask 1302 // sll incr2,incr,shiftamt 1303 1304 int64_t MaskImm = (Size == 1) ? 255 : 65535; 1305 BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2) 1306 .addReg(ABI.GetNullPtr()).addImm(-4); 1307 BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr) 1308 .addReg(Ptr).addReg(MaskLSB2); 1309 BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2) 1310 .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3); 1311 if (Subtarget.isLittle()) { 1312 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); 1313 } else { 1314 unsigned Off = RegInfo.createVirtualRegister(RC); 1315 BuildMI(BB, DL, TII->get(Mips::XORi), Off) 1316 .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2); 1317 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3); 1318 } 1319 BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper) 1320 .addReg(Mips::ZERO).addImm(MaskImm); 1321 BuildMI(BB, DL, TII->get(Mips::SLLV), Mask) 1322 .addReg(MaskUpper).addReg(ShiftAmt); 1323 BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); 1324 BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt); 1325 1326 // atomic.load.binop 1327 // loopMBB: 1328 // ll oldval,0(alignedaddr) 1329 // binop binopres,oldval,incr2 1330 // and newval,binopres,mask 1331 // and maskedoldval0,oldval,mask2 1332 // or storeval,maskedoldval0,newval 1333 // sc success,storeval,0(alignedaddr) 1334 // beq success,$0,loopMBB 1335 1336 // atomic.swap 1337 // loopMBB: 1338 // ll oldval,0(alignedaddr) 1339 // and newval,incr2,mask 1340 // and maskedoldval0,oldval,mask2 1341 // or storeval,maskedoldval0,newval 1342 // sc success,storeval,0(alignedaddr) 1343 // beq success,$0,loopMBB 1344 1345 BB = loopMBB; 1346 BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0); 1347 if (Nand) { 1348 // and andres, oldval, incr2 1349 // nor binopres, $0, andres 1350 // and newval, binopres, mask 1351 BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2); 1352 BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes) 1353 .addReg(Mips::ZERO).addReg(AndRes); 1354 BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask); 1355 } else if (BinOpcode) { 1356 // <binop> binopres, oldval, incr2 1357 // and newval, binopres, mask 1358 BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2); 1359 BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask); 1360 } else { // atomic.swap 1361 // and newval, incr2, mask 1362 BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask); 1363 } 1364 1365 BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0) 1366 .addReg(OldVal).addReg(Mask2); 1367 BuildMI(BB, DL, TII->get(Mips::OR), StoreVal) 1368 .addReg(MaskedOldVal0).addReg(NewVal); 1369 BuildMI(BB, DL, TII->get(SC), Success) 1370 .addReg(StoreVal).addReg(AlignedAddr).addImm(0); 1371 BuildMI(BB, DL, TII->get(Mips::BEQ)) 1372 .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB); 1373 1374 // sinkMBB: 1375 // and maskedoldval1,oldval,mask 1376 // srl srlres,maskedoldval1,shiftamt 1377 // sign_extend dest,srlres 1378 BB = sinkMBB; 1379 1380 BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1) 1381 .addReg(OldVal).addReg(Mask); 1382 BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes) 1383 .addReg(MaskedOldVal1).addReg(ShiftAmt); 1384 BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes); 1385 1386 MI.eraseFromParent(); // The instruction is gone now. 1387 1388 return exitMBB; 1389} 1390 1391MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI, 1392 MachineBasicBlock *BB, 1393 unsigned Size) const { 1394 assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap."); 1395 1396 MachineFunction *MF = BB->getParent(); 1397 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1398 const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8)); 1399 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1400 const bool ArePtrs64bit = ABI.ArePtrs64bit(); 1401 DebugLoc DL = MI.getDebugLoc(); 1402 unsigned LL, SC, ZERO, BNE, BEQ; 1403 1404 if (Size == 4) { 1405 if (isMicroMips) { 1406 LL = Mips::LL_MM; 1407 SC = Mips::SC_MM; 1408 } else { 1409 LL = Subtarget.hasMips32r6() 1410 ? (ArePtrs64bit ? Mips::LL64_R6 : Mips::LL_R6) 1411 : (ArePtrs64bit ? Mips::LL64 : Mips::LL); 1412 SC = Subtarget.hasMips32r6() 1413 ? (ArePtrs64bit ? Mips::SC64_R6 : Mips::SC_R6) 1414 : (ArePtrs64bit ? Mips::SC64 : Mips::SC); 1415 } 1416 1417 ZERO = Mips::ZERO; 1418 BNE = Mips::BNE; 1419 BEQ = Mips::BEQ; 1420 } else { 1421 LL = Subtarget.hasMips64r6() ? Mips::LLD_R6 : Mips::LLD; 1422 SC = Subtarget.hasMips64r6() ? Mips::SCD_R6 : Mips::SCD; 1423 ZERO = Mips::ZERO_64; 1424 BNE = Mips::BNE64; 1425 BEQ = Mips::BEQ64; 1426 } 1427 1428 unsigned Dest = MI.getOperand(0).getReg(); 1429 unsigned Ptr = MI.getOperand(1).getReg(); 1430 unsigned OldVal = MI.getOperand(2).getReg(); 1431 unsigned NewVal = MI.getOperand(3).getReg(); 1432 1433 unsigned Success = RegInfo.createVirtualRegister(RC); 1434 1435 // insert new blocks after the current block 1436 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1437 MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); 1438 MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); 1439 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1440 MachineFunction::iterator It = ++BB->getIterator(); 1441 MF->insert(It, loop1MBB); 1442 MF->insert(It, loop2MBB); 1443 MF->insert(It, exitMBB); 1444 1445 // Transfer the remainder of BB and its successor edges to exitMBB. 1446 exitMBB->splice(exitMBB->begin(), BB, 1447 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1448 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 1449 1450 // thisMBB: 1451 // ... 1452 // fallthrough --> loop1MBB 1453 BB->addSuccessor(loop1MBB); 1454 loop1MBB->addSuccessor(exitMBB); 1455 loop1MBB->addSuccessor(loop2MBB); 1456 loop2MBB->addSuccessor(loop1MBB); 1457 loop2MBB->addSuccessor(exitMBB); 1458 1459 // loop1MBB: 1460 // ll dest, 0(ptr) 1461 // bne dest, oldval, exitMBB 1462 BB = loop1MBB; 1463 BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0); 1464 BuildMI(BB, DL, TII->get(BNE)) 1465 .addReg(Dest).addReg(OldVal).addMBB(exitMBB); 1466 1467 // loop2MBB: 1468 // sc success, newval, 0(ptr) 1469 // beq success, $0, loop1MBB 1470 BB = loop2MBB; 1471 BuildMI(BB, DL, TII->get(SC), Success) 1472 .addReg(NewVal).addReg(Ptr).addImm(0); 1473 BuildMI(BB, DL, TII->get(BEQ)) 1474 .addReg(Success).addReg(ZERO).addMBB(loop1MBB); 1475 1476 MI.eraseFromParent(); // The instruction is gone now. 1477 1478 return exitMBB; 1479} 1480 1481MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword( 1482 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const { 1483 assert((Size == 1 || Size == 2) && 1484 "Unsupported size for EmitAtomicCmpSwapPartial."); 1485 1486 MachineFunction *MF = BB->getParent(); 1487 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1488 const TargetRegisterClass *RC = getRegClassFor(MVT::i32); 1489 const bool ArePtrs64bit = ABI.ArePtrs64bit(); 1490 const TargetRegisterClass *RCp = 1491 getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32); 1492 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1493 DebugLoc DL = MI.getDebugLoc(); 1494 1495 unsigned Dest = MI.getOperand(0).getReg(); 1496 unsigned Ptr = MI.getOperand(1).getReg(); 1497 unsigned CmpVal = MI.getOperand(2).getReg(); 1498 unsigned NewVal = MI.getOperand(3).getReg(); 1499 1500 unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp); 1501 unsigned ShiftAmt = RegInfo.createVirtualRegister(RC); 1502 unsigned Mask = RegInfo.createVirtualRegister(RC); 1503 unsigned Mask2 = RegInfo.createVirtualRegister(RC); 1504 unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC); 1505 unsigned OldVal = RegInfo.createVirtualRegister(RC); 1506 unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC); 1507 unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC); 1508 unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp); 1509 unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC); 1510 unsigned MaskUpper = RegInfo.createVirtualRegister(RC); 1511 unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC); 1512 unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC); 1513 unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC); 1514 unsigned StoreVal = RegInfo.createVirtualRegister(RC); 1515 unsigned SrlRes = RegInfo.createVirtualRegister(RC); 1516 unsigned Success = RegInfo.createVirtualRegister(RC); 1517 unsigned LL, SC; 1518 1519 if (isMicroMips) { 1520 LL = Mips::LL_MM; 1521 SC = Mips::SC_MM; 1522 } else { 1523 LL = Subtarget.hasMips32r6() ? (ArePtrs64bit ? Mips::LL64_R6 : Mips::LL_R6) 1524 : (ArePtrs64bit ? Mips::LL64 : Mips::LL); 1525 SC = Subtarget.hasMips32r6() ? (ArePtrs64bit ? Mips::SC64_R6 : Mips::SC_R6) 1526 : (ArePtrs64bit ? Mips::SC64 : Mips::SC); 1527 } 1528 1529 // insert new blocks after the current block 1530 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1531 MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); 1532 MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); 1533 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1534 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1535 MachineFunction::iterator It = ++BB->getIterator(); 1536 MF->insert(It, loop1MBB); 1537 MF->insert(It, loop2MBB); 1538 MF->insert(It, sinkMBB); 1539 MF->insert(It, exitMBB); 1540 1541 // Transfer the remainder of BB and its successor edges to exitMBB. 1542 exitMBB->splice(exitMBB->begin(), BB, 1543 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1544 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 1545 1546 BB->addSuccessor(loop1MBB); 1547 loop1MBB->addSuccessor(sinkMBB); 1548 loop1MBB->addSuccessor(loop2MBB); 1549 loop2MBB->addSuccessor(loop1MBB); 1550 loop2MBB->addSuccessor(sinkMBB); 1551 sinkMBB->addSuccessor(exitMBB); 1552 1553 // FIXME: computation of newval2 can be moved to loop2MBB. 1554 // thisMBB: 1555 // addiu masklsb2,$0,-4 # 0xfffffffc 1556 // and alignedaddr,ptr,masklsb2 1557 // andi ptrlsb2,ptr,3 1558 // xori ptrlsb2,ptrlsb2,3 # Only for BE 1559 // sll shiftamt,ptrlsb2,3 1560 // ori maskupper,$0,255 # 0xff 1561 // sll mask,maskupper,shiftamt 1562 // nor mask2,$0,mask 1563 // andi maskedcmpval,cmpval,255 1564 // sll shiftedcmpval,maskedcmpval,shiftamt 1565 // andi maskednewval,newval,255 1566 // sll shiftednewval,maskednewval,shiftamt 1567 int64_t MaskImm = (Size == 1) ? 255 : 65535; 1568 BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2) 1569 .addReg(ABI.GetNullPtr()).addImm(-4); 1570 BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr) 1571 .addReg(Ptr).addReg(MaskLSB2); 1572 BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2) 1573 .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3); 1574 if (Subtarget.isLittle()) { 1575 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); 1576 } else { 1577 unsigned Off = RegInfo.createVirtualRegister(RC); 1578 BuildMI(BB, DL, TII->get(Mips::XORi), Off) 1579 .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2); 1580 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3); 1581 } 1582 BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper) 1583 .addReg(Mips::ZERO).addImm(MaskImm); 1584 BuildMI(BB, DL, TII->get(Mips::SLLV), Mask) 1585 .addReg(MaskUpper).addReg(ShiftAmt); 1586 BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); 1587 BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal) 1588 .addReg(CmpVal).addImm(MaskImm); 1589 BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal) 1590 .addReg(MaskedCmpVal).addReg(ShiftAmt); 1591 BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal) 1592 .addReg(NewVal).addImm(MaskImm); 1593 BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal) 1594 .addReg(MaskedNewVal).addReg(ShiftAmt); 1595 1596 // loop1MBB: 1597 // ll oldval,0(alginedaddr) 1598 // and maskedoldval0,oldval,mask 1599 // bne maskedoldval0,shiftedcmpval,sinkMBB 1600 BB = loop1MBB; 1601 BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0); 1602 BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0) 1603 .addReg(OldVal).addReg(Mask); 1604 BuildMI(BB, DL, TII->get(Mips::BNE)) 1605 .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB); 1606 1607 // loop2MBB: 1608 // and maskedoldval1,oldval,mask2 1609 // or storeval,maskedoldval1,shiftednewval 1610 // sc success,storeval,0(alignedaddr) 1611 // beq success,$0,loop1MBB 1612 BB = loop2MBB; 1613 BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1) 1614 .addReg(OldVal).addReg(Mask2); 1615 BuildMI(BB, DL, TII->get(Mips::OR), StoreVal) 1616 .addReg(MaskedOldVal1).addReg(ShiftedNewVal); 1617 BuildMI(BB, DL, TII->get(SC), Success) 1618 .addReg(StoreVal).addReg(AlignedAddr).addImm(0); 1619 BuildMI(BB, DL, TII->get(Mips::BEQ)) 1620 .