1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#include "MipsISelLowering.h"
15#include "InstPrinter/MipsInstPrinter.h"
16#include "MCTargetDesc/MipsBaseInfo.h"
17#include "MipsCCState.h"
18#include "MipsMachineFunction.h"
19#include "MipsSubtarget.h"
20#include "MipsTargetMachine.h"
21#include "MipsTargetObjectFile.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/ADT/StringSwitch.h"
24#include "llvm/CodeGen/CallingConvLower.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineJumpTableInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/FunctionLoweringInfo.h"
31#include "llvm/CodeGen/SelectionDAGISel.h"
32#include "llvm/CodeGen/ValueTypes.h"
33#include "llvm/IR/CallingConv.h"
34#include "llvm/IR/DerivedTypes.h"
35#include "llvm/IR/GlobalVariable.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/raw_ostream.h"
40#include <cctype>
41
42using namespace llvm;
43
44#define DEBUG_TYPE "mips-lower"
45
46STATISTIC(NumTailCalls, "Number of tail calls");
47
48static cl::opt<bool>
49LargeGOT("mxgot", cl::Hidden,
50         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
51
52static cl::opt<bool>
53NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
54               cl::desc("MIPS: Don't trap on integer division by zero."),
55               cl::init(false));
56
57static const MCPhysReg Mips64DPRegs[8] = {
58  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
59  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
60};
61
62// If I is a shifted mask, set the size (Size) and the first bit of the
63// mask (Pos), and return true.
64// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
65static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
66  if (!isShiftedMask_64(I))
67    return false;
68
69  Size = countPopulation(I);
70  Pos = countTrailingZeros(I);
71  return true;
72}
73
74SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
75  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
76  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
77}
78
79SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
80                                          SelectionDAG &DAG,
81                                          unsigned Flag) const {
82  return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
83}
84
85SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
86                                          SelectionDAG &DAG,
87                                          unsigned Flag) const {
88  return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
89}
90
91SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
92                                          SelectionDAG &DAG,
93                                          unsigned Flag) const {
94  return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
95}
96
97SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
98                                          SelectionDAG &DAG,
99                                          unsigned Flag) const {
100  return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
101}
102
103SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
104                                          SelectionDAG &DAG,
105                                          unsigned Flag) const {
106  return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
107                                   N->getOffset(), Flag);
108}
109
110const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
111  switch ((MipsISD::NodeType)Opcode) {
112  case MipsISD::FIRST_NUMBER:      break;
113  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
114  case MipsISD::TailCall:          return "MipsISD::TailCall";
115  case MipsISD::Hi:                return "MipsISD::Hi";
116  case MipsISD::Lo:                return "MipsISD::Lo";
117  case MipsISD::GPRel:             return "MipsISD::GPRel";
118  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
119  case MipsISD::Ret:               return "MipsISD::Ret";
120  case MipsISD::ERet:              return "MipsISD::ERet";
121  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
122  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
123  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
124  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
125  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
126  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
127  case MipsISD::MFHI:              return "MipsISD::MFHI";
128  case MipsISD::MFLO:              return "MipsISD::MFLO";
129  case MipsISD::MTLOHI:            return "MipsISD::MTLOHI";
130  case MipsISD::Mult:              return "MipsISD::Mult";
131  case MipsISD::Multu:             return "MipsISD::Multu";
132  case MipsISD::MAdd:              return "MipsISD::MAdd";
133  case MipsISD::MAddu:             return "MipsISD::MAddu";
134  case MipsISD::MSub:              return "MipsISD::MSub";
135  case MipsISD::MSubu:             return "MipsISD::MSubu";
136  case MipsISD::DivRem:            return "MipsISD::DivRem";
137  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
138  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
139  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
140  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
141  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
142  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
143  case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
144  case MipsISD::Sync:              return "MipsISD::Sync";
145  case MipsISD::Ext:               return "MipsISD::Ext";
146  case MipsISD::Ins:               return "MipsISD::Ins";
147  case MipsISD::LWL:               return "MipsISD::LWL";
148  case MipsISD::LWR:               return "MipsISD::LWR";
149  case MipsISD::SWL:               return "MipsISD::SWL";
150  case MipsISD::SWR:               return "MipsISD::SWR";
151  case MipsISD::LDL:               return "MipsISD::LDL";
152  case MipsISD::LDR:               return "MipsISD::LDR";
153  case MipsISD::SDL:               return "MipsISD::SDL";
154  case MipsISD::SDR:               return "MipsISD::SDR";
155  case MipsISD::EXTP:              return "MipsISD::EXTP";
156  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
157  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
158  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
159  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
160  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
161  case MipsISD::SHILO:             return "MipsISD::SHILO";
162  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
163  case MipsISD::MULSAQ_S_W_PH:     return "MipsISD::MULSAQ_S_W_PH";
164  case MipsISD::MAQ_S_W_PHL:       return "MipsISD::MAQ_S_W_PHL";
165  case MipsISD::MAQ_S_W_PHR:       return "MipsISD::MAQ_S_W_PHR";
166  case MipsISD::MAQ_SA_W_PHL:      return "MipsISD::MAQ_SA_W_PHL";
167  case MipsISD::MAQ_SA_W_PHR:      return "MipsISD::MAQ_SA_W_PHR";
168  case MipsISD::DPAU_H_QBL:        return "MipsISD::DPAU_H_QBL";
169  case MipsISD::DPAU_H_QBR:        return "MipsISD::DPAU_H_QBR";
170  case MipsISD::DPSU_H_QBL:        return "MipsISD::DPSU_H_QBL";
171  case MipsISD::DPSU_H_QBR:        return "MipsISD::DPSU_H_QBR";
172  case MipsISD::DPAQ_S_W_PH:       return "MipsISD::DPAQ_S_W_PH";
173  case MipsISD::DPSQ_S_W_PH:       return "MipsISD::DPSQ_S_W_PH";
174  case MipsISD::DPAQ_SA_L_W:       return "MipsISD::DPAQ_SA_L_W";
175  case MipsISD::DPSQ_SA_L_W:       return "MipsISD::DPSQ_SA_L_W";
176  case MipsISD::DPA_W_PH:          return "MipsISD::DPA_W_PH";
177  case MipsISD::DPS_W_PH:          return "MipsISD::DPS_W_PH";
178  case MipsISD::DPAQX_S_W_PH:      return "MipsISD::DPAQX_S_W_PH";
179  case MipsISD::DPAQX_SA_W_PH:     return "MipsISD::DPAQX_SA_W_PH";
180  case MipsISD::DPAX_W_PH:         return "MipsISD::DPAX_W_PH";
181  case MipsISD::DPSX_W_PH:         return "MipsISD::DPSX_W_PH";
182  case MipsISD::DPSQX_S_W_PH:      return "MipsISD::DPSQX_S_W_PH";
183  case MipsISD::DPSQX_SA_W_PH:     return "MipsISD::DPSQX_SA_W_PH";
184  case MipsISD::MULSA_W_PH:        return "MipsISD::MULSA_W_PH";
185  case MipsISD::MULT:              return "MipsISD::MULT";
186  case MipsISD::MULTU:             return "MipsISD::MULTU";
187  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
188  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
189  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
190  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
191  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
192  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
193  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
194  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
195  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
196  case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
197  case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
198  case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
199  case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
200  case MipsISD::VCEQ:              return "MipsISD::VCEQ";
201  case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
202  case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
203  case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
204  case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
205  case MipsISD::VSMAX:             return "MipsISD::VSMAX";
206  case MipsISD::VSMIN:             return "MipsISD::VSMIN";
207  case MipsISD::VUMAX:             return "MipsISD::VUMAX";
208  case MipsISD::VUMIN:             return "MipsISD::VUMIN";
209  case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
210  case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
211  case MipsISD::VNOR:              return "MipsISD::VNOR";
212  case MipsISD::VSHF:              return "MipsISD::VSHF";
213  case MipsISD::SHF:               return "MipsISD::SHF";
214  case MipsISD::ILVEV:             return "MipsISD::ILVEV";
215  case MipsISD::ILVOD:             return "MipsISD::ILVOD";
216  case MipsISD::ILVL:              return "MipsISD::ILVL";
217  case MipsISD::ILVR:              return "MipsISD::ILVR";
218  case MipsISD::PCKEV:             return "MipsISD::PCKEV";
219  case MipsISD::PCKOD:             return "MipsISD::PCKOD";
220  case MipsISD::INSVE:             return "MipsISD::INSVE";
221  }
222  return nullptr;
223}
224
225MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
226                                       const MipsSubtarget &STI)
227    : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) {
228  // Mips does not have i1 type, so use i32 for
229  // setcc operations results (slt, sgt, ...).
230  setBooleanContents(ZeroOrOneBooleanContent);
231  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
232  // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
233  // does. Integer booleans still use 0 and 1.
234  if (Subtarget.hasMips32r6())
235    setBooleanContents(ZeroOrOneBooleanContent,
236                       ZeroOrNegativeOneBooleanContent);
237
238  // Load extented operations for i1 types must be promoted
239  for (MVT VT : MVT::integer_valuetypes()) {
240    setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1,  Promote);
241    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1,  Promote);
242    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1,  Promote);
243  }
244
245  // MIPS doesn't have extending float->double load/store.  Set LoadExtAction
246  // for f32, f16
247  for (MVT VT : MVT::fp_valuetypes()) {
248    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
249    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
250  }
251
252  // Set LoadExtAction for f16 vectors to Expand
253  for (MVT VT : MVT::fp_vector_valuetypes()) {
254    MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements());
255    if (F16VT.isValid())
256      setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand);
257  }
258
259  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
260  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
261
262  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
263
264  // Used by legalize types to correctly generate the setcc result.
265  // Without this, every float setcc comes with a AND/OR with the result,
266  // we don't want this, since the fpcmp result goes to a flag register,
267  // which is used implicitly by brcond and select operations.
268  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
269
270  // Mips Custom Operations
271  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
272  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
273  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
274  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
275  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
276  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
277  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
278  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
279  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
280  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
281  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
282  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
283  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
284  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
285  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
286
287  if (Subtarget.isGP64bit()) {
288    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
289    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
290    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
291    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
292    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
293    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
294    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
295    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
296    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
297    setOperationAction(ISD::SHL_PARTS,          MVT::i64,   Custom);
298    setOperationAction(ISD::SRA_PARTS,          MVT::i64,   Custom);
299    setOperationAction(ISD::SRL_PARTS,          MVT::i64,   Custom);
300  }
301
302  if (!Subtarget.isGP64bit()) {
303    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
304    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
305    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
306  }
307
308  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
309  if (Subtarget.isGP64bit())
310    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
311
312  setOperationAction(ISD::SDIV, MVT::i32, Expand);
313  setOperationAction(ISD::SREM, MVT::i32, Expand);
314  setOperationAction(ISD::UDIV, MVT::i32, Expand);
315  setOperationAction(ISD::UREM, MVT::i32, Expand);
316  setOperationAction(ISD::SDIV, MVT::i64, Expand);
317  setOperationAction(ISD::SREM, MVT::i64, Expand);
318  setOperationAction(ISD::UDIV, MVT::i64, Expand);
319  setOperationAction(ISD::UREM, MVT::i64, Expand);
320
321  // Operations not directly supported by Mips.
322  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
323  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
324  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
325  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
326  setOperationAction(ISD::SELECT_CC,         MVT::i32,   Expand);
327  setOperationAction(ISD::SELECT_CC,         MVT::i64,   Expand);
328  setOperationAction(ISD::SELECT_CC,         MVT::f32,   Expand);
329  setOperationAction(ISD::SELECT_CC,         MVT::f64,   Expand);
330  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
331  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
332  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
333  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
334  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
335  if (Subtarget.hasCnMips()) {
336    setOperationAction(ISD::CTPOP,           MVT::i32,   Legal);
337    setOperationAction(ISD::CTPOP,           MVT::i64,   Legal);
338  } else {
339    setOperationAction(ISD::CTPOP,           MVT::i32,   Expand);
340    setOperationAction(ISD::CTPOP,           MVT::i64,   Expand);
341  }
342  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
343  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
344  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
345  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
346  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
347  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
348
349  if (!Subtarget.hasMips32r2())
350    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
351
352  if (!Subtarget.hasMips64r2())
353    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
354
355  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
356  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
357  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
358  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
359  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
360  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
361  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
362  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
363  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
364  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
365  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
366  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
367  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
368  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
369  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
370  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
371  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
372
373  // Lower f16 conversion operations into library calls
374  setOperationAction(ISD::FP16_TO_FP,        MVT::f32,   Expand);
375  setOperationAction(ISD::FP_TO_FP16,        MVT::f32,   Expand);
376  setOperationAction(ISD::FP16_TO_FP,        MVT::f64,   Expand);
377  setOperationAction(ISD::FP_TO_FP16,        MVT::f64,   Expand);
378
379  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
380
381  setOperationAction(ISD::VASTART,           MVT::Other, Custom);
382  setOperationAction(ISD::VAARG,             MVT::Other, Custom);
383  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
384  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
385
386  // Use the default for now
387  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
388  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
389
390  if (!Subtarget.isGP64bit()) {
391    setOperationAction(ISD::ATOMIC_LOAD,     MVT::i64,   Expand);
392    setOperationAction(ISD::ATOMIC_STORE,    MVT::i64,   Expand);
393  }
394
395
396  if (!Subtarget.hasMips32r2()) {
397    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
398    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
399  }
400
401  // MIPS16 lacks MIPS32's clz and clo instructions.
402  if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
403    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
404  if (!Subtarget.hasMips64())
405    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
406
407  if (!Subtarget.hasMips32r2())
408    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
409  if (!Subtarget.hasMips64r2())
410    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
411
412  if (Subtarget.isGP64bit()) {
413    setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
414    setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
415    setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
416    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
417  }
418
419  setOperationAction(ISD::TRAP, MVT::Other, Legal);
420
421  setTargetDAGCombine(ISD::SDIVREM);
422  setTargetDAGCombine(ISD::UDIVREM);
423  setTargetDAGCombine(ISD::SELECT);
424  setTargetDAGCombine(ISD::AND);
425  setTargetDAGCombine(ISD::OR);
426  setTargetDAGCombine(ISD::ADD);
427  setTargetDAGCombine(ISD::AssertZext);
428
429  setMinFunctionAlignment(Subtarget.isGP64bit() ? 3 : 2);
430
431  // The arguments on the stack are defined in terms of 4-byte slots on O32
432  // and 8-byte slots on N32/N64.
433  setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? 8 : 4);
434
435  setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP);
436
437  MaxStoresPerMemcpy = 16;
438
439  isMicroMips = Subtarget.inMicroMipsMode();
440}
441
442const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM,
443                                                     const MipsSubtarget &STI) {
444  if (STI.inMips16Mode())
445    return llvm::createMips16TargetLowering(TM, STI);
446
447  return llvm::createMipsSETargetLowering(TM, STI);
448}
449
450// Create a fast isel object.
