1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass transforms simple global variables that never have their address 11// taken. If obviously true, it marks read/write globals as constant, deletes 12// variables only stored to, etc. 13// 14//===----------------------------------------------------------------------===// 15 16#include "llvm/Transforms/IPO/GlobalOpt.h" 17#include "llvm/ADT/DenseMap.h" 18#include "llvm/ADT/STLExtras.h" 19#include "llvm/ADT/SmallPtrSet.h" 20#include "llvm/ADT/SmallSet.h" 21#include "llvm/ADT/SmallVector.h" 22#include "llvm/ADT/Statistic.h" 23#include "llvm/Analysis/ConstantFolding.h" 24#include "llvm/Analysis/MemoryBuiltins.h" 25#include "llvm/Analysis/TargetLibraryInfo.h" 26#include "llvm/IR/CallSite.h" 27#include "llvm/IR/CallingConv.h" 28#include "llvm/IR/Constants.h" 29#include "llvm/IR/DataLayout.h" 30#include "llvm/IR/DerivedTypes.h" 31#include "llvm/IR/Dominators.h" 32#include "llvm/IR/GetElementPtrTypeIterator.h" 33#include "llvm/IR/Instructions.h" 34#include "llvm/IR/IntrinsicInst.h" 35#include "llvm/IR/Module.h" 36#include "llvm/IR/Operator.h" 37#include "llvm/IR/ValueHandle.h" 38#include "llvm/Pass.h" 39#include "llvm/Support/Debug.h" 40#include "llvm/Support/ErrorHandling.h" 41#include "llvm/Support/MathExtras.h" 42#include "llvm/Support/raw_ostream.h" 43#include "llvm/Transforms/IPO.h" 44#include "llvm/Transforms/Utils/CtorUtils.h" 45#include "llvm/Transforms/Utils/Evaluator.h" 46#include "llvm/Transforms/Utils/GlobalStatus.h" 47#include <algorithm> 48using namespace llvm; 49 50#define DEBUG_TYPE "globalopt" 51 52STATISTIC(NumMarked , "Number of globals marked constant"); 53STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 54STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 55STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 56STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 57STATISTIC(NumDeleted , "Number of globals deleted"); 58STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 59STATISTIC(NumLocalized , "Number of globals localized"); 60STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 61STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 62STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 63STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 64STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 65STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 66STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 67 68/// Is this global variable possibly used by a leak checker as a root? If so, 69/// we might not really want to eliminate the stores to it. 70static bool isLeakCheckerRoot(GlobalVariable *GV) { 71 // A global variable is a root if it is a pointer, or could plausibly contain 72 // a pointer. There are two challenges; one is that we could have a struct 73 // the has an inner member which is a pointer. We recurse through the type to 74 // detect these (up to a point). The other is that we may actually be a union 75 // of a pointer and another type, and so our LLVM type is an integer which 76 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 77 // potentially contained here. 78 79 if (GV->hasPrivateLinkage()) 80 return false; 81 82 SmallVector<Type *, 4> Types; 83 Types.push_back(GV->getValueType()); 84 85 unsigned Limit = 20; 86 do { 87 Type *Ty = Types.pop_back_val(); 88 switch (Ty->getTypeID()) { 89 default: break; 90 case Type::PointerTyID: return true; 91 case Type::ArrayTyID: 92 case Type::VectorTyID: { 93 SequentialType *STy = cast<SequentialType>(Ty); 94 Types.push_back(STy->getElementType()); 95 break; 96 } 97 case Type::StructTyID: { 98 StructType *STy = cast<StructType>(Ty); 99 if (STy->isOpaque()) return true; 100 for (StructType::element_iterator I = STy->element_begin(), 101 E = STy->element_end(); I != E; ++I) { 102 Type *InnerTy = *I; 103 if (isa<PointerType>(InnerTy)) return true; 104 if (isa<CompositeType>(InnerTy)) 105 Types.push_back(InnerTy); 106 } 107 break; 108 } 109 } 110 if (--Limit == 0) return true; 111 } while (!Types.empty()); 112 return false; 113} 114 115/// Given a value that is stored to a global but never read, determine whether 116/// it's safe to remove the store and the chain of computation that feeds the 117/// store. 118static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 119 do { 120 if (isa<Constant>(V)) 121 return true; 122 if (!V->hasOneUse()) 123 return false; 124 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 125 isa<GlobalValue>(V)) 126 return false; 127 if (isAllocationFn(V, TLI)) 128 return true; 129 130 Instruction *I = cast<Instruction>(V); 131 if (I->mayHaveSideEffects()) 132 return false; 133 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 134 if (!GEP->hasAllConstantIndices()) 135 return false; 136 } else if (I->getNumOperands() != 1) { 137 return false; 138 } 139 140 V = I->getOperand(0); 141 } while (1); 142} 143 144/// This GV is a pointer root. Loop over all users of the global and clean up 145/// any that obviously don't assign the global a value that isn't dynamically 146/// allocated. 147static bool CleanupPointerRootUsers(GlobalVariable *GV, 148 const TargetLibraryInfo *TLI) { 149 // A brief explanation of leak checkers. The goal is to find bugs where 150 // pointers are forgotten, causing an accumulating growth in memory 151 // usage over time. The common strategy for leak checkers is to whitelist the 152 // memory pointed to by globals at exit. This is popular because it also 153 // solves another problem where the main thread of a C++ program may shut down 154 // before other threads that are still expecting to use those globals. To 155 // handle that case, we expect the program may create a singleton and never 156 // destroy it. 157 158 bool Changed = false; 159 160 // If Dead[n].first is the only use of a malloc result, we can delete its 161 // chain of computation and the store to the global in Dead[n].second. 162 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 163 164 // Constants can't be pointers to dynamically allocated memory. 165 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 166 UI != E;) { 167 User *U = *UI++; 168 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 169 Value *V = SI->getValueOperand(); 170 if (isa<Constant>(V)) { 171 Changed = true; 172 SI->eraseFromParent(); 173 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 174 if (I->hasOneUse()) 175 Dead.push_back(std::make_pair(I, SI)); 176 } 177 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 178 if (isa<Constant>(MSI->getValue())) { 179 Changed = true; 180 MSI->eraseFromParent(); 181 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 182 if (I->hasOneUse()) 183 Dead.push_back(std::make_pair(I, MSI)); 184 } 185 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 186 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 187 if (MemSrc && MemSrc->isConstant()) { 188 Changed = true; 189 MTI->eraseFromParent(); 190 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 191 if (I->hasOneUse()) 192 Dead.push_back(std::make_pair(I, MTI)); 193 } 194 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 195 if (CE->use_empty()) { 196 CE->destroyConstant(); 197 Changed = true; 198 } 199 } else if (Constant *C = dyn_cast<Constant>(U)) { 200 if (isSafeToDestroyConstant(C)) { 201 C->destroyConstant(); 202 // This could have invalidated UI, start over from scratch. 203 Dead.clear(); 204 CleanupPointerRootUsers(GV, TLI); 205 return true; 206 } 207 } 208 } 209 210 for (int i = 0, e = Dead.size(); i != e; ++i) { 211 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 212 Dead[i].second->eraseFromParent(); 213 Instruction *I = Dead[i].first; 214 do { 215 if (isAllocationFn(I, TLI)) 216 break; 217 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 218 if (!J) 219 break; 220 I->eraseFromParent(); 221 I = J; 222 } while (1); 223 I->eraseFromParent(); 224 } 225 } 226 227 return Changed; 228} 229 230/// We just marked GV constant. Loop over all users of the global, cleaning up 231/// the obvious ones. This is largely just a quick scan over the use list to 232/// clean up the easy and obvious cruft. This returns true if it made a change. 233static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 234 const DataLayout &DL, 235 TargetLibraryInfo *TLI) { 236 bool Changed = false; 237 // Note that we need to use a weak value handle for the worklist items. When 238 // we delete a constant array, we may also be holding pointer to one of its 239 // elements (or an element of one of its elements if we're dealing with an 240 // array of arrays) in the worklist. 241 SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end()); 242 while (!WorkList.empty()) { 243 Value *UV = WorkList.pop_back_val(); 244 if (!UV) 245 continue; 246 247 User *U = cast<User>(UV); 248 249 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 250 if (Init) { 251 // Replace the load with the initializer. 252 LI->replaceAllUsesWith(Init); 253 LI->eraseFromParent(); 254 Changed = true; 255 } 256 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 257 // Store must be unreachable or storing Init into the global. 258 SI->eraseFromParent(); 259 Changed = true; 260 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 261 if (CE->getOpcode() == Instruction::GetElementPtr) { 262 Constant *SubInit = nullptr; 263 if (Init) 264 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 265 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI); 266 } else if ((CE->getOpcode() == Instruction::BitCast && 267 CE->getType()->isPointerTy()) || 268 CE->getOpcode() == Instruction::AddrSpaceCast) { 269 // Pointer cast, delete any stores and memsets to the global. 270 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI); 271 } 272 273 if (CE->use_empty()) { 274 CE->destroyConstant(); 275 Changed = true; 276 } 277 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 278 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 279 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 280 // and will invalidate our notion of what Init is. 281 Constant *SubInit = nullptr; 282 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 283 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 284 ConstantFoldInstruction(GEP, DL, TLI)); 285 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 286 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 287 288 // If the initializer is an all-null value and we have an inbounds GEP, 289 // we already know what the result of any load from that GEP is. 290 // TODO: Handle splats. 291 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 292 SubInit = Constant::getNullValue(GEP->getResultElementType()); 293 } 294 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI); 295 296 if (GEP->use_empty()) { 297 GEP->eraseFromParent(); 298 Changed = true; 299 } 300 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 301 if (MI->getRawDest() == V) { 302 MI->eraseFromParent(); 303 Changed = true; 304 } 305 306 } else if (Constant *C = dyn_cast<Constant>(U)) { 307 // If we have a chain of dead constantexprs or other things dangling from 308 // us, and if they are all dead, nuke them without remorse. 309 if (isSafeToDestroyConstant(C)) { 310 C->destroyConstant(); 311 CleanupConstantGlobalUsers(V, Init, DL, TLI); 312 return true; 313 } 314 } 315 } 316 return Changed; 317} 318 319/// Return true if the specified instruction is a safe user of a derived 320/// expression from a global that we want to SROA. 321static bool isSafeSROAElementUse(Value *V) { 322 // We might have a dead and dangling constant hanging off of here. 323 if (Constant *C = dyn_cast<Constant>(V)) 324 return isSafeToDestroyConstant(C); 325 326 Instruction *I = dyn_cast<Instruction>(V); 327 if (!I) return false; 328 329 // Loads are ok. 330 if (isa<LoadInst>(I)) return true; 331 332 // Stores *to* the pointer are ok. 333 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 334 return SI->getOperand(0) != V; 335 336 // Otherwise, it must be a GEP. 337 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 338 if (!GEPI) return false; 339 340 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 341 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 342 return false; 343 344 for (User *U : GEPI->users()) 345 if (!isSafeSROAElementUse(U)) 346 return false; 347 return true; 348} 349 350 351/// U is a direct user of the specified global value. Look at it and its uses 352/// and decide whether it is safe to SROA this global. 