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB); 1621 1622 // sinkMBB: 1623 // srl srlres,maskedoldval0,shiftamt 1624 // sign_extend dest,srlres 1625 BB = sinkMBB; 1626 1627 BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes) 1628 .addReg(MaskedOldVal0).addReg(ShiftAmt); 1629 BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes); 1630 1631 MI.eraseFromParent(); // The instruction is gone now. 1632 1633 return exitMBB; 1634} 1635 1636MachineBasicBlock *MipsTargetLowering::emitSEL_D(MachineInstr &MI, 1637 MachineBasicBlock *BB) const { 1638 MachineFunction *MF = BB->getParent(); 1639 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1640 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1641 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1642 DebugLoc DL = MI.getDebugLoc(); 1643 MachineBasicBlock::iterator II(MI); 1644 1645 unsigned Fc = MI.getOperand(1).getReg(); 1646 const auto &FGR64RegClass = TRI->getRegClass(Mips::FGR64RegClassID); 1647 1648 unsigned Fc2 = RegInfo.createVirtualRegister(FGR64RegClass); 1649 1650 BuildMI(*BB, II, DL, TII->get(Mips::SUBREG_TO_REG), Fc2) 1651 .addImm(0) 1652 .addReg(Fc) 1653 .addImm(Mips::sub_lo); 1654 1655 // We don't erase the original instruction, we just replace the condition 1656 // register with the 64-bit super-register. 1657 MI.getOperand(1).setReg(Fc2); 1658 1659 return BB; 1660} 1661 1662//===----------------------------------------------------------------------===// 1663// Misc Lower Operation implementation 1664//===----------------------------------------------------------------------===// 1665SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const { 1666 SDValue Chain = Op.getOperand(0); 1667 SDValue Table = Op.getOperand(1); 1668 SDValue Index = Op.getOperand(2); 1669 SDLoc DL(Op); 1670 auto &TD = DAG.getDataLayout(); 1671 EVT PTy = getPointerTy(TD); 1672 unsigned EntrySize = 1673 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 1674 1675 Index = DAG.getNode(ISD::MUL, DL, PTy, Index, 1676 DAG.getConstant(EntrySize, DL, PTy)); 1677 SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table); 1678 1679 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 1680 Addr = 1681 DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr, 1682 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), 1683 MemVT, false, false, false, 0); 1684 Chain = Addr.getValue(1); 1685 1686 if (isPositionIndependent() || ABI.IsN64()) { 1687 // For PIC, the sequence is: 1688 // BRIND(load(Jumptable + index) + RelocBase) 1689 // RelocBase can be JumpTable, GOT or some sort of global base. 1690 Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr, 1691 getPICJumpTableRelocBase(Table, DAG)); 1692 } 1693 1694 return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr); 1695} 1696 1697SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 1698 // The first operand is the chain, the second is the condition, the third is 1699 // the block to branch to if the condition is true. 1700 SDValue Chain = Op.getOperand(0); 1701 SDValue Dest = Op.getOperand(2); 1702 SDLoc DL(Op); 1703 1704 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); 1705 SDValue CondRes = createFPCmp(DAG, Op.getOperand(1)); 1706 1707 // Return if flag is not set by a floating point comparison. 1708 if (CondRes.getOpcode() != MipsISD::FPCmp) 1709 return Op; 1710 1711 SDValue CCNode = CondRes.getOperand(2); 1712 Mips::CondCode CC = 1713 (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue(); 1714 unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T; 1715 SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32); 1716 SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32); 1717 return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode, 1718 FCC0, Dest, CondRes); 1719} 1720 1721SDValue MipsTargetLowering:: 1722lowerSELECT(SDValue Op, SelectionDAG &DAG) const 1723{ 1724 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); 1725 SDValue Cond = createFPCmp(DAG, Op.getOperand(0)); 1726 1727 // Return if flag is not set by a floating point comparison. 1728 if (Cond.getOpcode() != MipsISD::FPCmp) 1729 return Op; 1730 1731 return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2), 1732 SDLoc(Op)); 1733} 1734 1735SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const { 1736 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); 1737 SDValue Cond = createFPCmp(DAG, Op); 1738 1739 assert(Cond.getOpcode() == MipsISD::FPCmp && 1740 "Floating point operand expected."); 1741 1742 SDLoc DL(Op); 1743 SDValue True = DAG.getConstant(1, DL, MVT::i32); 1744 SDValue False = DAG.getConstant(0, DL, MVT::i32); 1745 1746 return createCMovFP(DAG, Cond, True, False, DL); 1747} 1748 1749SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op, 1750 SelectionDAG &DAG) const { 1751 EVT Ty = Op.getValueType(); 1752 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 1753 const GlobalValue *GV = N->getGlobal(); 1754 1755 if (!isPositionIndependent() && !ABI.IsN64()) { 1756 const MipsTargetObjectFile *TLOF = 1757 static_cast<const MipsTargetObjectFile *>( 1758 getTargetMachine().getObjFileLowering()); 1759 if (TLOF->IsGlobalInSmallSection(GV, getTargetMachine())) 1760 // %gp_rel relocation 1761 return getAddrGPRel(N, SDLoc(N), Ty, DAG); 1762 1763 // %hi/%lo relocation 1764 return getAddrNonPIC(N, SDLoc(N), Ty, DAG); 1765 } 1766 1767 // Every other architecture would use shouldAssumeDSOLocal in here, but 1768 // mips is special. 1769 // * In PIC code mips requires got loads even for local statics! 1770 // * To save on got entries, for local statics the got entry contains the 1771 // page and an additional add instruction takes care of the low bits. 1772 // * It is legal to access a hidden symbol with a non hidden undefined, 1773 // so one cannot guarantee that all access to a hidden symbol will know 1774 // it is hidden. 1775 // * Mips linkers don't support creating a page and a full got entry for 1776 // the same symbol. 1777 // * Given all that, we have to use a full got entry for hidden symbols :-( 1778 if (GV->hasLocalLinkage()) 1779 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); 1780 1781 if (LargeGOT) 1782 return getAddrGlobalLargeGOT( 1783 N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16, 1784 DAG.getEntryNode(), 1785 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1786 1787 return getAddrGlobal( 1788 N, SDLoc(N), Ty, DAG, 1789 (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT, 1790 DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1791} 1792 1793SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op, 1794 SelectionDAG &DAG) const { 1795 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 1796 EVT Ty = Op.getValueType(); 1797 1798 if (!isPositionIndependent() && !ABI.IsN64()) 1799 return getAddrNonPIC(N, SDLoc(N), Ty, DAG); 1800 1801 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); 1802} 1803 1804SDValue MipsTargetLowering:: 1805lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const 1806{ 1807 // If the relocation model is PIC, use the General Dynamic TLS Model or 1808 // Local Dynamic TLS model, otherwise use the Initial Exec or 1809 // Local Exec TLS Model. 1810 1811 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 1812 if (DAG.getTarget().Options.EmulatedTLS) 1813 return LowerToTLSEmulatedModel(GA, DAG); 1814 1815 SDLoc DL(GA); 1816 const GlobalValue *GV = GA->getGlobal(); 1817 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1818 1819 TLSModel::Model model = getTargetMachine().getTLSModel(GV); 1820 1821 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { 1822 // General Dynamic and Local Dynamic TLS Model. 1823 unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM 1824 : MipsII::MO_TLSGD; 1825 1826 SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag); 1827 SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, 1828 getGlobalReg(DAG, PtrVT), TGA); 1829 unsigned PtrSize = PtrVT.getSizeInBits(); 1830 IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize); 1831 1832 SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT); 1833 1834 ArgListTy Args; 1835 ArgListEntry Entry; 1836 Entry.Node = Argument; 1837 Entry.Ty = PtrTy; 1838 Args.push_back(Entry); 1839 1840 TargetLowering::CallLoweringInfo CLI(DAG); 1841 CLI.setDebugLoc(DL).setChain(DAG.getEntryNode()) 1842 .setCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args)); 1843 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 1844 1845 SDValue Ret = CallResult.first; 1846 1847 if (model != TLSModel::LocalDynamic) 1848 return Ret; 1849 1850 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 1851 MipsII::MO_DTPREL_HI); 1852 SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi); 1853 SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 1854 MipsII::MO_DTPREL_LO); 1855 SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo); 1856 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret); 1857 return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo); 1858 } 1859 1860 SDValue Offset; 1861 if (model == TLSModel::InitialExec) { 1862 // Initial Exec TLS Model 1863 SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 1864 MipsII::MO_GOTTPREL); 1865 TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT), 1866 TGA); 1867 Offset = DAG.getLoad(PtrVT, DL, 1868 DAG.getEntryNode(), TGA, MachinePointerInfo(), 1869 false, false, false, 0); 1870 } else { 1871 // Local Exec TLS Model 1872 assert(model == TLSModel::LocalExec); 1873 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 1874 MipsII::MO_TPREL_HI); 1875 SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 1876 MipsII::MO_TPREL_LO); 1877 SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi); 1878 SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo); 1879 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1880 } 1881 1882 SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT); 1883 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset); 1884} 1885 1886SDValue MipsTargetLowering:: 1887lowerJumpTable(SDValue Op, SelectionDAG &DAG) const 1888{ 1889 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 1890 EVT Ty = Op.getValueType(); 1891 1892 if (!isPositionIndependent() && !ABI.IsN64()) 1893 return getAddrNonPIC(N, SDLoc(N), Ty, DAG); 1894 1895 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); 1896} 1897 1898SDValue MipsTargetLowering:: 1899lowerConstantPool(SDValue Op, SelectionDAG &DAG) const 1900{ 1901 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 1902 EVT Ty = Op.getValueType(); 1903 1904 if (!isPositionIndependent() && !ABI.IsN64()) { 1905 const MipsTargetObjectFile *TLOF = 1906 static_cast<const MipsTargetObjectFile *>( 1907 getTargetMachine().getObjFileLowering()); 1908 1909 if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(), 1910 getTargetMachine())) 1911 // %gp_rel relocation 1912 return getAddrGPRel(N, SDLoc(N), Ty, DAG); 1913 1914 return getAddrNonPIC(N, SDLoc(N), Ty, DAG); 1915 } 1916 1917 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); 1918} 1919 1920SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1921 MachineFunction &MF = DAG.getMachineFunction(); 1922 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); 1923 1924 SDLoc DL(Op); 1925 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1926 getPointerTy(MF.getDataLayout())); 1927 1928 // vastart just stores the address of the VarArgsFrameIndex slot into the 1929 // memory location argument. 1930 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1931 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 1932 MachinePointerInfo(SV), false, false, 0); 1933} 1934 1935SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { 1936 SDNode *Node = Op.getNode(); 1937 EVT VT = Node->getValueType(0); 1938 SDValue Chain = Node->getOperand(0); 1939 SDValue VAListPtr = Node->getOperand(1); 1940 unsigned Align = Node->getConstantOperandVal(3); 1941 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1942 SDLoc DL(Node); 1943 unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4; 1944 1945 SDValue VAListLoad = 1946 DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain, VAListPtr, 1947 MachinePointerInfo(SV), false, false, false, 0); 1948 SDValue VAList = VAListLoad; 1949 1950 // Re-align the pointer if necessary. 1951 // It should only ever be necessary for 64-bit types on O32 since the minimum 1952 // argument alignment is the same as the maximum type alignment for N32/N64. 1953 // 1954 // FIXME: We currently align too often. The code generator doesn't notice 1955 // when the pointer is still aligned from the last va_arg (or pair of 1956 // va_args for the i64 on O32 case). 1957 if (Align > getMinStackArgumentAlignment()) { 1958 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1959 1960 VAList = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList, 1961 DAG.getConstant(Align - 1, DL, VAList.getValueType())); 1962 1963 VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList, 1964 DAG.getConstant(-(int64_t)Align, DL, 1965 VAList.getValueType())); 1966 } 1967 1968 // Increment the pointer, VAList, to the next vaarg. 