451FastISel *
452MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
453                                  const TargetLibraryInfo *libInfo) const {
454  if (!funcInfo.MF->getTarget().Options.EnableFastISel)
455    return TargetLowering::createFastISel(funcInfo, libInfo);
456  return Mips::createFastISel(funcInfo, libInfo);
457}
458
459EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
460                                           EVT VT) const {
461  if (!VT.isVector())
462    return MVT::i32;
463  return VT.changeVectorElementTypeToInteger();
464}
465
466static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
467                                    TargetLowering::DAGCombinerInfo &DCI,
468                                    const MipsSubtarget &Subtarget) {
469  if (DCI.isBeforeLegalizeOps())
470    return SDValue();
471
472  EVT Ty = N->getValueType(0);
473  unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
474  unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
475  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
476                                                  MipsISD::DivRemU16;
477  SDLoc DL(N);
478
479  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
480                               N->getOperand(0), N->getOperand(1));
481  SDValue InChain = DAG.getEntryNode();
482  SDValue InGlue = DivRem;
483
484  // insert MFLO
485  if (N->hasAnyUseOfValue(0)) {
486    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
487                                            InGlue);
488    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
489    InChain = CopyFromLo.getValue(1);
490    InGlue = CopyFromLo.getValue(2);
491  }
492
493  // insert MFHI
494  if (N->hasAnyUseOfValue(1)) {
495    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
496                                            HI, Ty, InGlue);
497    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
498  }
499
500  return SDValue();
501}
502
503static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
504  switch (CC) {
505  default: llvm_unreachable("Unknown fp condition code!");
506  case ISD::SETEQ:
507  case ISD::SETOEQ: return Mips::FCOND_OEQ;
508  case ISD::SETUNE: return Mips::FCOND_UNE;
509  case ISD::SETLT:
510  case ISD::SETOLT: return Mips::FCOND_OLT;
511  case ISD::SETGT:
512  case ISD::SETOGT: return Mips::FCOND_OGT;
513  case ISD::SETLE:
514  case ISD::SETOLE: return Mips::FCOND_OLE;
515  case ISD::SETGE:
516  case ISD::SETOGE: return Mips::FCOND_OGE;
517  case ISD::SETULT: return Mips::FCOND_ULT;
518  case ISD::SETULE: return Mips::FCOND_ULE;
519  case ISD::SETUGT: return Mips::FCOND_UGT;
520  case ISD::SETUGE: return Mips::FCOND_UGE;
521  case ISD::SETUO:  return Mips::FCOND_UN;
522  case ISD::SETO:   return Mips::FCOND_OR;
523  case ISD::SETNE:
524  case ISD::SETONE: return Mips::FCOND_ONE;
525  case ISD::SETUEQ: return Mips::FCOND_UEQ;
526  }
527}
528
529
530/// This function returns true if the floating point conditional branches and
531/// conditional moves which use condition code CC should be inverted.
532static bool invertFPCondCodeUser(Mips::CondCode CC) {
533  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
534    return false;
535
536  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
537         "Illegal Condition Code");
538
539  return true;
540}
541
542// Creates and returns an FPCmp node from a setcc node.
543// Returns Op if setcc is not a floating point comparison.
544static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
545  // must be a SETCC node
546  if (Op.getOpcode() != ISD::SETCC)
547    return Op;
548
549  SDValue LHS = Op.getOperand(0);
550
551  if (!LHS.getValueType().isFloatingPoint())
552    return Op;
553
554  SDValue RHS = Op.getOperand(1);
555  SDLoc DL(Op);
556
557  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
558  // node if necessary.
559  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
560
561  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
562                     DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32));
563}
564
565// Creates and returns a CMovFPT/F node.
566static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
567                            SDValue False, const SDLoc &DL) {
568  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
569  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
570  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
571
572  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
573                     True.getValueType(), True, FCC0, False, Cond);
574}
575
576static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
577                                    TargetLowering::DAGCombinerInfo &DCI,
578                                    const MipsSubtarget &Subtarget) {
579  if (DCI.isBeforeLegalizeOps())
580    return SDValue();
581
582  SDValue SetCC = N->getOperand(0);
583
584  if ((SetCC.getOpcode() != ISD::SETCC) ||
585      !SetCC.getOperand(0).getValueType().isInteger())
586    return SDValue();
587
588  SDValue False = N->getOperand(2);
589  EVT FalseTy = False.getValueType();
590
591  if (!FalseTy.isInteger())
592    return SDValue();
593
594  ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
595
596  // If the RHS (False) is 0, we swap the order of the operands
597  // of ISD::SELECT (obviously also inverting the condition) so that we can
598  // take advantage of conditional moves using the $0 register.
599  // Example:
600  //   return (a != 0) ? x : 0;
601  //     load $reg, x
602  //     movz $reg, $0, a
603  if (!FalseC)
604    return SDValue();
605
606  const SDLoc DL(N);
607
608  if (!FalseC->getZExtValue()) {
609    ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
610    SDValue True = N->getOperand(1);
611
612    SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
613                         SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
614
615    return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
616  }
617
618  // If both operands are integer constants there's a possibility that we
619  // can do some interesting optimizations.
620  SDValue True = N->getOperand(1);
621  ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
622
623  if (!TrueC || !True.getValueType().isInteger())
624    return SDValue();
625
626  // We'll also ignore MVT::i64 operands as this optimizations proves
627  // to be ineffective because of the required sign extensions as the result
628  // of a SETCC operator is always MVT::i32 for non-vector types.
629  if (True.getValueType() == MVT::i64)
630    return SDValue();
631
632  int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
633
634  // 1)  (a < x) ? y : y-1
635  //  slti $reg1, a, x
636  //  addiu $reg2, $reg1, y-1
637  if (Diff == 1)
638    return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
639
640  // 2)  (a < x) ? y-1 : y
641  //  slti $reg1, a, x
642  //  xor $reg1, $reg1, 1
643  //  addiu $reg2, $reg1, y-1
644  if (Diff == -1) {
645    ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
646    SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
647                         SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
648    return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
649  }
650
651  // Couldn't optimize.
652  return SDValue();
653}
654
655static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG,
656                                    TargetLowering::DAGCombinerInfo &DCI,
657                                    const MipsSubtarget &Subtarget) {
658  if (DCI.isBeforeLegalizeOps())
659    return SDValue();
660
661  SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2);
662
663  ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse);
664  if (!FalseC || FalseC->getZExtValue())
665    return SDValue();
666
667  // Since RHS (False) is 0, we swap the order of the True/False operands
668  // (obviously also inverting the condition) so that we can
669  // take advantage of conditional moves using the $0 register.
670  // Example:
671  //   return (a != 0) ? x : 0;
672  //     load $reg, x
673  //     movz $reg, $0, a
674  unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F :
675                                                         MipsISD::CMovFP_T;
676
677  SDValue FCC = N->getOperand(1), Glue = N->getOperand(3);
678  return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(),
679                     ValueIfFalse, FCC, ValueIfTrue, Glue);
680}
681
682static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
683                                 TargetLowering::DAGCombinerInfo &DCI,
684                                 const MipsSubtarget &Subtarget) {
685  // Pattern match EXT.
686  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
687  //  => ext $dst, $src, size, pos
688  if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
689    return SDValue();
690
691  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
692  unsigned ShiftRightOpc = ShiftRight.getOpcode();
693
694  // Op's first operand must be a shift right.
695  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
696    return SDValue();
697
698  // The second operand of the shift must be an immediate.
699  ConstantSDNode *CN;
700  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
701    return SDValue();
702
703  uint64_t Pos = CN->getZExtValue();
704  uint64_t SMPos, SMSize;
705
706  // Op's second operand must be a shifted mask.
707  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
708      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
709    return SDValue();
710
711  // Return if the shifted mask does not start at bit 0 or the sum of its size
712  // and Pos exceeds the word's size.
713  EVT ValTy = N->getValueType(0);
714  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
715    return SDValue();
716
717  SDLoc DL(N);
718  return DAG.getNode(MipsISD::Ext, DL, ValTy,
719                     ShiftRight.getOperand(0),
720                     DAG.getConstant(Pos, DL, MVT::i32),
721                     DAG.getConstant(SMSize, DL, MVT::i32));
722}
723
724static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
725                                TargetLowering::DAGCombinerInfo &DCI,
726                                const MipsSubtarget &Subtarget) {
727  // Pattern match INS.
728  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
729  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
730  //  => ins $dst, $src, size, pos, $src1
731  if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
732    return SDValue();
733
734  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
735  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
736  ConstantSDNode *CN;
737
738  // See if Op's first operand matches (and $src1 , mask0).
739  if (And0.getOpcode() != ISD::AND)
740    return SDValue();
741
742  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
743      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
744    return SDValue();
745
746  // See if Op's second operand matches (and (shl $src, pos), mask1).
747  if (And1.getOpcode() != ISD::AND)
748    return SDValue();
749
750  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
751      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
752    return SDValue();
753
754  // The shift masks must have the same position and size.
755  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
756    return SDValue();
757
758  SDValue Shl = And1.getOperand(0);
759  if (Shl.getOpcode() != ISD::SHL)
760    return SDValue();
761
762  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
763    return SDValue();
764
765  unsigned Shamt = CN->getZExtValue();
766
767  // Return if the shift amount and the first bit position of mask are not the
768  // same.
769  EVT ValTy = N->getValueType(0);
770  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
771    return SDValue();
772
773  SDLoc DL(N);
774  return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0),
775                     DAG.getConstant(SMPos0, DL, MVT::i32),
776                     DAG.getConstant(SMSize0, DL, MVT::i32),
777                     And0.getOperand(0));
778}
779
780static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
781                                 TargetLowering::DAGCombinerInfo &DCI,
782                                 const MipsSubtarget &Subtarget) {
783  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
784
785  if (DCI.isBeforeLegalizeOps())
786    return SDValue();
787
788  SDValue Add = N->getOperand(1);
789
790  if (Add.getOpcode() != ISD::ADD)
791    return SDValue();
792
793  SDValue Lo = Add.getOperand(1);
794
795  if ((Lo.getOpcode() != MipsISD::Lo) ||
796      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
797    return SDValue();
798
799  EVT ValTy = N->getValueType(0);
800  SDLoc DL(N);
801
802  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
803                             Add.getOperand(0));
804  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
805}
806
807static SDValue performAssertZextCombine(SDNode *N, SelectionDAG &DAG,
808                                        TargetLowering::DAGCombinerInfo &DCI,
809                                        const MipsSubtarget &Subtarget) {
810  SDValue N0 = N->getOperand(0);
811  EVT NarrowerVT = cast<VTSDNode>(N->getOperand(1))->getVT();
812
813  if (N0.getOpcode() != ISD::TRUNCATE)
814    return SDValue();
815
816  if (N0.getOperand(0).getOpcode() != ISD::AssertZext)
817    return SDValue();
818
819  // fold (AssertZext (trunc (AssertZext x))) -> (trunc (AssertZext x))
820  // if the type of the extension of the innermost AssertZext node is
821  // smaller from that of the outermost node, eg:
822  // (AssertZext:i32 (trunc:i32 (AssertZext:i64 X, i32)), i8)
823  //   -> (trunc:i32 (AssertZext X, i8))
824  SDValue WiderAssertZext = N0.getOperand(0);
825  EVT WiderVT = cast<VTSDNode>(WiderAssertZext->getOperand(1))->getVT();
826
827  if (NarrowerVT.bitsLT(WiderVT)) {
828    SDValue NewAssertZext = DAG.getNode(
829        ISD::AssertZext, SDLoc(N), WiderAssertZext.getValueType(),
830        WiderAssertZext.getOperand(0), DAG.getValueType(NarrowerVT));
831    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0),
832                       NewAssertZext);
833  }
834
835  return SDValue();
836}
837
838SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
839  const {
840  SelectionDAG &DAG = DCI.DAG;
841  unsigned Opc = N->getOpcode();
842
843  switch (Opc) {
844  default: break;
845  case ISD::SDIVREM:
846  case ISD::UDIVREM:
847    return performDivRemCombine(N, DAG, DCI, Subtarget);
848  case ISD::SELECT:
849    return performSELECTCombine(N, DAG, DCI, Subtarget);
850  case MipsISD::CMovFP_F:
851  case MipsISD::CMovFP_T:
852    return performCMovFPCombine(N, DAG, DCI, Subtarget);
853  case ISD::AND:
854    return performANDCombine(N, DAG, DCI, Subtarget);
855  case ISD::OR:
856    return performORCombine(N, DAG, DCI, Subtarget);
857  case ISD::ADD:
858    return performADDCombine(N, DAG, DCI, Subtarget);
859  case ISD::AssertZext:
860    return performAssertZextCombine(N, DAG, DCI, Subtarget);
861  }
862
863  return SDValue();
864}
865
866bool MipsTargetLowering::isCheapToSpeculateCttz() const {
867  return Subtarget.hasMips32();
868}
869
870bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
871  return Subtarget.hasMips32();
872}
873
874void
875MipsTargetLowering::LowerOperationWrapper(SDNode *N,
876                                          SmallVectorImpl<SDValue> &Results,
877                                          SelectionDAG &DAG) const {
878  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
879
880  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
881    Results.push_back(Res.getValue(I));
882}
883
884void
885MipsTargetLowering::ReplaceNodeResults(SDNode *N,
886                                       SmallVectorImpl<SDValue> &Results,
887                                       SelectionDAG &DAG) const {
888  return LowerOperationWrapper(N, Results, DAG);
889}
890
891SDValue MipsTargetLowering::
892LowerOperation(SDValue Op, SelectionDAG &DAG) const
893{
894  switch (Op.getOpcode())
895  {
896  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
897  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
898  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
899  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
900  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
901  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
902  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
903  case ISD::SELECT:             return lowerSELECT(Op, DAG);
904  case ISD::SETCC:              return lowerSETCC(Op, DAG);
905  case ISD::VASTART:            return lowerVASTART(Op, DAG);
906  case ISD::VAARG:              return lowerVAARG(Op, DAG);
907  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
908  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
909  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
910  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
911  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
912  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
913  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
914  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
915  case ISD::LOAD:               return lowerLOAD(Op, DAG);
916  case ISD::STORE:              return lowerSTORE(Op, DAG);
917  case ISD::ADD:                return lowerADD(Op, DAG);
918  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
919  }
920  return SDValue();
921}
922
923//===----------------------------------------------------------------------===//
924//  Lower helper functions
925//===----------------------------------------------------------------------===//
926
927// addLiveIn - This helper function adds the specified physical register to the
928// MachineFunction as a live in value.  It also creates a corresponding
929// virtual register for it.
930static unsigned
931addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
932{
933  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
934  MF.getRegInfo().addLiveIn(PReg, VReg);
935  return VReg;
936}
937
938static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI,
939                                              MachineBasicBlock &MBB,
940                                              const TargetInstrInfo &TII,
941                                              bool Is64Bit, bool IsMicroMips) {
942  if (NoZeroDivCheck)
943    return &MBB;
944
945  // Insert instruction "teq $divisor_reg, $zero, 7".
946  MachineBasicBlock::iterator I(MI);
947  MachineInstrBuilder MIB;
948  MachineOperand &Divisor = MI.getOperand(2);
949  MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(),
950                TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ))
951            .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
952            .addReg(Mips::ZERO)
953            .addImm(7);
954
955  // Use the 32-bit sub-register if this is a 64-bit division.
956  if (Is64Bit)
957    MIB->getOperand(0).setSubReg(Mips::sub_32);
958
959  // Clear Divisor's kill flag.
960  Divisor.setIsKill(false);
961
962  // We would normally delete the original instruction here but in this case
963  // we only needed to inject an additional instruction rather than replace it.
