1//===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the XCoreTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "XCoreISelLowering.h"
15#include "XCore.h"
16#include "XCoreMachineFunctionInfo.h"
17#include "XCoreSubtarget.h"
18#include "XCoreTargetMachine.h"
19#include "XCoreTargetObjectFile.h"
20#include "llvm/CodeGen/CallingConvLower.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/SelectionDAGISel.h"
27#include "llvm/CodeGen/ValueTypes.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/GlobalAlias.h"
33#include "llvm/IR/GlobalVariable.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39
40using namespace llvm;
41
42#define DEBUG_TYPE "xcore-lower"
43
44const char *XCoreTargetLowering::
45getTargetNodeName(unsigned Opcode) const
46{
47  switch ((XCoreISD::NodeType)Opcode)
48  {
49    case XCoreISD::FIRST_NUMBER      : break;
50    case XCoreISD::BL                : return "XCoreISD::BL";
51    case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
52    case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
53    case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
54    case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
55    case XCoreISD::STWSP             : return "XCoreISD::STWSP";
56    case XCoreISD::RETSP             : return "XCoreISD::RETSP";
57    case XCoreISD::LADD              : return "XCoreISD::LADD";
58    case XCoreISD::LSUB              : return "XCoreISD::LSUB";
59    case XCoreISD::LMUL              : return "XCoreISD::LMUL";
60    case XCoreISD::MACCU             : return "XCoreISD::MACCU";
61    case XCoreISD::MACCS             : return "XCoreISD::MACCS";
62    case XCoreISD::CRC8              : return "XCoreISD::CRC8";
63    case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
64    case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
65    case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
66    case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
67    case XCoreISD::MEMBARRIER        : return "XCoreISD::MEMBARRIER";
68  }
69  return nullptr;
70}
71
72XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
73                                         const XCoreSubtarget &Subtarget)
74    : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
75
76  // Set up the register classes.
77  addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
78
79  // Compute derived properties from the register classes
80  computeRegisterProperties(Subtarget.getRegisterInfo());
81
82  setStackPointerRegisterToSaveRestore(XCore::SP);
83
84  setSchedulingPreference(Sched::Source);
85
86  // Use i32 for setcc operations results (slt, sgt, ...).
87  setBooleanContents(ZeroOrOneBooleanContent);
88  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
89
90  // XCore does not have the NodeTypes below.
91  setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
92  setOperationAction(ISD::SELECT_CC, MVT::i32,   Expand);
93  setOperationAction(ISD::ADDC, MVT::i32, Expand);
94  setOperationAction(ISD::ADDE, MVT::i32, Expand);
95  setOperationAction(ISD::SUBC, MVT::i32, Expand);
96  setOperationAction(ISD::SUBE, MVT::i32, Expand);
97
98  // 64bit
99  setOperationAction(ISD::ADD, MVT::i64, Custom);
100  setOperationAction(ISD::SUB, MVT::i64, Custom);
101  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
102  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
103  setOperationAction(ISD::MULHS, MVT::i32, Expand);
104  setOperationAction(ISD::MULHU, MVT::i32, Expand);
105  setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
106  setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
107  setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
108
109  // Bit Manipulation
110  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
111  setOperationAction(ISD::ROTL , MVT::i32, Expand);
112  setOperationAction(ISD::ROTR , MVT::i32, Expand);
113
114  setOperationAction(ISD::TRAP, MVT::Other, Legal);
115
116  // Jump tables.
117  setOperationAction(ISD::BR_JT, MVT::Other, Custom);
118
119  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
120  setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
121
122  // Conversion of i64 -> double produces constantpool nodes
123  setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
124
125  // Loads
126  for (MVT VT : MVT::integer_valuetypes()) {
127    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
128    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
129    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
130
131    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
132    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
133  }
134
135  // Custom expand misaligned loads / stores.
136  setOperationAction(ISD::LOAD, MVT::i32, Custom);
137  setOperationAction(ISD::STORE, MVT::i32, Custom);
138
139  // Varargs
140  setOperationAction(ISD::VAEND, MVT::Other, Expand);
141  setOperationAction(ISD::VACOPY, MVT::Other, Expand);
142  setOperationAction(ISD::VAARG, MVT::Other, Custom);
143  setOperationAction(ISD::VASTART, MVT::Other, Custom);
144
145  // Dynamic stack
146  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
147  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
148  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
149
150  // Exception handling
151  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
152  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
153
154  // Atomic operations
155  // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
156  // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
157  setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
158  setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
159  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
160
161  // TRAMPOLINE is custom lowered.
162  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
163  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
164
165  // We want to custom lower some of our intrinsics.
166  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
167
168  MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
169  MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
170    = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
171
172  // We have target-specific dag combine patterns for the following nodes:
173  setTargetDAGCombine(ISD::STORE);
174  setTargetDAGCombine(ISD::ADD);
175  setTargetDAGCombine(ISD::INTRINSIC_VOID);
176  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
177
178  setMinFunctionAlignment(1);
179  setPrefFunctionAlignment(2);
180}
181
182bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
183  if (Val.getOpcode() != ISD::LOAD)
184    return false;
185
186  EVT VT1 = Val.getValueType();
187  if (!VT1.isSimple() || !VT1.isInteger() ||
188      !VT2.isSimple() || !VT2.isInteger())
189    return false;
190
191  switch (VT1.getSimpleVT().SimpleTy) {
192  default: break;
193  case MVT::i8:
194    return true;
195  }
196
197  return false;
198}
199
200SDValue XCoreTargetLowering::
201LowerOperation(SDValue Op, SelectionDAG &DAG) const {
202  switch (Op.getOpcode())
203  {
204  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
205  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
206  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
207  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
208  case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
209  case ISD::LOAD:               return LowerLOAD(Op, DAG);
210  case ISD::STORE:              return LowerSTORE(Op, DAG);
211  case ISD::VAARG:              return LowerVAARG(Op, DAG);
212  case ISD::VASTART:            return LowerVASTART(Op, DAG);
213  case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
214  case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
215  // FIXME: Remove these when LegalizeDAGTypes lands.
216  case ISD::ADD:
217  case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
218  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
219  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
220  case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
221  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
222  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
223  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
224  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
225  case ISD::ATOMIC_LOAD:        return LowerATOMIC_LOAD(Op, DAG);
226  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
227  default:
228    llvm_unreachable("unimplemented operand");
229  }
230}
231
232/// ReplaceNodeResults - Replace the results of node with an illegal result
233/// type with new values built out of custom code.
234void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
235                                             SmallVectorImpl<SDValue>&Results,
236                                             SelectionDAG &DAG) const {
237  switch (N->getOpcode()) {
238  default:
239    llvm_unreachable("Don't know how to custom expand this!");
240  case ISD::ADD:
241  case ISD::SUB:
242    Results.push_back(ExpandADDSUB(N, DAG));
243    return;
244  }
245}
246
247//===----------------------------------------------------------------------===//
248//  Misc Lower Operation implementation
249//===----------------------------------------------------------------------===//
250
251SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
252                                                     const GlobalValue *GV,
253                                                     SelectionDAG &DAG) const {
254  // FIXME there is no actual debug info here
255  SDLoc dl(GA);
256
257  if (GV->getValueType()->isFunctionTy())
258    return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
259
260  const auto *GVar = dyn_cast<GlobalVariable>(GV);
261  if ((GV->hasSection() && GV->getSection().startswith(".cp.")) ||
262      (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
263    return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
264
265  return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
266}
267
268static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
269  if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
270    return true;
271
272  Type *ObjType = GV->getValueType();
273  if (!ObjType->isSized())
274    return false;
275
276  auto &DL = GV->getParent()->getDataLayout();
277  unsigned ObjSize = DL.getTypeAllocSize(ObjType);
278  return ObjSize < CodeModelLargeSize && ObjSize != 0;
279}
280
281SDValue XCoreTargetLowering::
282LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
283{
284  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
285  const GlobalValue *GV = GN->getGlobal();
286  SDLoc DL(GN);
287  int64_t Offset = GN->getOffset();
288  if (IsSmallObject(GV, *this)) {
289    // We can only fold positive offsets that are a multiple of the word size.