1969 auto &TD = DAG.getDataLayout(); 1970 unsigned ArgSizeInBytes = 1971 TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())); 1972 SDValue Tmp3 = 1973 DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList, 1974 DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes), 1975 DL, VAList.getValueType())); 1976 // Store the incremented VAList to the legalized pointer 1977 Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr, 1978 MachinePointerInfo(SV), false, false, 0); 1979 1980 // In big-endian mode we must adjust the pointer when the load size is smaller 1981 // than the argument slot size. We must also reduce the known alignment to 1982 // match. For example in the N64 ABI, we must add 4 bytes to the offset to get 1983 // the correct half of the slot, and reduce the alignment from 8 (slot 1984 // alignment) down to 4 (type alignment). 1985 if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) { 1986 unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes; 1987 VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList, 1988 DAG.getIntPtrConstant(Adjustment, DL)); 1989 } 1990 // Load the actual argument out of the pointer VAList 1991 return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo(), false, false, 1992 false, 0); 1993} 1994 1995static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, 1996 bool HasExtractInsert) { 1997 EVT TyX = Op.getOperand(0).getValueType(); 1998 EVT TyY = Op.getOperand(1).getValueType(); 1999 SDLoc DL(Op); 2000 SDValue Const1 = DAG.getConstant(1, DL, MVT::i32); 2001 SDValue Const31 = DAG.getConstant(31, DL, MVT::i32); 2002 SDValue Res; 2003 2004 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it 2005 // to i32. 2006 SDValue X = (TyX == MVT::f32) ? 2007 DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) : 2008 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), 2009 Const1); 2010 SDValue Y = (TyY == MVT::f32) ? 2011 DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) : 2012 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1), 2013 Const1); 2014 2015 if (HasExtractInsert) { 2016 // ext E, Y, 31, 1 ; extract bit31 of Y 2017 // ins X, E, 31, 1 ; insert extracted bit at bit31 of X 2018 SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1); 2019 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X); 2020 } else { 2021 // sll SllX, X, 1 2022 // srl SrlX, SllX, 1 2023 // srl SrlY, Y, 31 2024 // sll SllY, SrlX, 31 2025 // or Or, SrlX, SllY 2026 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1); 2027 SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1); 2028 SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31); 2029 SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31); 2030 Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY); 2031 } 2032 2033 if (TyX == MVT::f32) 2034 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res); 2035 2036 SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, 2037 Op.getOperand(0), 2038 DAG.getConstant(0, DL, MVT::i32)); 2039 return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res); 2040} 2041 2042static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, 2043 bool HasExtractInsert) { 2044 unsigned WidthX = Op.getOperand(0).getValueSizeInBits(); 2045 unsigned WidthY = Op.getOperand(1).getValueSizeInBits(); 2046 EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY); 2047 SDLoc DL(Op); 2048 SDValue Const1 = DAG.getConstant(1, DL, MVT::i32); 2049 2050 // Bitcast to integer nodes. 2051 SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0)); 2052 SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1)); 2053 2054 if (HasExtractInsert) { 2055 // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y 2056 // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X 2057 SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y, 2058 DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1); 2059 2060 if (WidthX > WidthY) 2061 E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E); 2062 else if (WidthY > WidthX) 2063 E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E); 2064 2065 SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E, 2066 DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1, 2067 X); 2068 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I); 2069 } 2070 2071 // (d)sll SllX, X, 1 2072 // (d)srl SrlX, SllX, 1 2073 // (d)srl SrlY, Y, width(Y)-1 2074 // (d)sll SllY, SrlX, width(Y)-1 2075 // or Or, SrlX, SllY 2076 SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1); 2077 SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1); 2078 SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y, 2079 DAG.getConstant(WidthY - 1, DL, MVT::i32)); 2080 2081 if (WidthX > WidthY) 2082 SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY); 2083 else if (WidthY > WidthX) 2084 SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY); 2085 2086 SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY, 2087 DAG.getConstant(WidthX - 1, DL, MVT::i32)); 2088 SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY); 2089 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or); 2090} 2091 2092SDValue 2093MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { 2094 if (Subtarget.isGP64bit()) 2095 return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert()); 2096 2097 return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert()); 2098} 2099 2100SDValue MipsTargetLowering:: 2101lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { 2102 // check the depth 2103 assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) && 2104 "Frame address can only be determined for current frame."); 2105 2106 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 2107 MFI->setFrameAddressIsTaken(true); 2108 EVT VT = Op.getValueType(); 2109 SDLoc DL(Op); 2110 SDValue FrameAddr = DAG.getCopyFromReg( 2111 DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT); 2112 return FrameAddr; 2113} 2114 2115SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op, 2116 SelectionDAG &DAG) const { 2117 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2118 return SDValue(); 2119 2120 // check the depth 2121 assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) && 2122 "Return address can be determined only for current frame."); 2123 2124 MachineFunction &MF = DAG.getMachineFunction(); 2125 MachineFrameInfo *MFI = MF.getFrameInfo(); 2126 MVT VT = Op.getSimpleValueType(); 2127 unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA; 2128 MFI->setReturnAddressIsTaken(true); 2129 2130 // Return RA, which contains the return address. Mark it an implicit live-in. 2131 unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT)); 2132 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT); 2133} 2134 2135// An EH_RETURN is the result of lowering llvm.eh.return which in turn is 2136// generated from __builtin_eh_return (offset, handler) 2137// The effect of this is to adjust the stack pointer by "offset" 2138// and then branch to "handler". 2139SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG) 2140 const { 2141 MachineFunction &MF = DAG.getMachineFunction(); 2142 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 2143 2144 MipsFI->setCallsEhReturn(); 2145 SDValue Chain = Op.getOperand(0); 2146 SDValue Offset = Op.getOperand(1); 2147 SDValue Handler = Op.getOperand(2); 2148 SDLoc DL(Op); 2149 EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32; 2150 2151 // Store stack offset in V1, store jump target in V0. Glue CopyToReg and 2152 // EH_RETURN nodes, so that instructions are emitted back-to-back. 2153 unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1; 2154 unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0; 2155 Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue()); 2156 Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1)); 2157 return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain, 2158 DAG.getRegister(OffsetReg, Ty), 2159 DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())), 2160 Chain.getValue(1)); 2161} 2162 2163SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op, 2164 SelectionDAG &DAG) const { 2165 // FIXME: Need pseudo-fence for 'singlethread' fences 2166 // FIXME: Set SType for weaker fences where supported/appropriate. 2167 unsigned SType = 0; 2168 SDLoc DL(Op); 2169 return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0), 2170 DAG.getConstant(SType, DL, MVT::i32)); 2171} 2172 2173SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op, 2174 SelectionDAG &DAG) const { 2175 SDLoc DL(Op); 2176 MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32; 2177 2178 SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1); 2179 SDValue Shamt = Op.getOperand(2); 2180 // if shamt < (VT.bits): 2181 // lo = (shl lo, shamt) 2182 // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt)) 2183 // else: 2184 // lo = 0 2185 // hi = (shl lo, shamt[4:0]) 2186 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt, 2187 DAG.getConstant(-1, DL, MVT::i32)); 2188 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, 2189 DAG.getConstant(1, DL, VT)); 2190 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not); 2191 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 2192 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2193 SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 2194 SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt, 2195 DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32)); 2196 Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2197 DAG.getConstant(0, DL, VT), ShiftLeftLo); 2198 Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or); 2199 2200 SDValue Ops[2] = {Lo, Hi}; 2201 return DAG.getMergeValues(Ops, DL); 2202} 2203 2204SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 2205 bool IsSRA) const { 2206 SDLoc DL(Op); 2207 SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1); 2208 SDValue Shamt = Op.getOperand(2); 2209 MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32; 2210 2211 // if shamt < (VT.bits): 2212 // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt)) 2213 // if isSRA: 2214 // hi = (sra hi, shamt) 2215 // else: 2216 // hi = (srl hi, shamt) 2217 // else: 2218 // if isSRA: 2219 // lo = (sra hi, shamt[4:0]) 2220 // hi = (sra hi, 31) 2221 // else: 2222 // lo = (srl hi, shamt[4:0]) 2223 // hi = 0 2224 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt, 2225 DAG.getConstant(-1, DL, MVT::i32)); 2226 SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, 2227 DAG.getConstant(1, DL, VT)); 2228 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not); 2229 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 2230 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2231 SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, 2232 DL, VT, Hi, Shamt); 2233 SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt, 2234 DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32)); 2235 SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi, 2236 DAG.getConstant(VT.getSizeInBits() - 1, DL, VT)); 2237 Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or); 2238 Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2239 IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi); 2240 2241 SDValue Ops[2] = {Lo, Hi}; 2242 return DAG.getMergeValues(Ops, DL); 2243} 2244 2245static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD, 2246 SDValue Chain, SDValue Src, unsigned Offset) { 2247 SDValue Ptr = LD->getBasePtr(); 2248 EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT(); 2249 EVT BasePtrVT = Ptr.getValueType(); 2250 SDLoc DL(LD); 2251 SDVTList VTList = DAG.getVTList(VT, MVT::Other); 2252 2253 if (Offset) 2254 Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr, 2255 DAG.getConstant(Offset, DL, BasePtrVT)); 2256 2257 SDValue Ops[] = { Chain, Ptr, Src }; 2258 return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT, 2259 LD->getMemOperand()); 2260} 2261 2262// Expand an unaligned 32 or 64-bit integer load node. 2263SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { 2264 LoadSDNode *LD = cast<LoadSDNode>(Op); 2265 EVT MemVT = LD->getMemoryVT(); 2266 2267 if (Subtarget.systemSupportsUnalignedAccess()) 2268 return Op; 2269 2270 // Return if load is aligned or if MemVT is neither i32 nor i64. 2271 if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) || 2272 ((MemVT != MVT::i32) && (MemVT != MVT::i64))) 2273 return SDValue(); 2274 2275 bool IsLittle = Subtarget.isLittle(); 2276 EVT VT = Op.getValueType(); 2277 ISD::LoadExtType ExtType = LD->getExtensionType(); 2278 SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT); 2279 2280 assert((VT == MVT::i32) || (VT == MVT::i64)); 2281 2282 // Expand 2283 // (set dst, (i64 (load baseptr))) 2284 // to 2285 // (set tmp, (ldl (add baseptr, 7), undef)) 2286 // (set dst, (ldr baseptr, tmp)) 2287 if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) { 2288 SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef, 2289 IsLittle ? 7 : 0); 2290 return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL, 2291 IsLittle ? 