964
965  return &MBB;
966}
967
968MachineBasicBlock *
969MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
970                                                MachineBasicBlock *BB) const {
971  switch (MI.getOpcode()) {
972  default:
973    llvm_unreachable("Unexpected instr type to insert");
974  case Mips::ATOMIC_LOAD_ADD_I8:
975    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
976  case Mips::ATOMIC_LOAD_ADD_I16:
977    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
978  case Mips::ATOMIC_LOAD_ADD_I32:
979    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
980  case Mips::ATOMIC_LOAD_ADD_I64:
981    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
982
983  case Mips::ATOMIC_LOAD_AND_I8:
984    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
985  case Mips::ATOMIC_LOAD_AND_I16:
986    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
987  case Mips::ATOMIC_LOAD_AND_I32:
988    return emitAtomicBinary(MI, BB, 4, Mips::AND);
989  case Mips::ATOMIC_LOAD_AND_I64:
990    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
991
992  case Mips::ATOMIC_LOAD_OR_I8:
993    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
994  case Mips::ATOMIC_LOAD_OR_I16:
995    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
996  case Mips::ATOMIC_LOAD_OR_I32:
997    return emitAtomicBinary(MI, BB, 4, Mips::OR);
998  case Mips::ATOMIC_LOAD_OR_I64:
999    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
1000
1001  case Mips::ATOMIC_LOAD_XOR_I8:
1002    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
1003  case Mips::ATOMIC_LOAD_XOR_I16:
1004    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
1005  case Mips::ATOMIC_LOAD_XOR_I32:
1006    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
1007  case Mips::ATOMIC_LOAD_XOR_I64:
1008    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
1009
1010  case Mips::ATOMIC_LOAD_NAND_I8:
1011    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
1012  case Mips::ATOMIC_LOAD_NAND_I16:
1013    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
1014  case Mips::ATOMIC_LOAD_NAND_I32:
1015    return emitAtomicBinary(MI, BB, 4, 0, true);
1016  case Mips::ATOMIC_LOAD_NAND_I64:
1017    return emitAtomicBinary(MI, BB, 8, 0, true);
1018
1019  case Mips::ATOMIC_LOAD_SUB_I8:
1020    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
1021  case Mips::ATOMIC_LOAD_SUB_I16:
1022    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
1023  case Mips::ATOMIC_LOAD_SUB_I32:
1024    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
1025  case Mips::ATOMIC_LOAD_SUB_I64:
1026    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
1027
1028  case Mips::ATOMIC_SWAP_I8:
1029    return emitAtomicBinaryPartword(MI, BB, 1, 0);
1030  case Mips::ATOMIC_SWAP_I16:
1031    return emitAtomicBinaryPartword(MI, BB, 2, 0);
1032  case Mips::ATOMIC_SWAP_I32:
1033    return emitAtomicBinary(MI, BB, 4, 0);
1034  case Mips::ATOMIC_SWAP_I64:
1035    return emitAtomicBinary(MI, BB, 8, 0);
1036
1037  case Mips::ATOMIC_CMP_SWAP_I8:
1038    return emitAtomicCmpSwapPartword(MI, BB, 1);
1039  case Mips::ATOMIC_CMP_SWAP_I16:
1040    return emitAtomicCmpSwapPartword(MI, BB, 2);
1041  case Mips::ATOMIC_CMP_SWAP_I32:
1042    return emitAtomicCmpSwap(MI, BB, 4);
1043  case Mips::ATOMIC_CMP_SWAP_I64:
1044    return emitAtomicCmpSwap(MI, BB, 8);
1045  case Mips::PseudoSDIV:
1046  case Mips::PseudoUDIV:
1047  case Mips::DIV:
1048  case Mips::DIVU:
1049  case Mips::MOD:
1050  case Mips::MODU:
1051    return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false,
1052                               false);
1053  case Mips::SDIV_MM_Pseudo:
1054  case Mips::UDIV_MM_Pseudo:
1055  case Mips::SDIV_MM:
1056  case Mips::UDIV_MM:
1057  case Mips::DIV_MMR6:
1058  case Mips::DIVU_MMR6:
1059  case Mips::MOD_MMR6:
1060  case Mips::MODU_MMR6:
1061    return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true);
1062  case Mips::PseudoDSDIV:
1063  case Mips::PseudoDUDIV:
1064  case Mips::DDIV:
1065  case Mips::DDIVU:
1066  case Mips::DMOD:
1067  case Mips::DMODU:
1068    return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false);
1069  case Mips::DDIV_MM64R6:
1070  case Mips::DDIVU_MM64R6:
1071  case Mips::DMOD_MM64R6:
1072  case Mips::DMODU_MM64R6:
1073    return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, true);
1074  case Mips::SEL_D:
1075  case Mips::SEL_D_MMR6:
1076    return emitSEL_D(MI, BB);
1077
1078  case Mips::PseudoSELECT_I:
1079  case Mips::PseudoSELECT_I64:
1080  case Mips::PseudoSELECT_S:
1081  case Mips::PseudoSELECT_D32:
1082  case Mips::PseudoSELECT_D64:
1083    return emitPseudoSELECT(MI, BB, false, Mips::BNE);
1084  case Mips::PseudoSELECTFP_F_I:
1085  case Mips::PseudoSELECTFP_F_I64:
1086  case Mips::PseudoSELECTFP_F_S:
1087  case Mips::PseudoSELECTFP_F_D32:
1088  case Mips::PseudoSELECTFP_F_D64:
1089    return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
1090  case Mips::PseudoSELECTFP_T_I:
1091  case Mips::PseudoSELECTFP_T_I64:
1092  case Mips::PseudoSELECTFP_T_S:
1093  case Mips::PseudoSELECTFP_T_D32:
1094  case Mips::PseudoSELECTFP_T_D64:
1095    return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
1096  }
1097}
1098
1099// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1100// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1101MachineBasicBlock *MipsTargetLowering::emitAtomicBinary(MachineInstr &MI,
1102                                                        MachineBasicBlock *BB,
1103                                                        unsigned Size,
1104                                                        unsigned BinOpcode,
1105                                                        bool Nand) const {
1106  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1107
1108  MachineFunction *MF = BB->getParent();
1109  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1110  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1111  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1112  const bool ArePtrs64bit = ABI.ArePtrs64bit();
1113  DebugLoc DL = MI.getDebugLoc();
1114  unsigned LL, SC, AND, NOR, ZERO, BEQ;
1115
1116  if (Size == 4) {
1117    if (isMicroMips) {
1118      LL = Mips::LL_MM;
1119      SC = Mips::SC_MM;
1120    } else {
1121      LL = Subtarget.hasMips32r6()
1122               ? (ArePtrs64bit ? Mips::LL64_R6 : Mips::LL_R6)
1123               : (ArePtrs64bit ? Mips::LL64 : Mips::LL);
1124      SC = Subtarget.hasMips32r6()
1125               ? (ArePtrs64bit ? Mips::SC64_R6 : Mips::SC_R6)
1126               : (ArePtrs64bit ? Mips::SC64 : Mips::SC);
1127    }
1128
1129    AND = Mips::AND;
1130    NOR = Mips::NOR;
1131    ZERO = Mips::ZERO;
1132    BEQ = Mips::BEQ;
1133  } else {
1134    LL = Subtarget.hasMips64r6() ? Mips::LLD_R6 : Mips::LLD;
1135    SC = Subtarget.hasMips64r6() ? Mips::SCD_R6 : Mips::SCD;
1136    AND = Mips::AND64;
1137    NOR = Mips::NOR64;
1138    ZERO = Mips::ZERO_64;
1139    BEQ = Mips::BEQ64;
1140  }
1141
1142  unsigned OldVal = MI.getOperand(0).getReg();
1143  unsigned Ptr = MI.getOperand(1).getReg();
1144  unsigned Incr = MI.getOperand(2).getReg();
1145
1146  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1147  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1148  unsigned Success = RegInfo.createVirtualRegister(RC);
1149
1150  // insert new blocks after the current block
1151  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1152  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1153  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1154  MachineFunction::iterator It = ++BB->getIterator();
1155  MF->insert(It, loopMBB);
1156  MF->insert(It, exitMBB);
1157
1158  // Transfer the remainder of BB and its successor edges to exitMBB.
1159  exitMBB->splice(exitMBB->begin(), BB,
1160                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1161  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1162
1163  //  thisMBB:
1164  //    ...
1165  //    fallthrough --> loopMBB
1166  BB->addSuccessor(loopMBB);
1167  loopMBB->addSuccessor(loopMBB);
1168  loopMBB->addSuccessor(exitMBB);
1169
1170  //  loopMBB:
1171  //    ll oldval, 0(ptr)
1172  //    <binop> storeval, oldval, incr
1173  //    sc success, storeval, 0(ptr)
1174  //    beq success, $0, loopMBB
1175  BB = loopMBB;
1176  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1177  if (Nand) {
1178    //  and andres, oldval, incr
1179    //  nor storeval, $0, andres
1180    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1181    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1182  } else if (BinOpcode) {
1183    //  <binop> storeval, oldval, incr
1184    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1185  } else {
1186    StoreVal = Incr;
1187  }
1188  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1189  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1190
1191  MI.eraseFromParent(); // The instruction is gone now.
1192
1193  return exitMBB;
1194}
1195
1196MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
1197    MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
1198    unsigned SrcReg) const {
1199  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1200  const DebugLoc &DL = MI.getDebugLoc();
1201
1202  if (Subtarget.hasMips32r2() && Size == 1) {
1203    BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
1204    return BB;
1205  }
1206
1207  if (Subtarget.hasMips32r2() && Size == 2) {
1208    BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
1209    return BB;
1210  }
1211
1212  MachineFunction *MF = BB->getParent();
1213  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1214  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1215  unsigned ScrReg = RegInfo.createVirtualRegister(RC);
1216
1217  assert(Size < 32);
1218  int64_t ShiftImm = 32 - (Size * 8);
1219
1220  BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
1221  BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
1222
1223  return BB;
1224}
1225
1226MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
1227    MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode,
1228    bool Nand) const {
1229  assert((Size == 1 || Size == 2) &&
1230         "Unsupported size for EmitAtomicBinaryPartial.");
1231
1232  MachineFunction *MF = BB->getParent();
1233  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1234  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1235  const bool ArePtrs64bit = ABI.ArePtrs64bit();
1236  const TargetRegisterClass *RCp =
1237    getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1238  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1239  DebugLoc DL = MI.getDebugLoc();
1240
1241  unsigned Dest = MI.getOperand(0).getReg();
1242  unsigned Ptr = MI.getOperand(1).getReg();
1243  unsigned Incr = MI.getOperand(2).getReg();
1244
1245  unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp);
1246  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1247  unsigned Mask = RegInfo.createVirtualRegister(RC);
1248  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1249  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1250  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1251  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1252  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1253  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1254  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1255  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1256  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1257  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1258  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1259  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1260  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1261  unsigned Success = RegInfo.createVirtualRegister(RC);
1262
1263  unsigned LL, SC;
1264  if (isMicroMips) {
1265    LL = Mips::LL_MM;
1266    SC = Mips::SC_MM;
1267  } else {
1268    LL = Subtarget.hasMips32r6() ? (ArePtrs64bit ? Mips::LL64_R6 : Mips::LL_R6)
1269                                 : (ArePtrs64bit ? Mips::LL64 : Mips::LL);
1270    SC = Subtarget.hasMips32r6() ? (ArePtrs64bit ? Mips::SC64_R6 : Mips::SC_R6)
1271                                 : (ArePtrs64bit ? Mips::SC64 : Mips::SC);
1272  }
1273
1274  // insert new blocks after the current block
1275  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1276  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1277  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1278  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1279  MachineFunction::iterator It = ++BB->getIterator();
1280  MF->insert(It, loopMBB);
1281  MF->insert(It, sinkMBB);
1282  MF->insert(It, exitMBB);
1283
1284  // Transfer the remainder of BB and its successor edges to exitMBB.
1285  exitMBB->splice(exitMBB->begin(), BB,
1286                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1287  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1288
1289  BB->addSuccessor(loopMBB);
1290  loopMBB->addSuccessor(loopMBB);
1291  loopMBB->addSuccessor(sinkMBB);
1292  sinkMBB->addSuccessor(exitMBB);
1293
1294  //  thisMBB:
1295  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1296  //    and     alignedaddr,ptr,masklsb2
1297  //    andi    ptrlsb2,ptr,3
1298  //    sll     shiftamt,ptrlsb2,3
1299  //    ori     maskupper,$0,255               # 0xff
1300  //    sll     mask,maskupper,shiftamt
1301  //    nor     mask2,$0,mask
1302  //    sll     incr2,incr,shiftamt
1303
1304  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1305  BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2)
1306    .addReg(ABI.GetNullPtr()).addImm(-4);
1307  BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr)
1308    .addReg(Ptr).addReg(MaskLSB2);
1309  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1310      .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1311  if (Subtarget.isLittle()) {
1312    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1313  } else {
1314    unsigned Off = RegInfo.createVirtualRegister(RC);
1315    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1316      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1317    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1318  }
1319  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1320    .addReg(Mips::ZERO).addImm(MaskImm);
1321  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1322    .addReg(MaskUpper).addReg(ShiftAmt);
1323  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1324  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1325
1326  // atomic.load.binop
1327  // loopMBB:
1328  //   ll      oldval,0(alignedaddr)
1329  //   binop   binopres,oldval,incr2
1330  //   and     newval,binopres,mask
1331  //   and     maskedoldval0,oldval,mask2
1332  //   or      storeval,maskedoldval0,newval
1333  //   sc      success,storeval,0(alignedaddr)
1334  //   beq     success,$0,loopMBB
1335
1336  // atomic.swap
1337  // loopMBB:
1338  //   ll      oldval,0(alignedaddr)
1339  //   and     newval,incr2,mask
1340  //   and     maskedoldval0,oldval,mask2
1341  //   or      storeval,maskedoldval0,newval
1342  //   sc      success,storeval,0(alignedaddr)
1343  //   beq     success,$0,loopMBB
1344
1345  BB = loopMBB;
1346  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1347  if (Nand) {
1348    //  and andres, oldval, incr2
1349    //  nor binopres, $0, andres
1350    //  and newval, binopres, mask
1351    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1352    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1353      .addReg(Mips::ZERO).addReg(AndRes);
1354    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1355  } else if (BinOpcode) {
1356    //  <binop> binopres, oldval, incr2
1357    //  and newval, binopres, mask
1358    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1359    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1360  } else { // atomic.swap
1361    //  and newval, incr2, mask
1362    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1363  }
1364
1365  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1366    .addReg(OldVal).addReg(Mask2);
1367  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1368    .addReg(MaskedOldVal0).addReg(NewVal);
1369  BuildMI(BB, DL, TII->get(SC), Success)
1370    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1371  BuildMI(BB, DL, TII->get(Mips::BEQ))
1372    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1373
1374  //  sinkMBB:
1375  //    and     maskedoldval1,oldval,mask
1376  //    srl     srlres,maskedoldval1,shiftamt
1377  //    sign_extend dest,srlres
1378  BB = sinkMBB;
1379
1380  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1381    .addReg(OldVal).addReg(Mask);
1382  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1383      .addReg(MaskedOldVal1).addReg(ShiftAmt);
1384  BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes);
1385
1386  MI.eraseFromParent(); // The instruction is gone now.
1387
1388  return exitMBB;
1389}
1390
1391MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI,
1392                                                         MachineBasicBlock *BB,
1393                                                         unsigned Size) const {
1394  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1395
1396  MachineFunction *MF = BB->getParent();
1397  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1398  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1399  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1400  const bool ArePtrs64bit = ABI.ArePtrs64bit();
1401  DebugLoc DL = MI.getDebugLoc();
1402  unsigned LL, SC, ZERO, BNE, BEQ;
1403
1404  if (Size == 4) {
1405    if (isMicroMips) {
1406      LL = Mips::LL_MM;
1407      SC = Mips::SC_MM;
1408    } else {
1409      LL = Subtarget.hasMips32r6()
1410               ? (ArePtrs64bit ? Mips::LL64_R6 : Mips::LL_R6)
1411               : (ArePtrs64bit ? Mips::LL64 : Mips::LL);
1412      SC = Subtarget.hasMips32r6()
1413               ? (ArePtrs64bit ? Mips::SC64_R6 : Mips::SC_R6)
1414               : (ArePtrs64bit ? Mips::SC64 : Mips::SC);
1415    }
1416
1417    ZERO = Mips::ZERO;
1418    BNE = Mips::BNE;
1419    BEQ = Mips::BEQ;
1420  } else {
1421    LL = Subtarget.hasMips64r6() ? Mips::LLD_R6 : Mips::LLD;
1422    SC = Subtarget.hasMips64r6() ? Mips::SCD_R6 : Mips::SCD;
1423    ZERO = Mips::ZERO_64;
1424    BNE = Mips::BNE64;
1425    BEQ = Mips::BEQ64;
1426  }
1427
1428  unsigned Dest = MI.getOperand(0).getReg();
1429  unsigned Ptr = MI.getOperand(1).getReg();
1430  unsigned OldVal = MI.getOperand(2).getReg();
1431  unsigned NewVal = MI.getOperand(3).getReg();
1432
1433  unsigned Success = RegInfo.createVirtualRegister(RC);
1434
1435  // insert new blocks after the current block
1436  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1437  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1438  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1439  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1440  MachineFunction::iterator It = ++BB->getIterator();
1441  MF->insert(It, loop1MBB);
1442  MF->insert(It, loop2MBB);
1443  MF->insert(It, exitMBB);
1444
1445  // Transfer the remainder of BB and its successor edges to exitMBB.
1446  exitMBB->splice(exitMBB->begin(), BB,
1447                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1448  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1449
1450  //  thisMBB:
1451  //    ...
