1//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SampleProfileLoader transformation. This pass 11// reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12// http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13// profile information in the given profile. 14// 15// This pass generates branch weight annotations on the IR: 16// 17// - prof: Represents branch weights. This annotation is added to branches 18// to indicate the weights of each edge coming out of the branch. 19// The weight of each edge is the weight of the target block for 20// that edge. The weight of a block B is computed as the maximum 21// number of samples found in B. 22// 23//===----------------------------------------------------------------------===// 24 25#include "llvm/Transforms/SampleProfile.h" 26#include "llvm/ADT/DenseMap.h" 27#include "llvm/ADT/SmallPtrSet.h" 28#include "llvm/ADT/SmallSet.h" 29#include "llvm/ADT/StringRef.h" 30#include "llvm/Analysis/AssumptionCache.h" 31#include "llvm/Analysis/LoopInfo.h" 32#include "llvm/Analysis/PostDominators.h" 33#include "llvm/IR/Constants.h" 34#include "llvm/IR/DebugInfo.h" 35#include "llvm/IR/DiagnosticInfo.h" 36#include "llvm/IR/Dominators.h" 37#include "llvm/IR/Function.h" 38#include "llvm/IR/InstIterator.h" 39#include "llvm/IR/Instructions.h" 40#include "llvm/IR/IntrinsicInst.h" 41#include "llvm/IR/LLVMContext.h" 42#include "llvm/IR/MDBuilder.h" 43#include "llvm/IR/Metadata.h" 44#include "llvm/IR/Module.h" 45#include "llvm/Pass.h" 46#include "llvm/ProfileData/SampleProfReader.h" 47#include "llvm/Support/CommandLine.h" 48#include "llvm/Support/Debug.h" 49#include "llvm/Support/ErrorOr.h" 50#include "llvm/Support/Format.h" 51#include "llvm/Support/raw_ostream.h" 52#include "llvm/Transforms/IPO.h" 53#include "llvm/Transforms/Utils/Cloning.h" 54#include <cctype> 55 56using namespace llvm; 57using namespace sampleprof; 58 59#define DEBUG_TYPE "sample-profile" 60 61// Command line option to specify the file to read samples from. This is 62// mainly used for debugging. 63static cl::opt<std::string> SampleProfileFile( 64 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 65 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 66static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 67 "sample-profile-max-propagate-iterations", cl::init(100), 68 cl::desc("Maximum number of iterations to go through when propagating " 69 "sample block/edge weights through the CFG.")); 70static cl::opt<unsigned> SampleProfileRecordCoverage( 71 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 72 cl::desc("Emit a warning if less than N% of records in the input profile " 73 "are matched to the IR.")); 74static cl::opt<unsigned> SampleProfileSampleCoverage( 75 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 76 cl::desc("Emit a warning if less than N% of samples in the input profile " 77 "are matched to the IR.")); 78static cl::opt<double> SampleProfileHotThreshold( 79 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 80 cl::desc("Inlined functions that account for more than N% of all samples " 81 "collected in the parent function, will be inlined again.")); 82 83namespace { 84typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 85typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 86typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 87typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 88typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 89 BlockEdgeMap; 90 91/// \brief Sample profile pass. 92/// 93/// This pass reads profile data from the file specified by 94/// -sample-profile-file and annotates every affected function with the 95/// profile information found in that file. 96class SampleProfileLoader { 97public: 98 SampleProfileLoader(StringRef Name = SampleProfileFile) 99 : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(), 100 Samples(nullptr), Filename(Name), ProfileIsValid(false), 101 TotalCollectedSamples(0) {} 102 103 bool doInitialization(Module &M); 104 bool runOnModule(Module &M); 105 void setACT(AssumptionCacheTracker *A) { ACT = A; } 106 107 void dump() { Reader->dump(); } 108 109protected: 110 bool runOnFunction(Function &F); 111 unsigned getFunctionLoc(Function &F); 112 bool emitAnnotations(Function &F); 113 ErrorOr<uint64_t> getInstWeight(const Instruction &I) const; 114 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const; 115 const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const; 116 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 117 bool inlineHotFunctions(Function &F); 118 void printEdgeWeight(raw_ostream &OS, Edge E); 119 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 120 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 121 bool computeBlockWeights(Function &F); 122 void findEquivalenceClasses(Function &F); 123 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 124 DominatorTreeBase<BasicBlock> *DomTree); 125 void propagateWeights(Function &F); 126 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 127 void buildEdges(Function &F); 128 bool propagateThroughEdges(Function &F); 129 void computeDominanceAndLoopInfo(Function &F); 130 unsigned getOffset(unsigned L, unsigned H) const; 131 void clearFunctionData(); 132 133 /// \brief Map basic blocks to their computed weights. 134 /// 135 /// The weight of a basic block is defined to be the maximum 136 /// of all the instruction weights in that block. 137 BlockWeightMap BlockWeights; 138 139 /// \brief Map edges to their computed weights. 140 /// 141 /// Edge weights are computed by propagating basic block weights in 142 /// SampleProfile::propagateWeights. 143 EdgeWeightMap EdgeWeights; 144 145 /// \brief Set of visited blocks during propagation. 146 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 147 148 /// \brief Set of visited edges during propagation. 149 SmallSet<Edge, 32> VisitedEdges; 150 151 /// \brief Equivalence classes for block weights. 