1//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2//
3//                      The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SampleProfileLoader transformation. This pass
11// reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12// http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13// profile information in the given profile.
14//
15// This pass generates branch weight annotations on the IR:
16//
17// - prof: Represents branch weights. This annotation is added to branches
18//      to indicate the weights of each edge coming out of the branch.
19//      The weight of each edge is the weight of the target block for
20//      that edge. The weight of a block B is computed as the maximum
21//      number of samples found in B.
22//
23//===----------------------------------------------------------------------===//
24
25#include "llvm/Transforms/SampleProfile.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/Analysis/AssumptionCache.h"
31#include "llvm/Analysis/LoopInfo.h"
32#include "llvm/Analysis/PostDominators.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DebugInfo.h"
35#include "llvm/IR/DiagnosticInfo.h"
36#include "llvm/IR/Dominators.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/InstIterator.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/IntrinsicInst.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/IR/MDBuilder.h"
43#include "llvm/IR/Metadata.h"
44#include "llvm/IR/Module.h"
45#include "llvm/Pass.h"
46#include "llvm/ProfileData/SampleProfReader.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorOr.h"
50#include "llvm/Support/Format.h"
51#include "llvm/Support/raw_ostream.h"
52#include "llvm/Transforms/IPO.h"
53#include "llvm/Transforms/Utils/Cloning.h"
54#include <cctype>
55
56using namespace llvm;
57using namespace sampleprof;
58
59#define DEBUG_TYPE "sample-profile"
60
61// Command line option to specify the file to read samples from. This is
62// mainly used for debugging.
63static cl::opt<std::string> SampleProfileFile(
64    "sample-profile-file", cl::init(""), cl::value_desc("filename"),
65    cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
66static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
67    "sample-profile-max-propagate-iterations", cl::init(100),
68    cl::desc("Maximum number of iterations to go through when propagating "
69             "sample block/edge weights through the CFG."));
70static cl::opt<unsigned> SampleProfileRecordCoverage(
71    "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
72    cl::desc("Emit a warning if less than N% of records in the input profile "
73             "are matched to the IR."));
74static cl::opt<unsigned> SampleProfileSampleCoverage(
75    "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
76    cl::desc("Emit a warning if less than N% of samples in the input profile "
77             "are matched to the IR."));
78static cl::opt<double> SampleProfileHotThreshold(
79    "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
80    cl::desc("Inlined functions that account for more than N% of all samples "
81             "collected in the parent function, will be inlined again."));
82
83namespace {
84typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
85typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
86typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
87typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
88typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
89    BlockEdgeMap;
90
91/// \brief Sample profile pass.
92///
93/// This pass reads profile data from the file specified by
94/// -sample-profile-file and annotates every affected function with the
95/// profile information found in that file.
96class SampleProfileLoader {
97public:
98  SampleProfileLoader(StringRef Name = SampleProfileFile)
99      : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(),
100        Samples(nullptr), Filename(Name), ProfileIsValid(false),
101        TotalCollectedSamples(0) {}
102
103  bool doInitialization(Module &M);
104  bool runOnModule(Module &M);
105  void setACT(AssumptionCacheTracker *A) { ACT = A; }
106
107  void dump() { Reader->dump(); }
108
109protected:
110  bool runOnFunction(Function &F);
111  unsigned getFunctionLoc(Function &F);
112  bool emitAnnotations(Function &F);
113  ErrorOr<uint64_t> getInstWeight(const Instruction &I) const;
114  ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const;
115  const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const;
116  const FunctionSamples *findFunctionSamples(const Instruction &I) const;
117  bool inlineHotFunctions(Function &F);
118  void printEdgeWeight(raw_ostream &OS, Edge E);
119  void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
120  void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
121  bool computeBlockWeights(Function &F);
122  void findEquivalenceClasses(Function &F);
123  void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
124                           DominatorTreeBase<BasicBlock> *DomTree);
125  void propagateWeights(Function &F);
126  uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
127  void buildEdges(Function &F);
128  bool propagateThroughEdges(Function &F);
129  void computeDominanceAndLoopInfo(Function &F);
130  unsigned getOffset(unsigned L, unsigned H) const;
131  void clearFunctionData();
132
133  /// \brief Map basic blocks to their computed weights.