290    int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
291    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
292    GA = getGlobalAddressWrapper(GA, GV, DAG);
293    // Handle the rest of the offset.
294    if (Offset != FoldedOffset) {
295      SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
296      GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
297    }
298    return GA;
299  } else {
300    // Ideally we would not fold in offset with an index <= 11.
301    Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
302    Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
303    Ty = Type::getInt32Ty(*DAG.getContext());
304    Constant *Idx = ConstantInt::get(Ty, Offset);
305    Constant *GAI = ConstantExpr::getGetElementPtr(
306        Type::getInt8Ty(*DAG.getContext()), GA, Idx);
307    SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
308    return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
309                       DAG.getEntryNode(), CP, MachinePointerInfo(), false,
310                       false, false, 0);
311  }
312}
313
314SDValue XCoreTargetLowering::
315LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
316{
317  SDLoc DL(Op);
318  auto PtrVT = getPointerTy(DAG.getDataLayout());
319  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
320  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
321
322  return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
323}
324
325SDValue XCoreTargetLowering::
326LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
327{
328  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
329  // FIXME there isn't really debug info here
330  SDLoc dl(CP);
331  EVT PtrVT = Op.getValueType();
332  SDValue Res;
333  if (CP->isMachineConstantPoolEntry()) {
334    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
335                                    CP->getAlignment(), CP->getOffset());
336  } else {
337    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
338                                    CP->getAlignment(), CP->getOffset());
339  }
340  return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
341}
342
343unsigned XCoreTargetLowering::getJumpTableEncoding() const {
344  return MachineJumpTableInfo::EK_Inline;
345}
346
347SDValue XCoreTargetLowering::
348LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
349{
350  SDValue Chain = Op.getOperand(0);
351  SDValue Table = Op.getOperand(1);
352  SDValue Index = Op.getOperand(2);
353  SDLoc dl(Op);
354  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
355  unsigned JTI = JT->getIndex();
356  MachineFunction &MF = DAG.getMachineFunction();
357  const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
358  SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
359
360  unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
361  if (NumEntries <= 32) {
362    return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
363  }
364  assert((NumEntries >> 31) == 0);
365  SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
366                                    DAG.getConstant(1, dl, MVT::i32));
367  return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
368                     ScaledIndex);
369}
370
371SDValue XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
372    const SDLoc &DL, SDValue Chain, SDValue Base, int64_t Offset,
373    SelectionDAG &DAG) const {
374  auto PtrVT = getPointerTy(DAG.getDataLayout());
375  if ((Offset & 0x3) == 0) {
376    return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo(), false,
377                       false, false, 0);
378  }
379  // Lower to pair of consecutive word aligned loads plus some bit shifting.
380  int32_t HighOffset = alignTo(Offset, 4);
381  int32_t LowOffset = HighOffset - 4;
382  SDValue LowAddr, HighAddr;
383  if (GlobalAddressSDNode *GASD =
384        dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
385    LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
386                                   LowOffset);
387    HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
388                                    HighOffset);
389  } else {
390    LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
391                          DAG.getConstant(LowOffset, DL, MVT::i32));
392    HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
393                           DAG.getConstant(HighOffset, DL, MVT::i32));
394  }
395  SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
396  SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
397
398  SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo(),
399                            false, false, false, 0);
400  SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo(),
401                             false, false, false, 0);
402  SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
403  SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
404  SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
405  Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
406                      High.getValue(1));
407  SDValue Ops[] = { Result, Chain };
408  return DAG.getMergeValues(Ops, DL);
409}
410
411static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
412{
413  APInt KnownZero, KnownOne;
414  DAG.computeKnownBits(Value, KnownZero, KnownOne);
415  return KnownZero.countTrailingOnes() >= 2;
416}
417
418SDValue XCoreTargetLowering::
419LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
420  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
421  LoadSDNode *LD = cast<LoadSDNode>(Op);
422  assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
423         "Unexpected extension type");
424  assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
425  if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(),
426                                     LD->getAddressSpace(),
427                                     LD->getAlignment()))
428    return SDValue();
429
430  auto &TD = DAG.getDataLayout();
431  unsigned ABIAlignment = TD.getABITypeAlignment(
432      LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
433  // Leave aligned load alone.
434  if (LD->getAlignment() >= ABIAlignment)
435    return SDValue();
436
437  SDValue Chain = LD->getChain();
438  SDValue BasePtr = LD->getBasePtr();
439  SDLoc DL(Op);
440
441  if (!LD->isVolatile()) {
442    const GlobalValue *GV;
443    int64_t Offset = 0;
444    if (DAG.isBaseWithConstantOffset(BasePtr) &&
445        isWordAligned(BasePtr->getOperand(0), DAG)) {
446      SDValue NewBasePtr = BasePtr->getOperand(0);
447      Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
448      return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
449                                                    Offset, DAG);
450    }
451    if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
452        MinAlign(GV->getAlignment(), 4) == 4) {
453      SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
454                                                BasePtr->getValueType(0));
455      return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
456                                                    Offset, DAG);
457    }
458  }
459
460  if (LD->getAlignment() == 2) {
461    SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain,
462                                 BasePtr, LD->getPointerInfo(), MVT::i16,
463                                 LD->isVolatile(), LD->isNonTemporal(),
464                                 LD->isInvariant(), 2);
465    SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
466                                   DAG.getConstant(2, DL, MVT::i32));
467    SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
468                                  HighAddr,
469                                  LD->getPointerInfo().getWithOffset(2),
470                                  MVT::i16, LD->isVolatile(),
471                                  LD->isNonTemporal(), LD->isInvariant(), 2);
472    SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
473                                      DAG.getConstant(16, DL, MVT::i32));
474    SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
475    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
476                             High.getValue(1));
477    SDValue Ops[] = { Result, Chain };
478    return DAG.getMergeValues(Ops, DL);
479  }
480
481  // Lower to a call to __misaligned_load(BasePtr).
482  Type *IntPtrTy = TD.getIntPtrType(*DAG.getContext());
483  TargetLowering::ArgListTy Args;
484  TargetLowering::ArgListEntry Entry;
485
486  Entry.Ty = IntPtrTy;
487  Entry.Node = BasePtr;
488  Args.push_back(Entry);
489
490  TargetLowering::CallLoweringInfo CLI(DAG);
491  CLI.setDebugLoc(DL).setChain(Chain).setCallee(
492      CallingConv::C, IntPtrTy,
493      DAG.getExternalSymbol("__misaligned_load",
494                            getPointerTy(DAG.getDataLayout())),
495      std::move(Args));
496
497  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
498  SDValue Ops[] = { CallResult.first, CallResult.second };
499  return DAG.getMergeValues(Ops, DL);
500}
501
502SDValue XCoreTargetLowering::
503LowerSTORE(SDValue Op, SelectionDAG &DAG) const
504{
505  StoreSDNode *ST = cast<StoreSDNode>(Op);
506  assert(!ST->isTruncatingStore() && "Unexpected store type");
507  assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
508  if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
509                                     ST->getAddressSpace(),
510                                     ST->getAlignment())) {
511    return SDValue();
512  }
513  unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(
514      ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
515  // Leave aligned store alone.
516  if (ST->getAlignment() >= ABIAlignment) {
517    return SDValue();
518  }
519  SDValue Chain = ST->getChain();
520  SDValue BasePtr = ST->getBasePtr();
521  SDValue Value = ST->getValue();
522  SDLoc dl(Op);
523
524  if (ST->getAlignment() == 2) {
525    SDValue Low = Value;
526    SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
527                                      DAG.getConstant(16, dl, MVT::i32));
528    SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr,
529                                         ST->getPointerInfo(), MVT::i16,
530                                         ST->isVolatile(), ST->isNonTemporal(),
531                                         2);
532    SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
533                                   DAG.getConstant(2, dl, MVT::i32));
534    SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr,
535                                          ST->getPointerInfo().getWithOffset(2),
536                                          MVT::i16, ST->isVolatile(),
537                                          ST->isNonTemporal(), 2);
538    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
539  }
540
541  // Lower to a call to __misaligned_store(BasePtr, Value).