152 /// 153 /// Two blocks BB1 and BB2 are in the same equivalence class if they 154 /// dominate and post-dominate each other, and they are in the same loop 155 /// nest. When this happens, the two blocks are guaranteed to execute 156 /// the same number of times. 157 EquivalenceClassMap EquivalenceClass; 158 159 /// \brief Dominance, post-dominance and loop information. 160 std::unique_ptr<DominatorTree> DT; 161 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT; 162 std::unique_ptr<LoopInfo> LI; 163 164 AssumptionCacheTracker *ACT; 165 166 /// \brief Predecessors for each basic block in the CFG. 167 BlockEdgeMap Predecessors; 168 169 /// \brief Successors for each basic block in the CFG. 170 BlockEdgeMap Successors; 171 172 /// \brief Profile reader object. 173 std::unique_ptr<SampleProfileReader> Reader; 174 175 /// \brief Samples collected for the body of this function. 176 FunctionSamples *Samples; 177 178 /// \brief Name of the profile file to load. 179 StringRef Filename; 180 181 /// \brief Flag indicating whether the profile input loaded successfully. 182 bool ProfileIsValid; 183 184 /// \brief Total number of samples collected in this profile. 185 /// 186 /// This is the sum of all the samples collected in all the functions executed 187 /// at runtime. 188 uint64_t TotalCollectedSamples; 189}; 190 191class SampleProfileLoaderLegacyPass : public ModulePass { 192public: 193 // Class identification, replacement for typeinfo 194 static char ID; 195 196 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile) 197 : ModulePass(ID), SampleLoader(Name) { 198 initializeSampleProfileLoaderLegacyPassPass( 199 *PassRegistry::getPassRegistry()); 200 } 201 202 void dump() { SampleLoader.dump(); } 203 204 bool doInitialization(Module &M) override { 205 return SampleLoader.doInitialization(M); 206 } 207 const char *getPassName() const override { return "Sample profile pass"; } 208 bool runOnModule(Module &M) override; 209 210 void getAnalysisUsage(AnalysisUsage &AU) const override { 211 AU.addRequired<AssumptionCacheTracker>(); 212 } 213private: 214 SampleProfileLoader SampleLoader; 215}; 216 217class SampleCoverageTracker { 218public: 219 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {} 220 221 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 222 uint32_t Discriminator, uint64_t Samples); 223 unsigned computeCoverage(unsigned Used, unsigned Total) const; 224 unsigned countUsedRecords(const FunctionSamples *FS) const; 225 unsigned countBodyRecords(const FunctionSamples *FS) const; 226 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 227 uint64_t countBodySamples(const FunctionSamples *FS) const; 228 void clear() { 229 SampleCoverage.clear(); 230 TotalUsedSamples = 0; 231 } 232 233private: 234 typedef std::map<LineLocation, unsigned> BodySampleCoverageMap; 235 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 236 FunctionSamplesCoverageMap; 237 238 /// Coverage map for sampling records. 239 /// 240 /// This map keeps a record of sampling records that have been matched to 241 /// an IR instruction. This is used to detect some form of staleness in 242 /// profiles (see flag -sample-profile-check-coverage). 243 /// 244 /// Each entry in the map corresponds to a FunctionSamples instance. This is 245 /// another map that counts how many times the sample record at the 246 /// given location has been used. 247 FunctionSamplesCoverageMap SampleCoverage; 248 249 /// Number of samples used from the profile. 250 /// 251 /// When a sampling record is used for the first time, the samples from 252 /// that record are added to this accumulator. Coverage is later computed 253 /// based on the total number of samples available in this function and 254 /// its callsites. 255 /// 256 /// Note that this accumulator tracks samples used from a single function 257 /// and all the inlined callsites. Strictly, we should have a map of counters 258 /// keyed by FunctionSamples pointers, but these stats are cleared after 259 /// every function, so we just need to keep a single counter. 260 uint64_t TotalUsedSamples; 261}; 262 263SampleCoverageTracker CoverageTracker; 264 265/// Return true if the given callsite is hot wrt to its caller. 266/// 267/// Functions that were inlined in the original binary will be represented 268/// in the inline stack in the sample profile. If the profile shows that 269/// the original inline decision was "good" (i.e., the callsite is executed 270/// frequently), then we will recreate the inline decision and apply the 271/// profile from the inlined callsite. 272/// 273/// To decide whether an inlined callsite is hot, we compute the fraction 274/// of samples used by the callsite with respect to the total number of samples 275/// collected in the caller. 276/// 277/// If that fraction is larger than the default given by 278/// SampleProfileHotThreshold, the callsite will be inlined again. 279bool callsiteIsHot(const FunctionSamples *CallerFS, 280 const FunctionSamples *CallsiteFS) { 281 if (!CallsiteFS) 282 return false; // The callsite was not inlined in the original binary. 283 284 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 285 if (ParentTotalSamples == 0) 286 return false; // Avoid division by zero. 287 288 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 289 if (CallsiteTotalSamples == 0) 290 return false; // Callsite is trivially cold. 291 292 double PercentSamples = 293 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 294 return PercentSamples >= SampleProfileHotThreshold; 295} 296} 297 298/// Mark as used the sample record for the given function samples at 299/// (LineOffset, Discriminator). 300/// 301/// \returns true if this is the first time we mark the given record. 302bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 303 uint32_t LineOffset, 304 uint32_t Discriminator, 305 uint64_t Samples) { 306 LineLocation Loc(LineOffset, Discriminator); 307 unsigned &Count = SampleCoverage[FS][Loc]; 308 bool FirstTime = (++Count == 1); 309 if (FirstTime) 310 TotalUsedSamples += Samples; 311 return FirstTime; 312} 313 314/// Return the number of sample records that were applied from this profile. 315/// 316/// This count does not include records from cold inlined callsites. 317unsigned 318SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 319 auto I = SampleCoverage.find(FS); 320 321 // The size of the coverage map for FS represents the number of records 322 // that were marked used at least once. 323 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 324 325 // If there are inlined callsites in this function, count the samples found 326 // in the respective bodies. However, do not bother counting callees with 0 327 // total samples, these are callees that were never invoked at runtime. 328 for (const auto &I : FS->getCallsiteSamples()) { 329 const FunctionSamples *CalleeSamples = &I.second; 330 if (callsiteIsHot(FS, CalleeSamples)) 331 Count += countUsedRecords(CalleeSamples); 332 } 333 334 return Count; 335} 336 337/// Return the number of sample records in the body of this profile. 338/// 339/// This count does not include records from cold inlined callsites. 340unsigned 341SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 342 unsigned Count = FS->getBodySamples().size(); 343 344 // Only count records in hot callsites. 345 for (const auto &I : FS->getCallsiteSamples()) { 346 const FunctionSamples *CalleeSamples = &I.second; 347 if (callsiteIsHot(FS, CalleeSamples)) 348 Count += countBodyRecords(CalleeSamples); 349 } 350 351 return Count; 352} 353 354/// Return the number of samples collected in the body of this profile. 355/// 356/// This count does not include samples from cold inlined callsites. 357uint64_t 358SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 359 uint64_t Total = 0; 360 for (const auto &I : FS->getBodySamples()) 361 Total += I.second.getSamples(); 362 363 // Only count samples in hot callsites. 364 for (const auto &I : FS->getCallsiteSamples()) { 365 const FunctionSamples *CalleeSamples = &I.second; 366 if (callsiteIsHot(FS, CalleeSamples)) 367 Total += countBodySamples(CalleeSamples); 368 } 369 370 return Total; 371} 372 373/// Return the fraction of sample records used in this profile. 374/// 375/// The returned value is an unsigned integer in the range 0-100 indicating 376/// the percentage of sample records that were used while applying this 377/// profile to the associated function. 378unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 379 unsigned Total) const { 380 assert(Used <= Total && 381 "number of used records cannot exceed the total number of records"); 382 return Total > 0 ? Used * 100 / Total : 100; 383} 384 385/// Clear all the per-function data used to load samples and propagate weights. 386void SampleProfileLoader::clearFunctionData() { 387 BlockWeights.clear(); 388 EdgeWeights.clear(); 389 VisitedBlocks.clear(); 390 VisitedEdges.clear(); 391 EquivalenceClass.clear(); 392 DT = nullptr; 393 PDT = nullptr; 394 LI = nullptr; 395 Predecessors.clear(); 396 Successors.clear(); 397 CoverageTracker.clear(); 398} 399 400/// \brief Returns the offset of lineno \p L to head_lineno \p H 401/// 402/// \param L Lineno 403/// \param H Header lineno of the function 404/// 405/// \returns offset to the header lineno. 16 bits are used to represent offset. 406/// We assume that a single function will not exceed 65535 LOC. 407unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const { 408 return (L - H) & 0xffff; 409} 410 411/// \brief Print the weight of edge \p E on stream \p OS. 412/// 413/// \param OS Stream to emit the output to. 414/// \param E Edge to print. 415void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 416 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 417 << "]: " << EdgeWeights[E] << "\n"; 418} 419 420/// \brief Print the equivalence class of block \p BB on stream \p OS. 421/// 422/// \param OS Stream to emit the output to. 423/// \param BB Block to print. 424void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 425 const BasicBlock *BB) { 426 const BasicBlock *Equiv = EquivalenceClass[BB]; 427 OS << "equivalence[" << BB->getName() 428 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 429} 430 431/// \brief Print the weight of block \p BB on stream \p OS. 432/// 433/// \param OS Stream to emit the output to. 434/// \param BB Block to print. 435void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 436 const BasicBlock *BB) const { 437 const auto &I = BlockWeights.find(BB); 438 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 439 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 440} 441 442/// \brief Get the weight for an instruction. 443/// 444/// The "weight" of an instruction \p Inst is the number of samples 445/// collected on that instruction at runtime. To retrieve it, we 446/// need to compute the line number of \p Inst relative to the start of its 447/// function. We use HeaderLineno to compute the offset. We then 448/// look up the samples collected for \p Inst using BodySamples. 449/// 450/// \param Inst Instruction to query. 451/// 452/// \returns the weight of \p Inst. 453ErrorOr<uint64_t> 454SampleProfileLoader::getInstWeight(const Instruction &Inst) const { 455 const DebugLoc &DLoc = Inst.getDebugLoc(); 456 if (!DLoc) 457 return std::error_code(); 458 459 const FunctionSamples *FS = findFunctionSamples(Inst); 460 if (!FS) 461 return std::error_code(); 462 463 // Ignore all dbg_value intrinsics. 