0 : 7); 2292 } 2293 2294 SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef, 2295 IsLittle ? 3 : 0); 2296 SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL, 2297 IsLittle ? 0 : 3); 2298 2299 // Expand 2300 // (set dst, (i32 (load baseptr))) or 2301 // (set dst, (i64 (sextload baseptr))) or 2302 // (set dst, (i64 (extload baseptr))) 2303 // to 2304 // (set tmp, (lwl (add baseptr, 3), undef)) 2305 // (set dst, (lwr baseptr, tmp)) 2306 if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) || 2307 (ExtType == ISD::EXTLOAD)) 2308 return LWR; 2309 2310 assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD)); 2311 2312 // Expand 2313 // (set dst, (i64 (zextload baseptr))) 2314 // to 2315 // (set tmp0, (lwl (add baseptr, 3), undef)) 2316 // (set tmp1, (lwr baseptr, tmp0)) 2317 // (set tmp2, (shl tmp1, 32)) 2318 // (set dst, (srl tmp2, 32)) 2319 SDLoc DL(LD); 2320 SDValue Const32 = DAG.getConstant(32, DL, MVT::i32); 2321 SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32); 2322 SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32); 2323 SDValue Ops[] = { SRL, LWR.getValue(1) }; 2324 return DAG.getMergeValues(Ops, DL); 2325} 2326 2327static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD, 2328 SDValue Chain, unsigned Offset) { 2329 SDValue Ptr = SD->getBasePtr(), Value = SD->getValue(); 2330 EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType(); 2331 SDLoc DL(SD); 2332 SDVTList VTList = DAG.getVTList(MVT::Other); 2333 2334 if (Offset) 2335 Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr, 2336 DAG.getConstant(Offset, DL, BasePtrVT)); 2337 2338 SDValue Ops[] = { Chain, Value, Ptr }; 2339 return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT, 2340 SD->getMemOperand()); 2341} 2342 2343// Expand an unaligned 32 or 64-bit integer store node. 2344static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG, 2345 bool IsLittle) { 2346 SDValue Value = SD->getValue(), Chain = SD->getChain(); 2347 EVT VT = Value.getValueType(); 2348 2349 // Expand 2350 // (store val, baseptr) or 2351 // (truncstore val, baseptr) 2352 // to 2353 // (swl val, (add baseptr, 3)) 2354 // (swr val, baseptr) 2355 if ((VT == MVT::i32) || SD->isTruncatingStore()) { 2356 SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain, 2357 IsLittle ? 3 : 0); 2358 return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3); 2359 } 2360 2361 assert(VT == MVT::i64); 2362 2363 // Expand 2364 // (store val, baseptr) 2365 // to 2366 // (sdl val, (add baseptr, 7)) 2367 // (sdr val, baseptr) 2368 SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0); 2369 return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7); 2370} 2371 2372// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr). 2373static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) { 2374 SDValue Val = SD->getValue(); 2375 2376 if (Val.getOpcode() != ISD::FP_TO_SINT) 2377 return SDValue(); 2378 2379 EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits()); 2380 SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy, 2381 Val.getOperand(0)); 2382 2383 return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(), 2384 SD->getPointerInfo(), SD->isVolatile(), 2385 SD->isNonTemporal(), SD->getAlignment()); 2386} 2387 2388SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { 2389 StoreSDNode *SD = cast<StoreSDNode>(Op); 2390 EVT MemVT = SD->getMemoryVT(); 2391 2392 // Lower unaligned integer stores. 2393 if (!Subtarget.systemSupportsUnalignedAccess() && 2394 (SD->getAlignment() < MemVT.getSizeInBits() / 8) && 2395 ((MemVT == MVT::i32) || (MemVT == MVT::i64))) 2396 return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle()); 2397 2398 return lowerFP_TO_SINT_STORE(SD, DAG); 2399} 2400 2401SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const { 2402 if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR 2403 || cast<ConstantSDNode> 2404 (Op->getOperand(0).getOperand(0))->getZExtValue() != 0 2405 || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET) 2406 return SDValue(); 2407 2408 // The pattern 2409 // (add (frameaddr 0), (frame_to_args_offset)) 2410 // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to 2411 // (add FrameObject, 0) 2412 // where FrameObject is a fixed StackObject with offset 0 which points to 2413 // the old stack pointer. 2414 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 2415 EVT ValTy = Op->getValueType(0); 2416 int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false); 2417 SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy); 2418 SDLoc DL(Op); 2419 return DAG.getNode(ISD::ADD, DL, ValTy, InArgsAddr, 2420 DAG.getConstant(0, DL, ValTy)); 2421} 2422 2423SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op, 2424 SelectionDAG &DAG) const { 2425 EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits()); 2426 SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy, 2427 Op.getOperand(0)); 2428 return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc); 2429} 2430 2431//===----------------------------------------------------------------------===// 2432// Calling Convention Implementation 2433//===----------------------------------------------------------------------===// 2434 2435//===----------------------------------------------------------------------===// 2436// TODO: Implement a generic logic using tblgen that can support this. 2437// Mips O32 ABI rules: 2438// --- 2439// i32 - Passed in A0, A1, A2, A3 and stack 2440// f32 - Only passed in f32 registers if no int reg has been used yet to hold 2441// an argument. Otherwise, passed in A1, A2, A3 and stack. 2442// f64 - Only passed in two aliased f32 registers if no int reg has been used 2443// yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is 2444// not used, it must be shadowed. If only A3 is available, shadow it and 2445// go to stack. 2446// 2447// For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack. 2448//===----------------------------------------------------------------------===// 2449 2450static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT, 2451 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 2452 CCState &State, ArrayRef<MCPhysReg> F64Regs) { 2453 const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>( 2454 State.getMachineFunction().getSubtarget()); 2455 2456 static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 }; 2457 static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 }; 2458 2459 // Do not process byval args here. 2460 if (ArgFlags.isByVal()) 2461 return true; 2462 2463 // Promote i8 and i16 2464 if (ArgFlags.isInReg() && !Subtarget.isLittle()) { 2465 if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) { 2466 LocVT = MVT::i32; 2467 if (ArgFlags.isSExt()) 2468 LocInfo = CCValAssign::SExtUpper; 2469 else if (ArgFlags.isZExt()) 2470 LocInfo = CCValAssign::ZExtUpper; 2471 else 2472 LocInfo = CCValAssign::AExtUpper; 2473 } 2474 } 2475 2476 // Promote i8 and i16 2477 if (LocVT == MVT::i8 || LocVT == MVT::i16) { 2478 LocVT = MVT::i32; 2479 if (ArgFlags.isSExt()) 2480 LocInfo = CCValAssign::SExt; 2481 else if (ArgFlags.isZExt()) 2482 LocInfo = CCValAssign::ZExt; 2483 else 2484 LocInfo = CCValAssign::AExt; 2485 } 2486 2487 unsigned Reg; 2488 2489 // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following 2490 // is true: function is vararg, argument is 3rd or higher, there is previous 2491 // argument which is not f32 or f64. 2492 bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 || 2493 State.getFirstUnallocated(F32Regs) != ValNo; 2494 unsigned OrigAlign = ArgFlags.getOrigAlign(); 2495 bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8); 2496 2497 if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) { 2498 Reg = State.AllocateReg(IntRegs); 2499 // If this is the first part of an i64 arg, 2500 // the allocated register must be either A0 or A2. 2501 if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3)) 2502 Reg = State.AllocateReg(IntRegs); 2503 LocVT = MVT::i32; 2504 } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) { 2505 // Allocate int register and shadow next int register. If first 2506 // available register is Mips::A1 or Mips::A3, shadow it too. 2507 Reg = State.AllocateReg(IntRegs); 2508 if (Reg == Mips::A1 || Reg == Mips::A3) 2509 Reg = State.AllocateReg(IntRegs); 2510 State.AllocateReg(IntRegs); 2511 LocVT = MVT::i32; 2512 } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) { 2513 // we are guaranteed to find an available float register 2514 if (ValVT == MVT::f32) { 2515 Reg = State.AllocateReg(F32Regs); 2516 // Shadow int register 2517 State.AllocateReg(IntRegs); 2518 } else { 2519 Reg = State.AllocateReg(F64Regs); 2520 // Shadow int registers 2521 unsigned Reg2 = State.AllocateReg(IntRegs); 2522 if (Reg2 == Mips::A1 || Reg2 == Mips::A3) 2523 State.AllocateReg(IntRegs); 2524 State.AllocateReg(IntRegs); 2525 } 2526 } else 2527 llvm_unreachable("Cannot handle this ValVT."); 2528 2529 if (!Reg) { 2530 unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3, 2531 OrigAlign); 2532 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 2533 } else 2534 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2535 2536 return false; 2537} 2538 2539static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, 2540 MVT LocVT, CCValAssign::LocInfo LocInfo, 2541 ISD::ArgFlagsTy ArgFlags, CCState &State) { 2542 static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 }; 2543 2544 return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs); 2545} 2546 2547static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, 2548 MVT LocVT, CCValAssign::LocInfo LocInfo, 2549 ISD::ArgFlagsTy ArgFlags, CCState &State) { 2550 static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 }; 2551 2552 return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs); 2553} 2554 2555static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT, 2556 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 2557 CCState &State) LLVM_ATTRIBUTE_UNUSED; 2558 2559#include "MipsGenCallingConv.inc" 2560 2561//===----------------------------------------------------------------------===// 2562// Call Calling Convention Implementation 2563//===----------------------------------------------------------------------===// 2564 2565// Return next O32 integer argument register. 2566static unsigned getNextIntArgReg(unsigned Reg) { 2567 assert((Reg == Mips::A0) || (Reg == Mips::A2)); 2568 return (Reg == Mips::A0) ? Mips::A1 : Mips::A3; 2569} 2570 2571SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset, 2572 SDValue Chain, SDValue Arg, 2573 const SDLoc &DL, bool IsTailCall, 2574 SelectionDAG &DAG) const { 2575 if (!IsTailCall) { 2576 SDValue PtrOff = 2577 DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr, 2578 DAG.getIntPtrConstant(Offset, DL)); 2579 return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false, 2580 false, 0); 2581 } 2582 2583 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 2584 int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false); 2585 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2586 return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(), 2587 /*isVolatile=*/ true, false, 0); 2588} 2589 2590void MipsTargetLowering:: 2591getOpndList(SmallVectorImpl<SDValue> &Ops, 2592 std::deque< std::pair<unsigned, SDValue> > &RegsToPass, 2593 bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, 2594 bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee, 2595 SDValue Chain) const { 2596 // Insert node "GP copy globalreg" before call to function. 2597 // 2598 // R_MIPS_CALL* operators (emitted when non-internal functions are called 2599 // in PIC mode) allow symbols to be resolved via lazy binding. 2600 // The lazy binding stub requires GP to point to the GOT. 2601 // Note that we don't need GP to point to the GOT for indirect calls 2602 // (when R_MIPS_CALL* is not used for the call) because Mips linker generates 2603 // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs 2604 // used for the function (that is, Mips linker doesn't generate lazy binding 2605 // stub for a function whose address is taken in the program). 2606 if (IsPICCall && !InternalLinkage && IsCallReloc) { 2607 unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP; 2608 EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32; 2609 RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty))); 2610 } 2611 2612 // Build a sequence of copy-to-reg nodes chained together with token 2613 // chain and flag operands which copy the outgoing args into registers. 2614 // The InFlag in necessary since all emitted instructions must be 2615 // stuck together. 