1//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the PowerPC implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCInstrInfo.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPC.h"
17#include "PPCHazardRecognizers.h"
18#include "PPCInstrBuilder.h"
19#include "PPCMachineFunctionInfo.h"
20#include "PPCTargetMachine.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/LiveIntervalAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunctionPass.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineMemOperand.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/CodeGen/ScheduleDAG.h"
31#include "llvm/CodeGen/SlotIndexes.h"
32#include "llvm/CodeGen/StackMaps.h"
33#include "llvm/MC/MCAsmInfo.h"
34#include "llvm/MC/MCInst.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/TargetRegistry.h"
39#include "llvm/Support/raw_ostream.h"
40
41using namespace llvm;
42
43#define DEBUG_TYPE "ppc-instr-info"
44
45#define GET_INSTRMAP_INFO
46#define GET_INSTRINFO_CTOR_DTOR
47#include "PPCGenInstrInfo.inc"
48
49static cl::
50opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
51            cl::desc("Disable analysis for CTR loops"));
52
53static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
54cl::desc("Disable compare instruction optimization"), cl::Hidden);
55
56static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
57cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
58cl::Hidden);
59
60static cl::opt<bool>
61UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
62  cl::desc("Use the old (incorrect) instruction latency calculation"));
63
64// Pin the vtable to this file.
65void PPCInstrInfo::anchor() {}
66
67PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
68    : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
69      Subtarget(STI), RI(STI.getTargetMachine()) {}
70
71/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
72/// this target when scheduling the DAG.
73ScheduleHazardRecognizer *
74PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
75                                           const ScheduleDAG *DAG) const {
76  unsigned Directive =
77      static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
78  if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
79      Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
80    const InstrItineraryData *II =
81        static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
82    return new ScoreboardHazardRecognizer(II, DAG);
83  }
84
85  return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
86}
87
88/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
89/// to use for this target when scheduling the DAG.
90ScheduleHazardRecognizer *
91PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
92                                                 const ScheduleDAG *DAG) const {
93  unsigned Directive =
94      DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
95
96  // FIXME: Leaving this as-is until we have POWER9 scheduling info
97  if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
98    return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
99
100  // Most subtargets use a PPC970 recognizer.
101  if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
102      Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
103    assert(DAG->TII && "No InstrInfo?");
104
105    return new PPCHazardRecognizer970(*DAG);
106  }
107
108  return new ScoreboardHazardRecognizer(II, DAG);
109}
110
111unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
112                                       const MachineInstr &MI,
113                                       unsigned *PredCost) const {
114  if (!ItinData || UseOldLatencyCalc)
115    return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
116
117  // The default implementation of getInstrLatency calls getStageLatency, but
118  // getStageLatency does not do the right thing for us. While we have
119  // itinerary, most cores are fully pipelined, and so the itineraries only
120  // express the first part of the pipeline, not every stage. Instead, we need
121  // to use the listed output operand cycle number (using operand 0 here, which
122  // is an output).
123
124  unsigned Latency = 1;
125  unsigned DefClass = MI.getDesc().getSchedClass();
126  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
127    const MachineOperand &MO = MI.getOperand(i);
128    if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
129      continue;
130
131    int Cycle = ItinData->getOperandCycle(DefClass, i);
132    if (Cycle < 0)
133      continue;
134
135    Latency = std::max(Latency, (unsigned) Cycle);
136  }
137
138  return Latency;
139}
140
141int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
142                                    const MachineInstr &DefMI, unsigned DefIdx,
143                                    const MachineInstr &UseMI,
144                                    unsigned UseIdx) const {
145  int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
146                                                   UseMI, UseIdx);
147
148  if (!DefMI.getParent())
149    return Latency;
150
151  const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
152  unsigned Reg = DefMO.getReg();
153
154  bool IsRegCR;
155  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
156    const MachineRegisterInfo *MRI =
157        &DefMI.getParent()->getParent()->getRegInfo();
158    IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
159              MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
160  } else {
161    IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
162              PPC::CRBITRCRegClass.contains(Reg);
163  }
164
165  if (UseMI.isBranch() && IsRegCR) {
166    if (Latency < 0)
167      Latency = getInstrLatency(ItinData, DefMI);
168
169    // On some cores, there is an additional delay between writing to a condition
170    // register, and using it from a branch.
171    unsigned Directive = Subtarget.getDarwinDirective();
172    switch (Directive) {
173    default: break;
174    case PPC::DIR_7400:
175    case PPC::DIR_750:
176    case PPC::DIR_970:
177    case PPC::DIR_E5500:
178    case PPC::DIR_PWR4:
179    case PPC::DIR_PWR5:
180    case PPC::DIR_PWR5X:
181    case PPC::DIR_PWR6:
182    case PPC::DIR_PWR6X:
183    case PPC::DIR_PWR7:
184    case PPC::DIR_PWR8:
185    // FIXME: Is this needed for POWER9?
186      Latency += 2;
187      break;
188    }
189  }
190
191  return Latency;
192}
193
194// This function does not list all associative and commutative operations, but
195// only those worth feeding through the machine combiner in an attempt to
196// reduce the critical path. Mostly, this means floating-point operations,
197// because they have high latencies (compared to other operations, such and
198// and/or, which are also associative and commutative, but have low latencies).
199bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
200  switch (Inst.getOpcode()) {
201  // FP Add:
202  case PPC::FADD:
203  case PPC::FADDS:
204  // FP Multiply:
205  case PPC::FMUL:
206  case PPC::FMULS:
207  // Altivec Add:
208  case PPC::VADDFP:
209  // VSX Add:
210  case PPC::XSADDDP:
211  case PPC::XVADDDP:
212  case PPC::XVADDSP:
213  case PPC::XSADDSP:
214  // VSX Multiply:
215  case PPC::XSMULDP:
216  case PPC::XVMULDP:
217  case PPC::XVMULSP:
218  case PPC::XSMULSP:
219  // QPX Add:
220  case PPC::QVFADD:
221  case PPC::QVFADDS:
222  case PPC::QVFADDSs:
223  // QPX Multiply:
224  case PPC::QVFMUL:
225  case PPC::QVFMULS:
226  case PPC::QVFMULSs:
227    return true;
228  default:
229    return false;
230  }
231}
232
233bool PPCInstrInfo::getMachineCombinerPatterns(
234    MachineInstr &Root,
235    SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
236  // Using the machine combiner in this way is potentially expensive, so
237  // restrict to when aggressive optimizations are desired.
238  if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
239    return false;
240
241  // FP reassociation is only legal when we don't need strict IEEE semantics.
242  if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
243    return false;
244
245  return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
246}
247
248// Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
249bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
250                                         unsigned &SrcReg, unsigned &DstReg,
251                                         unsigned &SubIdx) const {
252  switch (MI.getOpcode()) {
253  default: return false;
254  case PPC::EXTSW:
255  case PPC::EXTSW_32_64:
256    SrcReg = MI.getOperand(1).getReg();
257    DstReg = MI.getOperand(0).getReg();
258    SubIdx = PPC::sub_32;
259    return true;
260  }
261}
262
263unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
264                                           int &FrameIndex) const {
265  // Note: This list must be kept consistent with LoadRegFromStackSlot.