464 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst); 465 if (II && II->getIntrinsicID() == Intrinsic::dbg_value) 466 return std::error_code(); 467 468 const DILocation *DIL = DLoc; 469 unsigned Lineno = DLoc.getLine(); 470 unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine(); 471 472 uint32_t LineOffset = getOffset(Lineno, HeaderLineno); 473 uint32_t Discriminator = DIL->getDiscriminator(); 474 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 475 if (R) { 476 bool FirstMark = 477 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 478 if (FirstMark) { 479 const Function *F = Inst.getParent()->getParent(); 480 LLVMContext &Ctx = F->getContext(); 481 emitOptimizationRemark( 482 Ctx, DEBUG_TYPE, *F, DLoc, 483 Twine("Applied ") + Twine(*R) + " samples from profile (offset: " + 484 Twine(LineOffset) + 485 ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")"); 486 } 487 DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":" 488 << Inst << " (line offset: " << Lineno - HeaderLineno << "." 489 << DIL->getDiscriminator() << " - weight: " << R.get() 490 << ")\n"); 491 } else { 492 // If a call instruction is inlined in profile, but not inlined here, 493 // it means that the inlined callsite has no sample, thus the call 494 // instruction should have 0 count. 495 const CallInst *CI = dyn_cast<CallInst>(&Inst); 496 if (CI && findCalleeFunctionSamples(*CI)) 497 R = 0; 498 } 499 return R; 500} 501 502/// \brief Compute the weight of a basic block. 503/// 504/// The weight of basic block \p BB is the maximum weight of all the 505/// instructions in BB. 506/// 507/// \param BB The basic block to query. 508/// 509/// \returns the weight for \p BB. 510ErrorOr<uint64_t> 511SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const { 512 DenseMap<uint64_t, uint64_t> CM; 513 for (auto &I : BB->getInstList()) { 514 const ErrorOr<uint64_t> &R = getInstWeight(I); 515 if (R) CM[R.get()]++; 516 } 517 if (CM.size() == 0) return std::error_code(); 518 uint64_t W = 0, C = 0; 519 for (const auto &C_W : CM) { 520 if (C_W.second == W) { 521 C = std::max(C, C_W.first); 522 } else if (C_W.second > W) { 523 C = C_W.first; 524 W = C_W.second; 525 } 526 } 527 return C; 528} 529 530/// \brief Compute and store the weights of every basic block. 531/// 532/// This populates the BlockWeights map by computing 533/// the weights of every basic block in the CFG. 534/// 535/// \param F The function to query. 536bool SampleProfileLoader::computeBlockWeights(Function &F) { 537 bool Changed = false; 538 DEBUG(dbgs() << "Block weights\n"); 539 for (const auto &BB : F) { 540 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 541 if (Weight) { 542 BlockWeights[&BB] = Weight.get(); 543 VisitedBlocks.insert(&BB); 544 Changed = true; 545 } 546 DEBUG(printBlockWeight(dbgs(), &BB)); 547 } 548 549 return Changed; 550} 551 552/// \brief Get the FunctionSamples for a call instruction. 553/// 554/// The FunctionSamples of a call instruction \p Inst is the inlined 555/// instance in which that call instruction is calling to. It contains 556/// all samples that resides in the inlined instance. We first find the 557/// inlined instance in which the call instruction is from, then we 558/// traverse its children to find the callsite with the matching 559/// location and callee function name. 560/// 561/// \param Inst Call instruction to query. 562/// 563/// \returns The FunctionSamples pointer to the inlined instance. 564const FunctionSamples * 565SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const { 566 const DILocation *DIL = Inst.getDebugLoc(); 567 if (!DIL) { 568 return nullptr; 569 } 570 DISubprogram *SP = DIL->getScope()->getSubprogram(); 571 if (!SP) 572 return nullptr; 573 574 const FunctionSamples *FS = findFunctionSamples(Inst); 575 if (FS == nullptr) 576 return nullptr; 577 578 return FS->findFunctionSamplesAt(LineLocation( 579 getOffset(DIL->getLine(), SP->getLine()), DIL->getDiscriminator())); 580} 581 582/// \brief Get the FunctionSamples for an instruction. 583/// 584/// The FunctionSamples of an instruction \p Inst is the inlined instance 585/// in which that instruction is coming from. We traverse the inline stack 586/// of that instruction, and match it with the tree nodes in the profile. 587/// 588/// \param Inst Instruction to query. 589/// 590/// \returns the FunctionSamples pointer to the inlined instance. 591const FunctionSamples * 592SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 593 SmallVector<LineLocation, 10> S; 594 const DILocation *DIL = Inst.getDebugLoc(); 595 if (!DIL) { 596 return Samples; 597 } 598 for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) { 599 DISubprogram *SP = DIL->getScope()->getSubprogram(); 600 if (!SP) 601 return nullptr; 602 S.push_back(LineLocation(getOffset(DIL->getLine(), SP->getLine()), 603 DIL->getDiscriminator())); 604 } 605 if (S.size() == 0) 606 return Samples; 607 const FunctionSamples *FS = Samples; 608 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 609 FS = FS->findFunctionSamplesAt(S[i]); 610 } 611 return FS; 612} 613 614 615/// \brief Iteratively inline hot callsites of a function. 616/// 617/// Iteratively traverse all callsites of the function \p F, and find if 618/// the corresponding inlined instance exists and is hot in profile. If 619/// it is hot enough, inline the callsites and adds new callsites of the 620/// callee into the caller. 621/// 622/// TODO: investigate the possibility of not invoking InlineFunction directly. 623/// 624/// \param F function to perform iterative inlining. 625/// 626/// \returns True if there is any inline happened. 627bool SampleProfileLoader::inlineHotFunctions(Function &F) { 628 bool Changed = false; 629 LLVMContext &Ctx = F.getContext(); 630 while (true) { 631 bool LocalChanged = false; 632 SmallVector<CallInst *, 10> CIS; 633 for (auto &BB : F) { 634 for (auto &I : BB.getInstList()) { 635 CallInst *CI = dyn_cast<CallInst>(&I); 636 if (CI && callsiteIsHot(Samples, findCalleeFunctionSamples(*CI))) 637 CIS.push_back(CI); 638 } 639 } 640 for (auto CI : CIS) { 641 InlineFunctionInfo IFI(nullptr, ACT); 642 Function *CalledFunction = CI->getCalledFunction(); 643 DebugLoc DLoc = CI->getDebugLoc(); 644 uint64_t NumSamples = findCalleeFunctionSamples(*CI)->getTotalSamples(); 645 if (InlineFunction(CI, IFI)) { 646 LocalChanged = true; 647 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc, 648 Twine("inlined hot callee '") + 649 CalledFunction->getName() + "' with " + 650 Twine(NumSamples) + " samples into '" + 651 F.getName() + "'"); 652 } 653 } 654 if (LocalChanged) { 655 Changed = true; 656 } else { 657 break; 658 } 659 } 660 return Changed; 661} 662 663/// \brief Find equivalence classes for the given block. 