542  Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
543  TargetLowering::ArgListTy Args;
544  TargetLowering::ArgListEntry Entry;
545
546  Entry.Ty = IntPtrTy;
547  Entry.Node = BasePtr;
548  Args.push_back(Entry);
549
550  Entry.Node = Value;
551  Args.push_back(Entry);
552
553  TargetLowering::CallLoweringInfo CLI(DAG);
554  CLI.setDebugLoc(dl).setChain(Chain).setCallee(
555      CallingConv::C, Type::getVoidTy(*DAG.getContext()),
556      DAG.getExternalSymbol("__misaligned_store",
557                            getPointerTy(DAG.getDataLayout())),
558      std::move(Args));
559
560  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
561  return CallResult.second;
562}
563
564SDValue XCoreTargetLowering::
565LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
566{
567  assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
568         "Unexpected operand to lower!");
569  SDLoc dl(Op);
570  SDValue LHS = Op.getOperand(0);
571  SDValue RHS = Op.getOperand(1);
572  SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
573  SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
574                           DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
575                           LHS, RHS);
576  SDValue Lo(Hi.getNode(), 1);
577  SDValue Ops[] = { Lo, Hi };
578  return DAG.getMergeValues(Ops, dl);
579}
580
581SDValue XCoreTargetLowering::
582LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
583{
584  assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
585         "Unexpected operand to lower!");
586  SDLoc dl(Op);
587  SDValue LHS = Op.getOperand(0);
588  SDValue RHS = Op.getOperand(1);
589  SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
590  SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
591                           DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
592                           Zero, Zero);
593  SDValue Lo(Hi.getNode(), 1);
594  SDValue Ops[] = { Lo, Hi };
595  return DAG.getMergeValues(Ops, dl);
596}
597
598/// isADDADDMUL - Return whether Op is in a form that is equivalent to
599/// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
600/// each intermediate result in the calculation must also have a single use.
601/// If the Op is in the correct form the constituent parts are written to Mul0,
602/// Mul1, Addend0 and Addend1.
603static bool
604isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
605            SDValue &Addend1, bool requireIntermediatesHaveOneUse)
606{
607  if (Op.getOpcode() != ISD::ADD)
608    return false;
609  SDValue N0 = Op.getOperand(0);
610  SDValue N1 = Op.getOperand(1);
611  SDValue AddOp;
612  SDValue OtherOp;
613  if (N0.getOpcode() == ISD::ADD) {
614    AddOp = N0;
615    OtherOp = N1;
616  } else if (N1.getOpcode() == ISD::ADD) {
617    AddOp = N1;
618    OtherOp = N0;
619  } else {
620    return false;
621  }
622  if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
623    return false;
624  if (OtherOp.getOpcode() == ISD::MUL) {
625    // add(add(a,b),mul(x,y))
626    if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
627      return false;
628    Mul0 = OtherOp.getOperand(0);
629    Mul1 = OtherOp.getOperand(1);
630    Addend0 = AddOp.getOperand(0);
631    Addend1 = AddOp.getOperand(1);
632    return true;
633  }
634  if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
635    // add(add(mul(x,y),a),b)
636    if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
637      return false;
638    Mul0 = AddOp.getOperand(0).getOperand(0);
639    Mul1 = AddOp.getOperand(0).getOperand(1);
640    Addend0 = AddOp.getOperand(1);
641    Addend1 = OtherOp;
642    return true;
643  }
644  if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
645    // add(add(a,mul(x,y)),b)
646    if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
647      return false;
648    Mul0 = AddOp.getOperand(1).getOperand(0);
649    Mul1 = AddOp.getOperand(1).getOperand(1);
650    Addend0 = AddOp.getOperand(0);
651    Addend1 = OtherOp;
652    return true;
653  }
654  return false;
655}
656
657SDValue XCoreTargetLowering::
658TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
659{
660  SDValue Mul;
661  SDValue Other;
662  if (N->getOperand(0).getOpcode() == ISD::MUL) {
663    Mul = N->getOperand(0);
664    Other = N->getOperand(1);
665  } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
666    Mul = N->getOperand(1);
667    Other = N->getOperand(0);
668  } else {
669    return SDValue();
670  }
671  SDLoc dl(N);
672  SDValue LL, RL, AddendL, AddendH;
673  LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
674                   Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
675  RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
676                   Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
677  AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
678                        Other, DAG.getConstant(0, dl, MVT::i32));
679  AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
680                        Other, DAG.getConstant(1, dl, MVT::i32));
681  APInt HighMask = APInt::getHighBitsSet(64, 32);
682  unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
683  unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
684  if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
685      DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
686    // The inputs are both zero-extended.
687    SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
688                             DAG.getVTList(MVT::i32, MVT::i32), AddendH,
689                             AddendL, LL, RL);
690    SDValue Lo(Hi.getNode(), 1);
691    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
692  }
693  if (LHSSB > 32 && RHSSB > 32) {
694    // The inputs are both sign-extended.
695    SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
696                             DAG.getVTList(MVT::i32, MVT::i32), AddendH,
697                             AddendL, LL, RL);
698    SDValue Lo(Hi.getNode(), 1);
699    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
700  }
701  SDValue LH, RH;
702  LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
703                   Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
704  RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
705                   Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
706  SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
707                           DAG.getVTList(MVT::i32, MVT::i32), AddendH,
708                           AddendL, LL, RL);
709  SDValue Lo(Hi.getNode(), 1);
710  RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
711  LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
712  Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
713  Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
714  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
715}
716
717SDValue XCoreTargetLowering::
718ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
719{
720  assert(N->getValueType(0) == MVT::i64 &&
721         (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
722        "Unknown operand to lower!");
723
724  if (N->getOpcode() == ISD::ADD)
725    if (SDValue Result = TryExpandADDWithMul(N, DAG))
726      return Result;
727
728  SDLoc dl(N);
729
730  // Extract components
731  SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
732                             N->getOperand(0),
733                             DAG.getConstant(0, dl, MVT::i32));
734  SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
735                             N->getOperand(0),
736                             DAG.getConstant(1, dl, MVT::i32));
737  SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
738                             N->getOperand(1),
739                             DAG.getConstant(0, dl, MVT::i32));
740  SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
741                             N->getOperand(1),
742                             DAG.getConstant(1, dl, MVT::i32));
743
744  // Expand
745  unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
746                                                   XCoreISD::LSUB;
747  SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
748  SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
749                           LHSL, RHSL, Zero);
750  SDValue Carry(Lo.getNode(), 1);
751
752  SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
753                           LHSH, RHSH, Carry);
754  SDValue Ignored(Hi.getNode(), 1);
755  // Merge the pieces
756  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
757}
758
759SDValue XCoreTargetLowering::
760LowerVAARG(SDValue Op, SelectionDAG &DAG) const
761{
762  // Whist llvm does not support aggregate varargs we can ignore
763  // the possibility of the ValueType being an implicit byVal vararg.
764  SDNode *Node = Op.getNode();
765  EVT VT = Node->getValueType(0); // not an aggregate
766  SDValue InChain = Node->getOperand(0);
767  SDValue VAListPtr = Node->getOperand(1);
768  EVT PtrVT = VAListPtr.getValueType();
769  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
770  SDLoc dl(Node);
771  SDValue VAList = DAG.getLoad(PtrVT, dl, InChain,
772                               VAListPtr, MachinePointerInfo(SV),
773                               false, false, false, 0);
774  // Increment the pointer, VAList, to the next vararg
775  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
776                                DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
777                                                      dl));
778  // Store the incremented VAList to the legalized pointer
779  InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
780                         MachinePointerInfo(SV), false, false, 0);
781  // Load the actual argument out of the pointer VAList
782  return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(),
783                     false, false, false, 0);
784}
785
786SDValue XCoreTargetLowering::
787LowerVASTART(SDValue Op, SelectionDAG &DAG) const
788{
789  SDLoc dl(Op);
790  // vastart stores the address of the VarArgsFrameIndex slot into the
791  // memory location argument
792  MachineFunction &MF = DAG.getMachineFunction();
793  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
794  SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
795  return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
796                      MachinePointerInfo(), false, false, 0);
797}
798
799SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
800                                            SelectionDAG &DAG) const {
801  // This nodes represent llvm.frameaddress on the DAG.