353static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 354 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 355 if (!isa<GetElementPtrInst>(U) && 356 (!isa<ConstantExpr>(U) || 357 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 358 return false; 359 360 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 361 // don't like < 3 operand CE's, and we don't like non-constant integer 362 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 363 // value of C. 364 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 365 !cast<Constant>(U->getOperand(1))->isNullValue() || 366 !isa<ConstantInt>(U->getOperand(2))) 367 return false; 368 369 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 370 ++GEPI; // Skip over the pointer index. 371 372 // If this is a use of an array allocation, do a bit more checking for sanity. 373 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) { 374 uint64_t NumElements = AT->getNumElements(); 375 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 376 377 // Check to make sure that index falls within the array. If not, 378 // something funny is going on, so we won't do the optimization. 379 // 380 if (Idx->getZExtValue() >= NumElements) 381 return false; 382 383 // We cannot scalar repl this level of the array unless any array 384 // sub-indices are in-range constants. In particular, consider: 385 // A[0][i]. We cannot know that the user isn't doing invalid things like 386 // allowing i to index an out-of-range subscript that accesses A[1]. 387 // 388 // Scalar replacing *just* the outer index of the array is probably not 389 // going to be a win anyway, so just give up. 390 for (++GEPI; // Skip array index. 391 GEPI != E; 392 ++GEPI) { 393 uint64_t NumElements; 394 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI)) 395 NumElements = SubArrayTy->getNumElements(); 396 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI)) 397 NumElements = SubVectorTy->getNumElements(); 398 else { 399 assert((*GEPI)->isStructTy() && 400 "Indexed GEP type is not array, vector, or struct!"); 401 continue; 402 } 403 404 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 405 if (!IdxVal || IdxVal->getZExtValue() >= NumElements) 406 return false; 407 } 408 } 409 410 for (User *UU : U->users()) 411 if (!isSafeSROAElementUse(UU)) 412 return false; 413 414 return true; 415} 416 417/// Look at all uses of the global and decide whether it is safe for us to 418/// perform this transformation. 419static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 420 for (User *U : GV->users()) 421 if (!IsUserOfGlobalSafeForSRA(U, GV)) 422 return false; 423 424 return true; 425} 426 427 428/// Perform scalar replacement of aggregates on the specified global variable. 429/// This opens the door for other optimizations by exposing the behavior of the 430/// program in a more fine-grained way. We have determined that this 431/// transformation is safe already. We return the first global variable we 432/// insert so that the caller can reprocess it. 433static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 434 // Make sure this global only has simple uses that we can SRA. 435 if (!GlobalUsersSafeToSRA(GV)) 436 return nullptr; 437 438 assert(GV->hasLocalLinkage()); 439 Constant *Init = GV->getInitializer(); 440 Type *Ty = Init->getType(); 441 442 std::vector<GlobalVariable*> NewGlobals; 443 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 444 445 // Get the alignment of the global, either explicit or target-specific. 446 unsigned StartAlignment = GV->getAlignment(); 447 if (StartAlignment == 0) 448 StartAlignment = DL.getABITypeAlignment(GV->getType()); 449 450 if (StructType *STy = dyn_cast<StructType>(Ty)) { 451 NewGlobals.reserve(STy->getNumElements()); 452 const StructLayout &Layout = *DL.getStructLayout(STy); 453 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 454 Constant *In = Init->getAggregateElement(i); 455 assert(In && "Couldn't get element of initializer?"); 456 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 457 GlobalVariable::InternalLinkage, 458 In, GV->getName()+"."+Twine(i), 459 GV->getThreadLocalMode(), 460 GV->getType()->getAddressSpace()); 461 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 462 NGV->copyAttributesFrom(GV); 463 Globals.push_back(NGV); 464 NewGlobals.push_back(NGV); 465 466 // Calculate the known alignment of the field. If the original aggregate 467 // had 256 byte alignment for example, something might depend on that: 468 // propagate info to each field. 469 uint64_t FieldOffset = Layout.getElementOffset(i); 470 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 471 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i))) 472 NGV->setAlignment(NewAlign); 473 } 474 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 475 unsigned NumElements = 0; 476 if (ArrayType *ATy = dyn_cast<ArrayType>(STy)) 477 NumElements = ATy->getNumElements(); 478 else 479 NumElements = cast<VectorType>(STy)->getNumElements(); 480 481 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 482 return nullptr; // It's not worth it. 483 NewGlobals.reserve(NumElements); 484 485 uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType()); 486 unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType()); 487 for (unsigned i = 0, e = NumElements; i != e; ++i) { 488 Constant *In = Init->getAggregateElement(i); 489 assert(In && "Couldn't get element of initializer?"); 490 491 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 492 GlobalVariable::InternalLinkage, 493 In, GV->getName()+"."+Twine(i), 494 GV->getThreadLocalMode(), 495 GV->getType()->getAddressSpace()); 496 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 497 NGV->copyAttributesFrom(GV); 498 Globals.push_back(NGV); 499 NewGlobals.push_back(NGV); 500 501 // Calculate the known alignment of the field. If the original aggregate 502 // had 256 byte alignment for example, something might depend on that: 503 // propagate info to each field. 504 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 505 if (NewAlign > EltAlign) 506 NGV->setAlignment(NewAlign); 507 } 508 } 509 510 if (NewGlobals.empty()) 511 return nullptr; 512 513 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 514 515 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 516 517 // Loop over all of the uses of the global, replacing the constantexpr geps, 518 // with smaller constantexpr geps or direct references. 519 while (!GV->use_empty()) { 520 User *GEP = GV->user_back(); 521 assert(((isa<ConstantExpr>(GEP) && 522 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 523 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 524 525 // Ignore the 1th operand, which has to be zero or else the program is quite 526 // broken (undefined). Get the 2nd operand, which is the structure or array 527 // index. 528 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 529 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 530 531 Value *NewPtr = NewGlobals[Val]; 532 Type *NewTy = NewGlobals[Val]->getValueType(); 533 534 // Form a shorter GEP if needed. 535 if (GEP->getNumOperands() > 3) { 536 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 537 SmallVector<Constant*, 8> Idxs; 538 Idxs.push_back(NullInt); 539 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 540 Idxs.push_back(CE->getOperand(i)); 541 NewPtr = 542 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 543 } else { 544 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 545 SmallVector<Value*, 8> Idxs; 546 Idxs.push_back(NullInt); 547 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 548 Idxs.push_back(GEPI->getOperand(i)); 549 NewPtr = GetElementPtrInst::Create( 550 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI); 551 } 552 } 553 GEP->replaceAllUsesWith(NewPtr); 554 555 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 556 GEPI->eraseFromParent(); 557 else 558 cast<ConstantExpr>(GEP)->destroyConstant(); 559 } 560 561 // Delete the old global, now that it is dead. 562 Globals.erase(GV); 563 ++NumSRA; 564 565 // Loop over the new globals array deleting any globals that are obviously 566 // dead. This can arise due to scalarization of a structure or an array that 567 // has elements that are dead. 568 unsigned FirstGlobal = 0; 569 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 570 if (NewGlobals[i]->use_empty()) { 571 Globals.erase(NewGlobals[i]); 572 if (FirstGlobal == i) ++FirstGlobal; 573 } 574 575 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; 576} 577 578/// Return true if all users of the specified value will trap if the value is 579/// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 580/// reprocessing them. 581static bool AllUsesOfValueWillTrapIfNull(const Value *V, 582 SmallPtrSetImpl<const PHINode*> &PHIs) { 583 for (const User *U : V->users()) 584 if (isa<LoadInst>(U)) { 585 // Will trap. 586 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 587 if (SI->getOperand(0) == V) { 588 //cerr << "NONTRAPPING USE: " << *U; 589 return false; // Storing the value. 590 } 591 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 592 if (CI->getCalledValue() != V) { 593 //cerr << "NONTRAPPING USE: " << *U; 594 return false; // Not calling the ptr 595 } 596 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 597 if (II->getCalledValue() != V) { 598 //cerr << "NONTRAPPING USE: " << *U; 599 return false; // Not calling the ptr 600 } 601 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 602 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 603 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 604 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 605 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 606 // If we've already seen this phi node, ignore it, it has already been 607 // checked. 608 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 609 return false; 610 } else if (isa<ICmpInst>(U) && 611 isa<ConstantPointerNull>(U->getOperand(1))) { 612 // Ignore icmp X, null 613 } else { 614 //cerr << "NONTRAPPING USE: " << *U; 615 return false; 616 } 617 618 return true; 619} 620 621/// Return true if all uses of any loads from GV will trap if the loaded value 622/// is null. Note that this also permits comparisons of the loaded value 623/// against null, as a special case. 624static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 625 for (const User *U : GV->users()) 626 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 627 SmallPtrSet<const PHINode*, 8> PHIs; 628 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 629 return false; 630 } else if (isa<StoreInst>(U)) { 631 // Ignore stores to the global. 632 } else { 633 // We don't know or understand this user, bail out. 634 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 635 return false; 636 } 637 return true; 638} 639 640static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 641 bool Changed = false; 642 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 643 Instruction *I = cast<Instruction>(*UI++); 644 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 645 LI->setOperand(0, NewV); 646 Changed = true; 647 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 648 if (SI->getOperand(1) == V) { 649 SI->setOperand(1, NewV); 650 Changed = true; 651 } 652 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 653 CallSite CS(I); 654 if (CS.getCalledValue() == V) { 655 // Calling through the pointer! Turn into a direct call, but be careful 656 // that the pointer is not also being passed as an argument. 