664/// 665/// This finds all the blocks that are guaranteed to execute the same 666/// number of times as \p BB1. To do this, it traverses all the 667/// descendants of \p BB1 in the dominator or post-dominator tree. 668/// 669/// A block BB2 will be in the same equivalence class as \p BB1 if 670/// the following holds: 671/// 672/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 673/// is a descendant of \p BB1 in the dominator tree, then BB2 should 674/// dominate BB1 in the post-dominator tree. 675/// 676/// 2- Both BB2 and \p BB1 must be in the same loop. 677/// 678/// For every block BB2 that meets those two requirements, we set BB2's 679/// equivalence class to \p BB1. 680/// 681/// \param BB1 Block to check. 682/// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 683/// \param DomTree Opposite dominator tree. If \p Descendants is filled 684/// with blocks from \p BB1's dominator tree, then 685/// this is the post-dominator tree, and vice versa. 686void SampleProfileLoader::findEquivalencesFor( 687 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 688 DominatorTreeBase<BasicBlock> *DomTree) { 689 const BasicBlock *EC = EquivalenceClass[BB1]; 690 uint64_t Weight = BlockWeights[EC]; 691 for (const auto *BB2 : Descendants) { 692 bool IsDomParent = DomTree->dominates(BB2, BB1); 693 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 694 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 695 EquivalenceClass[BB2] = EC; 696 697 // If BB2 is heavier than BB1, make BB2 have the same weight 698 // as BB1. 699 // 700 // Note that we don't worry about the opposite situation here 701 // (when BB2 is lighter than BB1). We will deal with this 702 // during the propagation phase. Right now, we just want to 703 // make sure that BB1 has the largest weight of all the 704 // members of its equivalence set. 705 Weight = std::max(Weight, BlockWeights[BB2]); 706 } 707 } 708 BlockWeights[EC] = Weight; 709} 710 711/// \brief Find equivalence classes. 712/// 713/// Since samples may be missing from blocks, we can fill in the gaps by setting 714/// the weights of all the blocks in the same equivalence class to the same 715/// weight. To compute the concept of equivalence, we use dominance and loop 716/// information. Two blocks B1 and B2 are in the same equivalence class if B1 717/// dominates B2, B2 post-dominates B1 and both are in the same loop. 718/// 719/// \param F The function to query. 720void SampleProfileLoader::findEquivalenceClasses(Function &F) { 721 SmallVector<BasicBlock *, 8> DominatedBBs; 722 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 723 // Find equivalence sets based on dominance and post-dominance information. 724 for (auto &BB : F) { 725 BasicBlock *BB1 = &BB; 726 727 // Compute BB1's equivalence class once. 728 if (EquivalenceClass.count(BB1)) { 729 DEBUG(printBlockEquivalence(dbgs(), BB1)); 730 continue; 731 } 732 733 // By default, blocks are in their own equivalence class. 734 EquivalenceClass[BB1] = BB1; 735 736 // Traverse all the blocks dominated by BB1. We are looking for 737 // every basic block BB2 such that: 738 // 739 // 1- BB1 dominates BB2. 740 // 2- BB2 post-dominates BB1. 741 // 3- BB1 and BB2 are in the same loop nest. 742 // 743 // If all those conditions hold, it means that BB2 is executed 744 // as many times as BB1, so they are placed in the same equivalence 745 // class by making BB2's equivalence class be BB1. 746 DominatedBBs.clear(); 747 DT->getDescendants(BB1, DominatedBBs); 748 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 749 750 DEBUG(printBlockEquivalence(dbgs(), BB1)); 751 } 752 753 // Assign weights to equivalence classes. 754 // 755 // All the basic blocks in the same equivalence class will execute 756 // the same number of times. Since we know that the head block in 757 // each equivalence class has the largest weight, assign that weight 758 // to all the blocks in that equivalence class. 759 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 760 for (auto &BI : F) { 761 const BasicBlock *BB = &BI; 762 const BasicBlock *EquivBB = EquivalenceClass[BB]; 763 if (BB != EquivBB) 764 BlockWeights[BB] = BlockWeights[EquivBB]; 765 DEBUG(printBlockWeight(dbgs(), BB)); 766 } 767} 768 769/// \brief Visit the given edge to decide if it has a valid weight. 770/// 771/// If \p E has not been visited before, we copy to \p UnknownEdge 772/// and increment the count of unknown edges. 773/// 774/// \param E Edge to visit. 775/// \param NumUnknownEdges Current number of unknown edges. 776/// \param UnknownEdge Set if E has not been visited before. 777/// 778/// \returns E's weight, if known. Otherwise, return 0. 779uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 780 Edge *UnknownEdge) { 781 if (!VisitedEdges.count(E)) { 782 (*NumUnknownEdges)++; 783 *UnknownEdge = E; 784 return 0; 785 } 786 787 return EdgeWeights[E]; 788} 789 790/// \brief Propagate weights through incoming/outgoing edges. 791/// 792/// If the weight of a basic block is known, and there is only one edge 793/// with an unknown weight, we can calculate the weight of that edge. 794/// 795/// Similarly, if all the edges have a known count, we can calculate the 796/// count of the basic block, if needed. 797/// 798/// \param F Function to process. 799/// 800/// \returns True if new weights were assigned to edges or blocks. 