1452  //    fallthrough --> loop1MBB
1453  BB->addSuccessor(loop1MBB);
1454  loop1MBB->addSuccessor(exitMBB);
1455  loop1MBB->addSuccessor(loop2MBB);
1456  loop2MBB->addSuccessor(loop1MBB);
1457  loop2MBB->addSuccessor(exitMBB);
1458
1459  // loop1MBB:
1460  //   ll dest, 0(ptr)
1461  //   bne dest, oldval, exitMBB
1462  BB = loop1MBB;
1463  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1464  BuildMI(BB, DL, TII->get(BNE))
1465    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1466
1467  // loop2MBB:
1468  //   sc success, newval, 0(ptr)
1469  //   beq success, $0, loop1MBB
1470  BB = loop2MBB;
1471  BuildMI(BB, DL, TII->get(SC), Success)
1472    .addReg(NewVal).addReg(Ptr).addImm(0);
1473  BuildMI(BB, DL, TII->get(BEQ))
1474    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1475
1476  MI.eraseFromParent(); // The instruction is gone now.
1477
1478  return exitMBB;
1479}
1480
1481MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword(
1482    MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1483  assert((Size == 1 || Size == 2) &&
1484      "Unsupported size for EmitAtomicCmpSwapPartial.");
1485
1486  MachineFunction *MF = BB->getParent();
1487  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1488  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1489  const bool ArePtrs64bit = ABI.ArePtrs64bit();
1490  const TargetRegisterClass *RCp =
1491    getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1492  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1493  DebugLoc DL = MI.getDebugLoc();
1494
1495  unsigned Dest = MI.getOperand(0).getReg();
1496  unsigned Ptr = MI.getOperand(1).getReg();
1497  unsigned CmpVal = MI.getOperand(2).getReg();
1498  unsigned NewVal = MI.getOperand(3).getReg();
1499
1500  unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp);
1501  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1502  unsigned Mask = RegInfo.createVirtualRegister(RC);
1503  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1504  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1505  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1506  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1507  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1508  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1509  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1510  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1511  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1512  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1513  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1514  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1515  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1516  unsigned Success = RegInfo.createVirtualRegister(RC);
1517  unsigned LL, SC;
1518
1519  if (isMicroMips) {
1520    LL = Mips::LL_MM;
1521    SC = Mips::SC_MM;
1522  } else {
1523    LL = Subtarget.hasMips32r6() ? (ArePtrs64bit ? Mips::LL64_R6 : Mips::LL_R6)
1524                                 : (ArePtrs64bit ? Mips::LL64 : Mips::LL);
1525    SC = Subtarget.hasMips32r6() ? (ArePtrs64bit ? Mips::SC64_R6 : Mips::SC_R6)
1526                                 : (ArePtrs64bit ? Mips::SC64 : Mips::SC);
1527  }
1528
1529  // insert new blocks after the current block
1530  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1531  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1532  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1533  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1534  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1535  MachineFunction::iterator It = ++BB->getIterator();
1536  MF->insert(It, loop1MBB);
1537  MF->insert(It, loop2MBB);
1538  MF->insert(It, sinkMBB);
1539  MF->insert(It, exitMBB);
1540
1541  // Transfer the remainder of BB and its successor edges to exitMBB.
1542  exitMBB->splice(exitMBB->begin(), BB,
1543                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1544  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1545
1546  BB->addSuccessor(loop1MBB);
1547  loop1MBB->addSuccessor(sinkMBB);
1548  loop1MBB->addSuccessor(loop2MBB);
1549  loop2MBB->addSuccessor(loop1MBB);
1550  loop2MBB->addSuccessor(sinkMBB);
1551  sinkMBB->addSuccessor(exitMBB);
1552
1553  // FIXME: computation of newval2 can be moved to loop2MBB.
1554  //  thisMBB:
1555  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1556  //    and     alignedaddr,ptr,masklsb2
1557  //    andi    ptrlsb2,ptr,3
1558  //    xori    ptrlsb2,ptrlsb2,3              # Only for BE
1559  //    sll     shiftamt,ptrlsb2,3
1560  //    ori     maskupper,$0,255               # 0xff
1561  //    sll     mask,maskupper,shiftamt
1562  //    nor     mask2,$0,mask
1563  //    andi    maskedcmpval,cmpval,255
1564  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1565  //    andi    maskednewval,newval,255
1566  //    sll     shiftednewval,maskednewval,shiftamt
1567  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1568  BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2)
1569    .addReg(ABI.GetNullPtr()).addImm(-4);
1570  BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr)
1571    .addReg(Ptr).addReg(MaskLSB2);
1572  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1573      .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1574  if (Subtarget.isLittle()) {
1575    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1576  } else {
1577    unsigned Off = RegInfo.createVirtualRegister(RC);
1578    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1579      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1580    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1581  }
1582  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1583    .addReg(Mips::ZERO).addImm(MaskImm);
1584  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1585    .addReg(MaskUpper).addReg(ShiftAmt);
1586  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1587  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1588    .addReg(CmpVal).addImm(MaskImm);
1589  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1590    .addReg(MaskedCmpVal).addReg(ShiftAmt);
1591  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1592    .addReg(NewVal).addImm(MaskImm);
1593  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1594    .addReg(MaskedNewVal).addReg(ShiftAmt);
1595
1596  //  loop1MBB:
1597  //    ll      oldval,0(alginedaddr)
1598  //    and     maskedoldval0,oldval,mask
1599  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1600  BB = loop1MBB;
1601  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1602  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1603    .addReg(OldVal).addReg(Mask);
1604  BuildMI(BB, DL, TII->get(Mips::BNE))
1605    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1606
1607  //  loop2MBB:
1608  //    and     maskedoldval1,oldval,mask2
1609  //    or      storeval,maskedoldval1,shiftednewval
1610  //    sc      success,storeval,0(alignedaddr)
1611  //    beq     success,$0,loop1MBB
1612  BB = loop2MBB;
1613  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1614    .addReg(OldVal).addReg(Mask2);
1615  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1616    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1617  BuildMI(BB, DL, TII->get(SC), Success)
1618      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1619  BuildMI(BB, DL, TII->get(Mips::BEQ))
1620      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1621
1622  //  sinkMBB:
1623  //    srl     srlres,maskedoldval0,shiftamt
1624  //    sign_extend dest,srlres
1625  BB = sinkMBB;
1626
1627  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1628      .addReg(MaskedOldVal0).addReg(ShiftAmt);
1629  BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes);
1630
1631  MI.eraseFromParent(); // The instruction is gone now.
1632
1633  return exitMBB;
1634}
1635
1636MachineBasicBlock *MipsTargetLowering::emitSEL_D(MachineInstr &MI,
1637                                                 MachineBasicBlock *BB) const {
1638  MachineFunction *MF = BB->getParent();
1639  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1640  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1641  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1642  DebugLoc DL = MI.getDebugLoc();
1643  MachineBasicBlock::iterator II(MI);
1644
1645  unsigned Fc = MI.getOperand(1).getReg();
1646  const auto &FGR64RegClass = TRI->getRegClass(Mips::FGR64RegClassID);
1647
1648  unsigned Fc2 = RegInfo.createVirtualRegister(FGR64RegClass);
1649
1650  BuildMI(*BB, II, DL, TII->get(Mips::SUBREG_TO_REG), Fc2)
1651      .addImm(0)
1652      .addReg(Fc)
1653      .addImm(Mips::sub_lo);
1654
1655  // We don't erase the original instruction, we just replace the condition
1656  // register with the 64-bit super-register.
1657  MI.getOperand(1).setReg(Fc2);
1658
1659  return BB;
1660}
1661
1662//===----------------------------------------------------------------------===//
1663//  Misc Lower Operation implementation
1664//===----------------------------------------------------------------------===//
1665SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1666  SDValue Chain = Op.getOperand(0);
1667  SDValue Table = Op.getOperand(1);
1668  SDValue Index = Op.getOperand(2);
1669  SDLoc DL(Op);
1670  auto &TD = DAG.getDataLayout();
1671  EVT PTy = getPointerTy(TD);
1672  unsigned EntrySize =
1673      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
1674
1675  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1676                      DAG.getConstant(EntrySize, DL, PTy));
1677  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1678
1679  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1680  Addr =
1681      DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1682                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()),
1683                     MemVT, false, false, false, 0);
1684  Chain = Addr.getValue(1);
1685
1686  if (isPositionIndependent() || ABI.IsN64()) {
1687    // For PIC, the sequence is:
1688    // BRIND(load(Jumptable + index) + RelocBase)
1689    // RelocBase can be JumpTable, GOT or some sort of global base.
1690    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1691                       getPICJumpTableRelocBase(Table, DAG));
1692  }
1693
1694  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1695}
1696
1697SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1698  // The first operand is the chain, the second is the condition, the third is
1699  // the block to branch to if the condition is true.
1700  SDValue Chain = Op.getOperand(0);
1701  SDValue Dest = Op.getOperand(2);
1702  SDLoc DL(Op);
1703
1704  assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1705  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1706
1707  // Return if flag is not set by a floating point comparison.
1708  if (CondRes.getOpcode() != MipsISD::FPCmp)
1709    return Op;
1710
1711  SDValue CCNode  = CondRes.getOperand(2);
1712  Mips::CondCode CC =
1713    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1714  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1715  SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32);
1716  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1717  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1718                     FCC0, Dest, CondRes);
1719}
1720
1721SDValue MipsTargetLowering::
1722lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1723{
1724  assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1725  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1726
1727  // Return if flag is not set by a floating point comparison.
1728  if (Cond.getOpcode() != MipsISD::FPCmp)
1729    return Op;
1730
1731  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1732                      SDLoc(Op));
1733}
1734
1735SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1736  assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1737  SDValue Cond = createFPCmp(DAG, Op);
1738
1739  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1740         "Floating point operand expected.");
1741
1742  SDLoc DL(Op);
1743  SDValue True  = DAG.getConstant(1, DL, MVT::i32);
1744  SDValue False = DAG.getConstant(0, DL, MVT::i32);
1745
1746  return createCMovFP(DAG, Cond, True, False, DL);
1747}
1748
1749SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1750                                               SelectionDAG &DAG) const {
1751  EVT Ty = Op.getValueType();
1752  GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1753  const GlobalValue *GV = N->getGlobal();
1754
1755  if (!isPositionIndependent() && !ABI.IsN64()) {
1756    const MipsTargetObjectFile *TLOF =
1757        static_cast<const MipsTargetObjectFile *>(
1758            getTargetMachine().getObjFileLowering());
1759    if (TLOF->IsGlobalInSmallSection(GV, getTargetMachine()))
1760      // %gp_rel relocation
1761      return getAddrGPRel(N, SDLoc(N), Ty, DAG);
1762
1763    // %hi/%lo relocation
1764    return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
1765  }
1766
1767  // Every other architecture would use shouldAssumeDSOLocal in here, but
1768  // mips is special.
1769  // * In PIC code mips requires got loads even for local statics!
1770  // * To save on got entries, for local statics the got entry contains the
1771  //   page and an additional add instruction takes care of the low bits.
1772  // * It is legal to access a hidden symbol with a non hidden undefined,
1773  //   so one cannot guarantee that all access to a hidden symbol will know
1774  //   it is hidden.
1775  // * Mips linkers don't support creating a page and a full got entry for
1776  //   the same symbol.
1777  // * Given all that, we have to use a full got entry for hidden symbols :-(
1778  if (GV->hasLocalLinkage())
1779    return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
1780
1781  if (LargeGOT)
1782    return getAddrGlobalLargeGOT(
1783        N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16,
1784        DAG.getEntryNode(),
1785        MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1786
1787  return getAddrGlobal(
1788      N, SDLoc(N), Ty, DAG,
1789      (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT,
1790      DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1791}
1792
1793SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1794                                              SelectionDAG &DAG) const {
1795  BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
1796  EVT Ty = Op.getValueType();
1797
1798  if (!isPositionIndependent() && !ABI.IsN64())
1799    return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
1800
1801  return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
1802}
1803
1804SDValue MipsTargetLowering::
1805lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1806{
1807  // If the relocation model is PIC, use the General Dynamic TLS Model or
1808  // Local Dynamic TLS model, otherwise use the Initial Exec or
1809  // Local Exec TLS Model.
1810
1811  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1812  if (DAG.getTarget().Options.EmulatedTLS)
1813    return LowerToTLSEmulatedModel(GA, DAG);
1814
1815  SDLoc DL(GA);
1816  const GlobalValue *GV = GA->getGlobal();
1817  EVT PtrVT = getPointerTy(DAG.getDataLayout());
1818
1819  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1820
1821  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1822    // General Dynamic and Local Dynamic TLS Model.
1823    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1824                                                      : MipsII::MO_TLSGD;
1825
1826    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1827    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1828                                   getGlobalReg(DAG, PtrVT), TGA);
1829    unsigned PtrSize = PtrVT.getSizeInBits();
1830    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1831
1832    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1833
1834    ArgListTy Args;
1835    ArgListEntry Entry;
1836    Entry.Node = Argument;
1837    Entry.Ty = PtrTy;
1838    Args.push_back(Entry);
1839
1840    TargetLowering::CallLoweringInfo CLI(DAG);
1841    CLI.setDebugLoc(DL).setChain(DAG.getEntryNode())
1842      .setCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args));
1843    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1844
1845    SDValue Ret = CallResult.first;
1846
1847    if (model != TLSModel::LocalDynamic)
1848      return Ret;
1849
1850    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1851                                               MipsII::MO_DTPREL_HI);
1852    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1853    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1854                                               MipsII::MO_DTPREL_LO);
1855    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1856    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1857    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1858  }
1859
1860  SDValue Offset;
1861  if (model == TLSModel::InitialExec) {
1862    // Initial Exec TLS Model
1863    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1864                                             MipsII::MO_GOTTPREL);
1865    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1866                      TGA);
1867    Offset = DAG.getLoad(PtrVT, DL,
1868                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1869                         false, false, false, 0);
1870  } else {
1871    // Local Exec TLS Model
1872    assert(model == TLSModel::LocalExec);
1873    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1874                                               MipsII::MO_TPREL_HI);
1875    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1876                                               MipsII::MO_TPREL_LO);
1877    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1878    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1879    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1880  }
1881
1882  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1883  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1884}
1885
1886SDValue MipsTargetLowering::
1887lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1888{
1889  JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
1890  EVT Ty = Op.getValueType();
1891
1892  if (!isPositionIndependent() && !ABI.IsN64())
1893    return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
1894
1895  return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
1896}
1897
1898SDValue MipsTargetLowering::
1899lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1900{
1901  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1902  EVT Ty = Op.getValueType();
1903
1904  if (!isPositionIndependent() && !ABI.IsN64()) {
1905    const MipsTargetObjectFile *TLOF =
1906        static_cast<const MipsTargetObjectFile *>(
1907            getTargetMachine().getObjFileLowering());
1908
1909    if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(),
1910                                       getTargetMachine()))
1911      // %gp_rel relocation
1912      return getAddrGPRel(N, SDLoc(N), Ty, DAG);
1913
1914    return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
1915  }
1916
1917  return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
1918}
1919
1920SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1921  MachineFunction &MF = DAG.getMachineFunction();
1922  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1923
1924  SDLoc DL(Op);
1925  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1926                                 getPointerTy(MF.getDataLayout()));
1927
1928  // vastart just stores the address of the VarArgsFrameIndex slot into the
1929  // memory location argument.
1930  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1931  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1932                      MachinePointerInfo(SV), false, false, 0);
1933}
1934
1935SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
1936  SDNode *Node = Op.getNode();
1937  EVT VT = Node->getValueType(0);
1938  SDValue Chain = Node->getOperand(0);
1939  SDValue VAListPtr = Node->getOperand(1);
1940  unsigned Align = Node->getConstantOperandVal(3);
1941  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1942  SDLoc DL(Node);
1943  unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4;
1944
1945  SDValue VAListLoad =
1946      DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain, VAListPtr,
1947                  MachinePointerInfo(SV), false, false, false, 0);
1948  SDValue VAList = VAListLoad;
1949
1950  // Re-align the pointer if necessary.
1951  // It should only ever be necessary for 64-bit types on O32 since the minimum
1952  // argument alignment is the same as the maximum type alignment for N32/N64.
1953  //
1954  // FIXME: We currently align too often. The code generator doesn't notice
1955  //        when the pointer is still aligned from the last va_arg (or pair of
1956  //        va_args for the i64 on O32 case).
1957  if (Align > getMinStackArgumentAlignment()) {
1958    assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1959
1960    VAList = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
1961                         DAG.getConstant(Align - 1, DL, VAList.getValueType()));
1962
1963    VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList,
1964                         DAG.getConstant(-(int64_t)Align, DL,
1965                                         VAList.getValueType()));
1966  }
1967
1968  // Increment the pointer, VAList, to the next vaarg.