266  switch (MI.getOpcode()) {
267  default: break;
268  case PPC::LD:
269  case PPC::LWZ:
270  case PPC::LFS:
271  case PPC::LFD:
272  case PPC::RESTORE_CR:
273  case PPC::RESTORE_CRBIT:
274  case PPC::LVX:
275  case PPC::LXVD2X:
276  case PPC::QVLFDX:
277  case PPC::QVLFSXs:
278  case PPC::QVLFDXb:
279  case PPC::RESTORE_VRSAVE:
280    // Check for the operands added by addFrameReference (the immediate is the
281    // offset which defaults to 0).
282    if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
283        MI.getOperand(2).isFI()) {
284      FrameIndex = MI.getOperand(2).getIndex();
285      return MI.getOperand(0).getReg();
286    }
287    break;
288  }
289  return 0;
290}
291
292unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
293                                          int &FrameIndex) const {
294  // Note: This list must be kept consistent with StoreRegToStackSlot.
295  switch (MI.getOpcode()) {
296  default: break;
297  case PPC::STD:
298  case PPC::STW:
299  case PPC::STFS:
300  case PPC::STFD:
301  case PPC::SPILL_CR:
302  case PPC::SPILL_CRBIT:
303  case PPC::STVX:
304  case PPC::STXVD2X:
305  case PPC::QVSTFDX:
306  case PPC::QVSTFSXs:
307  case PPC::QVSTFDXb:
308  case PPC::SPILL_VRSAVE:
309    // Check for the operands added by addFrameReference (the immediate is the
310    // offset which defaults to 0).
311    if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
312        MI.getOperand(2).isFI()) {
313      FrameIndex = MI.getOperand(2).getIndex();
314      return MI.getOperand(0).getReg();
315    }
316    break;
317  }
318  return 0;
319}
320
321MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
322                                                   unsigned OpIdx1,
323                                                   unsigned OpIdx2) const {
324  MachineFunction &MF = *MI.getParent()->getParent();
325
326  // Normal instructions can be commuted the obvious way.
327  if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
328    return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
329  // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
330  // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
331  // changing the relative order of the mask operands might change what happens
332  // to the high-bits of the mask (and, thus, the result).
333
334  // Cannot commute if it has a non-zero rotate count.
335  if (MI.getOperand(3).getImm() != 0)
336    return nullptr;
337
338  // If we have a zero rotate count, we have:
339  //   M = mask(MB,ME)
340  //   Op0 = (Op1 & ~M) | (Op2 & M)
341  // Change this to:
342  //   M = mask((ME+1)&31, (MB-1)&31)
343  //   Op0 = (Op2 & ~M) | (Op1 & M)
344
345  // Swap op1/op2
346  assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
347         "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
348  unsigned Reg0 = MI.getOperand(0).getReg();
349  unsigned Reg1 = MI.getOperand(1).getReg();
350  unsigned Reg2 = MI.getOperand(2).getReg();
351  unsigned SubReg1 = MI.getOperand(1).getSubReg();
352  unsigned SubReg2 = MI.getOperand(2).getSubReg();
353  bool Reg1IsKill = MI.getOperand(1).isKill();
354  bool Reg2IsKill = MI.getOperand(2).isKill();
355  bool ChangeReg0 = false;
356  // If machine instrs are no longer in two-address forms, update
357  // destination register as well.
358  if (Reg0 == Reg1) {
359    // Must be two address instruction!
360    assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
361           "Expecting a two-address instruction!");
362    assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
363    Reg2IsKill = false;
364    ChangeReg0 = true;
365  }
366
367  // Masks.
368  unsigned MB = MI.getOperand(4).getImm();
369  unsigned ME = MI.getOperand(5).getImm();
370
371  // We can't commute a trivial mask (there is no way to represent an all-zero
372  // mask).
373  if (MB == 0 && ME == 31)
374    return nullptr;
375
376  if (NewMI) {
377    // Create a new instruction.
378    unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
379    bool Reg0IsDead = MI.getOperand(0).isDead();
380    return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
381        .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
382        .addReg(Reg2, getKillRegState(Reg2IsKill))
383        .addReg(Reg1, getKillRegState(Reg1IsKill))
384        .addImm((ME + 1) & 31)
385        .addImm((MB - 1) & 31);
386  }
387
388  if (ChangeReg0) {
389    MI.getOperand(0).setReg(Reg2);
390    MI.getOperand(0).setSubReg(SubReg2);
391  }
392  MI.getOperand(2).setReg(Reg1);
393  MI.getOperand(1).setReg(Reg2);
394  MI.getOperand(2).setSubReg(SubReg1);
395  MI.getOperand(1).setSubReg(SubReg2);
396  MI.getOperand(2).setIsKill(Reg1IsKill);
397  MI.getOperand(1).setIsKill(Reg2IsKill);
398
399  // Swap the mask around.
400  MI.getOperand(4).setImm((ME + 1) & 31);
401  MI.getOperand(5).setImm((MB - 1) & 31);
402  return &MI;
403}
404
405bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
406                                         unsigned &SrcOpIdx2) const {
407  // For VSX A-Type FMA instructions, it is the first two operands that can be
408  // commuted, however, because the non-encoded tied input operand is listed
409  // first, the operands to swap are actually the second and third.
410
411  int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
412  if (AltOpc == -1)
413    return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
414
415  // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
416  // and SrcOpIdx2.
417  return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
418}
419
420void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
421                              MachineBasicBlock::iterator MI) const {
422  // This function is used for scheduling, and the nop wanted here is the type
423  // that terminates dispatch groups on the POWER cores.
424  unsigned Directive = Subtarget.getDarwinDirective();
425  unsigned Opcode;
426  switch (Directive) {
427  default:            Opcode = PPC::NOP; break;
428  case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
429  case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
430  case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
431  // FIXME: Update when POWER9 scheduling model is ready.
432  case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
433  }
434
435  DebugLoc DL;
436  BuildMI(MBB, MI, DL, get(Opcode));
437}
438
439/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
440void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
441  NopInst.setOpcode(PPC::NOP);
442}
443
444// Branch analysis.
445// Note: If the condition register is set to CTR or CTR8 then this is a
446// BDNZ (imm == 1) or BDZ (imm == 0) branch.
447bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
448                                 MachineBasicBlock *&TBB,
449                                 MachineBasicBlock *&FBB,
450                                 SmallVectorImpl<MachineOperand> &Cond,
451                                 bool AllowModify) const {
452  bool isPPC64 = Subtarget.isPPC64();
453
454  // If the block has no terminators, it just falls into the block after it.
455  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
456  if (I == MBB.end())
457    return false;
458
459  if (!isUnpredicatedTerminator(*I))
460    return false;
461
462  // Get the last instruction in the block.
463  MachineInstr *LastInst = I;
464
465  // If there is only one terminator instruction, process it.
466  if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
467    if (LastInst->getOpcode() == PPC::B) {
468      if (!LastInst->getOperand(0).isMBB())
469        return true;
470      TBB = LastInst->getOperand(0).getMBB();
471      return false;
472    } else if (LastInst->getOpcode() == PPC::BCC) {
473      if (!LastInst->getOperand(2).isMBB())
474        return true;
475      // Block ends with fall-through condbranch.
476      TBB = LastInst->getOperand(2).getMBB();
477      Cond.push_back(LastInst->getOperand(0));
478      Cond.push_back(LastInst->getOperand(1));
479      return false;
480    } else if (LastInst->getOpcode() == PPC::BC) {
481      if (!LastInst->getOperand(1).isMBB())
482        return true;
483      // Block ends with fall-through condbranch.
484      TBB = LastInst->getOperand(1).getMBB();
485      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
486      Cond.push_back(LastInst->getOperand(0));
487      return false;
488    } else if (LastInst->getOpcode() == PPC::BCn) {
489      if (!LastInst->getOperand(1).isMBB())
490        return true;
491      // Block ends with fall-through condbranch.