657 CS.setCalledFunction(NewV); 658 Changed = true; 659 bool PassedAsArg = false; 660 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 661 if (CS.getArgument(i) == V) { 662 PassedAsArg = true; 663 CS.setArgument(i, NewV); 664 } 665 666 if (PassedAsArg) { 667 // Being passed as an argument also. Be careful to not invalidate UI! 668 UI = V->user_begin(); 669 } 670 } 671 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 672 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 673 ConstantExpr::getCast(CI->getOpcode(), 674 NewV, CI->getType())); 675 if (CI->use_empty()) { 676 Changed = true; 677 CI->eraseFromParent(); 678 } 679 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 680 // Should handle GEP here. 681 SmallVector<Constant*, 8> Idxs; 682 Idxs.reserve(GEPI->getNumOperands()-1); 683 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 684 i != e; ++i) 685 if (Constant *C = dyn_cast<Constant>(*i)) 686 Idxs.push_back(C); 687 else 688 break; 689 if (Idxs.size() == GEPI->getNumOperands()-1) 690 Changed |= OptimizeAwayTrappingUsesOfValue( 691 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs)); 692 if (GEPI->use_empty()) { 693 Changed = true; 694 GEPI->eraseFromParent(); 695 } 696 } 697 } 698 699 return Changed; 700} 701 702 703/// The specified global has only one non-null value stored into it. If there 704/// are uses of the loaded value that would trap if the loaded value is 705/// dynamically null, then we know that they cannot be reachable with a null 706/// optimize away the load. 707static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 708 const DataLayout &DL, 709 TargetLibraryInfo *TLI) { 710 bool Changed = false; 711 712 // Keep track of whether we are able to remove all the uses of the global 713 // other than the store that defines it. 714 bool AllNonStoreUsesGone = true; 715 716 // Replace all uses of loads with uses of uses of the stored value. 717 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 718 User *GlobalUser = *GUI++; 719 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 720 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 721 // If we were able to delete all uses of the loads 722 if (LI->use_empty()) { 723 LI->eraseFromParent(); 724 Changed = true; 725 } else { 726 AllNonStoreUsesGone = false; 727 } 728 } else if (isa<StoreInst>(GlobalUser)) { 729 // Ignore the store that stores "LV" to the global. 730 assert(GlobalUser->getOperand(1) == GV && 731 "Must be storing *to* the global"); 732 } else { 733 AllNonStoreUsesGone = false; 734 735 // If we get here we could have other crazy uses that are transitively 736 // loaded. 737 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 738 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 739 isa<BitCastInst>(GlobalUser) || 740 isa<GetElementPtrInst>(GlobalUser)) && 741 "Only expect load and stores!"); 742 } 743 } 744 745 if (Changed) { 746 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n"); 747 ++NumGlobUses; 748 } 749 750 // If we nuked all of the loads, then none of the stores are needed either, 751 // nor is the global. 752 if (AllNonStoreUsesGone) { 753 if (isLeakCheckerRoot(GV)) { 754 Changed |= CleanupPointerRootUsers(GV, TLI); 755 } else { 756 Changed = true; 757 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI); 758 } 759 if (GV->use_empty()) { 760 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 761 Changed = true; 762 GV->eraseFromParent(); 763 ++NumDeleted; 764 } 765 } 766 return Changed; 767} 768 769/// Walk the use list of V, constant folding all of the instructions that are 770/// foldable. 771static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 772 TargetLibraryInfo *TLI) { 773 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 774 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 775 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 776 I->replaceAllUsesWith(NewC); 777 778 // Advance UI to the next non-I use to avoid invalidating it! 779 // Instructions could multiply use V. 780 while (UI != E && *UI == I) 781 ++UI; 782 I->eraseFromParent(); 783 } 784} 785 786/// This function takes the specified global variable, and transforms the 787/// program as if it always contained the result of the specified malloc. 788/// Because it is always the result of the specified malloc, there is no reason 789/// to actually DO the malloc. Instead, turn the malloc into a global, and any 790/// loads of GV as uses of the new global. 791static GlobalVariable * 792OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 793 ConstantInt *NElements, const DataLayout &DL, 794 TargetLibraryInfo *TLI) { 795 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 796 797 Type *GlobalType; 798 if (NElements->getZExtValue() == 1) 799 GlobalType = AllocTy; 800 else 801 // If we have an array allocation, the global variable is of an array. 802 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 803 804 // Create the new global variable. The contents of the malloc'd memory is 805 // undefined, so initialize with an undef value. 806 GlobalVariable *NewGV = new GlobalVariable( 807 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 808 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 809 GV->getThreadLocalMode()); 810 811 // If there are bitcast users of the malloc (which is typical, usually we have 812 // a malloc + bitcast) then replace them with uses of the new global. Update 813 // other users to use the global as well. 814 BitCastInst *TheBC = nullptr; 815 while (!CI->use_empty()) { 816 Instruction *User = cast<Instruction>(CI->user_back()); 817 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 818 if (BCI->getType() == NewGV->getType()) { 819 BCI->replaceAllUsesWith(NewGV); 820 BCI->eraseFromParent(); 821 } else { 822 BCI->setOperand(0, NewGV); 823 } 824 } else { 825 if (!TheBC) 826 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 827 User->replaceUsesOfWith(CI, TheBC); 828 } 829 } 830 831 Constant *RepValue = NewGV; 832 if (NewGV->getType() != GV->getValueType()) 833 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 834 835 // If there is a comparison against null, we will insert a global bool to 836 // keep track of whether the global was initialized yet or not. 837 GlobalVariable *InitBool = 838 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 839 GlobalValue::InternalLinkage, 840 ConstantInt::getFalse(GV->getContext()), 841 GV->getName()+".init", GV->getThreadLocalMode()); 842 bool InitBoolUsed = false; 843 844 // Loop over all uses of GV, processing them in turn. 845 while (!GV->use_empty()) { 846 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 847 // The global is initialized when the store to it occurs. 848 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 849 SI->getOrdering(), SI->getSynchScope(), SI); 850 SI->eraseFromParent(); 851 continue; 852 } 853 854 LoadInst *LI = cast<LoadInst>(GV->user_back()); 855 while (!LI->use_empty()) { 856 Use &LoadUse = *LI->use_begin(); 857 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 858 if (!ICI) { 859 LoadUse = RepValue; 860 continue; 861 } 862 863 // Replace the cmp X, 0 with a use of the bool value. 864 // Sink the load to where the compare was, if atomic rules allow us to. 865 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 866 LI->getOrdering(), LI->getSynchScope(), 867 LI->isUnordered() ? (Instruction*)ICI : LI); 868 InitBoolUsed = true; 869 switch (ICI->getPredicate()) { 870 default: llvm_unreachable("Unknown ICmp Predicate!"); 871 case ICmpInst::ICMP_ULT: 872 case ICmpInst::ICMP_SLT: // X < null -> always false 873 LV = ConstantInt::getFalse(GV->getContext()); 874 break; 875 case ICmpInst::ICMP_ULE: 876 case ICmpInst::ICMP_SLE: 877 case ICmpInst::ICMP_EQ: 878 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 879 break; 880 case ICmpInst::ICMP_NE: 881 case ICmpInst::ICMP_UGE: 882 case ICmpInst::ICMP_SGE: 883 case ICmpInst::ICMP_UGT: 884 case ICmpInst::ICMP_SGT: 885 break; // no change. 886 } 887 ICI->replaceAllUsesWith(LV); 888 ICI->eraseFromParent(); 889 } 890 LI->eraseFromParent(); 891 } 892 893 // If the initialization boolean was used, insert it, otherwise delete it. 894 if (!InitBoolUsed) { 895 while (!InitBool->use_empty()) // Delete initializations 896 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 897 delete InitBool; 898 } else 899 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 900 901 // Now the GV is dead, nuke it and the malloc.. 902 GV->eraseFromParent(); 903 CI->eraseFromParent(); 904 905 // To further other optimizations, loop over all users of NewGV and try to 906 // constant prop them. This will promote GEP instructions with constant 907 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 908 ConstantPropUsersOf(NewGV, DL, TLI); 909 if (RepValue != NewGV) 910 ConstantPropUsersOf(RepValue, DL, TLI); 911 912 return NewGV; 913} 914 915/// Scan the use-list of V checking to make sure that there are no complex uses 916/// of V. We permit simple things like dereferencing the pointer, but not 917/// storing through the address, unless it is to the specified global. 918static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 919 const GlobalVariable *GV, 920 SmallPtrSetImpl<const PHINode*> &PHIs) { 921 for (const User *U : V->users()) { 922 const Instruction *Inst = cast<Instruction>(U); 923 924 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 925 continue; // Fine, ignore. 926 } 927 928 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 929 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 930 return false; // Storing the pointer itself... bad. 931 continue; // Otherwise, storing through it, or storing into GV... fine. 932 } 933 934 // Must index into the array and into the struct. 935 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 936 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 937 return false; 938 continue; 939 } 940 941 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 942 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 943 // cycles. 944 if (PHIs.insert(PN).second) 945 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 946 return false; 947 continue; 948 } 949 950 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 951 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 952 return false; 953 continue; 954 } 955 956 return false; 957 } 958 return true; 959} 960 961/// The Alloc pointer is stored into GV somewhere. Transform all uses of the 962/// allocation into loads from the global and uses of the resultant pointer. 963/// Further, delete the store into GV. This assumes that these value pass the 964/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 965static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 966 GlobalVariable *GV) { 967 while (!Alloc->use_empty()) { 968 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 969 Instruction *InsertPt = U; 970 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 971 // If this is the store of the allocation into the global, remove it. 972 if (SI->getOperand(1) == GV) { 973 SI->eraseFromParent(); 974 continue; 975 } 976 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 977 // Insert the load in the corresponding predecessor, not right before the 978 // PHI. 979 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 980 } else if (isa<BitCastInst>(U)) { 981 // Must be bitcast between the malloc and store to initialize the global. 982 ReplaceUsesOfMallocWithGlobal(U, GV); 983 U->eraseFromParent(); 984 continue; 985 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 986 // If this is a "GEP bitcast" and the user is a store to the global, then 987 // just process it as a bitcast. 