1969  auto &TD = DAG.getDataLayout();
1970  unsigned ArgSizeInBytes =
1971      TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
1972  SDValue Tmp3 =
1973      DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
1974                  DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes),
1975                                  DL, VAList.getValueType()));
1976  // Store the incremented VAList to the legalized pointer
1977  Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
1978                      MachinePointerInfo(SV), false, false, 0);
1979
1980  // In big-endian mode we must adjust the pointer when the load size is smaller
1981  // than the argument slot size. We must also reduce the known alignment to
1982  // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
1983  // the correct half of the slot, and reduce the alignment from 8 (slot
1984  // alignment) down to 4 (type alignment).
1985  if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
1986    unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
1987    VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
1988                         DAG.getIntPtrConstant(Adjustment, DL));
1989  }
1990  // Load the actual argument out of the pointer VAList
1991  return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo(), false, false,
1992                     false, 0);
1993}
1994
1995static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
1996                                bool HasExtractInsert) {
1997  EVT TyX = Op.getOperand(0).getValueType();
1998  EVT TyY = Op.getOperand(1).getValueType();
1999  SDLoc DL(Op);
2000  SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2001  SDValue Const31 = DAG.getConstant(31, DL, MVT::i32);
2002  SDValue Res;
2003
2004  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2005  // to i32.
2006  SDValue X = (TyX == MVT::f32) ?
2007    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2008    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2009                Const1);
2010  SDValue Y = (TyY == MVT::f32) ?
2011    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
2012    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
2013                Const1);
2014
2015  if (HasExtractInsert) {
2016    // ext  E, Y, 31, 1  ; extract bit31 of Y
2017    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
2018    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
2019    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
2020  } else {
2021    // sll SllX, X, 1
2022    // srl SrlX, SllX, 1
2023    // srl SrlY, Y, 31
2024    // sll SllY, SrlX, 31
2025    // or  Or, SrlX, SllY
2026    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2027    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2028    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
2029    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
2030    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
2031  }
2032
2033  if (TyX == MVT::f32)
2034    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
2035
2036  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2037                             Op.getOperand(0),
2038                             DAG.getConstant(0, DL, MVT::i32));
2039  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2040}
2041
2042static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
2043                                bool HasExtractInsert) {
2044  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
2045  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
2046  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
2047  SDLoc DL(Op);
2048  SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2049
2050  // Bitcast to integer nodes.
2051  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
2052  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
2053
2054  if (HasExtractInsert) {
2055    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
2056    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
2057    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2058                            DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1);
2059
2060    if (WidthX > WidthY)
2061      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2062    else if (WidthY > WidthX)
2063      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2064
2065    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2066                            DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1,
2067                            X);
2068    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2069  }
2070
2071  // (d)sll SllX, X, 1
2072  // (d)srl SrlX, SllX, 1
2073  // (d)srl SrlY, Y, width(Y)-1
2074  // (d)sll SllY, SrlX, width(Y)-1
2075  // or     Or, SrlX, SllY
2076  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2077  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2078  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2079                             DAG.getConstant(WidthY - 1, DL, MVT::i32));
2080
2081  if (WidthX > WidthY)
2082    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2083  else if (WidthY > WidthX)
2084    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2085
2086  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2087                             DAG.getConstant(WidthX - 1, DL, MVT::i32));
2088  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2089  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2090}
2091
2092SDValue
2093MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2094  if (Subtarget.isGP64bit())
2095    return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());
2096
2097  return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
2098}
2099
2100SDValue MipsTargetLowering::
2101lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2102  // check the depth
2103  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2104         "Frame address can only be determined for current frame.");
2105
2106  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2107  MFI->setFrameAddressIsTaken(true);
2108  EVT VT = Op.getValueType();
2109  SDLoc DL(Op);
2110  SDValue FrameAddr = DAG.getCopyFromReg(
2111      DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT);
2112  return FrameAddr;
2113}
2114
2115SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
2116                                            SelectionDAG &DAG) const {
2117  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2118    return SDValue();
2119
2120  // check the depth
2121  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2122         "Return address can be determined only for current frame.");
2123
2124  MachineFunction &MF = DAG.getMachineFunction();
2125  MachineFrameInfo *MFI = MF.getFrameInfo();
2126  MVT VT = Op.getSimpleValueType();
2127  unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA;
2128  MFI->setReturnAddressIsTaken(true);
2129
2130  // Return RA, which contains the return address. Mark it an implicit live-in.
2131  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2132  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
2133}
2134
2135// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2136// generated from __builtin_eh_return (offset, handler)
2137// The effect of this is to adjust the stack pointer by "offset"
2138// and then branch to "handler".
2139SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
2140                                                                     const {
2141  MachineFunction &MF = DAG.getMachineFunction();
2142  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2143
2144  MipsFI->setCallsEhReturn();
2145  SDValue Chain     = Op.getOperand(0);
2146  SDValue Offset    = Op.getOperand(1);
2147  SDValue Handler   = Op.getOperand(2);
2148  SDLoc DL(Op);
2149  EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2150
2151  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2152  // EH_RETURN nodes, so that instructions are emitted back-to-back.
2153  unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1;
2154  unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
2155  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
2156  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
2157  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
2158                     DAG.getRegister(OffsetReg, Ty),
2159                     DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())),
2160                     Chain.getValue(1));
2161}
2162
2163SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
2164                                              SelectionDAG &DAG) const {
2165  // FIXME: Need pseudo-fence for 'singlethread' fences
2166  // FIXME: Set SType for weaker fences where supported/appropriate.
2167  unsigned SType = 0;
2168  SDLoc DL(Op);
2169  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
2170                     DAG.getConstant(SType, DL, MVT::i32));
2171}
2172
2173SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
2174                                                SelectionDAG &DAG) const {
2175  SDLoc DL(Op);
2176  MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2177
2178  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2179  SDValue Shamt = Op.getOperand(2);
2180  // if shamt < (VT.bits):
2181  //  lo = (shl lo, shamt)
2182  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2183  // else:
2184  //  lo = 0
2185  //  hi = (shl lo, shamt[4:0])
2186  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2187                            DAG.getConstant(-1, DL, MVT::i32));
2188  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo,
2189                                      DAG.getConstant(1, DL, VT));
2190  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not);
2191  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2192  SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2193  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2194  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2195                             DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2196  Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2197                   DAG.getConstant(0, DL, VT), ShiftLeftLo);
2198  Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or);
2199
2200  SDValue Ops[2] = {Lo, Hi};
2201  return DAG.getMergeValues(Ops, DL);
2202}
2203
2204SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2205                                                 bool IsSRA) const {
2206  SDLoc DL(Op);
2207  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2208  SDValue Shamt = Op.getOperand(2);
2209  MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2210
2211  // if shamt < (VT.bits):
2212  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2213  //  if isSRA:
2214  //    hi = (sra hi, shamt)
2215  //  else:
2216  //    hi = (srl hi, shamt)
2217  // else:
2218  //  if isSRA:
2219  //   lo = (sra hi, shamt[4:0])
2220  //   hi = (sra hi, 31)
2221  //  else:
2222  //   lo = (srl hi, shamt[4:0])
2223  //   hi = 0
2224  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2225                            DAG.getConstant(-1, DL, MVT::i32));
2226  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
2227                                     DAG.getConstant(1, DL, VT));
2228  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not);
2229  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2230  SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2231  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL,
2232                                     DL, VT, Hi, Shamt);
2233  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2234                             DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2235  SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi,
2236                            DAG.getConstant(VT.getSizeInBits() - 1, DL, VT));
2237  Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or);
2238  Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2239                   IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi);
2240
2241  SDValue Ops[2] = {Lo, Hi};
2242  return DAG.getMergeValues(Ops, DL);
2243}
2244
2245static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2246                            SDValue Chain, SDValue Src, unsigned Offset) {
2247  SDValue Ptr = LD->getBasePtr();
2248  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2249  EVT BasePtrVT = Ptr.getValueType();
2250  SDLoc DL(LD);
2251  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2252
2253  if (Offset)
2254    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2255                      DAG.getConstant(Offset, DL, BasePtrVT));
2256
2257  SDValue Ops[] = { Chain, Ptr, Src };
2258  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2259                                 LD->getMemOperand());
2260}
2261
2262// Expand an unaligned 32 or 64-bit integer load node.
2263SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2264  LoadSDNode *LD = cast<LoadSDNode>(Op);
2265  EVT MemVT = LD->getMemoryVT();
2266
2267  if (Subtarget.systemSupportsUnalignedAccess())
2268    return Op;
2269
2270  // Return if load is aligned or if MemVT is neither i32 nor i64.
2271  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2272      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2273    return SDValue();
2274
2275  bool IsLittle = Subtarget.isLittle();
2276  EVT VT = Op.getValueType();
2277  ISD::LoadExtType ExtType = LD->getExtensionType();
2278  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2279
2280  assert((VT == MVT::i32) || (VT == MVT::i64));
2281
2282  // Expand
2283  //  (set dst, (i64 (load baseptr)))
2284  // to
2285  //  (set tmp, (ldl (add baseptr, 7), undef))
2286  //  (set dst, (ldr baseptr, tmp))
2287  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2288    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2289                               IsLittle ? 7 : 0);
2290    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2291                        IsLittle ? 0 : 7);
2292  }
2293
2294  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2295                             IsLittle ? 3 : 0);
2296  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2297                             IsLittle ? 0 : 3);
2298
2299  // Expand
2300  //  (set dst, (i32 (load baseptr))) or
2301  //  (set dst, (i64 (sextload baseptr))) or
2302  //  (set dst, (i64 (extload baseptr)))
2303  // to
2304  //  (set tmp, (lwl (add baseptr, 3), undef))
2305  //  (set dst, (lwr baseptr, tmp))
2306  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2307      (ExtType == ISD::EXTLOAD))
2308    return LWR;
2309
2310  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2311
2312  // Expand
2313  //  (set dst, (i64 (zextload baseptr)))
2314  // to
2315  //  (set tmp0, (lwl (add baseptr, 3), undef))
2316  //  (set tmp1, (lwr baseptr, tmp0))
2317  //  (set tmp2, (shl tmp1, 32))
2318  //  (set dst, (srl tmp2, 32))
2319  SDLoc DL(LD);
2320  SDValue Const32 = DAG.getConstant(32, DL, MVT::i32);
2321  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2322  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2323  SDValue Ops[] = { SRL, LWR.getValue(1) };
2324  return DAG.getMergeValues(Ops, DL);
2325}
2326
2327static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2328                             SDValue Chain, unsigned Offset) {
2329  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2330  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2331  SDLoc DL(SD);
2332  SDVTList VTList = DAG.getVTList(MVT::Other);
2333
2334  if (Offset)
2335    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2336                      DAG.getConstant(Offset, DL, BasePtrVT));
2337
2338  SDValue Ops[] = { Chain, Value, Ptr };
2339  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2340                                 SD->getMemOperand());
2341}
2342
2343// Expand an unaligned 32 or 64-bit integer store node.
2344static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2345                                      bool IsLittle) {
2346  SDValue Value = SD->getValue(), Chain = SD->getChain();
2347  EVT VT = Value.getValueType();
2348
2349  // Expand
2350  //  (store val, baseptr) or
2351  //  (truncstore val, baseptr)
2352  // to
2353  //  (swl val, (add baseptr, 3))
2354  //  (swr val, baseptr)
2355  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2356    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2357                                IsLittle ? 3 : 0);
2358    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2359  }
2360
2361  assert(VT == MVT::i64);
2362
2363  // Expand
2364  //  (store val, baseptr)
2365  // to
2366  //  (sdl val, (add baseptr, 7))
2367  //  (sdr val, baseptr)
2368  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2369  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2370}
2371
2372// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2373static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2374  SDValue Val = SD->getValue();
2375
2376  if (Val.getOpcode() != ISD::FP_TO_SINT)
2377    return SDValue();
2378
2379  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2380  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2381                           Val.getOperand(0));
2382
2383  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2384                      SD->getPointerInfo(), SD->isVolatile(),
2385                      SD->isNonTemporal(), SD->getAlignment());
2386}
2387
2388SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2389  StoreSDNode *SD = cast<StoreSDNode>(Op);
2390  EVT MemVT = SD->getMemoryVT();
2391
2392  // Lower unaligned integer stores.
2393  if (!Subtarget.systemSupportsUnalignedAccess() &&
2394      (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2395      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2396    return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());
2397
2398  return lowerFP_TO_SINT_STORE(SD, DAG);
2399}
2400
2401SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2402  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2403      || cast<ConstantSDNode>
2404        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2405      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2406    return SDValue();
2407
2408  // The pattern
2409  //   (add (frameaddr 0), (frame_to_args_offset))
2410  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2411  //   (add FrameObject, 0)
2412  // where FrameObject is a fixed StackObject with offset 0 which points to
2413  // the old stack pointer.
2414  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2415  EVT ValTy = Op->getValueType(0);
2416  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2417  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2418  SDLoc DL(Op);
2419  return DAG.getNode(ISD::ADD, DL, ValTy, InArgsAddr,
2420                     DAG.getConstant(0, DL, ValTy));
2421}
2422
2423SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2424                                            SelectionDAG &DAG) const {
2425  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2426  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2427                              Op.getOperand(0));
2428  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2429}
2430
2431//===----------------------------------------------------------------------===//
2432//                      Calling Convention Implementation
2433//===----------------------------------------------------------------------===//
2434
2435//===----------------------------------------------------------------------===//
2436// TODO: Implement a generic logic using tblgen that can support this.
2437// Mips O32 ABI rules:
2438// ---
2439// i32 - Passed in A0, A1, A2, A3 and stack
2440// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2441//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2442// f64 - Only passed in two aliased f32 registers if no int reg has been used
2443//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2444//       not used, it must be shadowed. If only A3 is available, shadow it and
2445//       go to stack.
2446//
2447//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2448//===----------------------------------------------------------------------===//
2449
2450static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2451                       CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2452                       CCState &State, ArrayRef<MCPhysReg> F64Regs) {
2453  const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>(
2454      State.getMachineFunction().getSubtarget());
2455
2456  static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
2457  static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
2458
2459  // Do not process byval args here.
2460  if (ArgFlags.isByVal())
2461    return true;
2462
2463  // Promote i8 and i16
2464  if (ArgFlags.isInReg() && !Subtarget.isLittle()) {
2465    if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) {
2466      LocVT = MVT::i32;
2467      if (ArgFlags.isSExt())
2468        LocInfo = CCValAssign::SExtUpper;
2469      else if (ArgFlags.isZExt())
2470        LocInfo = CCValAssign::ZExtUpper;
2471      else
2472        LocInfo = CCValAssign::AExtUpper;
2473    }
2474  }
2475
2476  // Promote i8 and i16
2477  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2478    LocVT = MVT::i32;
2479    if (ArgFlags.isSExt())
2480      LocInfo = CCValAssign::SExt;
2481    else if (ArgFlags.isZExt())
2482      LocInfo = CCValAssign::ZExt;
2483    else
2484      LocInfo = CCValAssign::AExt;
2485  }
2486
2487  unsigned Reg;
2488
2489  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2490  // is true: function is vararg, argument is 3rd or higher, there is previous
2491  // argument which is not f32 or f64.
2492  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 ||
2493                                State.getFirstUnallocated(F32Regs) != ValNo;
2494  unsigned OrigAlign = ArgFlags.getOrigAlign();
2495  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2496
2497  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2498    Reg = State.AllocateReg(IntRegs);
2499    // If this is the first part of an i64 arg,
2500    // the allocated register must be either A0 or A2.
2501    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2502      Reg = State.AllocateReg(IntRegs);
2503    LocVT = MVT::i32;
2504  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2505    // Allocate int register and shadow next int register. If first
2506    // available register is Mips::A1 or Mips::A3, shadow it too.