802  // It takes one operand, the index of the frame address to return.
803  // An index of zero corresponds to the current function's frame address.
804  // An index of one to the parent's frame address, and so on.
805  // Depths > 0 not supported yet!
806  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
807    return SDValue();
808
809  MachineFunction &MF = DAG.getMachineFunction();
810  const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
811  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
812                            RegInfo->getFrameRegister(MF), MVT::i32);
813}
814
815SDValue XCoreTargetLowering::
816LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
817  // This nodes represent llvm.returnaddress on the DAG.
818  // It takes one operand, the index of the return address to return.
819  // An index of zero corresponds to the current function's return address.
820  // An index of one to the parent's return address, and so on.
821  // Depths > 0 not supported yet!
822  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
823    return SDValue();
824
825  MachineFunction &MF = DAG.getMachineFunction();
826  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
827  int FI = XFI->createLRSpillSlot(MF);
828  SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
829  return DAG.getLoad(
830      getPointerTy(DAG.getDataLayout()), SDLoc(Op), DAG.getEntryNode(), FIN,
831      MachinePointerInfo::getFixedStack(MF, FI), false, false, false, 0);
832}
833
834SDValue XCoreTargetLowering::
835LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
836  // This node represents offset from frame pointer to first on-stack argument.
837  // This is needed for correct stack adjustment during unwind.
838  // However, we don't know the offset until after the frame has be finalised.
839  // This is done during the XCoreFTAOElim pass.
840  return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
841}
842
843SDValue XCoreTargetLowering::
844LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
845  // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
846  // This node represents 'eh_return' gcc dwarf builtin, which is used to
847  // return from exception. The general meaning is: adjust stack by OFFSET and
848  // pass execution to HANDLER.
849  MachineFunction &MF = DAG.getMachineFunction();
850  SDValue Chain     = Op.getOperand(0);
851  SDValue Offset    = Op.getOperand(1);
852  SDValue Handler   = Op.getOperand(2);
853  SDLoc dl(Op);
854
855  // Absolute SP = (FP + FrameToArgs) + Offset
856  const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
857  SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
858                            RegInfo->getFrameRegister(MF), MVT::i32);
859  SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
860                                    MVT::i32);
861  Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
862  Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
863
864  // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
865  // which leaves 2 caller saved registers, R2 & R3 for us to use.
866  unsigned StackReg = XCore::R2;
867  unsigned HandlerReg = XCore::R3;
868
869  SDValue OutChains[] = {
870    DAG.getCopyToReg(Chain, dl, StackReg, Stack),
871    DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
872  };
873
874  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
875
876  return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
877                     DAG.getRegister(StackReg, MVT::i32),
878                     DAG.getRegister(HandlerReg, MVT::i32));
879
880}
881
882SDValue XCoreTargetLowering::
883LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
884  return Op.getOperand(0);
885}
886
887SDValue XCoreTargetLowering::
888LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
889  SDValue Chain = Op.getOperand(0);
890  SDValue Trmp = Op.getOperand(1); // trampoline
891  SDValue FPtr = Op.getOperand(2); // nested function
892  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
893
894  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
895
896  // .align 4
897  // LDAPF_u10 r11, nest
898  // LDW_2rus r11, r11[0]
899  // STWSP_ru6 r11, sp[0]
900  // LDAPF_u10 r11, fptr
901  // LDW_2rus r11, r11[0]
902  // BAU_1r r11
903  // nest:
904  // .word nest
905  // fptr:
906  // .word fptr
907  SDValue OutChains[5];
908
909  SDValue Addr = Trmp;
910
911  SDLoc dl(Op);
912  OutChains[0] = DAG.getStore(Chain, dl,
913                              DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
914                              MachinePointerInfo(TrmpAddr), false, false, 0);
915
916  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
917                     DAG.getConstant(4, dl, MVT::i32));
918  OutChains[1] = DAG.getStore(Chain, dl,
919                              DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
920                              MachinePointerInfo(TrmpAddr, 4), false, false, 0);
921
922  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
923                     DAG.getConstant(8, dl, MVT::i32));
924  OutChains[2] = DAG.getStore(Chain, dl,
925                              DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
926                              MachinePointerInfo(TrmpAddr, 8), false, false, 0);
927
928  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
929                     DAG.getConstant(12, dl, MVT::i32));
930  OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr,
931                              MachinePointerInfo(TrmpAddr, 12), false, false,
932                              0);
933
934  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
935                     DAG.getConstant(16, dl, MVT::i32));
936  OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr,
937                              MachinePointerInfo(TrmpAddr, 16), false, false,
938                              0);
939
940  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
941}
942
943SDValue XCoreTargetLowering::
944LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
945  SDLoc DL(Op);
946  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
947  switch (IntNo) {
948    case Intrinsic::xcore_crc8:
949      EVT VT = Op.getValueType();
950      SDValue Data =
951        DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
952                    Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
953      SDValue Crc(Data.getNode(), 1);
954      SDValue Results[] = { Crc, Data };
955      return DAG.getMergeValues(Results, DL);
956  }
957  return SDValue();
958}
959
960SDValue XCoreTargetLowering::
961LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
962  SDLoc DL(Op);
963  return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
964}
965
966SDValue XCoreTargetLowering::
967LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
968  AtomicSDNode *N = cast<AtomicSDNode>(Op);
969  assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
970  assert((N->getOrdering() == AtomicOrdering::Unordered ||
971          N->getOrdering() == AtomicOrdering::Monotonic) &&
972         "setInsertFencesForAtomic(true) expects unordered / monotonic");
973  if (N->getMemoryVT() == MVT::i32) {
974    if (N->getAlignment() < 4)
975      report_fatal_error("atomic load must be aligned");
976    return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
977                       N->getChain(), N->getBasePtr(), N->getPointerInfo(),
978                       N->isVolatile(), N->isNonTemporal(), N->isInvariant(),
979                       N->getAlignment(), N->getAAInfo(), N->getRanges());
980  }
981  if (N->getMemoryVT() == MVT::i16) {
982    if (N->getAlignment() < 2)
983      report_fatal_error("atomic load must be aligned");
984    return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
985                          N->getBasePtr(), N->getPointerInfo(), MVT::i16,
986                          N->isVolatile(), N->isNonTemporal(),
987                          N->isInvariant(), N->getAlignment(), N->getAAInfo());
988  }
989  if (N->getMemoryVT() == MVT::i8)
990    return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
991                          N->getBasePtr(), N->getPointerInfo(), MVT::i8,
992                          N->isVolatile(), N->isNonTemporal(),
993                          N->isInvariant(), N->getAlignment(), N->getAAInfo());
994  return SDValue();
995}
996
997SDValue XCoreTargetLowering::
998LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
999  AtomicSDNode *N = cast<AtomicSDNode>(Op);
1000  assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
1001  assert((N->getOrdering() == AtomicOrdering::Unordered ||
1002          N->getOrdering() == AtomicOrdering::Monotonic) &&
1003         "setInsertFencesForAtomic(true) expects unordered / monotonic");
1004  if (N->getMemoryVT() == MVT::i32) {
1005    if (N->getAlignment() < 4)
1006      report_fatal_error("atomic store must be aligned");
1007    return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(),
1008                        N->getBasePtr(), N->getPointerInfo(),
1009                        N->isVolatile(), N->isNonTemporal(),
1010                        N->getAlignment(), N->getAAInfo());
1011  }
1012  if (N->getMemoryVT() == MVT::i16) {
1013    if (N->getAlignment() < 2)
1014      report_fatal_error("atomic store must be aligned");
1015    return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1016                             N->getBasePtr(), N->getPointerInfo(), MVT::i16,
1017                             N->isVolatile(), N->isNonTemporal(),
1018                             N->getAlignment(), N->getAAInfo());
1019  }
1020  if (N->getMemoryVT() == MVT::i8)
1021    return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1022                             N->getBasePtr(), N->getPointerInfo(), MVT::i8,
1023                             N->isVolatile(), N->isNonTemporal(),
1024                             N->getAlignment(), N->getAAInfo());
1025  return SDValue();
1026}
1027
1028//===----------------------------------------------------------------------===//
1029//                      Calling Convention Implementation
1030//===----------------------------------------------------------------------===//
1031
1032#include "XCoreGenCallingConv.inc"
1033
1034//===----------------------------------------------------------------------===//
1035//                  Call Calling Convention Implementation
1036//===----------------------------------------------------------------------===//
1037
1038/// XCore call implementation
1039SDValue
1040XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1041                               SmallVectorImpl<SDValue> &InVals) const {
1042  SelectionDAG &DAG                     = CLI.DAG;
1043  SDLoc &dl                             = CLI.DL;
1044  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1045  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1046  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1047  SDValue Chain                         = CLI.Chain;
1048  SDValue Callee                        = CLI.Callee;
1049  bool &isTailCall                      = CLI.IsTailCall;
1050  CallingConv::ID CallConv              = CLI.CallConv;
1051  bool isVarArg                         = CLI.IsVarArg;
1052
1053  // XCore target does not yet support tail call optimization.