2616 SDValue InFlag; 2617 2618 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 2619 Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first, 2620 RegsToPass[i].second, InFlag); 2621 InFlag = Chain.getValue(1); 2622 } 2623 2624 // Add argument registers to the end of the list so that they are 2625 // known live into the call. 2626 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 2627 Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first, 2628 RegsToPass[i].second.getValueType())); 2629 2630 // Add a register mask operand representing the call-preserved registers. 2631 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2632 const uint32_t *Mask = 2633 TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv); 2634 assert(Mask && "Missing call preserved mask for calling convention"); 2635 if (Subtarget.inMips16HardFloat()) { 2636 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) { 2637 llvm::StringRef Sym = G->getGlobal()->getName(); 2638 Function *F = G->getGlobal()->getParent()->getFunction(Sym); 2639 if (F && F->hasFnAttribute("__Mips16RetHelper")) { 2640 Mask = MipsRegisterInfo::getMips16RetHelperMask(); 2641 } 2642 } 2643 } 2644 Ops.push_back(CLI.DAG.getRegisterMask(Mask)); 2645 2646 if (InFlag.getNode()) 2647 Ops.push_back(InFlag); 2648} 2649 2650/// LowerCall - functions arguments are copied from virtual regs to 2651/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 2652SDValue 2653MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 2654 SmallVectorImpl<SDValue> &InVals) const { 2655 SelectionDAG &DAG = CLI.DAG; 2656 SDLoc DL = CLI.DL; 2657 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 2658 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 2659 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 2660 SDValue Chain = CLI.Chain; 2661 SDValue Callee = CLI.Callee; 2662 bool &IsTailCall = CLI.IsTailCall; 2663 CallingConv::ID CallConv = CLI.CallConv; 2664 bool IsVarArg = CLI.IsVarArg; 2665 2666 MachineFunction &MF = DAG.getMachineFunction(); 2667 MachineFrameInfo *MFI = MF.getFrameInfo(); 2668 const TargetFrameLowering *TFL = Subtarget.getFrameLowering(); 2669 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); 2670 bool IsPIC = isPositionIndependent(); 2671 2672 // Analyze operands of the call, assigning locations to each operand. 2673 SmallVector<CCValAssign, 16> ArgLocs; 2674 MipsCCState CCInfo( 2675 CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(), 2676 MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget)); 2677 2678 // Allocate the reserved argument area. It seems strange to do this from the 2679 // caller side but removing it breaks the frame size calculation. 2680 CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1); 2681 2682 CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(), Callee.getNode()); 2683 2684 // Get a count of how many bytes are to be pushed on the stack. 2685 unsigned NextStackOffset = CCInfo.getNextStackOffset(); 2686 2687 // Check if it's really possible to do a tail call. 2688 if (IsTailCall) 2689 IsTailCall = isEligibleForTailCallOptimization( 2690 CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>()); 2691 2692 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall()) 2693 report_fatal_error("failed to perform tail call elimination on a call " 2694 "site marked musttail"); 2695 2696 if (IsTailCall) 2697 ++NumTailCalls; 2698 2699 // Chain is the output chain of the last Load/Store or CopyToReg node. 2700 // ByValChain is the output chain of the last Memcpy node created for copying 2701 // byval arguments to the stack. 2702 unsigned StackAlignment = TFL->getStackAlignment(); 2703 NextStackOffset = alignTo(NextStackOffset, StackAlignment); 2704 SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true); 2705 2706 if (!IsTailCall) 2707 Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL); 2708 2709 SDValue StackPtr = 2710 DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP, 2711 getPointerTy(DAG.getDataLayout())); 2712 2713 std::deque< std::pair<unsigned, SDValue> > RegsToPass; 2714 SmallVector<SDValue, 8> MemOpChains; 2715 2716 CCInfo.rewindByValRegsInfo(); 2717 2718 // Walk the register/memloc assignments, inserting copies/loads. 2719 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2720 SDValue Arg = OutVals[i]; 2721 CCValAssign &VA = ArgLocs[i]; 2722 MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT(); 2723 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2724 bool UseUpperBits = false; 2725 2726 // ByVal Arg. 2727 if (Flags.isByVal()) { 2728 unsigned FirstByValReg, LastByValReg; 2729 unsigned ByValIdx = CCInfo.getInRegsParamsProcessed(); 2730 CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg); 2731 2732 assert(Flags.getByValSize() && 2733 "ByVal args of size 0 should have been ignored by front-end."); 2734 assert(ByValIdx < CCInfo.getInRegsParamsCount()); 2735 assert(!IsTailCall && 2736 "Do not tail-call optimize if there is a byval argument."); 2737 passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg, 2738 FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(), 2739 VA); 2740 CCInfo.nextInRegsParam(); 2741 continue; 2742 } 2743 2744 // Promote the value if needed. 2745 switch (VA.getLocInfo()) { 2746 default: 2747 llvm_unreachable("Unknown loc info!"); 2748 case CCValAssign::Full: 2749 if (VA.isRegLoc()) { 2750 if ((ValVT == MVT::f32 && LocVT == MVT::i32) || 2751 (ValVT == MVT::f64 && LocVT == MVT::i64) || 2752 (ValVT == MVT::i64 && LocVT == MVT::f64)) 2753 Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg); 2754 else if (ValVT == MVT::f64 && LocVT == MVT::i32) { 2755 SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, 2756 Arg, DAG.getConstant(0, DL, MVT::i32)); 2757 SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, 2758 Arg, DAG.getConstant(1, DL, MVT::i32)); 2759 if (!Subtarget.isLittle()) 2760 std::swap(Lo, Hi); 2761 unsigned LocRegLo = VA.getLocReg(); 2762 unsigned LocRegHigh = getNextIntArgReg(LocRegLo); 2763 RegsToPass.push_back(std::make_pair(LocRegLo, Lo)); 2764 RegsToPass.push_back(std::make_pair(LocRegHigh, Hi)); 2765 continue; 2766 } 2767 } 2768 break; 2769 case CCValAssign::BCvt: 2770 Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg); 2771 break; 2772 case CCValAssign::SExtUpper: 2773 UseUpperBits = true; 2774 // Fallthrough 2775 case CCValAssign::SExt: 2776 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg); 2777 break; 2778 case CCValAssign::ZExtUpper: 2779 UseUpperBits = true; 2780 // Fallthrough 2781 case CCValAssign::ZExt: 2782 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg); 2783 break; 2784 case CCValAssign::AExtUpper: 2785 UseUpperBits = true; 2786 // Fallthrough 2787 case CCValAssign::AExt: 2788 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg); 2789 break; 2790 } 2791 2792 if (UseUpperBits) { 2793 unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits(); 2794 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); 2795 Arg = DAG.getNode( 2796 ISD::SHL, DL, VA.getLocVT(), Arg, 2797 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); 2798 } 2799 2800 // Arguments that can be passed on register must be kept at 2801 // RegsToPass vector 2802 if (VA.isRegLoc()) { 2803 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 2804 continue; 2805 } 2806 2807 // Register can't get to this point... 2808 assert(VA.isMemLoc()); 2809 2810 // emit ISD::STORE whichs stores the 2811 // parameter value to a stack Location 2812 MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(), 2813 Chain, Arg, DL, IsTailCall, DAG)); 2814 } 2815 2816 // Transform all store nodes into one single node because all store 2817 // nodes are independent of each other. 2818 if (!MemOpChains.empty()) 2819 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 2820 2821 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 2822 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 2823 // node so that legalize doesn't hack it. 2824 bool IsPICCall = (ABI.IsN64() || IsPIC); // true if calls are translated to 2825 // jalr $25 2826 bool GlobalOrExternal = false, InternalLinkage = false, IsCallReloc = false; 2827 SDValue CalleeLo; 2828 EVT Ty = Callee.getValueType(); 2829 2830 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2831 if (IsPICCall) { 2832 const GlobalValue *Val = G->getGlobal(); 2833 InternalLinkage = Val->hasInternalLinkage(); 2834 2835 if (InternalLinkage) 2836 Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64()); 2837 else if (LargeGOT) { 2838 Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16, 2839 MipsII::MO_CALL_LO16, Chain, 2840 FuncInfo->callPtrInfo(Val)); 2841 IsCallReloc = true; 2842 } else { 2843 Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain, 2844 FuncInfo->callPtrInfo(Val)); 2845 IsCallReloc = true; 2846 } 2847 } else 2848 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, 2849 getPointerTy(DAG.getDataLayout()), 0, 2850 MipsII::MO_NO_FLAG); 2851 GlobalOrExternal = true; 2852 } 2853 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2854 const char *Sym = S->getSymbol(); 2855 2856 if (!ABI.IsN64() && !IsPIC) // !N64 && static 2857 Callee = DAG.getTargetExternalSymbol( 2858 Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG); 2859 else if (LargeGOT) { 2860 Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16, 2861 MipsII::MO_CALL_LO16, Chain, 2862 FuncInfo->callPtrInfo(Sym)); 2863 IsCallReloc = true; 2864 } else { // N64 || PIC 2865 Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain, 2866 FuncInfo->callPtrInfo(Sym)); 2867 IsCallReloc = true; 2868 } 2869 2870 GlobalOrExternal = true; 2871 } 2872 2873 SmallVector<SDValue, 8> Ops(1, Chain); 2874 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2875 2876 getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage, 2877 IsCallReloc, CLI, Callee, Chain); 2878 2879 if (IsTailCall) 2880 return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops); 2881 2882 Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops); 2883 SDValue InFlag = Chain.getValue(1); 2884 2885 // Create the CALLSEQ_END node. 2886 Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal, 2887 DAG.getIntPtrConstant(0, DL, true), InFlag, DL); 2888 InFlag = Chain.getValue(1); 2889 2890 // Handle result values, copying them out of physregs into vregs that we 2891 // return. 2892 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 2893 InVals, CLI); 2894} 2895 2896/// LowerCallResult - Lower the result values of a call into the 2897/// appropriate copies out of appropriate physical registers. 2898SDValue MipsTargetLowering::LowerCallResult( 2899 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, 2900 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2901 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 2902 TargetLowering::CallLoweringInfo &CLI) const { 2903 // Assign locations to each value returned by this call. 2904 SmallVector<CCValAssign, 16> RVLocs; 2905 MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2906 *DAG.getContext()); 2907 CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI); 2908 2909 // Copy all of the result registers out of their specified physreg. 2910 for (unsigned i = 0; i != RVLocs.size(); ++i) { 2911 CCValAssign &VA = RVLocs[i]; 2912 assert(VA.isRegLoc() && "Can only return in registers!"); 2913 2914 SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(), 2915 RVLocs[i].getLocVT(), InFlag); 2916 Chain = Val.getValue(1); 2917 InFlag = Val.getValue(2); 2918 2919 if (VA.isUpperBitsInLoc()) { 2920 unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits(); 2921 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); 2922 unsigned Shift = 2923 VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA; 2924 Val = DAG.getNode( 2925 Shift, DL, VA.getLocVT(), Val, 2926 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); 2927 } 2928 2929 switch (VA.getLocInfo()) { 2930 default: 2931 llvm_unreachable("Unknown loc info!"); 2932 case CCValAssign::Full: 2933 break; 2934 case CCValAssign::BCvt: 2935 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2936 break; 2937 case CCValAssign::AExt: 2938 case CCValAssign::AExtUpper: 2939 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2940 break; 2941 case CCValAssign::ZExt: 2942 case CCValAssign::ZExtUpper: 2943 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, 2944 DAG.getValueType(VA.getValVT())); 2945 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2946 break; 2947 case CCValAssign::SExt: 2948 case CCValAssign::SExtUpper: 2949 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, 2950 DAG.getValueType(VA.getValVT())); 2951 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2952 break; 2953 } 2954 2955 InVals.push_back(Val); 2956 } 2957 2958 return Chain; 2959} 2960 2961static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA, 2962 EVT ArgVT, const SDLoc &DL, 2963 SelectionDAG &DAG) { 2964 MVT LocVT = VA.getLocVT(); 2965 EVT ValVT = VA.getValVT(); 2966 2967 // Shift into the upper bits if necessary. 