988 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 989 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 990 if (SI->getOperand(1) == GV) { 991 // Must be bitcast GEP between the malloc and store to initialize 992 // the global. 993 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 994 GEPI->eraseFromParent(); 995 continue; 996 } 997 } 998 999 // Insert a load from the global, and use it instead of the malloc. 1000 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1001 U->replaceUsesOfWith(Alloc, NL); 1002 } 1003} 1004 1005/// Verify that all uses of V (a load, or a phi of a load) are simple enough to 1006/// perform heap SRA on. This permits GEP's that index through the array and 1007/// struct field, icmps of null, and PHIs. 1008static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1009 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1010 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1011 // We permit two users of the load: setcc comparing against the null 1012 // pointer, and a getelementptr of a specific form. 1013 for (const User *U : V->users()) { 1014 const Instruction *UI = cast<Instruction>(U); 1015 1016 // Comparison against null is ok. 1017 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1018 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1019 return false; 1020 continue; 1021 } 1022 1023 // getelementptr is also ok, but only a simple form. 1024 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1025 // Must index into the array and into the struct. 1026 if (GEPI->getNumOperands() < 3) 1027 return false; 1028 1029 // Otherwise the GEP is ok. 1030 continue; 1031 } 1032 1033 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1034 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1035 // This means some phi nodes are dependent on each other. 1036 // Avoid infinite looping! 1037 return false; 1038 if (!LoadUsingPHIs.insert(PN).second) 1039 // If we have already analyzed this PHI, then it is safe. 1040 continue; 1041 1042 // Make sure all uses of the PHI are simple enough to transform. 1043 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1044 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1045 return false; 1046 1047 continue; 1048 } 1049 1050 // Otherwise we don't know what this is, not ok. 1051 return false; 1052 } 1053 1054 return true; 1055} 1056 1057 1058/// If all users of values loaded from GV are simple enough to perform HeapSRA, 1059/// return true. 1060static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1061 Instruction *StoredVal) { 1062 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1063 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1064 for (const User *U : GV->users()) 1065 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1066 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1067 LoadUsingPHIsPerLoad)) 1068 return false; 1069 LoadUsingPHIsPerLoad.clear(); 1070 } 1071 1072 // If we reach here, we know that all uses of the loads and transitive uses 1073 // (through PHI nodes) are simple enough to transform. However, we don't know 1074 // that all inputs the to the PHI nodes are in the same equivalence sets. 1075 // Check to verify that all operands of the PHIs are either PHIS that can be 1076 // transformed, loads from GV, or MI itself. 1077 for (const PHINode *PN : LoadUsingPHIs) { 1078 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1079 Value *InVal = PN->getIncomingValue(op); 1080 1081 // PHI of the stored value itself is ok. 1082 if (InVal == StoredVal) continue; 1083 1084 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1085 // One of the PHIs in our set is (optimistically) ok. 1086 if (LoadUsingPHIs.count(InPN)) 1087 continue; 1088 return false; 1089 } 1090 1091 // Load from GV is ok. 1092 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1093 if (LI->getOperand(0) == GV) 1094 continue; 1095 1096 // UNDEF? NULL? 1097 1098 // Anything else is rejected. 1099 return false; 1100 } 1101 } 1102 1103 return true; 1104} 1105 1106static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1107 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1108 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1109 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1110 1111 if (FieldNo >= FieldVals.size()) 1112 FieldVals.resize(FieldNo+1); 1113 1114 // If we already have this value, just reuse the previously scalarized 1115 // version. 1116 if (Value *FieldVal = FieldVals[FieldNo]) 1117 return FieldVal; 1118 1119 // Depending on what instruction this is, we have several cases. 1120 Value *Result; 1121 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1122 // This is a scalarized version of the load from the global. Just create 1123 // a new Load of the scalarized global. 1124 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1125 InsertedScalarizedValues, 1126 PHIsToRewrite), 1127 LI->getName()+".f"+Twine(FieldNo), LI); 1128 } else { 1129 PHINode *PN = cast<PHINode>(V); 1130 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1131 // field. 1132 1133 PointerType *PTy = cast<PointerType>(PN->getType()); 1134 StructType *ST = cast<StructType>(PTy->getElementType()); 1135 1136 unsigned AS = PTy->getAddressSpace(); 1137 PHINode *NewPN = 1138 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1139 PN->getNumIncomingValues(), 1140 PN->getName()+".f"+Twine(FieldNo), PN); 1141 Result = NewPN; 1142 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1143 } 1144 1145 return FieldVals[FieldNo] = Result; 1146} 1147 1148/// Given a load instruction and a value derived from the load, rewrite the 1149/// derived value to use the HeapSRoA'd load. 1150static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1151 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1152 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1153 // If this is a comparison against null, handle it. 1154 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1155 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1156 // If we have a setcc of the loaded pointer, we can use a setcc of any 1157 // field. 1158 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1159 InsertedScalarizedValues, PHIsToRewrite); 1160 1161 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1162 Constant::getNullValue(NPtr->getType()), 1163 SCI->getName()); 1164 SCI->replaceAllUsesWith(New); 1165 SCI->eraseFromParent(); 1166 return; 1167 } 1168 1169 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1170 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1171 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1172 && "Unexpected GEPI!"); 1173 1174 // Load the pointer for this field. 1175 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1176 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1177 InsertedScalarizedValues, PHIsToRewrite); 1178 1179 // Create the new GEP idx vector. 1180 SmallVector<Value*, 8> GEPIdx; 1181 GEPIdx.push_back(GEPI->getOperand(1)); 1182 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1183 1184 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1185 GEPI->getName(), GEPI); 1186 GEPI->replaceAllUsesWith(NGEPI); 1187 GEPI->eraseFromParent(); 1188 return; 1189 } 1190 1191 // Recursively transform the users of PHI nodes. This will lazily create the 1192 // PHIs that are needed for individual elements. Keep track of what PHIs we 1193 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1194 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1195 // already been seen first by another load, so its uses have already been 1196 // processed. 1197 PHINode *PN = cast<PHINode>(LoadUser); 1198 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1199 std::vector<Value*>())).second) 1200 return; 1201 1202 // If this is the first time we've seen this PHI, recursively process all 1203 // users. 1204 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1205 Instruction *User = cast<Instruction>(*UI++); 1206 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1207 } 1208} 1209 1210/// We are performing Heap SRoA on a global. Ptr is a value loaded from the 1211/// global. Eliminate all uses of Ptr, making them use FieldGlobals instead. 1212/// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1213static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1214 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1215 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1216 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1217 Instruction *User = cast<Instruction>(*UI++); 1218 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1219 } 1220 1221 if (Load->use_empty()) { 1222 Load->eraseFromParent(); 1223 InsertedScalarizedValues.erase(Load); 1224 } 1225} 1226 1227/// CI is an allocation of an array of structures. Break it up into multiple 1228/// allocations of arrays of the fields. 1229static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1230 Value *NElems, const DataLayout &DL, 1231 const TargetLibraryInfo *TLI) { 1232 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1233 Type *MAT = getMallocAllocatedType(CI, TLI); 1234 StructType *STy = cast<StructType>(MAT); 1235 1236 // There is guaranteed to be at least one use of the malloc (storing 1237 // it into GV). If there are other uses, change them to be uses of 1238 // the global to simplify later code. This also deletes the store 1239 // into GV. 1240 ReplaceUsesOfMallocWithGlobal(CI, GV); 1241 1242 // Okay, at this point, there are no users of the malloc. Insert N 1243 // new mallocs at the same place as CI, and N globals. 1244 std::vector<Value*> FieldGlobals; 1245 std::vector<Value*> FieldMallocs; 1246 1247 SmallVector<OperandBundleDef, 1> OpBundles; 1248 CI->getOperandBundlesAsDefs(OpBundles); 1249 1250 unsigned AS = GV->getType()->getPointerAddressSpace(); 1251 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1252 Type *FieldTy = STy->getElementType(FieldNo); 1253 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1254 1255 GlobalVariable *NGV = new GlobalVariable( 1256 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage, 1257 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo), 1258 nullptr, GV->getThreadLocalMode()); 1259 NGV->copyAttributesFrom(GV); 1260 FieldGlobals.push_back(NGV); 1261 1262 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1263 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1264 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1265 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1266 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1267 ConstantInt::get(IntPtrTy, TypeSize), 1268 NElems, OpBundles, nullptr, 1269 CI->getName() + ".f" + Twine(FieldNo)); 1270 FieldMallocs.push_back(NMI); 1271 new StoreInst(NMI, NGV, CI); 1272 } 1273 1274 // The tricky aspect of this transformation is handling the case when malloc 1275 // fails. In the original code, malloc failing would set the result pointer 1276 // of malloc to null. In this case, some mallocs could succeed and others 1277 // could fail. As such, we emit code that looks like this: 1278 // F0 = malloc(field0) 1279 // F1 = malloc(field1) 1280 // F2 = malloc(field2) 1281 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1282 // if (F0) { free(F0); F0 = 0; } 1283 // if (F1) { free(F1); F1 = 0; } 1284 // if (F2) { free(F2); F2 = 0; } 1285 // } 1286 // The malloc can also fail if its argument is too large. 1287 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1288 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1289 ConstantZero, "isneg"); 1290 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1291 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1292 Constant::getNullValue(FieldMallocs[i]->getType()), 1293 "isnull"); 1294 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1295 } 1296 1297 // Split the basic block at the old malloc. 