2507    Reg = State.AllocateReg(IntRegs);
2508    if (Reg == Mips::A1 || Reg == Mips::A3)
2509      Reg = State.AllocateReg(IntRegs);
2510    State.AllocateReg(IntRegs);
2511    LocVT = MVT::i32;
2512  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2513    // we are guaranteed to find an available float register
2514    if (ValVT == MVT::f32) {
2515      Reg = State.AllocateReg(F32Regs);
2516      // Shadow int register
2517      State.AllocateReg(IntRegs);
2518    } else {
2519      Reg = State.AllocateReg(F64Regs);
2520      // Shadow int registers
2521      unsigned Reg2 = State.AllocateReg(IntRegs);
2522      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2523        State.AllocateReg(IntRegs);
2524      State.AllocateReg(IntRegs);
2525    }
2526  } else
2527    llvm_unreachable("Cannot handle this ValVT.");
2528
2529  if (!Reg) {
2530    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2531                                          OrigAlign);
2532    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2533  } else
2534    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2535
2536  return false;
2537}
2538
2539static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2540                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2541                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2542  static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
2543
2544  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2545}
2546
2547static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2548                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2549                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2550  static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
2551
2552  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2553}
2554
2555static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2556                       CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2557                       CCState &State) LLVM_ATTRIBUTE_UNUSED;
2558
2559#include "MipsGenCallingConv.inc"
2560
2561//===----------------------------------------------------------------------===//
2562//                  Call Calling Convention Implementation
2563//===----------------------------------------------------------------------===//
2564
2565// Return next O32 integer argument register.
2566static unsigned getNextIntArgReg(unsigned Reg) {
2567  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2568  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2569}
2570
2571SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2572                                           SDValue Chain, SDValue Arg,
2573                                           const SDLoc &DL, bool IsTailCall,
2574                                           SelectionDAG &DAG) const {
2575  if (!IsTailCall) {
2576    SDValue PtrOff =
2577        DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
2578                    DAG.getIntPtrConstant(Offset, DL));
2579    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2580                        false, 0);
2581  }
2582
2583  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2584  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2585  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2586  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2587                      /*isVolatile=*/ true, false, 0);
2588}
2589
2590void MipsTargetLowering::
2591getOpndList(SmallVectorImpl<SDValue> &Ops,
2592            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2593            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2594            bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
2595            SDValue Chain) const {
2596  // Insert node "GP copy globalreg" before call to function.
2597  //
2598  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2599  // in PIC mode) allow symbols to be resolved via lazy binding.
2600  // The lazy binding stub requires GP to point to the GOT.
2601  // Note that we don't need GP to point to the GOT for indirect calls
2602  // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
2603  // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
2604  // used for the function (that is, Mips linker doesn't generate lazy binding
2605  // stub for a function whose address is taken in the program).
2606  if (IsPICCall && !InternalLinkage && IsCallReloc) {
2607    unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP;
2608    EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2609    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2610  }
2611
2612  // Build a sequence of copy-to-reg nodes chained together with token
2613  // chain and flag operands which copy the outgoing args into registers.
2614  // The InFlag in necessary since all emitted instructions must be
2615  // stuck together.
2616  SDValue InFlag;
2617
2618  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2619    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2620                                 RegsToPass[i].second, InFlag);
2621    InFlag = Chain.getValue(1);
2622  }
2623
2624  // Add argument registers to the end of the list so that they are
2625  // known live into the call.
2626  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2627    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2628                                      RegsToPass[i].second.getValueType()));
2629
2630  // Add a register mask operand representing the call-preserved registers.
2631  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2632  const uint32_t *Mask =
2633      TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv);
2634  assert(Mask && "Missing call preserved mask for calling convention");
2635  if (Subtarget.inMips16HardFloat()) {
2636    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2637      llvm::StringRef Sym = G->getGlobal()->getName();
2638      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2639      if (F && F->hasFnAttribute("__Mips16RetHelper")) {
2640        Mask = MipsRegisterInfo::getMips16RetHelperMask();
2641      }
2642    }
2643  }
2644  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2645
2646  if (InFlag.getNode())
2647    Ops.push_back(InFlag);
2648}
2649
2650/// LowerCall - functions arguments are copied from virtual regs to
2651/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2652SDValue
2653MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2654                              SmallVectorImpl<SDValue> &InVals) const {
2655  SelectionDAG &DAG                     = CLI.DAG;
2656  SDLoc DL                              = CLI.DL;
2657  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2658  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2659  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2660  SDValue Chain                         = CLI.Chain;
2661  SDValue Callee                        = CLI.Callee;
2662  bool &IsTailCall                      = CLI.IsTailCall;
2663  CallingConv::ID CallConv              = CLI.CallConv;
2664  bool IsVarArg                         = CLI.IsVarArg;
2665
2666  MachineFunction &MF = DAG.getMachineFunction();
2667  MachineFrameInfo *MFI = MF.getFrameInfo();
2668  const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
2669  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2670  bool IsPIC = isPositionIndependent();
2671
2672  // Analyze operands of the call, assigning locations to each operand.
2673  SmallVector<CCValAssign, 16> ArgLocs;
2674  MipsCCState CCInfo(
2675      CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
2676      MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));
2677
2678  // Allocate the reserved argument area. It seems strange to do this from the
2679  // caller side but removing it breaks the frame size calculation.
2680  CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1);
2681
2682  CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(), Callee.getNode());
2683
2684  // Get a count of how many bytes are to be pushed on the stack.
2685  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2686
2687  // Check if it's really possible to do a tail call.
2688  if (IsTailCall)
2689    IsTailCall = isEligibleForTailCallOptimization(
2690        CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>());
2691
2692  if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2693    report_fatal_error("failed to perform tail call elimination on a call "
2694                       "site marked musttail");
2695
2696  if (IsTailCall)
2697    ++NumTailCalls;
2698
2699  // Chain is the output chain of the last Load/Store or CopyToReg node.
2700  // ByValChain is the output chain of the last Memcpy node created for copying
2701  // byval arguments to the stack.
2702  unsigned StackAlignment = TFL->getStackAlignment();
2703  NextStackOffset = alignTo(NextStackOffset, StackAlignment);
2704  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true);
2705
2706  if (!IsTailCall)
2707    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
2708
2709  SDValue StackPtr =
2710      DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP,
2711                         getPointerTy(DAG.getDataLayout()));
2712
2713  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2714  SmallVector<SDValue, 8> MemOpChains;
2715
2716  CCInfo.rewindByValRegsInfo();
2717
2718  // Walk the register/memloc assignments, inserting copies/loads.
2719  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2720    SDValue Arg = OutVals[i];
2721    CCValAssign &VA = ArgLocs[i];
2722    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2723    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2724    bool UseUpperBits = false;
2725
2726    // ByVal Arg.
2727    if (Flags.isByVal()) {
2728      unsigned FirstByValReg, LastByValReg;
2729      unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
2730      CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
2731
2732      assert(Flags.getByValSize() &&
2733             "ByVal args of size 0 should have been ignored by front-end.");
2734      assert(ByValIdx < CCInfo.getInRegsParamsCount());
2735      assert(!IsTailCall &&
2736             "Do not tail-call optimize if there is a byval argument.");
2737      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2738                   FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(),
2739                   VA);
2740      CCInfo.nextInRegsParam();
2741      continue;
2742    }
2743
2744    // Promote the value if needed.
2745    switch (VA.getLocInfo()) {
2746    default:
2747      llvm_unreachable("Unknown loc info!");
2748    case CCValAssign::Full:
2749      if (VA.isRegLoc()) {
2750        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2751            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2752            (ValVT == MVT::i64 && LocVT == MVT::f64))
2753          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2754        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2755          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2756                                   Arg, DAG.getConstant(0, DL, MVT::i32));
2757          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2758                                   Arg, DAG.getConstant(1, DL, MVT::i32));
2759          if (!Subtarget.isLittle())
2760            std::swap(Lo, Hi);
2761          unsigned LocRegLo = VA.getLocReg();
2762          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2763          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2764          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2765          continue;
2766        }
2767      }
2768      break;
2769    case CCValAssign::BCvt:
2770      Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2771      break;
2772    case CCValAssign::SExtUpper:
2773      UseUpperBits = true;
2774      // Fallthrough
2775    case CCValAssign::SExt:
2776      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2777      break;
2778    case CCValAssign::ZExtUpper:
2779      UseUpperBits = true;
2780      // Fallthrough
2781    case CCValAssign::ZExt:
2782      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2783      break;
2784    case CCValAssign::AExtUpper:
2785      UseUpperBits = true;
2786      // Fallthrough
2787    case CCValAssign::AExt:
2788      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2789      break;
2790    }
2791
2792    if (UseUpperBits) {
2793      unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
2794      unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
2795      Arg = DAG.getNode(
2796          ISD::SHL, DL, VA.getLocVT(), Arg,
2797          DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
2798    }
2799
2800    // Arguments that can be passed on register must be kept at
2801    // RegsToPass vector
2802    if (VA.isRegLoc()) {
2803      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2804      continue;
2805    }
2806
2807    // Register can't get to this point...
2808    assert(VA.isMemLoc());
2809
2810    // emit ISD::STORE whichs stores the
2811    // parameter value to a stack Location
2812    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2813                                         Chain, Arg, DL, IsTailCall, DAG));
2814  }
2815
2816  // Transform all store nodes into one single node because all store
2817  // nodes are independent of each other.
2818  if (!MemOpChains.empty())
2819    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2820
2821  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2822  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2823  // node so that legalize doesn't hack it.
2824  bool IsPICCall = (ABI.IsN64() || IsPIC); // true if calls are translated to
2825                                           // jalr $25
2826  bool GlobalOrExternal = false, InternalLinkage = false, IsCallReloc = false;
2827  SDValue CalleeLo;
2828  EVT Ty = Callee.getValueType();
2829
2830  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2831    if (IsPICCall) {
2832      const GlobalValue *Val = G->getGlobal();
2833      InternalLinkage = Val->hasInternalLinkage();
2834
2835      if (InternalLinkage)
2836        Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64());
2837      else if (LargeGOT) {
2838        Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
2839                                       MipsII::MO_CALL_LO16, Chain,
2840                                       FuncInfo->callPtrInfo(Val));
2841        IsCallReloc = true;
2842      } else {
2843        Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
2844                               FuncInfo->callPtrInfo(Val));
2845        IsCallReloc = true;
2846      }
2847    } else
2848      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL,
2849                                          getPointerTy(DAG.getDataLayout()), 0,
2850                                          MipsII::MO_NO_FLAG);
2851    GlobalOrExternal = true;
2852  }
2853  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2854    const char *Sym = S->getSymbol();
2855
2856    if (!ABI.IsN64() && !IsPIC) // !N64 && static
2857      Callee = DAG.getTargetExternalSymbol(
2858          Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG);
2859    else if (LargeGOT) {
2860      Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
2861                                     MipsII::MO_CALL_LO16, Chain,
2862                                     FuncInfo->callPtrInfo(Sym));
2863      IsCallReloc = true;
2864    } else { // N64 || PIC
2865      Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
2866                             FuncInfo->callPtrInfo(Sym));
2867      IsCallReloc = true;
2868    }
2869
2870    GlobalOrExternal = true;
2871  }
2872
2873  SmallVector<SDValue, 8> Ops(1, Chain);
2874  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2875
2876  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2877              IsCallReloc, CLI, Callee, Chain);
2878
2879  if (IsTailCall)
2880    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
2881
2882  Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
2883  SDValue InFlag = Chain.getValue(1);
2884
2885  // Create the CALLSEQ_END node.
2886  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2887                             DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
2888  InFlag = Chain.getValue(1);
2889
2890  // Handle result values, copying them out of physregs into vregs that we
2891  // return.
2892  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2893                         InVals, CLI);
2894}
2895
2896/// LowerCallResult - Lower the result values of a call into the
2897/// appropriate copies out of appropriate physical registers.
2898SDValue MipsTargetLowering::LowerCallResult(
2899    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2900    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2901    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
2902    TargetLowering::CallLoweringInfo &CLI) const {
2903  // Assign locations to each value returned by this call.
2904  SmallVector<CCValAssign, 16> RVLocs;
2905  MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2906                     *DAG.getContext());
2907  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI);
2908
2909  // Copy all of the result registers out of their specified physreg.
2910  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2911    CCValAssign &VA = RVLocs[i];
2912    assert(VA.isRegLoc() && "Can only return in registers!");
2913
2914    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2915                                     RVLocs[i].getLocVT(), InFlag);
2916    Chain = Val.getValue(1);
2917    InFlag = Val.getValue(2);
2918
2919    if (VA.isUpperBitsInLoc()) {
2920      unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
2921      unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
2922      unsigned Shift =
2923          VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
2924      Val = DAG.getNode(
2925          Shift, DL, VA.getLocVT(), Val,
2926          DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
2927    }
2928
2929    switch (VA.getLocInfo()) {
2930    default:
2931      llvm_unreachable("Unknown loc info!");
2932    case CCValAssign::Full:
2933      break;
2934    case CCValAssign::BCvt:
2935      Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2936      break;
2937    case CCValAssign::AExt:
2938    case CCValAssign::AExtUpper:
2939      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2940      break;
2941    case CCValAssign::ZExt:
2942    case CCValAssign::ZExtUpper:
2943      Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2944                        DAG.getValueType(VA.getValVT()));
2945      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2946      break;
2947    case CCValAssign::SExt:
2948    case CCValAssign::SExtUpper:
2949      Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2950                        DAG.getValueType(VA.getValVT()));
2951      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2952      break;
2953    }
2954
2955    InVals.push_back(Val);
2956  }
2957
2958  return Chain;
2959}
2960
2961static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA,
2962                                      EVT ArgVT, const SDLoc &DL,
2963                                      SelectionDAG &DAG) {
2964  MVT LocVT = VA.getLocVT();
2965  EVT ValVT = VA.getValVT();
2966
2967  // Shift into the upper bits if necessary.
2968  switch (VA.getLocInfo()) {
2969  default:
2970    break;
2971  case CCValAssign::AExtUpper:
2972  case CCValAssign::SExtUpper:
2973  case CCValAssign::ZExtUpper: {
2974    unsigned ValSizeInBits = ArgVT.getSizeInBits();
2975    unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
2976    unsigned Opcode =
2977        VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
2978    Val = DAG.getNode(
2979        Opcode, DL, VA.getLocVT(), Val,
2980        DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
2981    break;
2982  }
2983  }
2984
2985  // If this is an value smaller than the argument slot size (32-bit for O32,
2986  // 64-bit for N32/N64), it has been promoted in some way to the argument slot
2987  // size. Extract the value and insert any appropriate assertions regarding
2988  // sign/zero extension.
2989  switch (VA.getLocInfo()) {
2990  default:
2991    llvm_unreachable("Unknown loc info!");
2992  case CCValAssign::Full:
2993    break;
2994  case CCValAssign::AExtUpper:
2995  case CCValAssign::AExt:
2996    Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2997    break;
2998  case CCValAssign::SExtUpper:
2999  case CCValAssign::SExt:
3000    Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT));
3001    Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3002    break;
3003  case CCValAssign::ZExtUpper:
3004  case CCValAssign::ZExt:
3005    Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT));
3006    Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3007    break;
3008  case CCValAssign::BCvt:
3009    Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
3010    break;
3011  }
3012
3013  return Val;
3014}
3015
3016//===----------------------------------------------------------------------===//
3017//             Formal Arguments Calling Convention Implementation
3018//===----------------------------------------------------------------------===//
3019/// LowerFormalArguments - transform physical registers into virtual registers
3020/// and generate load operations for arguments places on the stack.
3021SDValue MipsTargetLowering::LowerFormalArguments(
3022    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
3023    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3024    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3025  MachineFunction &MF = DAG.getMachineFunction();
3026  MachineFrameInfo *MFI = MF.getFrameInfo();
3027  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3028
3029  MipsFI->setVarArgsFrameIndex(0);
3030
3031  // Used with vargs to acumulate store chains.
3032  std::vector<SDValue> OutChains;
3033
3034  // Assign locations to all of the incoming arguments.