2968 switch (VA.getLocInfo()) { 2969 default: 2970 break; 2971 case CCValAssign::AExtUpper: 2972 case CCValAssign::SExtUpper: 2973 case CCValAssign::ZExtUpper: { 2974 unsigned ValSizeInBits = ArgVT.getSizeInBits(); 2975 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); 2976 unsigned Opcode = 2977 VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA; 2978 Val = DAG.getNode( 2979 Opcode, DL, VA.getLocVT(), Val, 2980 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); 2981 break; 2982 } 2983 } 2984 2985 // If this is an value smaller than the argument slot size (32-bit for O32, 2986 // 64-bit for N32/N64), it has been promoted in some way to the argument slot 2987 // size. Extract the value and insert any appropriate assertions regarding 2988 // sign/zero extension. 2989 switch (VA.getLocInfo()) { 2990 default: 2991 llvm_unreachable("Unknown loc info!"); 2992 case CCValAssign::Full: 2993 break; 2994 case CCValAssign::AExtUpper: 2995 case CCValAssign::AExt: 2996 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2997 break; 2998 case CCValAssign::SExtUpper: 2999 case CCValAssign::SExt: 3000 Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT)); 3001 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 3002 break; 3003 case CCValAssign::ZExtUpper: 3004 case CCValAssign::ZExt: 3005 Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT)); 3006 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 3007 break; 3008 case CCValAssign::BCvt: 3009 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 3010 break; 3011 } 3012 3013 return Val; 3014} 3015 3016//===----------------------------------------------------------------------===// 3017// Formal Arguments Calling Convention Implementation 3018//===----------------------------------------------------------------------===// 3019/// LowerFormalArguments - transform physical registers into virtual registers 3020/// and generate load operations for arguments places on the stack. 3021SDValue MipsTargetLowering::LowerFormalArguments( 3022 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 3023 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 3024 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3025 MachineFunction &MF = DAG.getMachineFunction(); 3026 MachineFrameInfo *MFI = MF.getFrameInfo(); 3027 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 3028 3029 MipsFI->setVarArgsFrameIndex(0); 3030 3031 // Used with vargs to acumulate store chains. 3032 std::vector<SDValue> OutChains; 3033 3034 // Assign locations to all of the incoming arguments. 3035 SmallVector<CCValAssign, 16> ArgLocs; 3036 MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 3037 *DAG.getContext()); 3038 CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1); 3039 const Function *Func = DAG.getMachineFunction().getFunction(); 3040 Function::const_arg_iterator FuncArg = Func->arg_begin(); 3041 3042 if (Func->hasFnAttribute("interrupt") && !Func->arg_empty()) 3043 report_fatal_error( 3044 "Functions with the interrupt attribute cannot have arguments!"); 3045 3046 CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg); 3047 MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(), 3048 CCInfo.getInRegsParamsCount() > 0); 3049 3050 unsigned CurArgIdx = 0; 3051 CCInfo.rewindByValRegsInfo(); 3052 3053 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3054 CCValAssign &VA = ArgLocs[i]; 3055 if (Ins[i].isOrigArg()) { 3056 std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx); 3057 CurArgIdx = Ins[i].getOrigArgIndex(); 3058 } 3059 EVT ValVT = VA.getValVT(); 3060 ISD::ArgFlagsTy Flags = Ins[i].Flags; 3061 bool IsRegLoc = VA.isRegLoc(); 3062 3063 if (Flags.isByVal()) { 3064 assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit"); 3065 unsigned FirstByValReg, LastByValReg; 3066 unsigned ByValIdx = CCInfo.getInRegsParamsProcessed(); 3067 CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg); 3068 3069 assert(Flags.getByValSize() && 3070 "ByVal args of size 0 should have been ignored by front-end."); 3071 assert(ByValIdx < CCInfo.getInRegsParamsCount()); 3072 copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg, 3073 FirstByValReg, LastByValReg, VA, CCInfo); 3074 CCInfo.nextInRegsParam(); 3075 continue; 3076 } 3077 3078 // Arguments stored on registers 3079 if (IsRegLoc) { 3080 MVT RegVT = VA.getLocVT(); 3081 unsigned ArgReg = VA.getLocReg(); 3082 const TargetRegisterClass *RC = getRegClassFor(RegVT); 3083 3084 // Transform the arguments stored on 3085 // physical registers into virtual ones 3086 unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC); 3087 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); 3088 3089 ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG); 3090 3091 // Handle floating point arguments passed in integer registers and 3092 // long double arguments passed in floating point registers. 3093 if ((RegVT == MVT::i32 && ValVT == MVT::f32) || 3094 (RegVT == MVT::i64 && ValVT == MVT::f64) || 3095 (RegVT == MVT::f64 && ValVT == MVT::i64)) 3096 ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue); 3097 else if (ABI.IsO32() && RegVT == MVT::i32 && 3098 ValVT == MVT::f64) { 3099 unsigned Reg2 = addLiveIn(DAG.getMachineFunction(), 3100 getNextIntArgReg(ArgReg), RC); 3101 SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT); 3102 if (!Subtarget.isLittle()) 3103 std::swap(ArgValue, ArgValue2); 3104 ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, 3105 ArgValue, ArgValue2); 3106 } 3107 3108 InVals.push_back(ArgValue); 3109 } else { // VA.isRegLoc() 3110 MVT LocVT = VA.getLocVT(); 3111 3112 if (ABI.IsO32()) { 3113 // We ought to be able to use LocVT directly but O32 sets it to i32 3114 // when allocating floating point values to integer registers. 3115 // This shouldn't influence how we load the value into registers unless 3116 // we are targeting softfloat. 3117 if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat()) 3118 LocVT = VA.getValVT(); 3119 } 3120 3121 // sanity check 3122 assert(VA.isMemLoc()); 3123 3124 // The stack pointer offset is relative to the caller stack frame. 3125 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 3126 VA.getLocMemOffset(), true); 3127 3128 // Create load nodes to retrieve arguments from the stack 3129 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3130 SDValue ArgValue = DAG.getLoad( 3131 LocVT, DL, Chain, FIN, 3132 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 3133 false, false, false, 0); 3134 OutChains.push_back(ArgValue.getValue(1)); 3135 3136 ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG); 3137 3138 InVals.push_back(ArgValue); 3139 } 3140 } 3141 3142 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3143 // The mips ABIs for returning structs by value requires that we copy 3144 // the sret argument into $v0 for the return. Save the argument into 3145 // a virtual register so that we can access it from the return points. 3146 if (Ins[i].Flags.isSRet()) { 3147 unsigned Reg = MipsFI->getSRetReturnReg(); 3148 if (!Reg) { 3149 Reg = MF.getRegInfo().createVirtualRegister( 3150 getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32)); 3151 MipsFI->setSRetReturnReg(Reg); 3152 } 3153 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]); 3154 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); 3155 break; 3156 } 3157 } 3158 3159 if (IsVarArg) 3160 writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo); 3161 3162 // All stores are grouped in one node to allow the matching between 3163 // the size of Ins and InVals. This only happens when on varg functions 3164 if (!OutChains.empty()) { 3165 OutChains.push_back(Chain); 3166 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 3167 } 3168 3169 return Chain; 3170} 3171 3172//===----------------------------------------------------------------------===// 3173// Return Value Calling Convention Implementation 3174//===----------------------------------------------------------------------===// 3175 3176bool 3177MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 3178 MachineFunction &MF, bool IsVarArg, 3179 const SmallVectorImpl<ISD::OutputArg> &Outs, 3180 LLVMContext &Context) const { 3181 SmallVector<CCValAssign, 16> RVLocs; 3182 MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 3183 return CCInfo.CheckReturn(Outs, RetCC_Mips); 3184} 3185 3186bool 3187MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 3188 if (Subtarget.hasMips3() && Subtarget.useSoftFloat()) { 3189 if (Type == MVT::i32) 3190 return true; 3191 } 3192 return IsSigned; 3193} 3194 3195SDValue 3196MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps, 3197 const SDLoc &DL, 3198 SelectionDAG &DAG) const { 3199 3200 MachineFunction &MF = DAG.getMachineFunction(); 3201 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 3202 3203 MipsFI->setISR(); 3204 3205 return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps); 3206} 3207 3208SDValue 3209MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 3210 bool IsVarArg, 3211 const SmallVectorImpl<ISD::OutputArg> &Outs, 3212 const SmallVectorImpl<SDValue> &OutVals, 3213 const SDLoc &DL, SelectionDAG &DAG) const { 3214 // CCValAssign - represent the assignment of 3215 // the return value to a location 3216 SmallVector<CCValAssign, 16> RVLocs; 3217 MachineFunction &MF = DAG.getMachineFunction(); 3218 3219 // CCState - Info about the registers and stack slot. 3220 MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 3221 3222 // Analyze return values. 3223 CCInfo.AnalyzeReturn(Outs, RetCC_Mips); 3224 3225 SDValue Flag; 3226 SmallVector<SDValue, 4> RetOps(1, Chain); 3227 3228 // Copy the result values into the output registers. 3229 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3230 SDValue Val = OutVals[i]; 3231 CCValAssign &VA = RVLocs[i]; 3232 assert(VA.isRegLoc() && "Can only return in registers!"); 3233 bool UseUpperBits = false; 3234 3235 switch (VA.getLocInfo()) { 3236 default: 3237 llvm_unreachable("Unknown loc info!"); 3238 case CCValAssign::Full: 3239 break; 3240 case CCValAssign::BCvt: 3241 Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val); 3242 break; 3243 case CCValAssign::AExtUpper: 3244 UseUpperBits = true; 3245 // Fallthrough 3246 case CCValAssign::AExt: 3247 Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val); 3248 break; 3249 case CCValAssign::ZExtUpper: 3250 UseUpperBits = true; 3251 // Fallthrough 3252 case CCValAssign::ZExt: 3253 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val); 3254 break; 3255 case CCValAssign::SExtUpper: 3256 UseUpperBits = true; 3257 // Fallthrough 3258 case CCValAssign::SExt: 3259 Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val); 3260 break; 3261 } 3262 3263 if (UseUpperBits) { 3264 unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits(); 3265 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); 3266 Val = DAG.getNode( 3267 ISD::SHL, DL, VA.getLocVT(), Val, 3268 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); 3269 } 3270 3271 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag); 3272 3273 // Guarantee that all emitted copies are stuck together with flags. 3274 Flag = Chain.getValue(1); 3275 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 3276 } 3277 3278 // The mips ABIs for returning structs by value requires that we copy 3279 // the sret argument into $v0 for the return. We saved the argument into 3280 // a virtual register in the entry block, so now we copy the value out 3281 // and into $v0. 3282 if (MF.getFunction()->hasStructRetAttr()) { 3283 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 3284 unsigned Reg = MipsFI->getSRetReturnReg(); 3285 3286 if (!Reg) 3287 llvm_unreachable("sret virtual register not created in the entry block"); 3288 SDValue Val = 3289 DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout())); 3290 unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0; 3291 3292 Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag); 3293 Flag = Chain.getValue(1); 3294 RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout()))); 3295 } 3296 3297 RetOps[0] = Chain; // Update chain. 3298 3299 // Add the flag if we have it. 3300 if (Flag.getNode()) 3301 RetOps.push_back(Flag); 3302 3303 // ISRs must use "eret". 3304 if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt")) 3305 return LowerInterruptReturn(RetOps, DL, DAG); 3306 3307 // Standard return on Mips is a "jr $ra" 3308 return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps); 3309} 3310 3311//===----------------------------------------------------------------------===// 3312// Mips Inline Assembly Support 3313//===----------------------------------------------------------------------===// 3314 3315/// getConstraintType - Given a constraint letter, return the type of 3316/// constraint it is for this target. 3317MipsTargetLowering::ConstraintType 3318MipsTargetLowering::getConstraintType(StringRef Constraint) const { 3319 // Mips specific constraints 3320 // GCC config/mips/constraints.md 3321 // 3322 // 'd' : An address register. Equivalent to r 3323 // unless generating MIPS16 code. 3324 // 'y' : Equivalent to r; retained for 3325 // backwards compatibility. 