801bool SampleProfileLoader::propagateThroughEdges(Function &F) { 802 bool Changed = false; 803 DEBUG(dbgs() << "\nPropagation through edges\n"); 804 for (const auto &BI : F) { 805 const BasicBlock *BB = &BI; 806 const BasicBlock *EC = EquivalenceClass[BB]; 807 808 // Visit all the predecessor and successor edges to determine 809 // which ones have a weight assigned already. Note that it doesn't 810 // matter that we only keep track of a single unknown edge. The 811 // only case we are interested in handling is when only a single 812 // edge is unknown (see setEdgeOrBlockWeight). 813 for (unsigned i = 0; i < 2; i++) { 814 uint64_t TotalWeight = 0; 815 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 816 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 817 818 if (i == 0) { 819 // First, visit all predecessor edges. 820 NumTotalEdges = Predecessors[BB].size(); 821 for (auto *Pred : Predecessors[BB]) { 822 Edge E = std::make_pair(Pred, BB); 823 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 824 if (E.first == E.second) 825 SelfReferentialEdge = E; 826 } 827 if (NumTotalEdges == 1) { 828 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 829 } 830 } else { 831 // On the second round, visit all successor edges. 832 NumTotalEdges = Successors[BB].size(); 833 for (auto *Succ : Successors[BB]) { 834 Edge E = std::make_pair(BB, Succ); 835 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 836 } 837 if (NumTotalEdges == 1) { 838 SingleEdge = std::make_pair(BB, Successors[BB][0]); 839 } 840 } 841 842 // After visiting all the edges, there are three cases that we 843 // can handle immediately: 844 // 845 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 846 // In this case, we simply check that the sum of all the edges 847 // is the same as BB's weight. If not, we change BB's weight 848 // to match. Additionally, if BB had not been visited before, 849 // we mark it visited. 850 // 851 // - Only one edge is unknown and BB has already been visited. 852 // In this case, we can compute the weight of the edge by 853 // subtracting the total block weight from all the known 854 // edge weights. If the edges weight more than BB, then the 855 // edge of the last remaining edge is set to zero. 856 // 857 // - There exists a self-referential edge and the weight of BB is 858 // known. In this case, this edge can be based on BB's weight. 859 // We add up all the other known edges and set the weight on 860 // the self-referential edge as we did in the previous case. 861 // 862 // In any other case, we must continue iterating. Eventually, 863 // all edges will get a weight, or iteration will stop when 864 // it reaches SampleProfileMaxPropagateIterations. 865 if (NumUnknownEdges <= 1) { 866 uint64_t &BBWeight = BlockWeights[EC]; 867 if (NumUnknownEdges == 0) { 868 if (!VisitedBlocks.count(EC)) { 869 // If we already know the weight of all edges, the weight of the 870 // basic block can be computed. It should be no larger than the sum 871 // of all edge weights. 872 if (TotalWeight > BBWeight) { 873 BBWeight = TotalWeight; 874 Changed = true; 875 DEBUG(dbgs() << "All edge weights for " << BB->getName() 876 << " known. Set weight for block: "; 877 printBlockWeight(dbgs(), BB);); 878 } 879 } else if (NumTotalEdges == 1 && 880 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 881 // If there is only one edge for the visited basic block, use the 882 // block weight to adjust edge weight if edge weight is smaller. 883 EdgeWeights[SingleEdge] = BlockWeights[EC]; 884 Changed = true; 885 } 886 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 887 // If there is a single unknown edge and the block has been 888 // visited, then we can compute E's weight. 889 if (BBWeight >= TotalWeight) 890 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 891 else 892 EdgeWeights[UnknownEdge] = 0; 893 VisitedEdges.insert(UnknownEdge); 894 Changed = true; 895 DEBUG(dbgs() << "Set weight for edge: "; 896 printEdgeWeight(dbgs(), UnknownEdge)); 897 } 898 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 899 uint64_t &BBWeight = BlockWeights[BB]; 900 // We have a self-referential edge and the weight of BB is known. 901 if (BBWeight >= TotalWeight) 902 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 903 else 904 EdgeWeights[SelfReferentialEdge] = 0; 905 VisitedEdges.insert(SelfReferentialEdge); 906 Changed = true; 907 DEBUG(dbgs() << "Set self-referential edge weight to: "; 908 printEdgeWeight(dbgs(), SelfReferentialEdge)); 909 } 910 } 911 } 912 913 return Changed; 914} 915 916/// \brief Build in/out edge lists for each basic block in the CFG. 917/// 918/// We are interested in unique edges. If a block B1 has multiple 919/// edges to another block B2, we only add a single B1->B2 edge. 920void SampleProfileLoader::buildEdges(Function &F) { 921 for (auto &BI : F) { 922 BasicBlock *B1 = &BI; 923 924 // Add predecessors for B1. 925 SmallPtrSet<BasicBlock *, 16> Visited; 926 if (!Predecessors[B1].empty()) 927 llvm_unreachable("Found a stale predecessors list in a basic block."); 928 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 929 BasicBlock *B2 = *PI; 930 if (Visited.insert(B2).second) 931 Predecessors[B1].push_back(B2); 932 } 933 934 // Add successors for B1. 935 Visited.clear(); 936 if (!Successors[B1].empty()) 937 llvm_unreachable("Found a stale successors list in a basic block."); 938 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 939 BasicBlock *B2 = *SI; 940 if (Visited.insert(B2).second) 941 Successors[B1].push_back(B2); 942 } 943 } 944} 945 946/// \brief Propagate weights into edges 947/// 948/// The following rules are applied to every block BB in the CFG: 949/// 950/// - If BB has a single predecessor/successor, then the weight 951/// of that edge is the weight of the block. 