492      TBB = LastInst->getOperand(1).getMBB();
493      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
494      Cond.push_back(LastInst->getOperand(0));
495      return false;
496    } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
497               LastInst->getOpcode() == PPC::BDNZ) {
498      if (!LastInst->getOperand(0).isMBB())
499        return true;
500      if (DisableCTRLoopAnal)
501        return true;
502      TBB = LastInst->getOperand(0).getMBB();
503      Cond.push_back(MachineOperand::CreateImm(1));
504      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
505                                               true));
506      return false;
507    } else if (LastInst->getOpcode() == PPC::BDZ8 ||
508               LastInst->getOpcode() == PPC::BDZ) {
509      if (!LastInst->getOperand(0).isMBB())
510        return true;
511      if (DisableCTRLoopAnal)
512        return true;
513      TBB = LastInst->getOperand(0).getMBB();
514      Cond.push_back(MachineOperand::CreateImm(0));
515      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
516                                               true));
517      return false;
518    }
519
520    // Otherwise, don't know what this is.
521    return true;
522  }
523
524  // Get the instruction before it if it's a terminator.
525  MachineInstr *SecondLastInst = I;
526
527  // If there are three terminators, we don't know what sort of block this is.
528  if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I))
529    return true;
530
531  // If the block ends with PPC::B and PPC:BCC, handle it.
532  if (SecondLastInst->getOpcode() == PPC::BCC &&
533      LastInst->getOpcode() == PPC::B) {
534    if (!SecondLastInst->getOperand(2).isMBB() ||
535        !LastInst->getOperand(0).isMBB())
536      return true;
537    TBB =  SecondLastInst->getOperand(2).getMBB();
538    Cond.push_back(SecondLastInst->getOperand(0));
539    Cond.push_back(SecondLastInst->getOperand(1));
540    FBB = LastInst->getOperand(0).getMBB();
541    return false;
542  } else if (SecondLastInst->getOpcode() == PPC::BC &&
543      LastInst->getOpcode() == PPC::B) {
544    if (!SecondLastInst->getOperand(1).isMBB() ||
545        !LastInst->getOperand(0).isMBB())
546      return true;
547    TBB =  SecondLastInst->getOperand(1).getMBB();
548    Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
549    Cond.push_back(SecondLastInst->getOperand(0));
550    FBB = LastInst->getOperand(0).getMBB();
551    return false;
552  } else if (SecondLastInst->getOpcode() == PPC::BCn &&
553      LastInst->getOpcode() == PPC::B) {
554    if (!SecondLastInst->getOperand(1).isMBB() ||
555        !LastInst->getOperand(0).isMBB())
556      return true;
557    TBB =  SecondLastInst->getOperand(1).getMBB();
558    Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
559    Cond.push_back(SecondLastInst->getOperand(0));
560    FBB = LastInst->getOperand(0).getMBB();
561    return false;
562  } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
563              SecondLastInst->getOpcode() == PPC::BDNZ) &&
564      LastInst->getOpcode() == PPC::B) {
565    if (!SecondLastInst->getOperand(0).isMBB() ||
566        !LastInst->getOperand(0).isMBB())
567      return true;
568    if (DisableCTRLoopAnal)
569      return true;
570    TBB = SecondLastInst->getOperand(0).getMBB();
571    Cond.push_back(MachineOperand::CreateImm(1));
572    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
573                                             true));
574    FBB = LastInst->getOperand(0).getMBB();
575    return false;
576  } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
577              SecondLastInst->getOpcode() == PPC::BDZ) &&
578      LastInst->getOpcode() == PPC::B) {
579    if (!SecondLastInst->getOperand(0).isMBB() ||
580        !LastInst->getOperand(0).isMBB())
581      return true;
582    if (DisableCTRLoopAnal)
583      return true;
584    TBB = SecondLastInst->getOperand(0).getMBB();
585    Cond.push_back(MachineOperand::CreateImm(0));
586    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
587                                             true));
588    FBB = LastInst->getOperand(0).getMBB();
589    return false;
590  }
591
592  // If the block ends with two PPC:Bs, handle it.  The second one is not
593  // executed, so remove it.
594  if (SecondLastInst->getOpcode() == PPC::B &&
595      LastInst->getOpcode() == PPC::B) {
596    if (!SecondLastInst->getOperand(0).isMBB())
597      return true;
598    TBB = SecondLastInst->getOperand(0).getMBB();
599    I = LastInst;
600    if (AllowModify)
601      I->eraseFromParent();
602    return false;
603  }
604
605  // Otherwise, can't handle this.
606  return true;
607}
608
609unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
610  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
611  if (I == MBB.end())
612    return 0;
613
614  if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
615      I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
616      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
617      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
618    return 0;
619
620  // Remove the branch.
621  I->eraseFromParent();
622
623  I = MBB.end();
624
625  if (I == MBB.begin()) return 1;
626  --I;
627  if (I->getOpcode() != PPC::BCC &&
628      I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
629      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
630      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
631    return 1;
632
633  // Remove the branch.
634  I->eraseFromParent();
635  return 2;
636}
637
638unsigned PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB,
639                                    MachineBasicBlock *TBB,
640                                    MachineBasicBlock *FBB,
641                                    ArrayRef<MachineOperand> Cond,
642                                    const DebugLoc &DL) const {
643  // Shouldn't be a fall through.
644  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
645  assert((Cond.size() == 2 || Cond.size() == 0) &&
646         "PPC branch conditions have two components!");
647
648  bool isPPC64 = Subtarget.isPPC64();
649
650  // One-way branch.
651  if (!FBB) {
652    if (Cond.empty())   // Unconditional branch
653      BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
654    else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
655      BuildMI(&MBB, DL, get(Cond[0].getImm() ?
656                              (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
657                              (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
658    else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
659      BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
660    else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
661      BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
662    else                // Conditional branch
663      BuildMI(&MBB, DL, get(PPC::BCC))
664        .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
665    return 1;
666  }
667
668  // Two-way Conditional Branch.
669  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
670    BuildMI(&MBB, DL, get(Cond[0].getImm() ?
671                            (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
672                            (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
673  else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
674    BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
675  else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
676    BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
677  else
678    BuildMI(&MBB, DL, get(PPC::BCC))
679      .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
680  BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
681  return 2;
682}
683
684// Select analysis.
685bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
686                ArrayRef<MachineOperand> Cond,
687                unsigned TrueReg, unsigned FalseReg,
688                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
689  if (!Subtarget.hasISEL())
690    return false;
691
692  if (Cond.size() != 2)
693    return false;
694
695  // If this is really a bdnz-like condition, then it cannot be turned into a
696  // select.
697  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
698    return false;
699
700  // Check register classes.
701  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
702  const TargetRegisterClass *RC =
703    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
704  if (!RC)
705    return false;
706
707  // isel is for regular integer GPRs only.
708  if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
709      !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
710      !PPC::G8RCRegClass.hasSubClassEq(RC) &&
711      !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
712    return false;
713
714  // FIXME: These numbers are for the A2, how well they work for other cores is
715  // an open question. On the A2, the isel instruction has a 2-cycle latency
716  // but single-cycle throughput. These numbers are used in combination with
717  // the MispredictPenalty setting from the active SchedMachineModel.