1298 BasicBlock *OrigBB = CI->getParent(); 1299 BasicBlock *ContBB = 1300 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); 1301 1302 // Create the block to check the first condition. Put all these blocks at the 1303 // end of the function as they are unlikely to be executed. 1304 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1305 "malloc_ret_null", 1306 OrigBB->getParent()); 1307 1308 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1309 // branch on RunningOr. 1310 OrigBB->getTerminator()->eraseFromParent(); 1311 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1312 1313 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1314 // pointer, because some may be null while others are not. 1315 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1316 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1317 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1318 Constant::getNullValue(GVVal->getType())); 1319 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1320 OrigBB->getParent()); 1321 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1322 OrigBB->getParent()); 1323 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1324 Cmp, NullPtrBlock); 1325 1326 // Fill in FreeBlock. 1327 CallInst::CreateFree(GVVal, OpBundles, BI); 1328 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1329 FreeBlock); 1330 BranchInst::Create(NextBlock, FreeBlock); 1331 1332 NullPtrBlock = NextBlock; 1333 } 1334 1335 BranchInst::Create(ContBB, NullPtrBlock); 1336 1337 // CI is no longer needed, remove it. 1338 CI->eraseFromParent(); 1339 1340 /// As we process loads, if we can't immediately update all uses of the load, 1341 /// keep track of what scalarized loads are inserted for a given load. 1342 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1343 InsertedScalarizedValues[GV] = FieldGlobals; 1344 1345 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1346 1347 // Okay, the malloc site is completely handled. All of the uses of GV are now 1348 // loads, and all uses of those loads are simple. Rewrite them to use loads 1349 // of the per-field globals instead. 1350 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1351 Instruction *User = cast<Instruction>(*UI++); 1352 1353 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1354 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1355 continue; 1356 } 1357 1358 // Must be a store of null. 1359 StoreInst *SI = cast<StoreInst>(User); 1360 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1361 "Unexpected heap-sra user!"); 1362 1363 // Insert a store of null into each global. 1364 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1365 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType(); 1366 Constant *Null = Constant::getNullValue(ValTy); 1367 new StoreInst(Null, FieldGlobals[i], SI); 1368 } 1369 // Erase the original store. 1370 SI->eraseFromParent(); 1371 } 1372 1373 // While we have PHIs that are interesting to rewrite, do it. 1374 while (!PHIsToRewrite.empty()) { 1375 PHINode *PN = PHIsToRewrite.back().first; 1376 unsigned FieldNo = PHIsToRewrite.back().second; 1377 PHIsToRewrite.pop_back(); 1378 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1379 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1380 1381 // Add all the incoming values. This can materialize more phis. 1382 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1383 Value *InVal = PN->getIncomingValue(i); 1384 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1385 PHIsToRewrite); 1386 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1387 } 1388 } 1389 1390 // Drop all inter-phi links and any loads that made it this far. 1391 for (DenseMap<Value*, std::vector<Value*> >::iterator 1392 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1393 I != E; ++I) { 1394 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1395 PN->dropAllReferences(); 1396 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1397 LI->dropAllReferences(); 1398 } 1399 1400 // Delete all the phis and loads now that inter-references are dead. 1401 for (DenseMap<Value*, std::vector<Value*> >::iterator 1402 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1403 I != E; ++I) { 1404 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1405 PN->eraseFromParent(); 1406 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1407 LI->eraseFromParent(); 1408 } 1409 1410 // The old global is now dead, remove it. 1411 GV->eraseFromParent(); 1412 1413 ++NumHeapSRA; 1414 return cast<GlobalVariable>(FieldGlobals[0]); 1415} 1416 1417/// This function is called when we see a pointer global variable with a single 1418/// value stored it that is a malloc or cast of malloc. 1419static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1420 Type *AllocTy, 1421 AtomicOrdering Ordering, 1422 const DataLayout &DL, 1423 TargetLibraryInfo *TLI) { 1424 // If this is a malloc of an abstract type, don't touch it. 1425 if (!AllocTy->isSized()) 1426 return false; 1427 1428 // We can't optimize this global unless all uses of it are *known* to be 1429 // of the malloc value, not of the null initializer value (consider a use 1430 // that compares the global's value against zero to see if the malloc has 1431 // been reached). To do this, we check to see if all uses of the global 1432 // would trap if the global were null: this proves that they must all 1433 // happen after the malloc. 1434 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1435 return false; 1436 1437 // We can't optimize this if the malloc itself is used in a complex way, 1438 // for example, being stored into multiple globals. This allows the 1439 // malloc to be stored into the specified global, loaded icmp'd, and 1440 // GEP'd. These are all things we could transform to using the global 1441 // for. 1442 SmallPtrSet<const PHINode*, 8> PHIs; 1443 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1444 return false; 1445 1446 // If we have a global that is only initialized with a fixed size malloc, 1447 // transform the program to use global memory instead of malloc'd memory. 1448 // This eliminates dynamic allocation, avoids an indirection accessing the 1449 // data, and exposes the resultant global to further GlobalOpt. 1450 // We cannot optimize the malloc if we cannot determine malloc array size. 1451 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1452 if (!NElems) 1453 return false; 1454 1455 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1456 // Restrict this transformation to only working on small allocations 1457 // (2048 bytes currently), as we don't want to introduce a 16M global or 1458 // something. 1459 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1460 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1461 return true; 1462 } 1463 1464 // If the allocation is an array of structures, consider transforming this 1465 // into multiple malloc'd arrays, one for each field. This is basically 1466 // SRoA for malloc'd memory. 1467 1468 if (Ordering != AtomicOrdering::NotAtomic) 1469 return false; 1470 1471 // If this is an allocation of a fixed size array of structs, analyze as a 1472 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1473 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1474 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1475 AllocTy = AT->getElementType(); 1476 1477 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1478 if (!AllocSTy) 1479 return false; 1480 1481 // This the structure has an unreasonable number of fields, leave it 1482 // alone. 1483 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1484 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1485 1486 // If this is a fixed size array, transform the Malloc to be an alloc of 1487 // structs. malloc [100 x struct],1 -> malloc struct, 100 1488 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1489 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1490 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1491 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1492 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1493 SmallVector<OperandBundleDef, 1> OpBundles; 1494 CI->getOperandBundlesAsDefs(OpBundles); 1495 Instruction *Malloc = 1496 CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements, 1497 OpBundles, nullptr, CI->getName()); 1498 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1499 CI->replaceAllUsesWith(Cast); 1500 CI->eraseFromParent(); 1501 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1502 CI = cast<CallInst>(BCI->getOperand(0)); 1503 else 1504 CI = cast<CallInst>(Malloc); 1505 } 1506 1507 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL, 1508 TLI); 1509 return true; 1510 } 1511 1512 return false; 1513} 1514 1515// Try to optimize globals based on the knowledge that only one value (besides 1516// its initializer) is ever stored to the global. 1517static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1518 AtomicOrdering Ordering, 1519 const DataLayout &DL, 1520 TargetLibraryInfo *TLI) { 1521 // Ignore no-op GEPs and bitcasts. 1522 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1523 1524 // If we are dealing with a pointer global that is initialized to null and 1525 // only has one (non-null) value stored into it, then we can optimize any 1526 // users of the loaded value (often calls and loads) that would trap if the 1527 // value was null. 1528 if (GV->getInitializer()->getType()->isPointerTy() && 1529 GV->getInitializer()->isNullValue()) { 1530 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1531 if (GV->getInitializer()->getType() != SOVC->getType()) 1532 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1533 1534 // Optimize away any trapping uses of the loaded value. 1535 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI)) 1536 return true; 1537 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1538 Type *MallocType = getMallocAllocatedType(CI, TLI); 1539 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1540 Ordering, DL, TLI)) 1541 return true; 1542 } 1543 } 1544 1545 return false; 1546} 1547 1548/// At this point, we have learned that the only two values ever stored into GV 1549/// are its initializer and OtherVal. See if we can shrink the global into a 1550/// boolean and select between the two values whenever it is used. This exposes 1551/// the values to other scalar optimizations. 1552static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1553 Type *GVElType = GV->getValueType(); 1554 1555 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1556 // an FP value, pointer or vector, don't do this optimization because a select 1557 // between them is very expensive and unlikely to lead to later 1558 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1559 // where v1 and v2 both require constant pool loads, a big loss. 1560 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1561 GVElType->isFloatingPointTy() || 1562 GVElType->isPointerTy() || GVElType->isVectorTy()) 1563 return false; 1564 1565 // Walk the use list of the global seeing if all the uses are load or store. 1566 // If there is anything else, bail out. 1567 for (User *U : GV->users()) 1568 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1569 return false; 1570 1571 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1572 1573 // Create the new global, initializing it to false. 1574 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1575 false, 1576 GlobalValue::InternalLinkage, 1577 ConstantInt::getFalse(GV->getContext()), 1578 GV->getName()+".b", 1579 GV->getThreadLocalMode(), 1580 GV->getType()->getAddressSpace()); 1581 NewGV->copyAttributesFrom(GV); 1582 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1583 1584 Constant *InitVal = GV->getInitializer(); 1585 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1586 "No reason to shrink to bool!"); 1587 1588 // If initialized to zero and storing one into the global, we can use a cast 1589 // instead of a select to synthesize the desired value. 