1054  isTailCall = false;
1055
1056  // For now, only CallingConv::C implemented
1057  switch (CallConv)
1058  {
1059    default:
1060      llvm_unreachable("Unsupported calling convention");
1061    case CallingConv::Fast:
1062    case CallingConv::C:
1063      return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1064                            Outs, OutVals, Ins, dl, DAG, InVals);
1065  }
1066}
1067
1068/// LowerCallResult - Lower the result values of a call into the
1069/// appropriate copies out of appropriate physical registers / memory locations.
1070static SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1071                               const SmallVectorImpl<CCValAssign> &RVLocs,
1072                               const SDLoc &dl, SelectionDAG &DAG,
1073                               SmallVectorImpl<SDValue> &InVals) {
1074  SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1075  // Copy results out of physical registers.
1076  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1077    const CCValAssign &VA = RVLocs[i];
1078    if (VA.isRegLoc()) {
1079      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1080                                 InFlag).getValue(1);
1081      InFlag = Chain.getValue(2);
1082      InVals.push_back(Chain.getValue(0));
1083    } else {
1084      assert(VA.isMemLoc());
1085      ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1086                                             InVals.size()));
1087      // Reserve space for this result.
1088      InVals.push_back(SDValue());
1089    }
1090  }
1091
1092  // Copy results out of memory.
1093  SmallVector<SDValue, 4> MemOpChains;
1094  for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1095    int offset = ResultMemLocs[i].first;
1096    unsigned index = ResultMemLocs[i].second;
1097    SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1098    SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
1099    SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1100    InVals[index] = load;
1101    MemOpChains.push_back(load.getValue(1));
1102  }
1103
1104  // Transform all loads nodes into one single node because
1105  // all load nodes are independent of each other.
1106  if (!MemOpChains.empty())
1107    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1108
1109  return Chain;
1110}
1111
1112/// LowerCCCCallTo - functions arguments are copied from virtual
1113/// regs to (physical regs)/(stack frame), CALLSEQ_START and
1114/// CALLSEQ_END are emitted.
1115/// TODO: isTailCall, sret.
1116SDValue XCoreTargetLowering::LowerCCCCallTo(
1117    SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
1118    bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
1119    const SmallVectorImpl<SDValue> &OutVals,
1120    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1121    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1122
1123  // Analyze operands of the call, assigning locations to each operand.
1124  SmallVector<CCValAssign, 16> ArgLocs;
1125  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1126                 *DAG.getContext());
1127
1128  // The ABI dictates there should be one stack slot available to the callee
1129  // on function entry (for saving lr).
1130  CCInfo.AllocateStack(4, 4);
1131
1132  CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1133
1134  SmallVector<CCValAssign, 16> RVLocs;
1135  // Analyze return values to determine the number of bytes of stack required.
1136  CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1137                    *DAG.getContext());
1138  RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
1139  RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1140
1141  // Get a count of how many bytes are to be pushed on the stack.
1142  unsigned NumBytes = RetCCInfo.getNextStackOffset();
1143  auto PtrVT = getPointerTy(DAG.getDataLayout());
1144
1145  Chain = DAG.getCALLSEQ_START(Chain,
1146                               DAG.getConstant(NumBytes, dl, PtrVT, true), dl);
1147
1148  SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1149  SmallVector<SDValue, 12> MemOpChains;
1150
1151  // Walk the register/memloc assignments, inserting copies/loads.
1152  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1153    CCValAssign &VA = ArgLocs[i];
1154    SDValue Arg = OutVals[i];
1155
1156    // Promote the value if needed.
1157    switch (VA.getLocInfo()) {
1158      default: llvm_unreachable("Unknown loc info!");
1159      case CCValAssign::Full: break;
1160      case CCValAssign::SExt:
1161        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1162        break;
1163      case CCValAssign::ZExt:
1164        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1165        break;
1166      case CCValAssign::AExt:
1167        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1168        break;
1169    }
1170
1171    // Arguments that can be passed on register must be kept at
1172    // RegsToPass vector
1173    if (VA.isRegLoc()) {
1174      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1175    } else {
1176      assert(VA.isMemLoc());
1177
1178      int Offset = VA.getLocMemOffset();
1179
1180      MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1181                                        Chain, Arg,
1182                                        DAG.getConstant(Offset/4, dl,
1183                                                        MVT::i32)));
1184    }
1185  }
1186
1187  // Transform all store nodes into one single node because
1188  // all store nodes are independent of each other.
1189  if (!MemOpChains.empty())
1190    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1191
1192  // Build a sequence of copy-to-reg nodes chained together with token
1193  // chain and flag operands which copy the outgoing args into registers.
1194  // The InFlag in necessary since all emitted instructions must be
1195  // stuck together.
1196  SDValue InFlag;
1197  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1198    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1199                             RegsToPass[i].second, InFlag);
1200    InFlag = Chain.getValue(1);
1201  }
1202
1203  // If the callee is a GlobalAddress node (quite common, every direct call is)
1204  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1205  // Likewise ExternalSymbol -> TargetExternalSymbol.
1206  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1207    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1208  else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1209    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1210
1211  // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1212  //             = Chain, Callee, Reg#1, Reg#2, ...
1213  //
1214  // Returns a chain & a flag for retval copy to use.
1215  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1216  SmallVector<SDValue, 8> Ops;
1217  Ops.push_back(Chain);
1218  Ops.push_back(Callee);
1219
1220  // Add argument registers to the end of the list so that they are
1221  // known live into the call.
1222  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1223    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1224                                  RegsToPass[i].second.getValueType()));
1225
1226  if (InFlag.getNode())
1227    Ops.push_back(InFlag);
1228
1229  Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1230  InFlag = Chain.getValue(1);
1231
1232  // Create the CALLSEQ_END node.
1233  Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
1234                             DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
1235  InFlag = Chain.getValue(1);
1236
1237  // Handle result values, copying them out of physregs into vregs that we
1238  // return.