3035  SmallVector<CCValAssign, 16> ArgLocs;
3036  MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
3037                     *DAG.getContext());
3038  CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1);
3039  const Function *Func = DAG.getMachineFunction().getFunction();
3040  Function::const_arg_iterator FuncArg = Func->arg_begin();
3041
3042  if (Func->hasFnAttribute("interrupt") && !Func->arg_empty())
3043    report_fatal_error(
3044        "Functions with the interrupt attribute cannot have arguments!");
3045
3046  CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg);
3047  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
3048                           CCInfo.getInRegsParamsCount() > 0);
3049
3050  unsigned CurArgIdx = 0;
3051  CCInfo.rewindByValRegsInfo();
3052
3053  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3054    CCValAssign &VA = ArgLocs[i];
3055    if (Ins[i].isOrigArg()) {
3056      std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx);
3057      CurArgIdx = Ins[i].getOrigArgIndex();
3058    }
3059    EVT ValVT = VA.getValVT();
3060    ISD::ArgFlagsTy Flags = Ins[i].Flags;
3061    bool IsRegLoc = VA.isRegLoc();
3062
3063    if (Flags.isByVal()) {
3064      assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit");
3065      unsigned FirstByValReg, LastByValReg;
3066      unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
3067      CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
3068
3069      assert(Flags.getByValSize() &&
3070             "ByVal args of size 0 should have been ignored by front-end.");
3071      assert(ByValIdx < CCInfo.getInRegsParamsCount());
3072      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
3073                    FirstByValReg, LastByValReg, VA, CCInfo);
3074      CCInfo.nextInRegsParam();
3075      continue;
3076    }
3077
3078    // Arguments stored on registers
3079    if (IsRegLoc) {
3080      MVT RegVT = VA.getLocVT();
3081      unsigned ArgReg = VA.getLocReg();
3082      const TargetRegisterClass *RC = getRegClassFor(RegVT);
3083
3084      // Transform the arguments stored on
3085      // physical registers into virtual ones
3086      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3087      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
3088
3089      ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
3090
3091      // Handle floating point arguments passed in integer registers and
3092      // long double arguments passed in floating point registers.
3093      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3094          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
3095          (RegVT == MVT::f64 && ValVT == MVT::i64))
3096        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
3097      else if (ABI.IsO32() && RegVT == MVT::i32 &&
3098               ValVT == MVT::f64) {
3099        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
3100                                  getNextIntArgReg(ArgReg), RC);
3101        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
3102        if (!Subtarget.isLittle())
3103          std::swap(ArgValue, ArgValue2);
3104        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
3105                               ArgValue, ArgValue2);
3106      }
3107
3108      InVals.push_back(ArgValue);
3109    } else { // VA.isRegLoc()
3110      MVT LocVT = VA.getLocVT();
3111
3112      if (ABI.IsO32()) {
3113        // We ought to be able to use LocVT directly but O32 sets it to i32
3114        // when allocating floating point values to integer registers.
3115        // This shouldn't influence how we load the value into registers unless
3116        // we are targeting softfloat.
3117        if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat())
3118          LocVT = VA.getValVT();
3119      }
3120
3121      // sanity check
3122      assert(VA.isMemLoc());
3123
3124      // The stack pointer offset is relative to the caller stack frame.
3125      int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
3126                                      VA.getLocMemOffset(), true);
3127
3128      // Create load nodes to retrieve arguments from the stack
3129      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3130      SDValue ArgValue = DAG.getLoad(
3131          LocVT, DL, Chain, FIN,
3132          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
3133          false, false, false, 0);
3134      OutChains.push_back(ArgValue.getValue(1));
3135
3136      ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
3137
3138      InVals.push_back(ArgValue);
3139    }
3140  }
3141
3142  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3143    // The mips ABIs for returning structs by value requires that we copy
3144    // the sret argument into $v0 for the return. Save the argument into
3145    // a virtual register so that we can access it from the return points.
3146    if (Ins[i].Flags.isSRet()) {
3147      unsigned Reg = MipsFI->getSRetReturnReg();
3148      if (!Reg) {
3149        Reg = MF.getRegInfo().createVirtualRegister(
3150            getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32));
3151        MipsFI->setSRetReturnReg(Reg);
3152      }
3153      SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
3154      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
3155      break;
3156    }
3157  }
3158
3159  if (IsVarArg)
3160    writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo);
3161
3162  // All stores are grouped in one node to allow the matching between
3163  // the size of Ins and InVals. This only happens when on varg functions
3164  if (!OutChains.empty()) {
3165    OutChains.push_back(Chain);
3166    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
3167  }
3168
3169  return Chain;
3170}
3171
3172//===----------------------------------------------------------------------===//
3173//               Return Value Calling Convention Implementation
3174//===----------------------------------------------------------------------===//
3175
3176bool
3177MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3178                                   MachineFunction &MF, bool IsVarArg,
3179                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
3180                                   LLVMContext &Context) const {
3181  SmallVector<CCValAssign, 16> RVLocs;
3182  MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3183  return CCInfo.CheckReturn(Outs, RetCC_Mips);
3184}
3185
3186bool
3187MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
3188  if (Subtarget.hasMips3() && Subtarget.useSoftFloat()) {
3189    if (Type == MVT::i32)
3190      return true;
3191  }
3192  return IsSigned;
3193}
3194
3195SDValue
3196MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
3197                                         const SDLoc &DL,
3198                                         SelectionDAG &DAG) const {
3199
3200  MachineFunction &MF = DAG.getMachineFunction();
3201  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3202
3203  MipsFI->setISR();
3204
3205  return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps);
3206}
3207
3208SDValue
3209MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3210                                bool IsVarArg,
3211                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3212                                const SmallVectorImpl<SDValue> &OutVals,
3213                                const SDLoc &DL, SelectionDAG &DAG) const {
3214  // CCValAssign - represent the assignment of
3215  // the return value to a location
3216  SmallVector<CCValAssign, 16> RVLocs;
3217  MachineFunction &MF = DAG.getMachineFunction();
3218
3219  // CCState - Info about the registers and stack slot.
3220  MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
3221
3222  // Analyze return values.
3223  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3224
3225  SDValue Flag;
3226  SmallVector<SDValue, 4> RetOps(1, Chain);
3227
3228  // Copy the result values into the output registers.
3229  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3230    SDValue Val = OutVals[i];
3231    CCValAssign &VA = RVLocs[i];
3232    assert(VA.isRegLoc() && "Can only return in registers!");
3233    bool UseUpperBits = false;
3234
3235    switch (VA.getLocInfo()) {
3236    default:
3237      llvm_unreachable("Unknown loc info!");
3238    case CCValAssign::Full:
3239      break;
3240    case CCValAssign::BCvt:
3241      Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
3242      break;
3243    case CCValAssign::AExtUpper:
3244      UseUpperBits = true;
3245      // Fallthrough
3246    case CCValAssign::AExt:
3247      Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
3248      break;
3249    case CCValAssign::ZExtUpper:
3250      UseUpperBits = true;
3251      // Fallthrough
3252    case CCValAssign::ZExt:
3253      Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
3254      break;
3255    case CCValAssign::SExtUpper:
3256      UseUpperBits = true;
3257      // Fallthrough
3258    case CCValAssign::SExt:
3259      Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
3260      break;
3261    }
3262
3263    if (UseUpperBits) {
3264      unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
3265      unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3266      Val = DAG.getNode(
3267          ISD::SHL, DL, VA.getLocVT(), Val,
3268          DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3269    }
3270
3271    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
3272
3273    // Guarantee that all emitted copies are stuck together with flags.
3274    Flag = Chain.getValue(1);
3275    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3276  }
3277
3278  // The mips ABIs for returning structs by value requires that we copy
3279  // the sret argument into $v0 for the return. We saved the argument into
3280  // a virtual register in the entry block, so now we copy the value out
3281  // and into $v0.
3282  if (MF.getFunction()->hasStructRetAttr()) {
3283    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3284    unsigned Reg = MipsFI->getSRetReturnReg();
3285
3286    if (!Reg)
3287      llvm_unreachable("sret virtual register not created in the entry block");
3288    SDValue Val =
3289        DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
3290    unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
3291
3292    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
3293    Flag = Chain.getValue(1);
3294    RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout())));
3295  }
3296
3297  RetOps[0] = Chain;  // Update chain.
3298
3299  // Add the flag if we have it.
3300  if (Flag.getNode())
3301    RetOps.push_back(Flag);
3302
3303  // ISRs must use "eret".
3304  if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt"))
3305    return LowerInterruptReturn(RetOps, DL, DAG);
3306
3307  // Standard return on Mips is a "jr $ra"
3308  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
3309}
3310
3311//===----------------------------------------------------------------------===//
3312//                           Mips Inline Assembly Support
3313//===----------------------------------------------------------------------===//
3314
3315/// getConstraintType - Given a constraint letter, return the type of
3316/// constraint it is for this target.
3317MipsTargetLowering::ConstraintType
3318MipsTargetLowering::getConstraintType(StringRef Constraint) const {
3319  // Mips specific constraints
3320  // GCC config/mips/constraints.md
3321  //
3322  // 'd' : An address register. Equivalent to r
3323  //       unless generating MIPS16 code.
3324  // 'y' : Equivalent to r; retained for
3325  //       backwards compatibility.
3326  // 'c' : A register suitable for use in an indirect
3327  //       jump. This will always be $25 for -mabicalls.
3328  // 'l' : The lo register. 1 word storage.
3329  // 'x' : The hilo register pair. Double word storage.
3330  if (Constraint.size() == 1) {
3331    switch (Constraint[0]) {
3332      default : break;
3333      case 'd':
3334      case 'y':
3335      case 'f':
3336      case 'c':
3337      case 'l':
3338      case 'x':
3339        return C_RegisterClass;
3340      case 'R':
3341        return C_Memory;
3342    }
3343  }
3344
3345  if (Constraint == "ZC")
3346    return C_Memory;
3347
3348  return TargetLowering::getConstraintType(Constraint);
3349}
3350
3351/// Examine constraint type and operand type and determine a weight value.
3352/// This object must already have been set up with the operand type
3353/// and the current alternative constraint selected.
3354TargetLowering::ConstraintWeight
3355MipsTargetLowering::getSingleConstraintMatchWeight(
3356    AsmOperandInfo &info, const char *constraint) const {
3357  ConstraintWeight weight = CW_Invalid;
3358  Value *CallOperandVal = info.CallOperandVal;
3359    // If we don't have a value, we can't do a match,
3360    // but allow it at the lowest weight.
3361  if (!CallOperandVal)
3362    return CW_Default;
3363  Type *type = CallOperandVal->getType();
3364  // Look at the constraint type.
3365  switch (*constraint) {
3366  default:
3367    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3368    break;
3369  case 'd':
3370  case 'y':
3371    if (type->isIntegerTy())
3372      weight = CW_Register;
3373    break;
3374  case 'f': // FPU or MSA register
3375    if (Subtarget.hasMSA() && type->isVectorTy() &&
3376        cast<VectorType>(type)->getBitWidth() == 128)
3377      weight = CW_Register;
3378    else if (type->isFloatTy())
3379      weight = CW_Register;
3380    break;
3381  case 'c': // $25 for indirect jumps
3382  case 'l': // lo register
3383  case 'x': // hilo register pair
3384    if (type->isIntegerTy())
3385      weight = CW_SpecificReg;
3386    break;
3387  case 'I': // signed 16 bit immediate
3388  case 'J': // integer zero
3389  case 'K': // unsigned 16 bit immediate
3390  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3391  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3392  case 'O': // signed 15 bit immediate (+- 16383)
3393  case 'P': // immediate in the range of 65535 to 1 (inclusive)
3394    if (isa<ConstantInt>(CallOperandVal))
3395      weight = CW_Constant;
3396    break;
3397  case 'R':
3398    weight = CW_Memory;
3399    break;
3400  }
3401  return weight;
3402}
3403
3404/// This is a helper function to parse a physical register string and split it
3405/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
3406/// that is returned indicates whether parsing was successful. The second flag
3407/// is true if the numeric part exists.
3408static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix,
3409                                              unsigned long long &Reg) {
3410  if (C.front() != '{' || C.back() != '}')
3411    return std::make_pair(false, false);
3412
3413  // Search for the first numeric character.
3414  StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
3415  I = std::find_if(B, E, isdigit);
3416
3417  Prefix = StringRef(B, I - B);
3418
3419  // The second flag is set to false if no numeric characters were found.
3420  if (I == E)
3421    return std::make_pair(true, false);
3422
3423  // Parse the numeric characters.
3424  return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
3425                        true);
3426}
3427
3428std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
3429parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
3430  const TargetRegisterInfo *TRI =
3431      Subtarget.getRegisterInfo();
3432  const TargetRegisterClass *RC;
3433  StringRef Prefix;
3434  unsigned long long Reg;
3435
3436  std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
3437
3438  if (!R.first)
3439    return std::make_pair(0U, nullptr);
3440
3441  if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
3442    // No numeric characters follow "hi" or "lo".
3443    if (R.second)
3444      return std::make_pair(0U, nullptr);
3445
3446    RC = TRI->getRegClass(Prefix == "hi" ?
3447                          Mips::HI32RegClassID : Mips::LO32RegClassID);
3448    return std::make_pair(*(RC->begin()), RC);
3449  } else if (Prefix.startswith("$msa")) {
3450    // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
3451
3452    // No numeric characters follow the name.
3453    if (R.second)
3454      return std::make_pair(0U, nullptr);
3455
3456    Reg = StringSwitch<unsigned long long>(Prefix)
3457              .Case("$msair", Mips::MSAIR)
3458              .Case("$msacsr", Mips::MSACSR)
3459              .Case("$msaaccess", Mips::MSAAccess)
3460              .Case("$msasave", Mips::MSASave)
3461              .Case("$msamodify", Mips::MSAModify)
3462              .Case("$msarequest", Mips::MSARequest)
3463              .Case("$msamap", Mips::MSAMap)
3464              .Case("$msaunmap", Mips::MSAUnmap)
3465              .Default(0);
3466
3467    if (!Reg)
3468      return std::make_pair(0U, nullptr);
3469
3470    RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
3471    return std::make_pair(Reg, RC);
3472  }
3473
3474  if (!R.second)
3475    return std::make_pair(0U, nullptr);
3476
3477  if (Prefix == "$f") { // Parse $f0-$f31.
3478    // If the size of FP registers is 64-bit or Reg is an even number, select
3479    // the 64-bit register class. Otherwise, select the 32-bit register class.
3480    if (VT == MVT::Other)
3481      VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
3482
3483    RC = getRegClassFor(VT);
3484
3485    if (RC == &Mips::AFGR64RegClass) {
3486      assert(Reg % 2 == 0);
3487      Reg >>= 1;
3488    }
3489  } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
3490    RC = TRI->getRegClass(Mips::FCCRegClassID);
3491  else if (Prefix == "$w") { // Parse $w0-$w31.
3492    RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
3493  } else { // Parse $0-$31.
3494    assert(Prefix == "$");
3495    RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
3496  }
3497
3498  assert(Reg < RC->getNumRegs());
3499  return std::make_pair(*(RC->begin() + Reg), RC);
3500}
3501
3502/// Given a register class constraint, like 'r', if this corresponds directly
3503/// to an LLVM register class, return a register of 0 and the register class
3504/// pointer.
3505std::pair<unsigned, const TargetRegisterClass *>
3506MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3507                                                 StringRef Constraint,
3508                                                 MVT VT) const {
3509  if (Constraint.size() == 1) {
3510    switch (Constraint[0]) {
3511    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3512    case 'y': // Same as 'r'. Exists for compatibility.
3513    case 'r':
3514      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3515        if (Subtarget.inMips16Mode())
3516          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3517        return std::make_pair(0U, &Mips::GPR32RegClass);
3518      }
3519      if (VT == MVT::i64 && !Subtarget.isGP64bit())
3520        return std::make_pair(0U, &Mips::GPR32RegClass);
3521      if (VT == MVT::i64 && Subtarget.isGP64bit())
3522        return std::make_pair(0U, &Mips::GPR64RegClass);
3523      // This will generate an error message
3524      return std::make_pair(0U, nullptr);
3525    case 'f': // FPU or MSA register
3526      if (VT == MVT::v16i8)
3527        return std::make_pair(0U, &Mips::MSA128BRegClass);
3528      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
3529        return std::make_pair(0U, &Mips::MSA128HRegClass);
3530      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
3531        return std::make_pair(0U, &Mips::MSA128WRegClass);
3532      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
3533        return std::make_pair(0U, &Mips::MSA128DRegClass);
3534      else if (VT == MVT::f32)
3535        return std::make_pair(0U, &Mips::FGR32RegClass);
3536      else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
3537        if (Subtarget.isFP64bit())
3538          return std::make_pair(0U, &Mips::FGR64RegClass);
3539        return std::make_pair(0U, &Mips::AFGR64RegClass);
3540      }
3541      break;
3542    case 'c': // register suitable for indirect jump
3543      if (VT == MVT::i32)
3544        return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
3545      assert(VT == MVT::i64 && "Unexpected type.");
3546      return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
3547    case 'l': // register suitable for indirect jump
3548      if (VT == MVT::i32)
3549        return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
3550      return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
3551    case 'x': // register suitable for indirect jump
3552      // Fixme: Not triggering the use of both hi and low
3553      // This will generate an error message
3554      return std::make_pair(0U, nullptr);
3555    }
3556  }
3557
3558  std::pair<unsigned, const TargetRegisterClass *> R;
3559  R = parseRegForInlineAsmConstraint(Constraint, VT);
3560
3561  if (R.second)
3562    return R;
3563
3564  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3565}
3566
3567/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3568/// vector.  If it is invalid, don't add anything to Ops.