718  CondCycles = 1;
719  TrueCycles = 1;
720  FalseCycles = 1;
721
722  return true;
723}
724
725void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
726                                MachineBasicBlock::iterator MI,
727                                const DebugLoc &dl, unsigned DestReg,
728                                ArrayRef<MachineOperand> Cond, unsigned TrueReg,
729                                unsigned FalseReg) const {
730  assert(Cond.size() == 2 &&
731         "PPC branch conditions have two components!");
732
733  assert(Subtarget.hasISEL() &&
734         "Cannot insert select on target without ISEL support");
735
736  // Get the register classes.
737  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
738  const TargetRegisterClass *RC =
739    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
740  assert(RC && "TrueReg and FalseReg must have overlapping register classes");
741
742  bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
743                 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
744  assert((Is64Bit ||
745          PPC::GPRCRegClass.hasSubClassEq(RC) ||
746          PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
747         "isel is for regular integer GPRs only");
748
749  unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
750  auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
751
752  unsigned SubIdx = 0;
753  bool SwapOps = false;
754  switch (SelectPred) {
755  case PPC::PRED_EQ:
756  case PPC::PRED_EQ_MINUS:
757  case PPC::PRED_EQ_PLUS:
758      SubIdx = PPC::sub_eq; SwapOps = false; break;
759  case PPC::PRED_NE:
760  case PPC::PRED_NE_MINUS:
761  case PPC::PRED_NE_PLUS:
762      SubIdx = PPC::sub_eq; SwapOps = true; break;
763  case PPC::PRED_LT:
764  case PPC::PRED_LT_MINUS:
765  case PPC::PRED_LT_PLUS:
766      SubIdx = PPC::sub_lt; SwapOps = false; break;
767  case PPC::PRED_GE:
768  case PPC::PRED_GE_MINUS:
769  case PPC::PRED_GE_PLUS:
770      SubIdx = PPC::sub_lt; SwapOps = true; break;
771  case PPC::PRED_GT:
772  case PPC::PRED_GT_MINUS:
773  case PPC::PRED_GT_PLUS:
774      SubIdx = PPC::sub_gt; SwapOps = false; break;
775  case PPC::PRED_LE:
776  case PPC::PRED_LE_MINUS:
777  case PPC::PRED_LE_PLUS:
778      SubIdx = PPC::sub_gt; SwapOps = true; break;
779  case PPC::PRED_UN:
780  case PPC::PRED_UN_MINUS:
781  case PPC::PRED_UN_PLUS:
782      SubIdx = PPC::sub_un; SwapOps = false; break;
783  case PPC::PRED_NU:
784  case PPC::PRED_NU_MINUS:
785  case PPC::PRED_NU_PLUS:
786      SubIdx = PPC::sub_un; SwapOps = true; break;
787  case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
788  case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
789  }
790
791  unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
792           SecondReg = SwapOps ? TrueReg  : FalseReg;
793
794  // The first input register of isel cannot be r0. If it is a member
795  // of a register class that can be r0, then copy it first (the
796  // register allocator should eliminate the copy).
797  if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
798      MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
799    const TargetRegisterClass *FirstRC =
800      MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
801        &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
802    unsigned OldFirstReg = FirstReg;
803    FirstReg = MRI.createVirtualRegister(FirstRC);
804    BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
805      .addReg(OldFirstReg);
806  }
807
808  BuildMI(MBB, MI, dl, get(OpCode), DestReg)
809    .addReg(FirstReg).addReg(SecondReg)
810    .addReg(Cond[1].getReg(), 0, SubIdx);
811}
812
813static unsigned getCRBitValue(unsigned CRBit) {
814  unsigned Ret = 4;
815  if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
816      CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
817      CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
818      CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
819    Ret = 3;
820  if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
821      CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
822      CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
823      CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
824    Ret = 2;
825  if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
826      CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
827      CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
828      CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
829    Ret = 1;
830  if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
831      CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
832      CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
833      CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
834    Ret = 0;
835
836  assert(Ret != 4 && "Invalid CR bit register");
837  return Ret;
838}
839
840void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
841                               MachineBasicBlock::iterator I,
842                               const DebugLoc &DL, unsigned DestReg,
843                               unsigned SrcReg, bool KillSrc) const {
844  // We can end up with self copies and similar things as a result of VSX copy
845  // legalization. Promote them here.
846  const TargetRegisterInfo *TRI = &getRegisterInfo();
847  if (PPC::F8RCRegClass.contains(DestReg) &&
848      PPC::VSRCRegClass.contains(SrcReg)) {
849    unsigned SuperReg =
850      TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
851
852    if (VSXSelfCopyCrash && SrcReg == SuperReg)
853      llvm_unreachable("nop VSX copy");
854
855    DestReg = SuperReg;
856  } else if (PPC::VRRCRegClass.contains(DestReg) &&
857             PPC::VSRCRegClass.contains(SrcReg)) {
858    unsigned SuperReg =
859      TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
860
861    if (VSXSelfCopyCrash && SrcReg == SuperReg)
862      llvm_unreachable("nop VSX copy");
863
864    DestReg = SuperReg;
865  } else if (PPC::F8RCRegClass.contains(SrcReg) &&
866             PPC::VSRCRegClass.contains(DestReg)) {
867    unsigned SuperReg =
868      TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
869
870    if (VSXSelfCopyCrash && DestReg == SuperReg)
871      llvm_unreachable("nop VSX copy");
872
873    SrcReg = SuperReg;
874  } else if (PPC::VRRCRegClass.contains(SrcReg) &&
875             PPC::VSRCRegClass.contains(DestReg)) {
876    unsigned SuperReg =
877      TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
878
879    if (VSXSelfCopyCrash && DestReg == SuperReg)
880      llvm_unreachable("nop VSX copy");
881
882    SrcReg = SuperReg;
883  }
884
885  // Different class register copy
886  if (PPC::CRBITRCRegClass.contains(SrcReg) &&
887      PPC::GPRCRegClass.contains(DestReg)) {
888    unsigned CRReg = getCRFromCRBit(SrcReg);
889    BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
890    getKillRegState(KillSrc);
891    // Rotate the CR bit in the CR fields to be the least significant bit and
892    // then mask with 0x1 (MB = ME = 31).
893    BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
894       .addReg(DestReg, RegState::Kill)
895       .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
896       .addImm(31)
897       .addImm(31);
898    return;
899  } else if (PPC::CRRCRegClass.contains(SrcReg) &&
900      PPC::G8RCRegClass.contains(DestReg)) {
901    BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
902    getKillRegState(KillSrc);
903    return;
904  } else if (PPC::CRRCRegClass.contains(SrcReg) &&
905      PPC::GPRCRegClass.contains(DestReg)) {
906    BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
907    getKillRegState(KillSrc);
908    return;
909   }
910
911  unsigned Opc;
912  if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
913    Opc = PPC::OR;
914  else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
915    Opc = PPC::OR8;
916  else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
917    Opc = PPC::FMR;
918  else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
919    Opc = PPC::MCRF;
920  else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
921    Opc = PPC::VOR;
922  else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
923    // There are two different ways this can be done:
924    //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
925    //      issue in VSU pipeline 0.
926    //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
927    //      can go to either pipeline.
928    // We'll always use xxlor here, because in practically all cases where
929    // copies are generated, they are close enough to some use that the
930    // lower-latency form is preferable.