1590 bool IsOneZero = false; 1591 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1592 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1593 1594 while (!GV->use_empty()) { 1595 Instruction *UI = cast<Instruction>(GV->user_back()); 1596 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1597 // Change the store into a boolean store. 1598 bool StoringOther = SI->getOperand(0) == OtherVal; 1599 // Only do this if we weren't storing a loaded value. 1600 Value *StoreVal; 1601 if (StoringOther || SI->getOperand(0) == InitVal) { 1602 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1603 StoringOther); 1604 } else { 1605 // Otherwise, we are storing a previously loaded copy. To do this, 1606 // change the copy from copying the original value to just copying the 1607 // bool. 1608 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1609 1610 // If we've already replaced the input, StoredVal will be a cast or 1611 // select instruction. If not, it will be a load of the original 1612 // global. 1613 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1614 assert(LI->getOperand(0) == GV && "Not a copy!"); 1615 // Insert a new load, to preserve the saved value. 1616 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1617 LI->getOrdering(), LI->getSynchScope(), LI); 1618 } else { 1619 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1620 "This is not a form that we understand!"); 1621 StoreVal = StoredVal->getOperand(0); 1622 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1623 } 1624 } 1625 new StoreInst(StoreVal, NewGV, false, 0, 1626 SI->getOrdering(), SI->getSynchScope(), SI); 1627 } else { 1628 // Change the load into a load of bool then a select. 1629 LoadInst *LI = cast<LoadInst>(UI); 1630 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1631 LI->getOrdering(), LI->getSynchScope(), LI); 1632 Value *NSI; 1633 if (IsOneZero) 1634 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1635 else 1636 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1637 NSI->takeName(LI); 1638 LI->replaceAllUsesWith(NSI); 1639 } 1640 UI->eraseFromParent(); 1641 } 1642 1643 // Retain the name of the old global variable. People who are debugging their 1644 // programs may expect these variables to be named the same. 1645 NewGV->takeName(GV); 1646 GV->eraseFromParent(); 1647 return true; 1648} 1649 1650static bool deleteIfDead(GlobalValue &GV, 1651 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 1652 GV.removeDeadConstantUsers(); 1653 1654 if (!GV.isDiscardableIfUnused()) 1655 return false; 1656 1657 if (const Comdat *C = GV.getComdat()) 1658 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1659 return false; 1660 1661 bool Dead; 1662 if (auto *F = dyn_cast<Function>(&GV)) 1663 Dead = F->isDefTriviallyDead(); 1664 else 1665 Dead = GV.use_empty(); 1666 if (!Dead) 1667 return false; 1668 1669 DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1670 GV.eraseFromParent(); 1671 ++NumDeleted; 1672 return true; 1673} 1674 1675static bool isPointerValueDeadOnEntryToFunction( 1676 const Function *F, GlobalValue *GV, 1677 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1678 // Find all uses of GV. We expect them all to be in F, and if we can't 1679 // identify any of the uses we bail out. 1680 // 1681 // On each of these uses, identify if the memory that GV points to is 1682 // used/required/live at the start of the function. If it is not, for example 1683 // if the first thing the function does is store to the GV, the GV can 1684 // possibly be demoted. 1685 // 1686 // We don't do an exhaustive search for memory operations - simply look 1687 // through bitcasts as they're quite common and benign. 1688 const DataLayout &DL = GV->getParent()->getDataLayout(); 1689 SmallVector<LoadInst *, 4> Loads; 1690 SmallVector<StoreInst *, 4> Stores; 1691 for (auto *U : GV->users()) { 1692 if (Operator::getOpcode(U) == Instruction::BitCast) { 1693 for (auto *UU : U->users()) { 1694 if (auto *LI = dyn_cast<LoadInst>(UU)) 1695 Loads.push_back(LI); 1696 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1697 Stores.push_back(SI); 1698 else 1699 return false; 1700 } 1701 continue; 1702 } 1703 1704 Instruction *I = dyn_cast<Instruction>(U); 1705 if (!I) 1706 return false; 1707 assert(I->getParent()->getParent() == F); 1708 1709 if (auto *LI = dyn_cast<LoadInst>(I)) 1710 Loads.push_back(LI); 1711 else if (auto *SI = dyn_cast<StoreInst>(I)) 1712 Stores.push_back(SI); 1713 else 1714 return false; 1715 } 1716 1717 // We have identified all uses of GV into loads and stores. Now check if all 1718 // of them are known not to depend on the value of the global at the function 1719 // entry point. We do this by ensuring that every load is dominated by at 1720 // least one store. 1721 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1722 1723 // The below check is quadratic. Check we're not going to do too many tests. 1724 // FIXME: Even though this will always have worst-case quadratic time, we 1725 // could put effort into minimizing the average time by putting stores that 1726 // have been shown to dominate at least one load at the beginning of the 1727 // Stores array, making subsequent dominance checks more likely to succeed 1728 // early. 1729 // 1730 // The threshold here is fairly large because global->local demotion is a 1731 // very powerful optimization should it fire. 1732 const unsigned Threshold = 100; 1733 if (Loads.size() * Stores.size() > Threshold) 1734 return false; 1735 1736 for (auto *L : Loads) { 1737 auto *LTy = L->getType(); 1738 if (!std::any_of(Stores.begin(), Stores.end(), [&](StoreInst *S) { 1739 auto *STy = S->getValueOperand()->getType(); 1740 // The load is only dominated by the store if DomTree says so 1741 // and the number of bits loaded in L is less than or equal to 1742 // the number of bits stored in S. 1743 return DT.dominates(S, L) && 1744 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy); 1745 })) 1746 return false; 1747 } 1748 // All loads have known dependences inside F, so the global can be localized. 1749 return true; 1750} 1751 1752/// C may have non-instruction users. Can all of those users be turned into 1753/// instructions? 1754static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1755 // We don't do this exhaustively. The most common pattern that we really need 1756 // to care about is a constant GEP or constant bitcast - so just looking 1757 // through one single ConstantExpr. 1758 // 1759 // The set of constants that this function returns true for must be able to be 1760 // handled by makeAllConstantUsesInstructions. 1761 for (auto *U : C->users()) { 1762 if (isa<Instruction>(U)) 1763 continue; 1764 if (!isa<ConstantExpr>(U)) 1765 // Non instruction, non-constantexpr user; cannot convert this. 1766 return false; 1767 for (auto *UU : U->users()) 1768 if (!isa<Instruction>(UU)) 1769 // A constantexpr used by another constant. We don't try and recurse any 1770 // further but just bail out at this point. 1771 return false; 1772 } 1773 1774 return true; 1775} 1776 1777/// C may have non-instruction users, and 1778/// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1779/// non-instruction users to instructions. 1780static void makeAllConstantUsesInstructions(Constant *C) { 1781 SmallVector<ConstantExpr*,4> Users; 1782 for (auto *U : C->users()) { 1783 if (isa<ConstantExpr>(U)) 1784 Users.push_back(cast<ConstantExpr>(U)); 1785 else 1786 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1787 // should not have returned true for C. 1788 assert( 1789 isa<Instruction>(U) && 1790 "Can't transform non-constantexpr non-instruction to instruction!"); 1791 } 1792 1793 SmallVector<Value*,4> UUsers; 1794 for (auto *U : Users) { 1795 UUsers.clear(); 1796 for (auto *UU : U->users()) 1797 UUsers.push_back(UU); 1798 for (auto *UU : UUsers) { 1799 Instruction *UI = cast<Instruction>(UU); 1800 Instruction *NewU = U->getAsInstruction(); 1801 NewU->insertBefore(UI); 1802 UI->replaceUsesOfWith(U, NewU); 1803 } 1804 U->dropAllReferences(); 1805 } 1806} 1807 1808/// Analyze the specified global variable and optimize 1809/// it if possible. If we make a change, return true. 1810static bool processInternalGlobal( 1811 GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI, 1812 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1813 auto &DL = GV->getParent()->getDataLayout(); 1814 // If this is a first class global and has only one accessing function and 1815 // this function is non-recursive, we replace the global with a local alloca 1816 // in this function. 1817 // 1818 // NOTE: It doesn't make sense to promote non-single-value types since we 1819 // are just replacing static memory to stack memory. 1820 // 1821 // If the global is in different address space, don't bring it to stack. 1822 if (!GS.HasMultipleAccessingFunctions && 1823 GS.AccessingFunction && 1824 GV->getValueType()->isSingleValueType() && 1825 GV->getType()->getAddressSpace() == 0 && 1826 !GV->isExternallyInitialized() && 1827 allNonInstructionUsersCanBeMadeInstructions(GV) && 1828 GS.AccessingFunction->doesNotRecurse() && 1829 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1830 LookupDomTree)) { 1831 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1832 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1833 ->getEntryBlock().begin()); 1834 Type *ElemTy = GV->getValueType(); 1835 // FIXME: Pass Global's alignment when globals have alignment 1836 AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr, 1837 GV->getName(), &FirstI); 1838 if (!isa<UndefValue>(GV->getInitializer())) 1839 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1840 1841 makeAllConstantUsesInstructions(GV); 1842 1843 GV->replaceAllUsesWith(Alloca); 1844 GV->eraseFromParent(); 1845 ++NumLocalized; 1846 return true; 1847 } 1848 1849 // If the global is never loaded (but may be stored to), it is dead. 1850 // Delete it now. 1851 if (!GS.IsLoaded) { 1852 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1853 1854 bool Changed; 1855 if (isLeakCheckerRoot(GV)) { 1856 // Delete any constant stores to the global. 1857 Changed = CleanupPointerRootUsers(GV, TLI); 1858 } else { 1859 // Delete any stores we can find to the global. We may not be able to 1860 // make it completely dead though. 1861 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1862 } 1863 1864 // If the global is dead now, delete it. 1865 if (GV->use_empty()) { 1866 GV->eraseFromParent(); 1867 ++NumDeleted; 1868 Changed = true; 1869 } 1870 return Changed; 1871 1872 } 1873 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1874 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1875 GV->setConstant(true); 1876 1877 // Clean up any obviously simplifiable users now. 1878 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1879 1880 // If the global is dead now, just nuke it. 1881 if (GV->use_empty()) { 1882 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1883 << "all users and delete global!\n"); 1884 GV->eraseFromParent(); 1885 ++NumDeleted; 1886 return true; 1887 } 1888 1889 // Fall through to the next check; see if we can optimize further. 1890 ++NumMarked; 1891 } 1892 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1893 const DataLayout &DL = GV->getParent()->getDataLayout(); 1894 if (SRAGlobal(GV, DL)) 1895 return true; 1896 } 1897 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 1898 // If the initial value for the global was an undef value, and if only 1899 // one other value was stored into it, we can just change the 1900 // initializer to be the stored value, then delete all stores to the 1901 // global. This allows us to mark it constant. 