3569void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3570                                                     std::string &Constraint,
3571                                                     std::vector<SDValue>&Ops,
3572                                                     SelectionDAG &DAG) const {
3573  SDLoc DL(Op);
3574  SDValue Result;
3575
3576  // Only support length 1 constraints for now.
3577  if (Constraint.length() > 1) return;
3578
3579  char ConstraintLetter = Constraint[0];
3580  switch (ConstraintLetter) {
3581  default: break; // This will fall through to the generic implementation
3582  case 'I': // Signed 16 bit constant
3583    // If this fails, the parent routine will give an error
3584    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3585      EVT Type = Op.getValueType();
3586      int64_t Val = C->getSExtValue();
3587      if (isInt<16>(Val)) {
3588        Result = DAG.getTargetConstant(Val, DL, Type);
3589        break;
3590      }
3591    }
3592    return;
3593  case 'J': // integer zero
3594    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3595      EVT Type = Op.getValueType();
3596      int64_t Val = C->getZExtValue();
3597      if (Val == 0) {
3598        Result = DAG.getTargetConstant(0, DL, Type);
3599        break;
3600      }
3601    }
3602    return;
3603  case 'K': // unsigned 16 bit immediate
3604    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3605      EVT Type = Op.getValueType();
3606      uint64_t Val = (uint64_t)C->getZExtValue();
3607      if (isUInt<16>(Val)) {
3608        Result = DAG.getTargetConstant(Val, DL, Type);
3609        break;
3610      }
3611    }
3612    return;
3613  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3614    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3615      EVT Type = Op.getValueType();
3616      int64_t Val = C->getSExtValue();
3617      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3618        Result = DAG.getTargetConstant(Val, DL, Type);
3619        break;
3620      }
3621    }
3622    return;
3623  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3624    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3625      EVT Type = Op.getValueType();
3626      int64_t Val = C->getSExtValue();
3627      if ((Val >= -65535) && (Val <= -1)) {
3628        Result = DAG.getTargetConstant(Val, DL, Type);
3629        break;
3630      }
3631    }
3632    return;
3633  case 'O': // signed 15 bit immediate
3634    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3635      EVT Type = Op.getValueType();
3636      int64_t Val = C->getSExtValue();
3637      if ((isInt<15>(Val))) {
3638        Result = DAG.getTargetConstant(Val, DL, Type);
3639        break;
3640      }
3641    }
3642    return;
3643  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3644    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3645      EVT Type = Op.getValueType();
3646      int64_t Val = C->getSExtValue();
3647      if ((Val <= 65535) && (Val >= 1)) {
3648        Result = DAG.getTargetConstant(Val, DL, Type);
3649        break;
3650      }
3651    }
3652    return;
3653  }
3654
3655  if (Result.getNode()) {
3656    Ops.push_back(Result);
3657    return;
3658  }
3659
3660  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3661}
3662
3663bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL,
3664                                               const AddrMode &AM, Type *Ty,
3665                                               unsigned AS) const {
3666  // No global is ever allowed as a base.
3667  if (AM.BaseGV)
3668    return false;
3669
3670  switch (AM.Scale) {
3671  case 0: // "r+i" or just "i", depending on HasBaseReg.
3672    break;
3673  case 1:
3674    if (!AM.HasBaseReg) // allow "r+i".
3675      break;
3676    return false; // disallow "r+r" or "r+r+i".
3677  default:
3678    return false;
3679  }
3680
3681  return true;
3682}
3683
3684bool
3685MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3686  // The Mips target isn't yet aware of offsets.
3687  return false;
3688}
3689
3690EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3691                                            unsigned SrcAlign,
3692                                            bool IsMemset, bool ZeroMemset,
3693                                            bool MemcpyStrSrc,
3694                                            MachineFunction &MF) const {
3695  if (Subtarget.hasMips64())
3696    return MVT::i64;
3697
3698  return MVT::i32;
3699}
3700
3701bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3702  if (VT != MVT::f32 && VT != MVT::f64)
3703    return false;
3704  if (Imm.isNegZero())
3705    return false;
3706  return Imm.isZero();
3707}
3708
3709unsigned MipsTargetLowering::getJumpTableEncoding() const {
3710  if (ABI.IsN64())
3711    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3712
3713  return TargetLowering::getJumpTableEncoding();
3714}
3715
3716bool MipsTargetLowering::useSoftFloat() const {
3717  return Subtarget.useSoftFloat();
3718}
3719
3720void MipsTargetLowering::copyByValRegs(
3721    SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains,
3722    SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3723    SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3724    unsigned FirstReg, unsigned LastReg, const CCValAssign &VA,
3725    MipsCCState &State) const {
3726  MachineFunction &MF = DAG.getMachineFunction();
3727  MachineFrameInfo *MFI = MF.getFrameInfo();
3728  unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
3729  unsigned NumRegs = LastReg - FirstReg;
3730  unsigned RegAreaSize = NumRegs * GPRSizeInBytes;
3731  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3732  int FrameObjOffset;
3733  ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs();
3734
3735  if (RegAreaSize)
3736    FrameObjOffset =
3737        (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
3738        (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes);
3739  else
3740    FrameObjOffset = VA.getLocMemOffset();
3741
3742  // Create frame object.
3743  EVT PtrTy = getPointerTy(DAG.getDataLayout());
3744  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3745  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3746  InVals.push_back(FIN);
3747
3748  if (!NumRegs)
3749    return;
3750
3751  // Copy arg registers.
3752  MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
3753  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3754
3755  for (unsigned I = 0; I < NumRegs; ++I) {
3756    unsigned ArgReg = ByValArgRegs[FirstReg + I];
3757    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3758    unsigned Offset = I * GPRSizeInBytes;
3759    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3760                                   DAG.getConstant(Offset, DL, PtrTy));
3761    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3762                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3763                                 false, false, 0);
3764    OutChains.push_back(Store);
3765  }
3766}
3767
3768// Copy byVal arg to registers and stack.
3769void MipsTargetLowering::passByValArg(
3770    SDValue Chain, const SDLoc &DL,
3771    std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
3772    SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
3773    MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg,
3774    unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle,
3775    const CCValAssign &VA) const {
3776  unsigned ByValSizeInBytes = Flags.getByValSize();
3777  unsigned OffsetInBytes = 0; // From beginning of struct
3778  unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
3779  unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes);
3780  EVT PtrTy = getPointerTy(DAG.getDataLayout()),
3781      RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
3782  unsigned NumRegs = LastReg - FirstReg;
3783
3784  if (NumRegs) {
3785    ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs();
3786    bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes);
3787    unsigned I = 0;
3788
3789    // Copy words to registers.
3790    for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) {
3791      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3792                                    DAG.getConstant(OffsetInBytes, DL, PtrTy));
3793      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3794                                    MachinePointerInfo(), false, false, false,
3795                                    Alignment);
3796      MemOpChains.push_back(LoadVal.getValue(1));
3797      unsigned ArgReg = ArgRegs[FirstReg + I];
3798      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3799    }
3800
3801    // Return if the struct has been fully copied.
3802    if (ByValSizeInBytes == OffsetInBytes)
3803      return;
3804
3805    // Copy the remainder of the byval argument with sub-word loads and shifts.
3806    if (LeftoverBytes) {
3807      SDValue Val;
3808
3809      for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
3810           OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
3811        unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
3812
3813        if (RemainingSizeInBytes < LoadSizeInBytes)
3814          continue;
3815
3816        // Load subword.
3817        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3818                                      DAG.getConstant(OffsetInBytes, DL,
3819                                                      PtrTy));
3820        SDValue LoadVal = DAG.getExtLoad(
3821            ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
3822            MVT::getIntegerVT(LoadSizeInBytes * 8), false, false, false,
3823            Alignment);
3824        MemOpChains.push_back(LoadVal.getValue(1));
3825
3826        // Shift the loaded value.
3827        unsigned Shamt;
3828
3829        if (isLittle)
3830          Shamt = TotalBytesLoaded * 8;
3831        else
3832          Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
3833
3834        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3835                                    DAG.getConstant(Shamt, DL, MVT::i32));
3836
3837        if (Val.getNode())
3838          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3839        else
3840          Val = Shift;
3841
3842        OffsetInBytes += LoadSizeInBytes;
3843        TotalBytesLoaded += LoadSizeInBytes;
3844        Alignment = std::min(Alignment, LoadSizeInBytes);
3845      }
3846
3847      unsigned ArgReg = ArgRegs[FirstReg + I];
3848      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3849      return;
3850    }
3851  }
3852
3853  // Copy remainder of byval arg to it with memcpy.
3854  unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
3855  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3856                            DAG.getConstant(OffsetInBytes, DL, PtrTy));
3857  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3858                            DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
3859  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
3860                        DAG.getConstant(MemCpySize, DL, PtrTy),
3861                        Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
3862                        /*isTailCall=*/false,
3863                        MachinePointerInfo(), MachinePointerInfo());
3864  MemOpChains.push_back(Chain);
3865}
3866
3867void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3868                                         SDValue Chain, const SDLoc &DL,
3869                                         SelectionDAG &DAG,
3870                                         CCState &State) const {
3871  ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs();
3872  unsigned Idx = State.getFirstUnallocated(ArgRegs);
3873  unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
3874  MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
3875  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3876  MachineFunction &MF = DAG.getMachineFunction();
3877  MachineFrameInfo *MFI = MF.getFrameInfo();
3878  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3879
3880  // Offset of the first variable argument from stack pointer.
3881  int VaArgOffset;
3882
3883  if (ArgRegs.size() == Idx)
3884    VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes);
3885  else {
3886    VaArgOffset =
3887        (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
3888        (int)(RegSizeInBytes * (ArgRegs.size() - Idx));
3889  }
3890
3891  // Record the frame index of the first variable argument
3892  // which is a value necessary to VASTART.
3893  int FI = MFI->CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
3894  MipsFI->setVarArgsFrameIndex(FI);
3895
3896  // Copy the integer registers that have not been used for argument passing
3897  // to the argument register save area. For O32, the save area is allocated
3898  // in the caller's stack frame, while for N32/64, it is allocated in the
3899  // callee's stack frame.
3900  for (unsigned I = Idx; I < ArgRegs.size();
3901       ++I, VaArgOffset += RegSizeInBytes) {
3902    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3903    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3904    FI = MFI->CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
3905    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3906    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3907                                 MachinePointerInfo(), false, false, 0);
3908    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
3909        (Value *)nullptr);
3910    OutChains.push_back(Store);
3911  }
3912}
3913
3914void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
3915                                     unsigned Align) const {
3916  const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
3917
3918  assert(Size && "Byval argument's size shouldn't be 0.");
3919
3920  Align = std::min(Align, TFL->getStackAlignment());
3921
3922  unsigned FirstReg = 0;
3923  unsigned NumRegs = 0;
3924
3925  if (State->getCallingConv() != CallingConv::Fast) {
3926    unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
3927    ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs();
3928    // FIXME: The O32 case actually describes no shadow registers.
3929    const MCPhysReg *ShadowRegs =
3930        ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs;
3931
3932    // We used to check the size as well but we can't do that anymore since
3933    // CCState::HandleByVal() rounds up the size after calling this function.
3934    assert(!(Align % RegSizeInBytes) &&
3935           "Byval argument's alignment should be a multiple of"
3936           "RegSizeInBytes.");
3937
3938    FirstReg = State->getFirstUnallocated(IntArgRegs);
3939
3940    // If Align > RegSizeInBytes, the first arg register must be even.
3941    // FIXME: This condition happens to do the right thing but it's not the
3942    //        right way to test it. We want to check that the stack frame offset
3943    //        of the register is aligned.
3944    if ((Align > RegSizeInBytes) && (FirstReg % 2)) {
3945      State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]);
3946      ++FirstReg;
3947    }
3948
3949    // Mark the registers allocated.
3950    Size = alignTo(Size, RegSizeInBytes);
3951    for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size());
3952         Size -= RegSizeInBytes, ++I, ++NumRegs)
3953      State->AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3954  }
3955
3956  State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
3957}
3958
3959MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI,
3960                                                        MachineBasicBlock *BB,
3961                                                        bool isFPCmp,
3962                                                        unsigned Opc) const {
3963  assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
3964         "Subtarget already supports SELECT nodes with the use of"
3965         "conditional-move instructions.");
3966
3967  const TargetInstrInfo *TII =
3968      Subtarget.getInstrInfo();
3969  DebugLoc DL = MI.getDebugLoc();
3970
3971  // To "insert" a SELECT instruction, we actually have to insert the
3972  // diamond control-flow pattern.  The incoming instruction knows the
3973  // destination vreg to set, the condition code register to branch on, the
3974  // true/false values to select between, and a branch opcode to use.
3975  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3976  MachineFunction::iterator It = ++BB->getIterator();
3977
3978  //  thisMBB:
3979  //  ...
3980  //   TrueVal = ...
3981  //   setcc r1, r2, r3
3982  //   bNE   r1, r0, copy1MBB
3983  //   fallthrough --> copy0MBB
3984  MachineBasicBlock *thisMBB  = BB;
3985  MachineFunction *F = BB->getParent();
3986  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
3987  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
3988  F->insert(It, copy0MBB);
3989  F->insert(It, sinkMBB);
3990
3991  // Transfer the remainder of BB and its successor edges to sinkMBB.
3992  sinkMBB->splice(sinkMBB->begin(), BB,
3993                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
3994  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
3995
3996  // Next, add the true and fallthrough blocks as its successors.
3997  BB->addSuccessor(copy0MBB);
3998  BB->addSuccessor(sinkMBB);
3999
4000  if (isFPCmp) {
4001    // bc1[tf] cc, sinkMBB
4002    BuildMI(BB, DL, TII->get(Opc))
4003        .addReg(MI.getOperand(1).getReg())
4004        .addMBB(sinkMBB);
4005  } else {
4006    // bne rs, $0, sinkMBB
4007    BuildMI(BB, DL, TII->get(Opc))
4008        .addReg(MI.getOperand(1).getReg())
4009        .addReg(Mips::ZERO)
4010        .addMBB(sinkMBB);
4011  }
4012
4013  //  copy0MBB:
4014  //   %FalseValue = ...
4015  //   # fallthrough to sinkMBB
4016  BB = copy0MBB;
4017
4018  // Update machine-CFG edges
4019  BB->addSuccessor(sinkMBB);
4020
4021  //  sinkMBB:
4022  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4023  //  ...
4024  BB = sinkMBB;
4025
4026  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
4027      .addReg(MI.getOperand(2).getReg())
4028      .addMBB(thisMBB)
4029      .addReg(MI.getOperand(3).getReg())
4030      .addMBB(copy0MBB);
4031
4032  MI.eraseFromParent(); // The pseudo instruction is gone now.
4033
4034  return BB;
4035}
4036
4037// FIXME? Maybe this could be a TableGen attribute on some registers and
4038// this table could be generated automatically from RegInfo.
4039unsigned MipsTargetLowering::getRegisterByName(const char* RegName, EVT VT,
4040                                               SelectionDAG &DAG) const {
4041  // Named registers is expected to be fairly rare. For now, just support $28
4042  // since the linux kernel uses it.
4043  if (Subtarget.isGP64bit()) {
4044    unsigned Reg = StringSwitch<unsigned>(RegName)
4045                         .Case("$28", Mips::GP_64)
4046                         .Default(0);
4047    if (Reg)
4048      return Reg;
4049  } else {
4050    unsigned Reg = StringSwitch<unsigned>(RegName)
4051                         .Case("$28", Mips::GP)
4052                         .Default(0);
4053    if (Reg)
4054      return Reg;
4055  }
4056  report_fatal_error("Invalid register name global variable");
4057}
4058