1239  return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1240}
1241
1242//===----------------------------------------------------------------------===//
1243//             Formal Arguments Calling Convention Implementation
1244//===----------------------------------------------------------------------===//
1245
1246namespace {
1247  struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1248}
1249
1250/// XCore formal arguments implementation
1251SDValue XCoreTargetLowering::LowerFormalArguments(
1252    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1253    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1254    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1255  switch (CallConv)
1256  {
1257    default:
1258      llvm_unreachable("Unsupported calling convention");
1259    case CallingConv::C:
1260    case CallingConv::Fast:
1261      return LowerCCCArguments(Chain, CallConv, isVarArg,
1262                               Ins, dl, DAG, InVals);
1263  }
1264}
1265
1266/// LowerCCCArguments - transform physical registers into
1267/// virtual registers and generate load operations for
1268/// arguments places on the stack.
1269/// TODO: sret
1270SDValue XCoreTargetLowering::LowerCCCArguments(
1271    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1272    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1273    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1274  MachineFunction &MF = DAG.getMachineFunction();
1275  MachineFrameInfo *MFI = MF.getFrameInfo();
1276  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1277  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1278
1279  // Assign locations to all of the incoming arguments.
1280  SmallVector<CCValAssign, 16> ArgLocs;
1281  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1282                 *DAG.getContext());
1283
1284  CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1285
1286  unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1287
1288  unsigned LRSaveSize = StackSlotSize;
1289
1290  if (!isVarArg)
1291    XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1292
1293  // All getCopyFromReg ops must precede any getMemcpys to prevent the
1294  // scheduler clobbering a register before it has been copied.
1295  // The stages are:
1296  // 1. CopyFromReg (and load) arg & vararg registers.
1297  // 2. Chain CopyFromReg nodes into a TokenFactor.
1298  // 3. Memcpy 'byVal' args & push final InVals.
1299  // 4. Chain mem ops nodes into a TokenFactor.
1300  SmallVector<SDValue, 4> CFRegNode;
1301  SmallVector<ArgDataPair, 4> ArgData;
1302  SmallVector<SDValue, 4> MemOps;
1303
1304  // 1a. CopyFromReg (and load) arg registers.
1305  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1306
1307    CCValAssign &VA = ArgLocs[i];
1308    SDValue ArgIn;
1309
1310    if (VA.isRegLoc()) {
1311      // Arguments passed in registers
1312      EVT RegVT = VA.getLocVT();
1313      switch (RegVT.getSimpleVT().SimpleTy) {
1314      default:
1315        {
1316#ifndef NDEBUG
1317          errs() << "LowerFormalArguments Unhandled argument type: "
1318                 << RegVT.getEVTString() << "\n";
1319#endif
1320          llvm_unreachable(nullptr);
1321        }
1322      case MVT::i32:
1323        unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1324        RegInfo.addLiveIn(VA.getLocReg(), VReg);
1325        ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1326        CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1327      }
1328    } else {
1329      // sanity check
1330      assert(VA.isMemLoc());
1331      // Load the argument to a virtual register
1332      unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1333      if (ObjSize > StackSlotSize) {
1334        errs() << "LowerFormalArguments Unhandled argument type: "
1335               << EVT(VA.getLocVT()).getEVTString()
1336               << "\n";
1337      }
1338      // Create the frame index object for this incoming parameter...
1339      int FI = MFI->CreateFixedObject(ObjSize,
1340                                      LRSaveSize + VA.getLocMemOffset(),
1341                                      true);
1342
1343      // Create the SelectionDAG nodes corresponding to a load
1344      //from this parameter
1345      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1346      ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1347                          MachinePointerInfo::getFixedStack(MF, FI), false,
1348                          false, false, 0);
1349    }
1350    const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1351    ArgData.push_back(ADP);
1352  }
1353
1354  // 1b. CopyFromReg vararg registers.
1355  if (isVarArg) {
1356    // Argument registers
1357    static const MCPhysReg ArgRegs[] = {
1358      XCore::R0, XCore::R1, XCore::R2, XCore::R3
1359    };
1360    XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1361    unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1362    if (FirstVAReg < array_lengthof(ArgRegs)) {
1363      int offset = 0;
1364      // Save remaining registers, storing higher register numbers at a higher
1365      // address
1366      for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1367        // Create a stack slot
1368        int FI = MFI->CreateFixedObject(4, offset, true);
1369        if (i == (int)FirstVAReg) {
1370          XFI->setVarArgsFrameIndex(FI);
1371        }
1372        offset -= StackSlotSize;
1373        SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1374        // Move argument from phys reg -> virt reg
1375        unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1376        RegInfo.addLiveIn(ArgRegs[i], VReg);
1377        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1378        CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1379        // Move argument from virt reg -> stack
1380        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1381                                     MachinePointerInfo(), false, false, 0);
1382        MemOps.push_back(Store);
1383      }
1384    } else {
1385      // This will point to the next argument passed via stack.
1386      XFI->setVarArgsFrameIndex(
1387        MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1388                               true));
1389    }
1390  }
1391
1392  // 2. chain CopyFromReg nodes into a TokenFactor.
1393  if (!CFRegNode.empty())
1394    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1395
1396  // 3. Memcpy 'byVal' args & push final InVals.
1397  // Aggregates passed "byVal" need to be copied by the callee.
1398  // The callee will use a pointer to this copy, rather than the original
1399  // pointer.
1400  for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1401                                                    ArgDE = ArgData.end();
1402       ArgDI != ArgDE; ++ArgDI) {
1403    if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1404      unsigned Size = ArgDI->Flags.getByValSize();
1405      unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
1406      // Create a new object on the stack and copy the pointee into it.
1407      int FI = MFI->CreateStackObject(Size, Align, false);
1408      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1409      InVals.push_back(FIN);
1410      MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
1411                                     DAG.getConstant(Size, dl, MVT::i32),
1412                                     Align, false, false, false,
1413                                     MachinePointerInfo(),
1414                                     MachinePointerInfo()));
1415    } else {
1416      InVals.push_back(ArgDI->SDV);
1417    }
1418  }
1419
1420  // 4, chain mem ops nodes into a TokenFactor.
1421  if (!MemOps.empty()) {
1422    MemOps.push_back(Chain);
1423    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1424  }
1425
1426  return Chain;
1427}
1428
1429//===----------------------------------------------------------------------===//
1430//               Return Value Calling Convention Implementation
1431//===----------------------------------------------------------------------===//
1432
1433bool XCoreTargetLowering::
1434CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1435               bool isVarArg,
1436               const SmallVectorImpl<ISD::OutputArg> &Outs,
1437               LLVMContext &Context) const {
1438  SmallVector<CCValAssign, 16> RVLocs;
1439  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1440  if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1441    return false;
1442  if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1443    return false;
1444  return true;
1445}
1446
1447SDValue
1448XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1449                                 bool isVarArg,
1450                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
1451                                 const SmallVectorImpl<SDValue> &OutVals,
1452                                 const SDLoc &dl, SelectionDAG &DAG) const {
1453
1454  XCoreFunctionInfo *XFI =
1455    DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1456  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1457
1458  // CCValAssign - represent the assignment of
1459  // the return value to a location
1460  SmallVector<CCValAssign, 16> RVLocs;
1461
1462  // CCState - Info about the registers and stack slot.
1463  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1464                 *DAG.getContext());
1465
1466  // Analyze return values.
1467  if (!isVarArg)
1468    CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
1469
1470  CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1471
1472  SDValue Flag;
1473  SmallVector<SDValue, 4> RetOps(1, Chain);
1474
1475  // Return on XCore is always a "retsp 0"
1476  RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
1477
1478  SmallVector<SDValue, 4> MemOpChains;
1479  // Handle return values that must be copied to memory.
1480  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1481    CCValAssign &VA = RVLocs[i];
1482    if (VA.isRegLoc())
1483      continue;
1484    assert(VA.isMemLoc());
1485    if (isVarArg) {
1486      report_fatal_error("Can't return value from vararg function in memory");
1487    }
1488
1489    int Offset = VA.getLocMemOffset();
1490    unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1491    // Create the frame index object for the memory location.
1492    int FI = MFI->CreateFixedObject(ObjSize, Offset, false);
1493
1494    // Create a SelectionDAG node corresponding to a store
1495    // to this memory location.