134  ///
135  /// The weight of a basic block is defined to be the maximum
136  /// of all the instruction weights in that block.
137  BlockWeightMap BlockWeights;
138
139  /// \brief Map edges to their computed weights.
140  ///
141  /// Edge weights are computed by propagating basic block weights in
142  /// SampleProfile::propagateWeights.
143  EdgeWeightMap EdgeWeights;
144
145  /// \brief Set of visited blocks during propagation.
146  SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
147
148  /// \brief Set of visited edges during propagation.
149  SmallSet<Edge, 32> VisitedEdges;
150
151  /// \brief Equivalence classes for block weights.
152  ///
153  /// Two blocks BB1 and BB2 are in the same equivalence class if they
154  /// dominate and post-dominate each other, and they are in the same loop
155  /// nest. When this happens, the two blocks are guaranteed to execute
156  /// the same number of times.
157  EquivalenceClassMap EquivalenceClass;
158
159  /// \brief Dominance, post-dominance and loop information.
160  std::unique_ptr<DominatorTree> DT;
161  std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT;
162  std::unique_ptr<LoopInfo> LI;
163
164  AssumptionCacheTracker *ACT;
165
166  /// \brief Predecessors for each basic block in the CFG.
167  BlockEdgeMap Predecessors;
168
169  /// \brief Successors for each basic block in the CFG.
170  BlockEdgeMap Successors;
171
172  /// \brief Profile reader object.
173  std::unique_ptr<SampleProfileReader> Reader;
174
175  /// \brief Samples collected for the body of this function.
176  FunctionSamples *Samples;
177
178  /// \brief Name of the profile file to load.
179  StringRef Filename;
180
181  /// \brief Flag indicating whether the profile input loaded successfully.
182  bool ProfileIsValid;
183
184  /// \brief Total number of samples collected in this profile.
185  ///
186  /// This is the sum of all the samples collected in all the functions executed
187  /// at runtime.
188  uint64_t TotalCollectedSamples;
189};
190
191class SampleProfileLoaderLegacyPass : public ModulePass {
192public:
193  // Class identification, replacement for typeinfo
194  static char ID;
195
196  SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile)
197      : ModulePass(ID), SampleLoader(Name) {
198    initializeSampleProfileLoaderLegacyPassPass(
199        *PassRegistry::getPassRegistry());
200  }
201
202  void dump() { SampleLoader.dump(); }
203
204  bool doInitialization(Module &M) override {
205    return SampleLoader.doInitialization(M);
206  }
207  const char *getPassName() const override { return "Sample profile pass"; }
208  bool runOnModule(Module &M) override;
209
210  void getAnalysisUsage(AnalysisUsage &AU) const override {
211    AU.addRequired<AssumptionCacheTracker>();
212  }
213private:
214  SampleProfileLoader SampleLoader;
215};
216
217class SampleCoverageTracker {
218public:
219  SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {}
220
221  bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
222                       uint32_t Discriminator, uint64_t Samples);
223  unsigned computeCoverage(unsigned Used, unsigned Total) const;
224  unsigned countUsedRecords(const FunctionSamples *FS) const;
225  unsigned countBodyRecords(const FunctionSamples *FS) const;
226  uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
227  uint64_t countBodySamples(const FunctionSamples *FS) const;
228  void clear() {
229    SampleCoverage.clear();
230    TotalUsedSamples = 0;
231  }
232
233private:
234  typedef std::map<LineLocation, unsigned> BodySampleCoverageMap;
235  typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap>
236      FunctionSamplesCoverageMap;
237
238  /// Coverage map for sampling records.