1902 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1903 if (isa<UndefValue>(GV->getInitializer())) { 1904 // Change the initial value here. 1905 GV->setInitializer(SOVConstant); 1906 1907 // Clean up any obviously simplifiable users now. 1908 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1909 1910 if (GV->use_empty()) { 1911 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1912 << "simplify all users and delete global!\n"); 1913 GV->eraseFromParent(); 1914 ++NumDeleted; 1915 } 1916 ++NumSubstitute; 1917 return true; 1918 } 1919 1920 // Try to optimize globals based on the knowledge that only one value 1921 // (besides its initializer) is ever stored to the global. 1922 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI)) 1923 return true; 1924 1925 // Otherwise, if the global was not a boolean, we can shrink it to be a 1926 // boolean. 1927 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 1928 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1929 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1930 ++NumShrunkToBool; 1931 return true; 1932 } 1933 } 1934 } 1935 } 1936 1937 return false; 1938} 1939 1940/// Analyze the specified global variable and optimize it if possible. If we 1941/// make a change, return true. 1942static bool 1943processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI, 1944 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1945 if (GV.getName().startswith("llvm.")) 1946 return false; 1947 1948 GlobalStatus GS; 1949 1950 if (GlobalStatus::analyzeGlobal(&GV, GS)) 1951 return false; 1952 1953 bool Changed = false; 1954 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 1955 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 1956 : GlobalValue::UnnamedAddr::Local; 1957 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 1958 GV.setUnnamedAddr(NewUnnamedAddr); 1959 NumUnnamed++; 1960 Changed = true; 1961 } 1962 } 1963 1964 // Do more involved optimizations if the global is internal. 1965 if (!GV.hasLocalLinkage()) 1966 return Changed; 1967 1968 auto *GVar = dyn_cast<GlobalVariable>(&GV); 1969 if (!GVar) 1970 return Changed; 1971 1972 if (GVar->isConstant() || !GVar->hasInitializer()) 1973 return Changed; 1974 1975 return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed; 1976} 1977 1978/// Walk all of the direct calls of the specified function, changing them to 1979/// FastCC. 1980static void ChangeCalleesToFastCall(Function *F) { 1981 for (User *U : F->users()) { 1982 if (isa<BlockAddress>(U)) 1983 continue; 1984 CallSite CS(cast<Instruction>(U)); 1985 CS.setCallingConv(CallingConv::Fast); 1986 } 1987} 1988 1989static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) { 1990 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 1991 unsigned Index = Attrs.getSlotIndex(i); 1992 if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest)) 1993 continue; 1994 1995 // There can be only one. 1996 return Attrs.removeAttribute(C, Index, Attribute::Nest); 1997 } 1998 1999 return Attrs; 2000} 2001 2002static void RemoveNestAttribute(Function *F) { 2003 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 2004 for (User *U : F->users()) { 2005 if (isa<BlockAddress>(U)) 2006 continue; 2007 CallSite CS(cast<Instruction>(U)); 2008 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes())); 2009 } 2010} 2011 2012/// Return true if this is a calling convention that we'd like to change. The 2013/// idea here is that we don't want to mess with the convention if the user 2014/// explicitly requested something with performance implications like coldcc, 2015/// GHC, or anyregcc. 2016static bool isProfitableToMakeFastCC(Function *F) { 2017 CallingConv::ID CC = F->getCallingConv(); 2018 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 2019 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall; 2020} 2021 2022static bool 2023OptimizeFunctions(Module &M, TargetLibraryInfo *TLI, 2024 function_ref<DominatorTree &(Function &)> LookupDomTree, 2025 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2026 bool Changed = false; 2027 // Optimize functions. 2028 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 2029 Function *F = &*FI++; 2030 // Functions without names cannot be referenced outside this module. 2031 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 2032 F->setLinkage(GlobalValue::InternalLinkage); 2033 2034 if (deleteIfDead(*F, NotDiscardableComdats)) { 2035 Changed = true; 2036 continue; 2037 } 2038 2039 Changed |= processGlobal(*F, TLI, LookupDomTree); 2040 2041 if (!F->hasLocalLinkage()) 2042 continue; 2043 if (isProfitableToMakeFastCC(F) && !F->isVarArg() && 2044 !F->hasAddressTaken()) { 2045 // If this function has a calling convention worth changing, is not a 2046 // varargs function, and is only called directly, promote it to use the 2047 // Fast calling convention. 2048 F->setCallingConv(CallingConv::Fast); 2049 ChangeCalleesToFastCall(F); 2050 ++NumFastCallFns; 2051 Changed = true; 2052 } 2053 2054 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 2055 !F->hasAddressTaken()) { 2056 // The function is not used by a trampoline intrinsic, so it is safe 2057 // to remove the 'nest' attribute. 2058 RemoveNestAttribute(F); 2059 ++NumNestRemoved; 2060 Changed = true; 2061 } 2062 } 2063 return Changed; 2064} 2065 2066static bool 2067OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI, 2068 function_ref<DominatorTree &(Function &)> LookupDomTree, 2069 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2070 bool Changed = false; 2071 2072 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2073 GVI != E; ) { 2074 GlobalVariable *GV = &*GVI++; 2075 // Global variables without names cannot be referenced outside this module. 2076 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 2077 GV->setLinkage(GlobalValue::InternalLinkage); 2078 // Simplify the initializer. 2079 if (GV->hasInitializer()) 2080 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) { 2081 auto &DL = M.getDataLayout(); 2082 Constant *New = ConstantFoldConstantExpression(CE, DL, TLI); 2083 if (New && New != CE) 2084 GV->setInitializer(New); 2085 } 2086 2087 if (deleteIfDead(*GV, NotDiscardableComdats)) { 2088 Changed = true; 2089 continue; 2090 } 2091 2092 Changed |= processGlobal(*GV, TLI, LookupDomTree); 2093 } 2094 return Changed; 2095} 2096 2097/// Evaluate a piece of a constantexpr store into a global initializer. This 2098/// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2099/// GEP operands of Addr [0, OpNo) have been stepped into. 2100static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2101 ConstantExpr *Addr, unsigned OpNo) { 2102 // Base case of the recursion. 2103 if (OpNo == Addr->getNumOperands()) { 2104 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2105 return Val; 2106 } 2107 2108 SmallVector<Constant*, 32> Elts; 2109 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2110 // Break up the constant into its elements. 2111 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2112 Elts.push_back(Init->getAggregateElement(i)); 2113 2114 // Replace the element that we are supposed to. 2115 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2116 unsigned Idx = CU->getZExtValue(); 2117 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2118 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2119 2120 // Return the modified struct. 2121 return ConstantStruct::get(STy, Elts); 2122 } 2123 2124 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2125 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2126 2127 uint64_t NumElts; 2128 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy)) 2129 NumElts = ATy->getNumElements(); 2130 else 2131 NumElts = InitTy->getVectorNumElements(); 2132 2133 // Break up the array into elements. 2134 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2135 Elts.push_back(Init->getAggregateElement(i)); 2136 2137 assert(CI->getZExtValue() < NumElts); 2138 Elts[CI->getZExtValue()] = 2139 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2140 2141 if (Init->getType()->isArrayTy()) 2142 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2143 return ConstantVector::get(Elts); 2144} 2145 2146/// We have decided that Addr (which satisfies the predicate 2147/// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2148static void CommitValueTo(Constant *Val, Constant *Addr) { 2149 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2150 assert(GV->hasInitializer()); 2151 GV->setInitializer(Val); 2152 return; 2153 } 2154 2155 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2156 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2157 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2158} 2159 2160/// Evaluate static constructors in the function, if we can. Return true if we 2161/// can, false otherwise. 2162static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2163 TargetLibraryInfo *TLI) { 2164 // Call the function. 2165 Evaluator Eval(DL, TLI); 2166 Constant *RetValDummy; 2167 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2168 SmallVector<Constant*, 0>()); 2169 2170 if (EvalSuccess) { 2171 ++NumCtorsEvaluated; 2172 2173 // We succeeded at evaluation: commit the result. 2174 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2175 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2176 << " stores.\n"); 2177 for (const auto &I : Eval.getMutatedMemory()) 2178 CommitValueTo(I.second, I.first); 2179 for (GlobalVariable *GV : Eval.getInvariants()) 2180 GV->setConstant(true); 2181 } 2182 2183 return EvalSuccess; 2184} 2185 2186static int compareNames(Constant *const *A, Constant *const *B) { 2187 Value *AStripped = (*A)->stripPointerCastsNoFollowAliases(); 2188 Value *BStripped = (*B)->stripPointerCastsNoFollowAliases(); 2189 return AStripped->getName().compare(BStripped->getName()); 2190} 2191 2192static void setUsedInitializer(GlobalVariable &V, 2193 const SmallPtrSet<GlobalValue *, 8> &Init) { 2194 if (Init.empty()) { 2195 V.eraseFromParent(); 2196 return; 2197 } 2198 2199 // Type of pointer to the array of pointers. 2200 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2201 2202 SmallVector<llvm::Constant *, 8> UsedArray; 2203 for (GlobalValue *GV : Init) { 2204 Constant *Cast 2205 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2206 UsedArray.push_back(Cast); 2207 } 2208 // Sort to get deterministic order. 