931    Opc = PPC::XXLOR;
932  else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
933           PPC::VSSRCRegClass.contains(DestReg, SrcReg))
934    Opc = PPC::XXLORf;
935  else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
936    Opc = PPC::QVFMR;
937  else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
938    Opc = PPC::QVFMRs;
939  else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
940    Opc = PPC::QVFMRb;
941  else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
942    Opc = PPC::CROR;
943  else
944    llvm_unreachable("Impossible reg-to-reg copy");
945
946  const MCInstrDesc &MCID = get(Opc);
947  if (MCID.getNumOperands() == 3)
948    BuildMI(MBB, I, DL, MCID, DestReg)
949      .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
950  else
951    BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
952}
953
954// This function returns true if a CR spill is necessary and false otherwise.
955bool
956PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
957                                  unsigned SrcReg, bool isKill,
958                                  int FrameIdx,
959                                  const TargetRegisterClass *RC,
960                                  SmallVectorImpl<MachineInstr*> &NewMIs,
961                                  bool &NonRI, bool &SpillsVRS) const{
962  // Note: If additional store instructions are added here,
963  // update isStoreToStackSlot.
964
965  DebugLoc DL;
966  if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
967      PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
968    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
969                                       .addReg(SrcReg,
970                                               getKillRegState(isKill)),
971                                       FrameIdx));
972  } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
973             PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
974    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
975                                       .addReg(SrcReg,
976                                               getKillRegState(isKill)),
977                                       FrameIdx));
978  } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
979    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
980                                       .addReg(SrcReg,
981                                               getKillRegState(isKill)),
982                                       FrameIdx));
983  } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
984    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
985                                       .addReg(SrcReg,
986                                               getKillRegState(isKill)),
987                                       FrameIdx));
988  } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
989    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
990                                       .addReg(SrcReg,
991                                               getKillRegState(isKill)),
992                                       FrameIdx));
993    return true;
994  } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
995    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
996                                       .addReg(SrcReg,
997                                               getKillRegState(isKill)),
998                                       FrameIdx));
999    return true;
1000  } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1001    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
1002                                       .addReg(SrcReg,
1003                                               getKillRegState(isKill)),
1004                                       FrameIdx));
1005    NonRI = true;
1006  } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1007    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
1008                                       .addReg(SrcReg,
1009                                               getKillRegState(isKill)),
1010                                       FrameIdx));
1011    NonRI = true;
1012  } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1013    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
1014                                       .addReg(SrcReg,
1015                                               getKillRegState(isKill)),
1016                                       FrameIdx));
1017    NonRI = true;
1018  } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1019    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX))
1020                                       .addReg(SrcReg,
1021                                               getKillRegState(isKill)),
1022                                       FrameIdx));
1023    NonRI = true;
1024  } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1025    assert(Subtarget.isDarwin() &&
1026           "VRSAVE only needs spill/restore on Darwin");
1027    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
1028                                       .addReg(SrcReg,
1029                                               getKillRegState(isKill)),
1030                                       FrameIdx));
1031    SpillsVRS = true;
1032  } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1033    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX))
1034                                       .addReg(SrcReg,
1035                                               getKillRegState(isKill)),
1036                                       FrameIdx));
1037    NonRI = true;
1038  } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1039    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs))
1040                                       .addReg(SrcReg,
1041                                               getKillRegState(isKill)),
1042                                       FrameIdx));
1043    NonRI = true;
1044  } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1045    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb))
1046                                       .addReg(SrcReg,
1047                                               getKillRegState(isKill)),
1048                                       FrameIdx));
1049    NonRI = true;
1050  } else {
1051    llvm_unreachable("Unknown regclass!");
1052  }
1053
1054  return false;
1055}
1056
1057void
1058PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1059                                  MachineBasicBlock::iterator MI,
1060                                  unsigned SrcReg, bool isKill, int FrameIdx,
1061                                  const TargetRegisterClass *RC,
1062                                  const TargetRegisterInfo *TRI) const {
1063  MachineFunction &MF = *MBB.getParent();
1064  SmallVector<MachineInstr*, 4> NewMIs;
1065
1066  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1067  FuncInfo->setHasSpills();
1068
1069  bool NonRI = false, SpillsVRS = false;
1070  if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
1071                          NonRI, SpillsVRS))
1072    FuncInfo->setSpillsCR();
1073
1074  if (SpillsVRS)
1075    FuncInfo->setSpillsVRSAVE();
1076
1077  if (NonRI)
1078    FuncInfo->setHasNonRISpills();
1079
1080  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1081    MBB.insert(MI, NewMIs[i]);
1082
1083  const MachineFrameInfo &MFI = *MF.getFrameInfo();
1084  MachineMemOperand *MMO = MF.getMachineMemOperand(
1085      MachinePointerInfo::getFixedStack(MF, FrameIdx),
1086      MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1087      MFI.getObjectAlignment(FrameIdx));
1088  NewMIs.back()->addMemOperand(MF, MMO);
1089}
1090
1091bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1092                                        unsigned DestReg, int FrameIdx,
1093                                        const TargetRegisterClass *RC,
1094                                        SmallVectorImpl<MachineInstr *> &NewMIs,
1095                                        bool &NonRI, bool &SpillsVRS) const {
1096  // Note: If additional load instructions are added here,
1097  // update isLoadFromStackSlot.
1098
1099  if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1100      PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1101    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
1102                                               DestReg), FrameIdx));
1103  } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1104             PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1105    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
1106                                       FrameIdx));
1107  } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1108    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
1109                                       FrameIdx));
1110  } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1111    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
1112                                       FrameIdx));
1113  } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1114    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1115                                               get(PPC::RESTORE_CR), DestReg),
1116                                       FrameIdx));
1117    return true;
1118  } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1119    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1120                                               get(PPC::RESTORE_CRBIT), DestReg),
1121                                       FrameIdx));
1122    return true;
1123  } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1124    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
1125                                       FrameIdx));
1126    NonRI = true;
1127  } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1128    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
1129                                       FrameIdx));
1130    NonRI = true;
1131  } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1132    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
1133                                       FrameIdx));
1134    NonRI = true;
1135  } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1136    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg),
1137                                       FrameIdx));
1138    NonRI = true;
1139  } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1140    assert(Subtarget.isDarwin() &&
1141           "VRSAVE only needs spill/restore on Darwin");
1142    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1143                                               get(PPC::RESTORE_VRSAVE),
1144                                               DestReg),
1145                                       FrameIdx));
1146    SpillsVRS = true;
1147  } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1148    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg),
1149                                       FrameIdx));
1150    NonRI = true;
1151  } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1152    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg),
1153                                       FrameIdx));
1154    NonRI = true;
1155  } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1156    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg),
1157                                       FrameIdx));
1158    NonRI = true;
1159  } else {
1160    llvm_unreachable("Unknown regclass!");
1161  }
1162
1163  return false;
1164}
1165
1166void
1167PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1168                                   MachineBasicBlock::iterator MI,
1169                                   unsigned DestReg, int FrameIdx,
1170                                   const TargetRegisterClass *RC,
1171                                   const TargetRegisterInfo *TRI) const {
1172  MachineFunction &MF = *MBB.getParent();
1173  SmallVector<MachineInstr*, 4> NewMIs;
1174  DebugLoc DL;
1175  if (MI != MBB.end()) DL = MI->getDebugLoc();
1176
1177  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1178  FuncInfo->setHasSpills();
1179
1180  bool NonRI = false, SpillsVRS = false;
1181  if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
1182                           NonRI, SpillsVRS))
1183    FuncInfo->setSpillsCR();
1184
1185  if (SpillsVRS)
1186    FuncInfo->setSpillsVRSAVE();
1187
1188  if (NonRI)
1189    FuncInfo->setHasNonRISpills();
1190
1191  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1192    MBB.insert(MI, NewMIs[i]);
1193
1194  const MachineFrameInfo &MFI = *MF.getFrameInfo();
1195  MachineMemOperand *MMO = MF.getMachineMemOperand(
1196      MachinePointerInfo::getFixedStack(MF, FrameIdx),
1197      MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1198      MFI.getObjectAlignment(FrameIdx));
1199  NewMIs.back()->addMemOperand(MF, MMO);
1200}
1201
1202bool PPCInstrInfo::
1203ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1204  assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1205  if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1206    Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1207  else
1208    // Leave the CR# the same, but invert the condition.