1496    SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1497    MemOpChains.push_back(DAG.getStore(
1498        Chain, dl, OutVals[i], FIN,
1499        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
1500        false, 0));
1501  }
1502
1503  // Transform all store nodes into one single node because
1504  // all stores are independent of each other.
1505  if (!MemOpChains.empty())
1506    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1507
1508  // Now handle return values copied to registers.
1509  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1510    CCValAssign &VA = RVLocs[i];
1511    if (!VA.isRegLoc())
1512      continue;
1513    // Copy the result values into the output registers.
1514    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1515
1516    // guarantee that all emitted copies are
1517    // stuck together, avoiding something bad
1518    Flag = Chain.getValue(1);
1519    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1520  }
1521
1522  RetOps[0] = Chain;  // Update chain.
1523
1524  // Add the flag if we have it.
1525  if (Flag.getNode())
1526    RetOps.push_back(Flag);
1527
1528  return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1529}
1530
1531//===----------------------------------------------------------------------===//
1532//  Other Lowering Code
1533//===----------------------------------------------------------------------===//
1534
1535MachineBasicBlock *
1536XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1537                                                 MachineBasicBlock *BB) const {
1538  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1539  DebugLoc dl = MI.getDebugLoc();
1540  assert((MI.getOpcode() == XCore::SELECT_CC) &&
1541         "Unexpected instr type to insert");
1542
1543  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1544  // control-flow pattern.  The incoming instruction knows the destination vreg
1545  // to set, the condition code register to branch on, the true/false values to
1546  // select between, and a branch opcode to use.
1547  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1548  MachineFunction::iterator It = ++BB->getIterator();
1549
1550  //  thisMBB:
1551  //  ...
1552  //   TrueVal = ...
1553  //   cmpTY ccX, r1, r2
1554  //   bCC copy1MBB
1555  //   fallthrough --> copy0MBB
1556  MachineBasicBlock *thisMBB = BB;
1557  MachineFunction *F = BB->getParent();
1558  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1559  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1560  F->insert(It, copy0MBB);
1561  F->insert(It, sinkMBB);
1562
1563  // Transfer the remainder of BB and its successor edges to sinkMBB.
1564  sinkMBB->splice(sinkMBB->begin(), BB,
1565                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1566  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1567
1568  // Next, add the true and fallthrough blocks as its successors.
1569  BB->addSuccessor(copy0MBB);
1570  BB->addSuccessor(sinkMBB);
1571
1572  BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1573      .addReg(MI.getOperand(1).getReg())
1574      .addMBB(sinkMBB);
1575
1576  //  copy0MBB:
1577  //   %FalseValue = ...
1578  //   # fallthrough to sinkMBB
1579  BB = copy0MBB;
1580
1581  // Update machine-CFG edges
1582  BB->addSuccessor(sinkMBB);
1583
1584  //  sinkMBB:
1585  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1586  //  ...
1587  BB = sinkMBB;
1588  BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI.getOperand(0).getReg())
1589      .addReg(MI.getOperand(3).getReg())
1590      .addMBB(copy0MBB)
1591      .addReg(MI.getOperand(2).getReg())
1592      .addMBB(thisMBB);
1593
1594  MI.eraseFromParent(); // The pseudo instruction is gone now.
1595  return BB;
1596}
1597
1598//===----------------------------------------------------------------------===//
1599// Target Optimization Hooks
1600//===----------------------------------------------------------------------===//
1601
1602SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1603                                             DAGCombinerInfo &DCI) const {
1604  SelectionDAG &DAG = DCI.DAG;
1605  SDLoc dl(N);
1606  switch (N->getOpcode()) {
1607  default: break;
1608  case ISD::INTRINSIC_VOID:
1609    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1610    case Intrinsic::xcore_outt:
1611    case Intrinsic::xcore_outct:
1612    case Intrinsic::xcore_chkct: {
1613      SDValue OutVal = N->getOperand(3);
1614      // These instructions ignore the high bits.
1615      if (OutVal.hasOneUse()) {
1616        unsigned BitWidth = OutVal.getValueSizeInBits();
1617        APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1618        APInt KnownZero, KnownOne;
1619        TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1620                                              !DCI.isBeforeLegalizeOps());
1621        const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1622        if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) ||
1623            TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne,
1624                                     TLO))
1625          DCI.CommitTargetLoweringOpt(TLO);
1626      }
1627      break;
1628    }
1629    case Intrinsic::xcore_setpt: {
1630      SDValue Time = N->getOperand(3);
1631      // This instruction ignores the high bits.
1632      if (Time.hasOneUse()) {
1633        unsigned BitWidth = Time.getValueSizeInBits();
1634        APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1635        APInt KnownZero, KnownOne;
1636        TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1637                                              !DCI.isBeforeLegalizeOps());
1638        const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1639        if (TLO.ShrinkDemandedConstant(Time, DemandedMask) ||
1640            TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne,
1641                                     TLO))
1642          DCI.CommitTargetLoweringOpt(TLO);
1643      }
1644      break;
1645    }
1646    }
1647    break;
1648  case XCoreISD::LADD: {
1649    SDValue N0 = N->getOperand(0);
1650    SDValue N1 = N->getOperand(1);
1651    SDValue N2 = N->getOperand(2);
1652    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1653    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1654    EVT VT = N0.getValueType();
1655
1656    // canonicalize constant to RHS
1657    if (N0C && !N1C)
1658      return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1659
1660    // fold (ladd 0, 0, x) -> 0, x & 1
1661    if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1662      SDValue Carry = DAG.getConstant(0, dl, VT);
1663      SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1664                                   DAG.getConstant(1, dl, VT));
1665      SDValue Ops[] = { Result, Carry };
1666      return DAG.getMergeValues(Ops, dl);
1667    }
1668
1669    // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1670    // low bit set
1671    if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1672      APInt KnownZero, KnownOne;
1673      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1674                                         VT.getSizeInBits() - 1);
1675      DAG.computeKnownBits(N2, KnownZero, KnownOne);
1676      if ((KnownZero & Mask) == Mask) {
1677        SDValue Carry = DAG.getConstant(0, dl, VT);
1678        SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1679        SDValue Ops[] = { Result, Carry };
1680        return DAG.getMergeValues(Ops, dl);
1681      }
1682    }
1683  }
1684  break;
1685  case XCoreISD::LSUB: {
1686    SDValue N0 = N->getOperand(0);
1687    SDValue N1 = N->getOperand(1);
1688    SDValue N2 = N->getOperand(2);
1689    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1690    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1691    EVT VT = N0.getValueType();
1692
1693    // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1694    if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1695      APInt KnownZero, KnownOne;
1696      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1697                                         VT.getSizeInBits() - 1);
1698      DAG.computeKnownBits(N2, KnownZero, KnownOne);
1699      if ((KnownZero & Mask) == Mask) {
1700        SDValue Borrow = N2;
1701        SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1702                                     DAG.getConstant(0, dl, VT), N2);
1703        SDValue Ops[] = { Result, Borrow };
1704        return DAG.getMergeValues(Ops, dl);
1705      }
1706    }
1707
1708    // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1709    // low bit set
1710    if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1711      APInt KnownZero, KnownOne;
1712      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1713                                         VT.getSizeInBits() - 1);
1714      DAG.computeKnownBits(N2, KnownZero, KnownOne);
1715      if ((KnownZero & Mask) == Mask) {
1716        SDValue Borrow = DAG.getConstant(0, dl, VT);
1717        SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1718        SDValue Ops[] = { Result, Borrow };
1719        return DAG.getMergeValues(Ops, dl);
1720      }
1721    }
1722  }
1723  break;
1724  case XCoreISD::LMUL: {
1725    SDValue N0 = N->getOperand(0);
1726    SDValue N1 = N->getOperand(1);
1727    SDValue N2 = N->getOperand(2);
1728    SDValue N3 = N->getOperand(3);
1729    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1730    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1731    EVT VT = N0.getValueType();
1732    // Canonicalize multiplicative constant to RHS. If both multiplicative
1733    // operands are constant canonicalize smallest to RHS.