952/// 953/// - If all incoming or outgoing edges are known except one, and the 954/// weight of the block is already known, the weight of the unknown 955/// edge will be the weight of the block minus the sum of all the known 956/// edges. If the sum of all the known edges is larger than BB's weight, 957/// we set the unknown edge weight to zero. 958/// 959/// - If there is a self-referential edge, and the weight of the block is 960/// known, the weight for that edge is set to the weight of the block 961/// minus the weight of the other incoming edges to that block (if 962/// known). 963void SampleProfileLoader::propagateWeights(Function &F) { 964 bool Changed = true; 965 unsigned I = 0; 966 967 // Add an entry count to the function using the samples gathered 968 // at the function entry. 969 F.setEntryCount(Samples->getHeadSamples()); 970 971 // Before propagation starts, build, for each block, a list of 972 // unique predecessors and successors. This is necessary to handle 973 // identical edges in multiway branches. Since we visit all blocks and all 974 // edges of the CFG, it is cleaner to build these lists once at the start 975 // of the pass. 976 buildEdges(F); 977 978 // Propagate until we converge or we go past the iteration limit. 979 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 980 Changed = propagateThroughEdges(F); 981 } 982 983 // Generate MD_prof metadata for every branch instruction using the 984 // edge weights computed during propagation. 985 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 986 LLVMContext &Ctx = F.getContext(); 987 MDBuilder MDB(Ctx); 988 for (auto &BI : F) { 989 BasicBlock *BB = &BI; 990 991 if (BlockWeights[BB]) { 992 for (auto &I : BB->getInstList()) { 993 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 994 if (!dyn_cast<IntrinsicInst>(&I)) { 995 SmallVector<uint32_t, 1> Weights; 996 Weights.push_back(BlockWeights[BB]); 997 CI->setMetadata(LLVMContext::MD_prof, 998 MDB.createBranchWeights(Weights)); 999 } 1000 } 1001 } 1002 } 1003 TerminatorInst *TI = BB->getTerminator(); 1004 if (TI->getNumSuccessors() == 1) 1005 continue; 1006 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1007 continue; 1008 1009 DEBUG(dbgs() << "\nGetting weights for branch at line " 1010 << TI->getDebugLoc().getLine() << ".\n"); 1011 SmallVector<uint32_t, 4> Weights; 1012 uint32_t MaxWeight = 0; 1013 DebugLoc MaxDestLoc; 1014 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1015 BasicBlock *Succ = TI->getSuccessor(I); 1016 Edge E = std::make_pair(BB, Succ); 1017 uint64_t Weight = EdgeWeights[E]; 1018 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1019 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1020 // if needed. Sample counts in profiles are 64-bit unsigned values, 1021 // but internally branch weights are expressed as 32-bit values. 1022 if (Weight > std::numeric_limits<uint32_t>::max()) { 1023 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1024 Weight = std::numeric_limits<uint32_t>::max(); 1025 } 1026 Weights.push_back(static_cast<uint32_t>(Weight)); 1027 if (Weight != 0) { 1028 if (Weight > MaxWeight) { 1029 MaxWeight = Weight; 1030 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc(); 1031 } 1032 } 1033 } 1034 1035 // Only set weights if there is at least one non-zero weight. 1036 // In any other case, let the analyzer set weights. 1037 if (MaxWeight > 0) { 1038 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1039 TI->setMetadata(llvm::LLVMContext::MD_prof, 1040 MDB.createBranchWeights(Weights)); 1041 DebugLoc BranchLoc = TI->getDebugLoc(); 1042 emitOptimizationRemark( 1043 Ctx, DEBUG_TYPE, F, MaxDestLoc, 1044 Twine("most popular destination for conditional branches at ") + 1045 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" + 1046 Twine(BranchLoc.getLine()) + ":" + 1047 Twine(BranchLoc.getCol())) 1048 : Twine("<UNKNOWN LOCATION>"))); 1049 } else { 1050 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1051 } 1052 } 1053} 1054 1055/// \brief Get the line number for the function header. 1056/// 1057/// This looks up function \p F in the current compilation unit and 1058/// retrieves the line number where the function is defined. This is 1059/// line 0 for all the samples read from the profile file. Every line 1060/// number is relative to this line. 1061/// 1062/// \param F Function object to query. 1063/// 1064/// \returns the line number where \p F is defined. If it returns 0, 1065/// it means that there is no debug information available for \p F. 1066unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1067 if (DISubprogram *S = F.getSubprogram()) 1068 return S->getLine(); 1069 1070 // If the start of \p F is missing, emit a diagnostic to inform the user 1071 // about the missed opportunity. 1072 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1073 "No debug information found in function " + F.getName() + 1074 ": Function profile not used", 1075 DS_Warning)); 1076 return 0; 1077} 1078 1079void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1080 DT.reset(new DominatorTree); 1081 DT->recalculate(F); 1082 1083 PDT.reset(new DominatorTreeBase<BasicBlock>(true)); 1084 PDT->recalculate(F); 1085 1086 LI.reset(new LoopInfo); 1087 LI->analyze(*DT); 1088} 1089 1090/// \brief Generate branch weight metadata for all branches in \p F. 1091/// 1092/// Branch weights are computed out of instruction samples using a 1093/// propagation heuristic. Propagation proceeds in 3 phases: 1094/// 1095/// 1- Assignment of block weights. All the basic blocks in the function 1096/// are initial assigned the same weight as their most frequently 1097/// executed instruction. 1098/// 1099/// 2- Creation of equivalence classes. Since samples may be missing from 1100/// blocks, we can fill in the gaps by setting the weights of all the 1101/// blocks in the same equivalence class to the same weight. To compute 1102/// the concept of equivalence, we use dominance and loop information. 