1209    Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1210  return false;
1211}
1212
1213bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1214                                 unsigned Reg, MachineRegisterInfo *MRI) const {
1215  // For some instructions, it is legal to fold ZERO into the RA register field.
1216  // A zero immediate should always be loaded with a single li.
1217  unsigned DefOpc = DefMI.getOpcode();
1218  if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1219    return false;
1220  if (!DefMI.getOperand(1).isImm())
1221    return false;
1222  if (DefMI.getOperand(1).getImm() != 0)
1223    return false;
1224
1225  // Note that we cannot here invert the arguments of an isel in order to fold
1226  // a ZERO into what is presented as the second argument. All we have here
1227  // is the condition bit, and that might come from a CR-logical bit operation.
1228
1229  const MCInstrDesc &UseMCID = UseMI.getDesc();
1230
1231  // Only fold into real machine instructions.
1232  if (UseMCID.isPseudo())
1233    return false;
1234
1235  unsigned UseIdx;
1236  for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1237    if (UseMI.getOperand(UseIdx).isReg() &&
1238        UseMI.getOperand(UseIdx).getReg() == Reg)
1239      break;
1240
1241  assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1242  assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1243
1244  const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1245
1246  // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1247  // register (which might also be specified as a pointer class kind).
1248  if (UseInfo->isLookupPtrRegClass()) {
1249    if (UseInfo->RegClass /* Kind */ != 1)
1250      return false;
1251  } else {
1252    if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1253        UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1254      return false;
1255  }
1256
1257  // Make sure this is not tied to an output register (or otherwise
1258  // constrained). This is true for ST?UX registers, for example, which
1259  // are tied to their output registers.
1260  if (UseInfo->Constraints != 0)
1261    return false;
1262
1263  unsigned ZeroReg;
1264  if (UseInfo->isLookupPtrRegClass()) {
1265    bool isPPC64 = Subtarget.isPPC64();
1266    ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1267  } else {
1268    ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1269              PPC::ZERO8 : PPC::ZERO;
1270  }
1271
1272  bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1273  UseMI.getOperand(UseIdx).setReg(ZeroReg);
1274
1275  if (DeleteDef)
1276    DefMI.eraseFromParent();
1277
1278  return true;
1279}
1280
1281static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1282  for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1283       I != IE; ++I)
1284    if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1285      return true;
1286  return false;
1287}
1288
1289// We should make sure that, if we're going to predicate both sides of a
1290// condition (a diamond), that both sides don't define the counter register. We
1291// can predicate counter-decrement-based branches, but while that predicates
1292// the branching, it does not predicate the counter decrement. If we tried to
1293// merge the triangle into one predicated block, we'd decrement the counter
1294// twice.
1295bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1296                     unsigned NumT, unsigned ExtraT,
1297                     MachineBasicBlock &FMBB,
1298                     unsigned NumF, unsigned ExtraF,
1299                     BranchProbability Probability) const {
1300  return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1301}
1302
1303
1304bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1305  // The predicated branches are identified by their type, not really by the
1306  // explicit presence of a predicate. Furthermore, some of them can be
1307  // predicated more than once. Because if conversion won't try to predicate
1308  // any instruction which already claims to be predicated (by returning true
1309  // here), always return false. In doing so, we let isPredicable() be the
1310  // final word on whether not the instruction can be (further) predicated.
1311
1312  return false;
1313}
1314
1315bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1316  if (!MI.isTerminator())
1317    return false;
1318
1319  // Conditional branch is a special case.
1320  if (MI.isBranch() && !MI.isBarrier())
1321    return true;
1322
1323  return !isPredicated(MI);
1324}
1325
1326bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1327                                        ArrayRef<MachineOperand> Pred) const {
1328  unsigned OpC = MI.getOpcode();
1329  if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1330    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1331      bool isPPC64 = Subtarget.isPPC64();
1332      MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1333                                      : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1334    } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1335      MI.setDesc(get(PPC::BCLR));
1336      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1337          .addReg(Pred[1].getReg());
1338    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1339      MI.setDesc(get(PPC::BCLRn));
1340      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1341          .addReg(Pred[1].getReg());
1342    } else {
1343      MI.setDesc(get(PPC::BCCLR));
1344      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1345          .addImm(Pred[0].getImm())
1346          .addReg(Pred[1].getReg());
1347    }
1348
1349    return true;
1350  } else if (OpC == PPC::B) {
1351    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1352      bool isPPC64 = Subtarget.isPPC64();
1353      MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1354                                      : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1355    } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1356      MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1357      MI.RemoveOperand(0);
1358
1359      MI.setDesc(get(PPC::BC));
1360      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1361          .addReg(Pred[1].getReg())
1362          .addMBB(MBB);
1363    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1364      MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1365      MI.RemoveOperand(0);
1366
1367      MI.setDesc(get(PPC::BCn));
1368      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1369          .addReg(Pred[1].getReg())
1370          .addMBB(MBB);
1371    } else {
1372      MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1373      MI.RemoveOperand(0);
1374
1375      MI.setDesc(get(PPC::BCC));
1376      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1377          .addImm(Pred[0].getImm())
1378          .addReg(Pred[1].getReg())
1379          .addMBB(MBB);
1380    }
1381
1382    return true;
1383  } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
1384             OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1385    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1386      llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1387
1388    bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1389    bool isPPC64 = Subtarget.isPPC64();
1390
1391    if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1392      MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1393                             : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1394      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1395          .addReg(Pred[1].getReg());
1396      return true;
1397    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1398      MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1399                             : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1400      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1401          .addReg(Pred[1].getReg());
1402      return true;
1403    }
1404
1405    MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1406                           : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1407    MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1408        .addImm(Pred[0].getImm())
1409        .addReg(Pred[1].getReg());
1410    return true;
1411  }
1412
1413  return false;
1414}
1415
1416bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1417                                     ArrayRef<MachineOperand> Pred2) const {
1418  assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1419  assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1420
1421  if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1422    return false;
1423  if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1424    return false;
1425
1426  // P1 can only subsume P2 if they test the same condition register.
1427  if (Pred1[1].getReg() != Pred2[1].getReg())
1428    return false;
1429
1430  PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1431  PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1432
1433  if (P1 == P2)
1434    return true;
1435
1436  // Does P1 subsume P2, e.g. GE subsumes GT.
1437  if (P1 == PPC::PRED_LE &&
1438      (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1439    return true;
1440  if (P1 == PPC::PRED_GE &&
1441      (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1442    return true;
1443
1444  return false;
1445}
1446
1447bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1448                                    std::vector<MachineOperand> &Pred) const {
1449  // Note: At the present time, the contents of Pred from this function is
1450  // unused by IfConversion. This implementation follows ARM by pushing the
1451  // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1452  // predicate, instructions defining CTR or CTR8 are also included as
1453  // predicate-defining instructions.