1734    if ((N0C && !N1C) ||
1735        (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1736      return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1737                         N1, N0, N2, N3);
1738
1739    // lmul(x, 0, a, b)
1740    if (N1C && N1C->isNullValue()) {
1741      // If the high result is unused fold to add(a, b)
1742      if (N->hasNUsesOfValue(0, 0)) {
1743        SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1744        SDValue Ops[] = { Lo, Lo };
1745        return DAG.getMergeValues(Ops, dl);
1746      }
1747      // Otherwise fold to ladd(a, b, 0)
1748      SDValue Result =
1749        DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1750      SDValue Carry(Result.getNode(), 1);
1751      SDValue Ops[] = { Carry, Result };
1752      return DAG.getMergeValues(Ops, dl);
1753    }
1754  }
1755  break;
1756  case ISD::ADD: {
1757    // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1758    // lmul(x, y, a, b). The high result of lmul will be ignored.
1759    // This is only profitable if the intermediate results are unused
1760    // elsewhere.
1761    SDValue Mul0, Mul1, Addend0, Addend1;
1762    if (N->getValueType(0) == MVT::i32 &&
1763        isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1764      SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1765                                    DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1766                                    Mul1, Addend0, Addend1);
1767      SDValue Result(Ignored.getNode(), 1);
1768      return Result;
1769    }
1770    APInt HighMask = APInt::getHighBitsSet(64, 32);
1771    // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1772    // lmul(x, y, a, b) if all operands are zero-extended. We do this
1773    // before type legalization as it is messy to match the operands after
1774    // that.
1775    if (N->getValueType(0) == MVT::i64 &&
1776        isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1777        DAG.MaskedValueIsZero(Mul0, HighMask) &&
1778        DAG.MaskedValueIsZero(Mul1, HighMask) &&
1779        DAG.MaskedValueIsZero(Addend0, HighMask) &&
1780        DAG.MaskedValueIsZero(Addend1, HighMask)) {
1781      SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1782                                  Mul0, DAG.getConstant(0, dl, MVT::i32));
1783      SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1784                                  Mul1, DAG.getConstant(0, dl, MVT::i32));
1785      SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1786                                     Addend0, DAG.getConstant(0, dl, MVT::i32));
1787      SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1788                                     Addend1, DAG.getConstant(0, dl, MVT::i32));
1789      SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1790                               DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1791                               Addend0L, Addend1L);
1792      SDValue Lo(Hi.getNode(), 1);
1793      return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1794    }
1795  }
1796  break;
1797  case ISD::STORE: {
1798    // Replace unaligned store of unaligned load with memmove.
1799    StoreSDNode *ST  = cast<StoreSDNode>(N);
1800    if (!DCI.isBeforeLegalize() ||
1801        allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
1802                                       ST->getAddressSpace(),
1803                                       ST->getAlignment()) ||
1804        ST->isVolatile() || ST->isIndexed()) {
1805      break;
1806    }
1807    SDValue Chain = ST->getChain();
1808
1809    unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1810    assert((StoreBits % 8) == 0 &&
1811           "Store size in bits must be a multiple of 8");
1812    unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(
1813        ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
1814    unsigned Alignment = ST->getAlignment();
1815    if (Alignment >= ABIAlignment) {
1816      break;
1817    }
1818
1819    if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1820      if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1821        LD->getAlignment() == Alignment &&
1822        !LD->isVolatile() && !LD->isIndexed() &&
1823        Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1824        bool isTail = isInTailCallPosition(DAG, ST, Chain);
1825        return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
1826                              LD->getBasePtr(),
1827                              DAG.getConstant(StoreBits/8, dl, MVT::i32),
1828                              Alignment, false, isTail, ST->getPointerInfo(),
1829                              LD->getPointerInfo());
1830      }
1831    }
1832    break;
1833  }
1834  }
1835  return SDValue();
1836}
1837
1838void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1839                                                        APInt &KnownZero,
1840                                                        APInt &KnownOne,
1841                                                        const SelectionDAG &DAG,
1842                                                        unsigned Depth) const {
1843  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
1844  switch (Op.getOpcode()) {
1845  default: break;
1846  case XCoreISD::LADD:
1847  case XCoreISD::LSUB:
1848    if (Op.getResNo() == 1) {
1849      // Top bits of carry / borrow are clear.
1850      KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1851                                        KnownZero.getBitWidth() - 1);
1852    }
1853    break;
1854  case ISD::INTRINSIC_W_CHAIN:
1855    {
1856      unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1857      switch (IntNo) {
1858      case Intrinsic::xcore_getts:
1859        // High bits are known to be zero.
1860        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1861                                          KnownZero.getBitWidth() - 16);
1862        break;
1863      case Intrinsic::xcore_int:
1864      case Intrinsic::xcore_inct:
1865        // High bits are known to be zero.
1866        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1867                                          KnownZero.getBitWidth() - 8);
1868        break;
1869      case Intrinsic::xcore_testct:
1870        // Result is either 0 or 1.
1871        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1872                                          KnownZero.getBitWidth() - 1);
1873        break;
1874      case Intrinsic::xcore_testwct:
1875        // Result is in the range 0 - 4.
1876        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1877                                          KnownZero.getBitWidth() - 3);
1878        break;
1879      }
1880    }
1881    break;
1882  }
1883}
1884
1885//===----------------------------------------------------------------------===//
1886//  Addressing mode description hooks
1887//===----------------------------------------------------------------------===//
1888
1889static inline bool isImmUs(int64_t val)
1890{
1891  return (val >= 0 && val <= 11);
1892}
1893
1894static inline bool isImmUs2(int64_t val)
1895{
1896  return (val%2 == 0 && isImmUs(val/2));
1897}
1898
1899static inline bool isImmUs4(int64_t val)
1900{
1901  return (val%4 == 0 && isImmUs(val/4));
1902}
1903
1904/// isLegalAddressingMode - Return true if the addressing mode represented
1905/// by AM is legal for this target, for a load/store of the specified type.
1906bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1907                                                const AddrMode &AM, Type *Ty,
1908                                                unsigned AS) const {
1909  if (Ty->getTypeID() == Type::VoidTyID)
1910    return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1911
1912  unsigned Size = DL.getTypeAllocSize(Ty);
1913  if (AM.BaseGV) {
1914    return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1915                 AM.BaseOffs%4 == 0;
1916  }
1917
1918  switch (Size) {
1919  case 1:
1920    // reg + imm
1921    if (AM.Scale == 0) {
1922      return isImmUs(AM.BaseOffs);
1923    }
1924    // reg + reg
1925    return AM.Scale == 1 && AM.BaseOffs == 0;
1926  case 2:
1927  case 3:
1928    // reg + imm
1929    if (AM.Scale == 0) {
1930      return isImmUs2(AM.BaseOffs);
1931    }
1932    // reg + reg<<1
1933    return AM.Scale == 2 && AM.BaseOffs == 0;
1934  default:
1935    // reg + imm
1936    if (AM.Scale == 0) {
1937      return isImmUs4(AM.BaseOffs);
1938    }
1939    // reg + reg<<2
1940    return AM.Scale == 4 && AM.BaseOffs == 0;
1941  }
1942}
1943
1944//===----------------------------------------------------------------------===//
1945//                           XCore Inline Assembly Support
1946//===----------------------------------------------------------------------===//
1947
1948std::pair<unsigned, const TargetRegisterClass *>
1949XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1950                                                  StringRef Constraint,
1951                                                  MVT VT) const {
1952  if (Constraint.size() == 1) {
1953    switch (Constraint[0]) {
1954    default : break;
1955    case 'r':
1956      return std::make_pair(0U, &XCore::GRRegsRegClass);
1957    }
1958  }
1959  // Use the default implementation in TargetLowering to convert the register
1960  // constraint into a member of a register class.
1961  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1962}
1963