3326 // 'c' : A register suitable for use in an indirect 3327 // jump. This will always be $25 for -mabicalls. 3328 // 'l' : The lo register. 1 word storage. 3329 // 'x' : The hilo register pair. Double word storage. 3330 if (Constraint.size() == 1) { 3331 switch (Constraint[0]) { 3332 default : break; 3333 case 'd': 3334 case 'y': 3335 case 'f': 3336 case 'c': 3337 case 'l': 3338 case 'x': 3339 return C_RegisterClass; 3340 case 'R': 3341 return C_Memory; 3342 } 3343 } 3344 3345 if (Constraint == "ZC") 3346 return C_Memory; 3347 3348 return TargetLowering::getConstraintType(Constraint); 3349} 3350 3351/// Examine constraint type and operand type and determine a weight value. 3352/// This object must already have been set up with the operand type 3353/// and the current alternative constraint selected. 3354TargetLowering::ConstraintWeight 3355MipsTargetLowering::getSingleConstraintMatchWeight( 3356 AsmOperandInfo &info, const char *constraint) const { 3357 ConstraintWeight weight = CW_Invalid; 3358 Value *CallOperandVal = info.CallOperandVal; 3359 // If we don't have a value, we can't do a match, 3360 // but allow it at the lowest weight. 3361 if (!CallOperandVal) 3362 return CW_Default; 3363 Type *type = CallOperandVal->getType(); 3364 // Look at the constraint type. 3365 switch (*constraint) { 3366 default: 3367 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 3368 break; 3369 case 'd': 3370 case 'y': 3371 if (type->isIntegerTy()) 3372 weight = CW_Register; 3373 break; 3374 case 'f': // FPU or MSA register 3375 if (Subtarget.hasMSA() && type->isVectorTy() && 3376 cast<VectorType>(type)->getBitWidth() == 128) 3377 weight = CW_Register; 3378 else if (type->isFloatTy()) 3379 weight = CW_Register; 3380 break; 3381 case 'c': // $25 for indirect jumps 3382 case 'l': // lo register 3383 case 'x': // hilo register pair 3384 if (type->isIntegerTy()) 3385 weight = CW_SpecificReg; 3386 break; 3387 case 'I': // signed 16 bit immediate 3388 case 'J': // integer zero 3389 case 'K': // unsigned 16 bit immediate 3390 case 'L': // signed 32 bit immediate where lower 16 bits are 0 3391 case 'N': // immediate in the range of -65535 to -1 (inclusive) 3392 case 'O': // signed 15 bit immediate (+- 16383) 3393 case 'P': // immediate in the range of 65535 to 1 (inclusive) 3394 if (isa<ConstantInt>(CallOperandVal)) 3395 weight = CW_Constant; 3396 break; 3397 case 'R': 3398 weight = CW_Memory; 3399 break; 3400 } 3401 return weight; 3402} 3403 3404/// This is a helper function to parse a physical register string and split it 3405/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag 3406/// that is returned indicates whether parsing was successful. The second flag 3407/// is true if the numeric part exists. 3408static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix, 3409 unsigned long long &Reg) { 3410 if (C.front() != '{' || C.back() != '}') 3411 return std::make_pair(false, false); 3412 3413 // Search for the first numeric character. 3414 StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1; 3415 I = std::find_if(B, E, isdigit); 3416 3417 Prefix = StringRef(B, I - B); 3418 3419 // The second flag is set to false if no numeric characters were found. 3420 if (I == E) 3421 return std::make_pair(true, false); 3422 3423 // Parse the numeric characters. 3424 return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg), 3425 true); 3426} 3427 3428std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering:: 3429parseRegForInlineAsmConstraint(StringRef C, MVT VT) const { 3430 const TargetRegisterInfo *TRI = 3431 Subtarget.getRegisterInfo(); 3432 const TargetRegisterClass *RC; 3433 StringRef Prefix; 3434 unsigned long long Reg; 3435 3436 std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg); 3437 3438 if (!R.first) 3439 return std::make_pair(0U, nullptr); 3440 3441 if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo. 3442 // No numeric characters follow "hi" or "lo". 3443 if (R.second) 3444 return std::make_pair(0U, nullptr); 3445 3446 RC = TRI->getRegClass(Prefix == "hi" ? 3447 Mips::HI32RegClassID : Mips::LO32RegClassID); 3448 return std::make_pair(*(RC->begin()), RC); 3449 } else if (Prefix.startswith("$msa")) { 3450 // Parse $msa(ir|csr|access|save|modify|request|map|unmap) 3451 3452 // No numeric characters follow the name. 3453 if (R.second) 3454 return std::make_pair(0U, nullptr); 3455 3456 Reg = StringSwitch<unsigned long long>(Prefix) 3457 .Case("$msair", Mips::MSAIR) 3458 .Case("$msacsr", Mips::MSACSR) 3459 .Case("$msaaccess", Mips::MSAAccess) 3460 .Case("$msasave", Mips::MSASave) 3461 .Case("$msamodify", Mips::MSAModify) 3462 .Case("$msarequest", Mips::MSARequest) 3463 .Case("$msamap", Mips::MSAMap) 3464 .Case("$msaunmap", Mips::MSAUnmap) 3465 .Default(0); 3466 3467 if (!Reg) 3468 return std::make_pair(0U, nullptr); 3469 3470 RC = TRI->getRegClass(Mips::MSACtrlRegClassID); 3471 return std::make_pair(Reg, RC); 3472 } 3473 3474 if (!R.second) 3475 return std::make_pair(0U, nullptr); 3476 3477 if (Prefix == "$f") { // Parse $f0-$f31. 3478 // If the size of FP registers is 64-bit or Reg is an even number, select 3479 // the 64-bit register class. Otherwise, select the 32-bit register class. 3480 if (VT == MVT::Other) 3481 VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32; 3482 3483 RC = getRegClassFor(VT); 3484 3485 if (RC == &Mips::AFGR64RegClass) { 3486 assert(Reg % 2 == 0); 3487 Reg >>= 1; 3488 } 3489 } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7. 3490 RC = TRI->getRegClass(Mips::FCCRegClassID); 3491 else if (Prefix == "$w") { // Parse $w0-$w31. 3492 RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT); 3493 } else { // Parse $0-$31. 3494 assert(Prefix == "$"); 3495 RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT); 3496 } 3497 3498 assert(Reg < RC->getNumRegs()); 3499 return std::make_pair(*(RC->begin() + Reg), RC); 3500} 3501 3502/// Given a register class constraint, like 'r', if this corresponds directly 3503/// to an LLVM register class, return a register of 0 and the register class 3504/// pointer. 3505std::pair<unsigned, const TargetRegisterClass *> 3506MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3507 StringRef Constraint, 3508 MVT VT) const { 3509 if (Constraint.size() == 1) { 3510 switch (Constraint[0]) { 3511 case 'd': // Address register. Same as 'r' unless generating MIPS16 code. 3512 case 'y': // Same as 'r'. Exists for compatibility. 3513 case 'r': 3514 if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) { 3515 if (Subtarget.inMips16Mode()) 3516 return std::make_pair(0U, &Mips::CPU16RegsRegClass); 3517 return std::make_pair(0U, &Mips::GPR32RegClass); 3518 } 3519 if (VT == MVT::i64 && !Subtarget.isGP64bit()) 3520 return std::make_pair(0U, &Mips::GPR32RegClass); 3521 if (VT == MVT::i64 && Subtarget.isGP64bit()) 3522 return std::make_pair(0U, &Mips::GPR64RegClass); 3523 // This will generate an error message 3524 return std::make_pair(0U, nullptr); 3525 case 'f': // FPU or MSA register 3526 if (VT == MVT::v16i8) 3527 return std::make_pair(0U, &Mips::MSA128BRegClass); 3528 else if (VT == MVT::v8i16 || VT == MVT::v8f16) 3529 return std::make_pair(0U, &Mips::MSA128HRegClass); 3530 else if (VT == MVT::v4i32 || VT == MVT::v4f32) 3531 return std::make_pair(0U, &Mips::MSA128WRegClass); 3532 else if (VT == MVT::v2i64 || VT == MVT::v2f64) 3533 return std::make_pair(0U, &Mips::MSA128DRegClass); 3534 else if (VT == MVT::f32) 3535 return std::make_pair(0U, &Mips::FGR32RegClass); 3536 else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) { 3537 if (Subtarget.isFP64bit()) 3538 return std::make_pair(0U, &Mips::FGR64RegClass); 3539 return std::make_pair(0U, &Mips::AFGR64RegClass); 3540 } 3541 break; 3542 case 'c': // register suitable for indirect jump 3543 if (VT == MVT::i32) 3544 return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass); 3545 assert(VT == MVT::i64 && "Unexpected type."); 3546 return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass); 3547 case 'l': // register suitable for indirect jump 3548 if (VT == MVT::i32) 3549 return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass); 3550 return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass); 3551 case 'x': // register suitable for indirect jump 3552 // Fixme: Not triggering the use of both hi and low 3553 // This will generate an error message 3554 return std::make_pair(0U, nullptr); 3555 } 3556 } 3557 3558 std::pair<unsigned, const TargetRegisterClass *> R; 3559 R = parseRegForInlineAsmConstraint(Constraint, VT); 3560 3561 if (R.second) 3562 return R; 3563 3564 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3565} 3566 3567/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 3568/// vector. If it is invalid, don't add anything to Ops. 3569void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 3570 std::string &Constraint, 3571 std::vector<SDValue>&Ops, 3572 SelectionDAG &DAG) const { 3573 SDLoc DL(Op); 3574 SDValue Result; 3575 3576 // Only support length 1 constraints for now. 3577 if (Constraint.length() > 1) return; 3578 3579 char ConstraintLetter = Constraint[0]; 3580 switch (ConstraintLetter) { 3581 default: break; // This will fall through to the generic implementation 3582 case 'I': // Signed 16 bit constant 3583 // If this fails, the parent routine will give an error 3584 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3585 EVT Type = Op.getValueType(); 3586 int64_t Val = C->getSExtValue(); 3587 if (isInt<16>(Val)) { 3588 Result = DAG.getTargetConstant(Val, DL, Type); 3589 break; 3590 } 3591 } 3592 return; 3593 case 'J': // integer zero 3594 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3595 EVT Type = Op.getValueType(); 3596 int64_t Val = C->getZExtValue(); 3597 if (Val == 0) { 3598 Result = DAG.getTargetConstant(0, DL, Type); 3599 break; 3600 } 3601 } 3602 return; 3603 case 'K': // unsigned 16 bit immediate 3604 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3605 EVT Type = Op.getValueType(); 3606 uint64_t Val = (uint64_t)C->getZExtValue(); 3607 if (isUInt<16>(Val)) { 3608 Result = DAG.getTargetConstant(Val, DL, Type); 3609 break; 3610 } 3611 } 3612 return; 3613 case 'L': // signed 32 bit immediate where lower 16 bits are 0 3614 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3615 EVT Type = Op.getValueType(); 3616 int64_t Val = C->getSExtValue(); 3617 if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){ 3618 Result = DAG.getTargetConstant(Val, DL, Type); 3619 break; 3620 } 3621 } 3622 return; 3623 case 'N': // immediate in the range of -65535 to -1 (inclusive) 3624 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3625 EVT Type = Op.getValueType(); 3626 int64_t Val = C->getSExtValue(); 3627 if ((Val >= -65535) && (Val <= -1)) { 3628 Result = DAG.getTargetConstant(Val, DL, Type); 3629 break; 3630 } 3631 } 3632 return; 3633 case 'O': // signed 15 bit immediate 3634 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3635 EVT Type = Op.getValueType(); 3636 int64_t Val = C->getSExtValue(); 3637 if ((isInt<15>(Val))) { 3638 Result = DAG.getTargetConstant(Val, DL, Type); 3639 break; 3640 } 3641 } 3642 return; 3643 case 'P': // immediate in the range of 1 to 65535 (inclusive) 3644 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3645 EVT Type = Op.getValueType(); 3646 int64_t Val = C->getSExtValue(); 3647 if ((Val <= 65535) && (Val >= 1)) { 3648 Result = DAG.getTargetConstant(Val, DL, Type); 3649 break; 3650 } 3651 } 3652 return; 3653 } 3654 3655 if (Result.getNode()) { 3656 Ops.push_back(Result); 3657 return; 3658 } 3659 3660 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 3661} 3662 3663bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL, 3664 const AddrMode &AM, Type *Ty, 3665 unsigned AS) const { 3666 // No global is ever allowed as a base. 3667 if (AM.BaseGV) 3668 return false; 3669 3670 switch (AM.Scale) { 3671 case 0: // "r+i" or just "i", depending on HasBaseReg. 3672 break; 3673 case 1: 3674 if (!AM.HasBaseReg) // allow "r+i". 3675 break; 3676 return false; // disallow "r+r" or "r+r+i". 3677 default: 3678 return false; 3679 } 3680 3681 return true; 3682} 3683 3684bool 3685MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 3686 // The Mips target isn't yet aware of offsets. 