1454
1455  const TargetRegisterClass *RCs[] =
1456    { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1457      &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1458
1459  bool Found = false;
1460  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1461    const MachineOperand &MO = MI.getOperand(i);
1462    for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1463      const TargetRegisterClass *RC = RCs[c];
1464      if (MO.isReg()) {
1465        if (MO.isDef() && RC->contains(MO.getReg())) {
1466          Pred.push_back(MO);
1467          Found = true;
1468        }
1469      } else if (MO.isRegMask()) {
1470        for (TargetRegisterClass::iterator I = RC->begin(),
1471             IE = RC->end(); I != IE; ++I)
1472          if (MO.clobbersPhysReg(*I)) {
1473            Pred.push_back(MO);
1474            Found = true;
1475          }
1476      }
1477    }
1478  }
1479
1480  return Found;
1481}
1482
1483bool PPCInstrInfo::isPredicable(MachineInstr &MI) const {
1484  unsigned OpC = MI.getOpcode();
1485  switch (OpC) {
1486  default:
1487    return false;
1488  case PPC::B:
1489  case PPC::BLR:
1490  case PPC::BLR8:
1491  case PPC::BCTR:
1492  case PPC::BCTR8:
1493  case PPC::BCTRL:
1494  case PPC::BCTRL8:
1495    return true;
1496  }
1497}
1498
1499bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1500                                  unsigned &SrcReg2, int &Mask,
1501                                  int &Value) const {
1502  unsigned Opc = MI.getOpcode();
1503
1504  switch (Opc) {
1505  default: return false;
1506  case PPC::CMPWI:
1507  case PPC::CMPLWI:
1508  case PPC::CMPDI:
1509  case PPC::CMPLDI:
1510    SrcReg = MI.getOperand(1).getReg();
1511    SrcReg2 = 0;
1512    Value = MI.getOperand(2).getImm();
1513    Mask = 0xFFFF;
1514    return true;
1515  case PPC::CMPW:
1516  case PPC::CMPLW:
1517  case PPC::CMPD:
1518  case PPC::CMPLD:
1519  case PPC::FCMPUS:
1520  case PPC::FCMPUD:
1521    SrcReg = MI.getOperand(1).getReg();
1522    SrcReg2 = MI.getOperand(2).getReg();
1523    return true;
1524  }
1525}
1526
1527bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1528                                        unsigned SrcReg2, int Mask, int Value,
1529                                        const MachineRegisterInfo *MRI) const {
1530  if (DisableCmpOpt)
1531    return false;
1532
1533  int OpC = CmpInstr.getOpcode();
1534  unsigned CRReg = CmpInstr.getOperand(0).getReg();
1535
1536  // FP record forms set CR1 based on the execption status bits, not a
1537  // comparison with zero.
1538  if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1539    return false;
1540
1541  // The record forms set the condition register based on a signed comparison
1542  // with zero (so says the ISA manual). This is not as straightforward as it
1543  // seems, however, because this is always a 64-bit comparison on PPC64, even
1544  // for instructions that are 32-bit in nature (like slw for example).
1545  // So, on PPC32, for unsigned comparisons, we can use the record forms only
1546  // for equality checks (as those don't depend on the sign). On PPC64,
1547  // we are restricted to equality for unsigned 64-bit comparisons and for
1548  // signed 32-bit comparisons the applicability is more restricted.
1549  bool isPPC64 = Subtarget.isPPC64();
1550  bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1551  bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1552  bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1553
1554  // Get the unique definition of SrcReg.
1555  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1556  if (!MI) return false;
1557  int MIOpC = MI->getOpcode();
1558
1559  bool equalityOnly = false;
1560  bool noSub = false;
1561  if (isPPC64) {
1562    if (is32BitSignedCompare) {
1563      // We can perform this optimization only if MI is sign-extending.
1564      if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
1565          MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
1566          MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
1567          MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
1568          MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
1569        noSub = true;
1570      } else
1571        return false;
1572    } else if (is32BitUnsignedCompare) {
1573      // 32-bit rotate and mask instructions are zero extending only if MB <= ME
1574      bool isZeroExtendingRotate  =
1575          (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINMo ||
1576           MIOpC == PPC::RLWNM || MIOpC == PPC::RLWNMo)
1577          && MI->getOperand(3).getImm() <= MI->getOperand(4).getImm();
1578
1579      // We can perform this optimization, equality only, if MI is
1580      // zero-extending.
1581      if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
1582          MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
1583          MIOpC == PPC::SRW    || MIOpC == PPC::SRWo ||
1584          isZeroExtendingRotate) {
1585        noSub = true;
1586        equalityOnly = true;
1587      } else
1588        return false;
1589    } else
1590      equalityOnly = is64BitUnsignedCompare;
1591  } else
1592    equalityOnly = is32BitUnsignedCompare;
1593
1594  if (equalityOnly) {
1595    // We need to check the uses of the condition register in order to reject
1596    // non-equality comparisons.
1597    for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
1598         IE = MRI->use_instr_end(); I != IE; ++I) {
1599      MachineInstr *UseMI = &*I;
1600      if (UseMI->getOpcode() == PPC::BCC) {
1601        unsigned Pred = UseMI->getOperand(0).getImm();
1602        if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
1603          return false;
1604      } else if (UseMI->getOpcode() == PPC::ISEL ||
1605                 UseMI->getOpcode() == PPC::ISEL8) {
1606        unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1607        if (SubIdx != PPC::sub_eq)
1608          return false;
1609      } else
1610        return false;
1611    }
1612  }
1613
1614  MachineBasicBlock::iterator I = CmpInstr;
1615
1616  // Scan forward to find the first use of the compare.
1617  for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1618       ++I) {
1619    bool FoundUse = false;
1620    for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
1621         JE = MRI->use_instr_end(); J != JE; ++J)
1622      if (&*J == &*I) {
1623        FoundUse = true;
1624        break;
1625      }
1626
1627    if (FoundUse)
1628      break;
1629  }
1630
1631  // There are two possible candidates which can be changed to set CR[01].
1632  // One is MI, the other is a SUB instruction.
1633  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1634  MachineInstr *Sub = nullptr;
1635  if (SrcReg2 != 0)
1636    // MI is not a candidate for CMPrr.
1637    MI = nullptr;
1638  // FIXME: Conservatively refuse to convert an instruction which isn't in the
1639  // same BB as the comparison. This is to allow the check below to avoid calls
1640  // (and other explicit clobbers); instead we should really check for these
1641  // more explicitly (in at least a few predecessors).
1642  else if (MI->getParent() != CmpInstr.getParent() || Value != 0) {
1643    // PPC does not have a record-form SUBri.
1644    return false;
1645  }
1646
1647  // Search for Sub.
1648  const TargetRegisterInfo *TRI = &getRegisterInfo();
1649  --I;
1650
1651  // Get ready to iterate backward from CmpInstr.
1652  MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1653
1654  for (; I != E && !noSub; --I) {
1655    const MachineInstr &Instr = *I;
1656    unsigned IOpC = Instr.getOpcode();
1657
1658    if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1659                             Instr.readsRegister(PPC::CR0, TRI)))
1660      // This instruction modifies or uses the record condition register after
1661      // the one we want to change. While we could do this transformation, it
1662      // would likely not be profitable. This transformation removes one
1663      // instruction, and so even forcing RA to generate one move probably
1664      // makes it unprofitable.
1665      return false;
1666
1667    // Check whether CmpInstr can be made redundant by the current instruction.