1103/// Two blocks B1 and B2 are in the same equivalence class if B1 1104/// dominates B2, B2 post-dominates B1 and both are in the same loop. 1105/// 1106/// 3- Propagation of block weights into edges. This uses a simple 1107/// propagation heuristic. The following rules are applied to every 1108/// block BB in the CFG: 1109/// 1110/// - If BB has a single predecessor/successor, then the weight 1111/// of that edge is the weight of the block. 1112/// 1113/// - If all the edges are known except one, and the weight of the 1114/// block is already known, the weight of the unknown edge will 1115/// be the weight of the block minus the sum of all the known 1116/// edges. If the sum of all the known edges is larger than BB's weight, 1117/// we set the unknown edge weight to zero. 1118/// 1119/// - If there is a self-referential edge, and the weight of the block is 1120/// known, the weight for that edge is set to the weight of the block 1121/// minus the weight of the other incoming edges to that block (if 1122/// known). 1123/// 1124/// Since this propagation is not guaranteed to finalize for every CFG, we 1125/// only allow it to proceed for a limited number of iterations (controlled 1126/// by -sample-profile-max-propagate-iterations). 1127/// 1128/// FIXME: Try to replace this propagation heuristic with a scheme 1129/// that is guaranteed to finalize. A work-list approach similar to 1130/// the standard value propagation algorithm used by SSA-CCP might 1131/// work here. 1132/// 1133/// Once all the branch weights are computed, we emit the MD_prof 1134/// metadata on BB using the computed values for each of its branches. 1135/// 1136/// \param F The function to query. 1137/// 1138/// \returns true if \p F was modified. Returns false, otherwise. 1139bool SampleProfileLoader::emitAnnotations(Function &F) { 1140 bool Changed = false; 1141 1142 if (getFunctionLoc(F) == 0) 1143 return false; 1144 1145 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1146 << ": " << getFunctionLoc(F) << "\n"); 1147 1148 Changed |= inlineHotFunctions(F); 1149 1150 // Compute basic block weights. 1151 Changed |= computeBlockWeights(F); 1152 1153 if (Changed) { 1154 // Compute dominance and loop info needed for propagation. 1155 computeDominanceAndLoopInfo(F); 1156 1157 // Find equivalence classes. 1158 findEquivalenceClasses(F); 1159 1160 // Propagate weights to all edges. 1161 propagateWeights(F); 1162 } 1163 1164 // If coverage checking was requested, compute it now. 1165 if (SampleProfileRecordCoverage) { 1166 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1167 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1168 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1169 if (Coverage < SampleProfileRecordCoverage) { 1170 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1171 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1172 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1173 Twine(Coverage) + "%) were applied", 1174 DS_Warning)); 1175 } 1176 } 1177 1178 if (SampleProfileSampleCoverage) { 1179 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1180 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1181 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1182 if (Coverage < SampleProfileSampleCoverage) { 1183 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1184 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1185 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1186 Twine(Coverage) + "%) were applied", 1187 DS_Warning)); 1188 } 1189 } 1190 return Changed; 1191} 1192 1193char SampleProfileLoaderLegacyPass::ID = 0; 1194INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1195 "Sample Profile loader", false, false) 1196INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1197INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1198 "Sample Profile loader", false, false) 1199 1200bool SampleProfileLoader::doInitialization(Module &M) { 1201 auto &Ctx = M.getContext(); 1202 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1203 if (std::error_code EC = ReaderOrErr.getError()) { 1204 std::string Msg = "Could not open profile: " + EC.message(); 1205 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1206 return false; 1207 } 1208 Reader = std::move(ReaderOrErr.get()); 1209 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1210 return true; 1211} 1212 1213ModulePass *llvm::createSampleProfileLoaderPass() { 1214 return new SampleProfileLoaderLegacyPass(SampleProfileFile); 1215} 1216 1217ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1218 return new SampleProfileLoaderLegacyPass(Name); 1219} 1220 1221bool SampleProfileLoader::runOnModule(Module &M) { 1222 if (!ProfileIsValid) 1223 return false; 1224 1225 // Compute the total number of samples collected in this profile. 1226 for (const auto &I : Reader->getProfiles()) 1227 TotalCollectedSamples += I.second.getTotalSamples(); 1228 1229 bool retval = false; 1230 for (auto &F : M) 1231 if (!F.isDeclaration()) { 1232 clearFunctionData(); 1233 retval |= runOnFunction(F); 1234 } 1235 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1236 return retval; 1237} 1238 1239bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1240 // FIXME: pass in AssumptionCache correctly for the new pass manager. 1241 SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>()); 1242 return SampleLoader.runOnModule(M); 1243} 1244 1245bool SampleProfileLoader::runOnFunction(Function &F) { 1246 F.setEntryCount(0); 1247 Samples = Reader->getSamplesFor(F); 1248 if (!Samples->empty()) 1249 return emitAnnotations(F); 1250 return false; 1251} 1252 1253PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1254 AnalysisManager<Module> &AM) { 1255 1256 SampleProfileLoader SampleLoader(SampleProfileFile); 1257 1258 SampleLoader.doInitialization(M); 1259 1260 if (!SampleLoader.runOnModule(M)) 1261 return PreservedAnalyses::all(); 1262 1263 return PreservedAnalyses::none(); 1264} 1265