3687 return false; 3688} 3689 3690EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, 3691 unsigned SrcAlign, 3692 bool IsMemset, bool ZeroMemset, 3693 bool MemcpyStrSrc, 3694 MachineFunction &MF) const { 3695 if (Subtarget.hasMips64()) 3696 return MVT::i64; 3697 3698 return MVT::i32; 3699} 3700 3701bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 3702 if (VT != MVT::f32 && VT != MVT::f64) 3703 return false; 3704 if (Imm.isNegZero()) 3705 return false; 3706 return Imm.isZero(); 3707} 3708 3709unsigned MipsTargetLowering::getJumpTableEncoding() const { 3710 if (ABI.IsN64()) 3711 return MachineJumpTableInfo::EK_GPRel64BlockAddress; 3712 3713 return TargetLowering::getJumpTableEncoding(); 3714} 3715 3716bool MipsTargetLowering::useSoftFloat() const { 3717 return Subtarget.useSoftFloat(); 3718} 3719 3720void MipsTargetLowering::copyByValRegs( 3721 SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains, 3722 SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags, 3723 SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg, 3724 unsigned FirstReg, unsigned LastReg, const CCValAssign &VA, 3725 MipsCCState &State) const { 3726 MachineFunction &MF = DAG.getMachineFunction(); 3727 MachineFrameInfo *MFI = MF.getFrameInfo(); 3728 unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes(); 3729 unsigned NumRegs = LastReg - FirstReg; 3730 unsigned RegAreaSize = NumRegs * GPRSizeInBytes; 3731 unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize); 3732 int FrameObjOffset; 3733 ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs(); 3734 3735 if (RegAreaSize) 3736 FrameObjOffset = 3737 (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) - 3738 (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes); 3739 else 3740 FrameObjOffset = VA.getLocMemOffset(); 3741 3742 // Create frame object. 3743 EVT PtrTy = getPointerTy(DAG.getDataLayout()); 3744 int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true); 3745 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 3746 InVals.push_back(FIN); 3747 3748 if (!NumRegs) 3749 return; 3750 3751 // Copy arg registers. 3752 MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8); 3753 const TargetRegisterClass *RC = getRegClassFor(RegTy); 3754 3755 for (unsigned I = 0; I < NumRegs; ++I) { 3756 unsigned ArgReg = ByValArgRegs[FirstReg + I]; 3757 unsigned VReg = addLiveIn(MF, ArgReg, RC); 3758 unsigned Offset = I * GPRSizeInBytes; 3759 SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN, 3760 DAG.getConstant(Offset, DL, PtrTy)); 3761 SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy), 3762 StorePtr, MachinePointerInfo(FuncArg, Offset), 3763 false, false, 0); 3764 OutChains.push_back(Store); 3765 } 3766} 3767 3768// Copy byVal arg to registers and stack. 3769void MipsTargetLowering::passByValArg( 3770 SDValue Chain, const SDLoc &DL, 3771 std::deque<std::pair<unsigned, SDValue>> &RegsToPass, 3772 SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr, 3773 MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg, 3774 unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle, 3775 const CCValAssign &VA) const { 3776 unsigned ByValSizeInBytes = Flags.getByValSize(); 3777 unsigned OffsetInBytes = 0; // From beginning of struct 3778 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); 3779 unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes); 3780 EVT PtrTy = getPointerTy(DAG.getDataLayout()), 3781 RegTy = MVT::getIntegerVT(RegSizeInBytes * 8); 3782 unsigned NumRegs = LastReg - FirstReg; 3783 3784 if (NumRegs) { 3785 ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs(); 3786 bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes); 3787 unsigned I = 0; 3788 3789 // Copy words to registers. 3790 for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) { 3791 SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, 3792 DAG.getConstant(OffsetInBytes, DL, PtrTy)); 3793 SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr, 3794 MachinePointerInfo(), false, false, false, 3795 Alignment); 3796 MemOpChains.push_back(LoadVal.getValue(1)); 3797 unsigned ArgReg = ArgRegs[FirstReg + I]; 3798 RegsToPass.push_back(std::make_pair(ArgReg, LoadVal)); 3799 } 3800 3801 // Return if the struct has been fully copied. 3802 if (ByValSizeInBytes == OffsetInBytes) 3803 return; 3804 3805 // Copy the remainder of the byval argument with sub-word loads and shifts. 3806 if (LeftoverBytes) { 3807 SDValue Val; 3808 3809 for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0; 3810 OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) { 3811 unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes; 3812 3813 if (RemainingSizeInBytes < LoadSizeInBytes) 3814 continue; 3815 3816 // Load subword. 3817 SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, 3818 DAG.getConstant(OffsetInBytes, DL, 3819 PtrTy)); 3820 SDValue LoadVal = DAG.getExtLoad( 3821 ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(), 3822 MVT::getIntegerVT(LoadSizeInBytes * 8), false, false, false, 3823 Alignment); 3824 MemOpChains.push_back(LoadVal.getValue(1)); 3825 3826 // Shift the loaded value. 3827 unsigned Shamt; 3828 3829 if (isLittle) 3830 Shamt = TotalBytesLoaded * 8; 3831 else 3832 Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8; 3833 3834 SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal, 3835 DAG.getConstant(Shamt, DL, MVT::i32)); 3836 3837 if (Val.getNode()) 3838 Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift); 3839 else 3840 Val = Shift; 3841 3842 OffsetInBytes += LoadSizeInBytes; 3843 TotalBytesLoaded += LoadSizeInBytes; 3844 Alignment = std::min(Alignment, LoadSizeInBytes); 3845 } 3846 3847 unsigned ArgReg = ArgRegs[FirstReg + I]; 3848 RegsToPass.push_back(std::make_pair(ArgReg, Val)); 3849 return; 3850 } 3851 } 3852 3853 // Copy remainder of byval arg to it with memcpy. 3854 unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes; 3855 SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, 3856 DAG.getConstant(OffsetInBytes, DL, PtrTy)); 3857 SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr, 3858 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 3859 Chain = DAG.getMemcpy(Chain, DL, Dst, Src, 3860 DAG.getConstant(MemCpySize, DL, PtrTy), 3861 Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false, 3862 /*isTailCall=*/false, 3863 MachinePointerInfo(), MachinePointerInfo()); 3864 MemOpChains.push_back(Chain); 3865} 3866 3867void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains, 3868 SDValue Chain, const SDLoc &DL, 3869 SelectionDAG &DAG, 3870 CCState &State) const { 3871 ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs(); 3872 unsigned Idx = State.getFirstUnallocated(ArgRegs); 3873 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); 3874 MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8); 3875 const TargetRegisterClass *RC = getRegClassFor(RegTy); 3876 MachineFunction &MF = DAG.getMachineFunction(); 3877 MachineFrameInfo *MFI = MF.getFrameInfo(); 3878 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 3879 3880 // Offset of the first variable argument from stack pointer. 3881 int VaArgOffset; 3882 3883 if (ArgRegs.size() == Idx) 3884 VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes); 3885 else { 3886 VaArgOffset = 3887 (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) - 3888 (int)(RegSizeInBytes * (ArgRegs.size() - Idx)); 3889 } 3890 3891 // Record the frame index of the first variable argument 3892 // which is a value necessary to VASTART. 3893 int FI = MFI->CreateFixedObject(RegSizeInBytes, VaArgOffset, true); 3894 MipsFI->setVarArgsFrameIndex(FI); 3895 3896 // Copy the integer registers that have not been used for argument passing 3897 // to the argument register save area. For O32, the save area is allocated 3898 // in the caller's stack frame, while for N32/64, it is allocated in the 3899 // callee's stack frame. 3900 for (unsigned I = Idx; I < ArgRegs.size(); 3901 ++I, VaArgOffset += RegSizeInBytes) { 3902 unsigned Reg = addLiveIn(MF, ArgRegs[I], RC); 3903 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy); 3904 FI = MFI->CreateFixedObject(RegSizeInBytes, VaArgOffset, true); 3905 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3906 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 3907 MachinePointerInfo(), false, false, 0); 3908 cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue( 3909 (Value *)nullptr); 3910 OutChains.push_back(Store); 3911 } 3912} 3913 3914void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size, 3915 unsigned Align) const { 3916 const TargetFrameLowering *TFL = Subtarget.getFrameLowering(); 3917 3918 assert(Size && "Byval argument's size shouldn't be 0."); 3919 3920 Align = std::min(Align, TFL->getStackAlignment()); 3921 3922 unsigned FirstReg = 0; 3923 unsigned NumRegs = 0; 3924 3925 if (State->getCallingConv() != CallingConv::Fast) { 3926 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); 3927 ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs(); 3928 // FIXME: The O32 case actually describes no shadow registers. 3929 const MCPhysReg *ShadowRegs = 3930 ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs; 3931 3932 // We used to check the size as well but we can't do that anymore since 3933 // CCState::HandleByVal() rounds up the size after calling this function. 3934 assert(!(Align % RegSizeInBytes) && 3935 "Byval argument's alignment should be a multiple of" 3936 "RegSizeInBytes."); 3937 3938 FirstReg = State->getFirstUnallocated(IntArgRegs); 3939 3940 // If Align > RegSizeInBytes, the first arg register must be even. 3941 // FIXME: This condition happens to do the right thing but it's not the 3942 // right way to test it. We want to check that the stack frame offset 3943 // of the register is aligned. 3944 if ((Align > RegSizeInBytes) && (FirstReg % 2)) { 3945 State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]); 3946 ++FirstReg; 3947 } 3948 3949 // Mark the registers allocated. 3950 Size = alignTo(Size, RegSizeInBytes); 3951 for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size()); 3952 Size -= RegSizeInBytes, ++I, ++NumRegs) 3953 State->AllocateReg(IntArgRegs[I], ShadowRegs[I]); 3954 } 3955 3956 State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs); 3957} 3958 3959MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI, 3960 MachineBasicBlock *BB, 3961 bool isFPCmp, 3962 unsigned Opc) const { 3963 assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) && 3964 "Subtarget already supports SELECT nodes with the use of" 3965 "conditional-move instructions."); 3966 3967 const TargetInstrInfo *TII = 3968 Subtarget.getInstrInfo(); 3969 DebugLoc DL = MI.getDebugLoc(); 3970 3971 // To "insert" a SELECT instruction, we actually have to insert the 3972 // diamond control-flow pattern. The incoming instruction knows the 3973 // destination vreg to set, the condition code register to branch on, the 3974 // true/false values to select between, and a branch opcode to use. 3975 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 3976 MachineFunction::iterator It = ++BB->getIterator(); 3977 3978 // thisMBB: 3979 // ... 3980 // TrueVal = ... 3981 // setcc r1, r2, r3 3982 // bNE r1, r0, copy1MBB 3983 // fallthrough --> copy0MBB 3984 MachineBasicBlock *thisMBB = BB; 3985 MachineFunction *F = BB->getParent(); 3986 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 3987 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 3988 F->insert(It, copy0MBB); 3989 F->insert(It, sinkMBB); 3990 3991 // Transfer the remainder of BB and its successor edges to sinkMBB. 3992 sinkMBB->splice(sinkMBB->begin(), BB, 3993 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 3994 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 3995 3996 // Next, add the true and fallthrough blocks as its successors. 3997 BB->addSuccessor(copy0MBB); 3998 BB->addSuccessor(sinkMBB); 3999 4000 if (isFPCmp) { 4001 // bc1[tf] cc, sinkMBB 4002 BuildMI(BB, DL, TII->get(Opc)) 4003 .addReg(MI.getOperand(1).getReg()) 4004 .addMBB(sinkMBB); 4005 } else { 4006 // bne rs, $0, sinkMBB 4007 BuildMI(BB, DL, TII->get(Opc)) 4008 .addReg(MI.getOperand(1).getReg()) 4009 .addReg(Mips::ZERO) 4010 .addMBB(sinkMBB); 4011 } 4012 4013 // copy0MBB: 4014 // %FalseValue = ... 4015 // # fallthrough to sinkMBB 4016 BB = copy0MBB; 4017 4018 // Update machine-CFG edges 4019 BB->addSuccessor(sinkMBB); 4020 4021 // sinkMBB: 4022 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] 4023 // ... 4024 BB = sinkMBB; 4025 4026 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg()) 4027 .addReg(MI.getOperand(2).getReg()) 4028 .addMBB(thisMBB) 4029 .addReg(MI.getOperand(3).getReg()) 4030 .addMBB(copy0MBB); 4031 4032 MI.eraseFromParent(); // The pseudo instruction is gone now. 4033 4034 return BB; 4035} 4036 4037// FIXME? Maybe this could be a TableGen attribute on some registers and 4038// this table could be generated automatically from RegInfo. 4039unsigned MipsTargetLowering::getRegisterByName(const char* RegName, EVT VT, 4040 SelectionDAG &DAG) const { 4041 // Named registers is expected to be fairly rare. For now, just support $28 4042 // since the linux kernel uses it. 4043 if (Subtarget.isGP64bit()) { 4044 unsigned Reg = StringSwitch<unsigned>(RegName) 4045 .Case("$28", Mips::GP_64) 4046 .Default(0); 4047 if (Reg) 4048 return Reg; 4049 } else { 4050 unsigned Reg = StringSwitch<unsigned>(RegName) 4051 .Case("$28", Mips::GP) 4052 .Default(0); 4053 if (Reg) 4054 return Reg; 4055 } 4056 report_fatal_error("Invalid register name global variable"); 4057} 4058