1668    if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1669         OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1670        (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1671        ((Instr.getOperand(1).getReg() == SrcReg &&
1672          Instr.getOperand(2).getReg() == SrcReg2) ||
1673        (Instr.getOperand(1).getReg() == SrcReg2 &&
1674         Instr.getOperand(2).getReg() == SrcReg))) {
1675      Sub = &*I;
1676      break;
1677    }
1678
1679    if (I == B)
1680      // The 'and' is below the comparison instruction.
1681      return false;
1682  }
1683
1684  // Return false if no candidates exist.
1685  if (!MI && !Sub)
1686    return false;
1687
1688  // The single candidate is called MI.
1689  if (!MI) MI = Sub;
1690
1691  int NewOpC = -1;
1692  MIOpC = MI->getOpcode();
1693  if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1694    NewOpC = MIOpC;
1695  else {
1696    NewOpC = PPC::getRecordFormOpcode(MIOpC);
1697    if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1698      NewOpC = MIOpC;
1699  }
1700
1701  // FIXME: On the non-embedded POWER architectures, only some of the record
1702  // forms are fast, and we should use only the fast ones.
1703
1704  // The defining instruction has a record form (or is already a record
1705  // form). It is possible, however, that we'll need to reverse the condition
1706  // code of the users.
1707  if (NewOpC == -1)
1708    return false;
1709
1710  SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1711  SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1712
1713  // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1714  // needs to be updated to be based on SUB.  Push the condition code
1715  // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1716  // condition code of these operands will be modified.
1717  bool ShouldSwap = false;
1718  if (Sub) {
1719    ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1720      Sub->getOperand(2).getReg() == SrcReg;
1721
1722    // The operands to subf are the opposite of sub, so only in the fixed-point
1723    // case, invert the order.
1724    ShouldSwap = !ShouldSwap;
1725  }
1726
1727  if (ShouldSwap)
1728    for (MachineRegisterInfo::use_instr_iterator
1729         I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1730         I != IE; ++I) {
1731      MachineInstr *UseMI = &*I;
1732      if (UseMI->getOpcode() == PPC::BCC) {
1733        PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1734        assert((!equalityOnly ||
1735                Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
1736               "Invalid predicate for equality-only optimization");
1737        PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1738                                PPC::getSwappedPredicate(Pred)));
1739      } else if (UseMI->getOpcode() == PPC::ISEL ||
1740                 UseMI->getOpcode() == PPC::ISEL8) {
1741        unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1742        assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1743               "Invalid CR bit for equality-only optimization");
1744
1745        if (NewSubReg == PPC::sub_lt)
1746          NewSubReg = PPC::sub_gt;
1747        else if (NewSubReg == PPC::sub_gt)
1748          NewSubReg = PPC::sub_lt;
1749
1750        SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1751                                                 NewSubReg));
1752      } else // We need to abort on a user we don't understand.
1753        return false;
1754    }
1755
1756  // Create a new virtual register to hold the value of the CR set by the
1757  // record-form instruction. If the instruction was not previously in
1758  // record form, then set the kill flag on the CR.
1759  CmpInstr.eraseFromParent();
1760
1761  MachineBasicBlock::iterator MII = MI;
1762  BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1763          get(TargetOpcode::COPY), CRReg)
1764    .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1765
1766  // Even if CR0 register were dead before, it is alive now since the
1767  // instruction we just built uses it.
1768  MI->clearRegisterDeads(PPC::CR0);
1769
1770  if (MIOpC != NewOpC) {
1771    // We need to be careful here: we're replacing one instruction with
1772    // another, and we need to make sure that we get all of the right
1773    // implicit uses and defs. On the other hand, the caller may be holding
1774    // an iterator to this instruction, and so we can't delete it (this is
1775    // specifically the case if this is the instruction directly after the
1776    // compare).
1777
1778    const MCInstrDesc &NewDesc = get(NewOpC);
1779    MI->setDesc(NewDesc);
1780
1781    if (NewDesc.ImplicitDefs)
1782      for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1783           *ImpDefs; ++ImpDefs)
1784        if (!MI->definesRegister(*ImpDefs))
1785          MI->addOperand(*MI->getParent()->getParent(),
1786                         MachineOperand::CreateReg(*ImpDefs, true, true));
1787    if (NewDesc.ImplicitUses)
1788      for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1789           *ImpUses; ++ImpUses)
1790        if (!MI->readsRegister(*ImpUses))
1791          MI->addOperand(*MI->getParent()->getParent(),
1792                         MachineOperand::CreateReg(*ImpUses, false, true));
1793  }
1794  assert(MI->definesRegister(PPC::CR0) &&
1795         "Record-form instruction does not define cr0?");
1796
1797  // Modify the condition code of operands in OperandsToUpdate.
1798  // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1799  // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1800  for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1801    PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1802
1803  for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1804    SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1805
1806  return true;
1807}
1808
1809/// GetInstSize - Return the number of bytes of code the specified
1810/// instruction may be.  This returns the maximum number of bytes.
1811///
1812unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr &MI) const {
1813  unsigned Opcode = MI.getOpcode();
1814
1815  if (Opcode == PPC::INLINEASM) {
1816    const MachineFunction *MF = MI.getParent()->getParent();
1817    const char *AsmStr = MI.getOperand(0).getSymbolName();
1818    return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1819  } else if (Opcode == TargetOpcode::STACKMAP) {
1820    return MI.getOperand(1).getImm();
1821  } else if (Opcode == TargetOpcode::PATCHPOINT) {
1822    PatchPointOpers Opers(&MI);
1823    return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
1824  } else {
1825    const MCInstrDesc &Desc = get(Opcode);
1826    return Desc.getSize();
1827  }
1828}
1829
1830std::pair<unsigned, unsigned>
1831PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1832  const unsigned Mask = PPCII::MO_ACCESS_MASK;
1833  return std::make_pair(TF & Mask, TF & ~Mask);
1834}
1835
1836ArrayRef<std::pair<unsigned, const char *>>
1837PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1838  using namespace PPCII;
1839  static const std::pair<unsigned, const char *> TargetFlags[] = {
1840      {MO_LO, "ppc-lo"},
1841      {MO_HA, "ppc-ha"},
1842      {MO_TPREL_LO, "ppc-tprel-lo"},
1843      {MO_TPREL_HA, "ppc-tprel-ha"},
1844      {MO_DTPREL_LO, "ppc-dtprel-lo"},
1845      {MO_TLSLD_LO, "ppc-tlsld-lo"},
1846      {MO_TOC_LO, "ppc-toc-lo"},
1847      {MO_TLS, "ppc-tls"}};
1848  return makeArrayRef(TargetFlags);
1849}
1850
1851ArrayRef<std::pair<unsigned, const char *>>
1852PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1853  using namespace PPCII;
1854  static const std::pair<unsigned, const char *> TargetFlags[] = {
1855      {MO_PLT, "ppc-plt"},
1856      {MO_PIC_FLAG, "ppc-pic"},
1857      {MO_NLP_FLAG, "ppc-nlp"},
1858      {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
1859  return makeArrayRef(TargetFlags);
1860}
1861
1862bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1863  switch (MI.getOpcode()) {
1864  case TargetOpcode::LOAD_STACK_GUARD: {
1865    assert(Subtarget.isTargetLinux() &&
1866           "Only Linux target is expected to contain LOAD_STACK_GUARD");
1867    const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
1868    const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
1869    MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
1870    MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1871        .addImm(Offset)
1872        .addReg(Reg);
1873    return true;
1874  }
1875  }
1876  return false;
1877}
1878