2209 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2210 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2211 2212 Module *M = V.getParent(); 2213 V.removeFromParent(); 2214 GlobalVariable *NV = 2215 new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage, 2216 llvm::ConstantArray::get(ATy, UsedArray), ""); 2217 NV->takeName(&V); 2218 NV->setSection("llvm.metadata"); 2219 delete &V; 2220} 2221 2222namespace { 2223/// An easy to access representation of llvm.used and llvm.compiler.used. 2224class LLVMUsed { 2225 SmallPtrSet<GlobalValue *, 8> Used; 2226 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2227 GlobalVariable *UsedV; 2228 GlobalVariable *CompilerUsedV; 2229 2230public: 2231 LLVMUsed(Module &M) { 2232 UsedV = collectUsedGlobalVariables(M, Used, false); 2233 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2234 } 2235 typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator; 2236 typedef iterator_range<iterator> used_iterator_range; 2237 iterator usedBegin() { return Used.begin(); } 2238 iterator usedEnd() { return Used.end(); } 2239 used_iterator_range used() { 2240 return used_iterator_range(usedBegin(), usedEnd()); 2241 } 2242 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2243 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2244 used_iterator_range compilerUsed() { 2245 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2246 } 2247 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2248 bool compilerUsedCount(GlobalValue *GV) const { 2249 return CompilerUsed.count(GV); 2250 } 2251 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2252 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2253 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2254 bool compilerUsedInsert(GlobalValue *GV) { 2255 return CompilerUsed.insert(GV).second; 2256 } 2257 2258 void syncVariablesAndSets() { 2259 if (UsedV) 2260 setUsedInitializer(*UsedV, Used); 2261 if (CompilerUsedV) 2262 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2263 } 2264}; 2265} 2266 2267static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2268 if (GA.use_empty()) // No use at all. 2269 return false; 2270 2271 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2272 "We should have removed the duplicated " 2273 "element from llvm.compiler.used"); 2274 if (!GA.hasOneUse()) 2275 // Strictly more than one use. So at least one is not in llvm.used and 2276 // llvm.compiler.used. 2277 return true; 2278 2279 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2280 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2281} 2282 2283static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2284 const LLVMUsed &U) { 2285 unsigned N = 2; 2286 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2287 "We should have removed the duplicated " 2288 "element from llvm.compiler.used"); 2289 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2290 ++N; 2291 return V.hasNUsesOrMore(N); 2292} 2293 2294static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2295 if (!GA.hasLocalLinkage()) 2296 return true; 2297 2298 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2299} 2300 2301static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2302 bool &RenameTarget) { 2303 RenameTarget = false; 2304 bool Ret = false; 2305 if (hasUseOtherThanLLVMUsed(GA, U)) 2306 Ret = true; 2307 2308 // If the alias is externally visible, we may still be able to simplify it. 2309 if (!mayHaveOtherReferences(GA, U)) 2310 return Ret; 2311 2312 // If the aliasee has internal linkage, give it the name and linkage 2313 // of the alias, and delete the alias. This turns: 2314 // define internal ... @f(...) 2315 // @a = alias ... @f 2316 // into: 2317 // define ... @a(...) 2318 Constant *Aliasee = GA.getAliasee(); 2319 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2320 if (!Target->hasLocalLinkage()) 2321 return Ret; 2322 2323 // Do not perform the transform if multiple aliases potentially target the 2324 // aliasee. This check also ensures that it is safe to replace the section 2325 // and other attributes of the aliasee with those of the alias. 2326 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2327 return Ret; 2328 2329 RenameTarget = true; 2330 return true; 2331} 2332 2333static bool 2334OptimizeGlobalAliases(Module &M, 2335 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2336 bool Changed = false; 2337 LLVMUsed Used(M); 2338 2339 for (GlobalValue *GV : Used.used()) 2340 Used.compilerUsedErase(GV); 2341 2342 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2343 I != E;) { 2344 GlobalAlias *J = &*I++; 2345 2346 // Aliases without names cannot be referenced outside this module. 2347 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2348 J->setLinkage(GlobalValue::InternalLinkage); 2349 2350 if (deleteIfDead(*J, NotDiscardableComdats)) { 2351 Changed = true; 2352 continue; 2353 } 2354 2355 // If the aliasee may change at link time, nothing can be done - bail out. 2356 if (J->isInterposable()) 2357 continue; 2358 2359 Constant *Aliasee = J->getAliasee(); 2360 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2361 // We can't trivially replace the alias with the aliasee if the aliasee is 2362 // non-trivial in some way. 2363 // TODO: Try to handle non-zero GEPs of local aliasees. 2364 if (!Target) 2365 continue; 2366 Target->removeDeadConstantUsers(); 2367 2368 // Make all users of the alias use the aliasee instead. 2369 bool RenameTarget; 2370 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2371 continue; 2372 2373 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2374 ++NumAliasesResolved; 2375 Changed = true; 2376 2377 if (RenameTarget) { 2378 // Give the aliasee the name, linkage and other attributes of the alias. 2379 Target->takeName(&*J); 2380 Target->setLinkage(J->getLinkage()); 2381 Target->setVisibility(J->getVisibility()); 2382 Target->setDLLStorageClass(J->getDLLStorageClass()); 2383 2384 if (Used.usedErase(&*J)) 2385 Used.usedInsert(Target); 2386 2387 if (Used.compilerUsedErase(&*J)) 2388 Used.compilerUsedInsert(Target); 2389 } else if (mayHaveOtherReferences(*J, Used)) 2390 continue; 2391 2392 // Delete the alias. 2393 M.getAliasList().erase(J); 2394 ++NumAliasesRemoved; 2395 Changed = true; 2396 } 2397 2398 Used.syncVariablesAndSets(); 2399 2400 return Changed; 2401} 2402 2403static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 2404 LibFunc::Func F = LibFunc::cxa_atexit; 2405 if (!TLI->has(F)) 2406 return nullptr; 2407 2408 Function *Fn = M.getFunction(TLI->getName(F)); 2409 if (!Fn) 2410 return nullptr; 2411 2412 // Make sure that the function has the correct prototype. 2413 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc::cxa_atexit) 2414 return nullptr; 2415 2416 return Fn; 2417} 2418 2419/// Returns whether the given function is an empty C++ destructor and can 2420/// therefore be eliminated. 2421/// Note that we assume that other optimization passes have already simplified 2422/// the code so we only look for a function with a single basic block, where 2423/// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 2424/// other side-effect free instructions. 2425static bool cxxDtorIsEmpty(const Function &Fn, 2426 SmallPtrSet<const Function *, 8> &CalledFunctions) { 2427 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2428 // nounwind, but that doesn't seem worth doing. 2429 if (Fn.isDeclaration()) 2430 return false; 2431 2432 if (++Fn.begin() != Fn.end()) 2433 return false; 2434 2435 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 2436 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 2437 I != E; ++I) { 2438 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2439 // Ignore debug intrinsics. 2440 if (isa<DbgInfoIntrinsic>(CI)) 2441 continue; 2442 2443 const Function *CalledFn = CI->getCalledFunction(); 2444 2445 if (!CalledFn) 2446 return false; 2447 2448 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 2449 2450 // Don't treat recursive functions as empty. 2451 if (!NewCalledFunctions.insert(CalledFn).second) 2452 return false; 2453 2454 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 2455 return false; 2456 } else if (isa<ReturnInst>(*I)) 2457 return true; // We're done. 2458 else if (I->mayHaveSideEffects()) 2459 return false; // Destructor with side effects, bail. 2460 } 2461 2462 return false; 2463} 2464 2465static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2466 /// Itanium C++ ABI p3.3.5: 2467 /// 2468 /// After constructing a global (or local static) object, that will require 2469 /// destruction on exit, a termination function is registered as follows: 2470 /// 2471 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2472 /// 2473 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2474 /// call f(p) when DSO d is unloaded, before all such termination calls 2475 /// registered before this one. It returns zero if registration is 2476 /// successful, nonzero on failure. 2477 2478 // This pass will look for calls to __cxa_atexit where the function is trivial 2479 // and remove them. 2480 bool Changed = false; 2481 2482 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2483 I != E;) { 2484 // We're only interested in calls. Theoretically, we could handle invoke 2485 // instructions as well, but neither llvm-gcc nor clang generate invokes 2486 // to __cxa_atexit. 2487 CallInst *CI = dyn_cast<CallInst>(*I++); 2488 if (!CI) 2489 continue; 2490 2491 Function *DtorFn = 2492 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2493 if (!DtorFn) 2494 continue; 2495 2496 SmallPtrSet<const Function *, 8> CalledFunctions; 2497 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 2498 continue; 2499 2500 // Just remove the call. 2501 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2502 CI->eraseFromParent(); 2503 2504 ++NumCXXDtorsRemoved; 2505 2506 Changed |= true; 2507 } 2508 2509 return Changed; 2510} 2511 2512static bool optimizeGlobalsInModule( 2513 Module &M, const DataLayout &DL, TargetLibraryInfo *TLI, 2514 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2515 SmallSet<const Comdat *, 8> NotDiscardableComdats; 2516 bool Changed = false; 2517 bool LocalChange = true; 2518 while (LocalChange) { 2519 LocalChange = false; 2520 2521 NotDiscardableComdats.clear(); 2522 for (const GlobalVariable &GV : M.globals()) 2523 if (const Comdat *C = GV.getComdat()) 2524 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2525 NotDiscardableComdats.insert(C); 2526 for (Function &F : M) 2527 if (const Comdat *C = F.getComdat()) 2528 if (!F.isDefTriviallyDead()) 2529 NotDiscardableComdats.insert(C); 2530 for (GlobalAlias &GA : M.aliases()) 2531 if (const Comdat *C = GA.getComdat()) 2532 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2533 NotDiscardableComdats.insert(C); 2534 2535 // Delete functions that are trivially dead, ccc -> fastcc 2536 LocalChange |= 2537 OptimizeFunctions(M, TLI, LookupDomTree, NotDiscardableComdats); 2538 2539 // Optimize global_ctors list. 2540 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2541 return EvaluateStaticConstructor(F, DL, TLI); 2542 }); 2543 2544 // Optimize non-address-taken globals. 2545 LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree, 2546 NotDiscardableComdats); 2547 2548 // Resolve aliases, when possible. 2549 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2550 2551 // Try to remove trivial global destructors if they are not removed 2552 // already. 2553 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 2554 if (CXAAtExitFn) 2555 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2556 2557 Changed |= LocalChange; 2558 } 2559 2560 // TODO: Move all global ctors functions to the end of the module for code 2561 // layout. 2562 2563 return Changed; 2564} 2565 2566PreservedAnalyses GlobalOptPass::run(Module &M, AnalysisManager<Module> &AM) { 2567 auto &DL = M.getDataLayout(); 2568 auto &TLI = AM.getResult<TargetLibraryAnalysis>(M); 2569 auto &FAM = 2570 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2571 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2572 return FAM.getResult<DominatorTreeAnalysis>(F); 2573 }; 2574 if (!optimizeGlobalsInModule(M, DL, &TLI, LookupDomTree)) 2575 return PreservedAnalyses::all(); 2576 return PreservedAnalyses::none(); 2577} 2578 2579namespace { 2580struct GlobalOptLegacyPass : public ModulePass { 2581 static char ID; // Pass identification, replacement for typeid 2582 GlobalOptLegacyPass() : ModulePass(ID) { 2583 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2584 } 2585 2586 bool runOnModule(Module &M) override { 2587 if (skipModule(M)) 2588 return false; 2589 2590 auto &DL = M.getDataLayout(); 2591 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2592 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2593 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2594 }; 2595 return optimizeGlobalsInModule(M, DL, TLI, LookupDomTree); 2596 } 2597 2598 void getAnalysisUsage(AnalysisUsage &AU) const override { 2599 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2600 AU.addRequired<DominatorTreeWrapperPass>(); 2601 } 2602}; 2603} 2604 2605char GlobalOptLegacyPass::ID = 0; 2606INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 2607 "Global Variable Optimizer", false, false) 2608INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2609INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2610INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 2611 "Global Variable Optimizer", false, false) 2612 2613ModulePass *llvm::createGlobalOptimizerPass() { 2614 return new GlobalOptLegacyPass(); 2615} 2616