239  ///
240  /// This map keeps a record of sampling records that have been matched to
241  /// an IR instruction. This is used to detect some form of staleness in
242  /// profiles (see flag -sample-profile-check-coverage).
243  ///
244  /// Each entry in the map corresponds to a FunctionSamples instance.  This is
245  /// another map that counts how many times the sample record at the
246  /// given location has been used.
247  FunctionSamplesCoverageMap SampleCoverage;
248
249  /// Number of samples used from the profile.
250  ///
251  /// When a sampling record is used for the first time, the samples from
252  /// that record are added to this accumulator.  Coverage is later computed
253  /// based on the total number of samples available in this function and
254  /// its callsites.
255  ///
256  /// Note that this accumulator tracks samples used from a single function
257  /// and all the inlined callsites. Strictly, we should have a map of counters
258  /// keyed by FunctionSamples pointers, but these stats are cleared after
259  /// every function, so we just need to keep a single counter.
260  uint64_t TotalUsedSamples;
261};
262
263SampleCoverageTracker CoverageTracker;
264
265/// Return true if the given callsite is hot wrt to its caller.
266///
267/// Functions that were inlined in the original binary will be represented
268/// in the inline stack in the sample profile. If the profile shows that
269/// the original inline decision was "good" (i.e., the callsite is executed
270/// frequently), then we will recreate the inline decision and apply the
271/// profile from the inlined callsite.
272///
273/// To decide whether an inlined callsite is hot, we compute the fraction
274/// of samples used by the callsite with respect to the total number of samples
275/// collected in the caller.
276///
277/// If that fraction is larger than the default given by
278/// SampleProfileHotThreshold, the callsite will be inlined again.
279bool callsiteIsHot(const FunctionSamples *CallerFS,
280                   const FunctionSamples *CallsiteFS) {
281  if (!CallsiteFS)
282    return false; // The callsite was not inlined in the original binary.
283
284  uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
285  if (ParentTotalSamples == 0)
286    return false; // Avoid division by zero.
287
288  uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
289  if (CallsiteTotalSamples == 0)
290    return false; // Callsite is trivially cold.
291
292  double PercentSamples =
293      (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
294  return PercentSamples >= SampleProfileHotThreshold;
295}
296}
297
298/// Mark as used the sample record for the given function samples at
299/// (LineOffset, Discriminator).
300///
301/// \returns true if this is the first time we mark the given record.
302bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
303                                            uint32_t LineOffset,
304                                            uint32_t Discriminator,
305                                            uint64_t Samples) {
306  LineLocation Loc(LineOffset, Discriminator);
307  unsigned &Count = SampleCoverage[FS][Loc];
308  bool FirstTime = (++Count == 1);
309  if (FirstTime)
310    TotalUsedSamples += Samples;
311  return FirstTime;
312}
313
314/// Return the number of sample records that were applied from this profile.
315///
316/// This count does not include records from cold inlined callsites.
317unsigned
318SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
319  auto I = SampleCoverage.find(FS);
320
321  // The size of the coverage map for FS represents the number of records
322  // that were marked used at least once.
323  unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
324
325  // If there are inlined callsites in this function, count the samples found
326  // in the respective bodies. However, do not bother counting callees with 0
327  // total samples, these are callees that were never invoked at runtime.
328  for (const auto &I : FS->getCallsiteSamples()) {
329    const FunctionSamples *CalleeSamples = &I.second;
330    if (callsiteIsHot(FS, CalleeSamples))
331      Count += countUsedRecords(CalleeSamples);
332  }
333
334  return Count;
335}
336
337/// Return the number of sample records in the body of this profile.
338///
339/// This count does not include records from cold inlined callsites.
340unsigned
341SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
342  unsigned Count = FS->getBodySamples().size();
343
344  // Only count records in hot callsites.
345  for (const auto &I : FS->getCallsiteSamples()) {
346    const FunctionSamples *CalleeSamples = &I.second;
347    if (callsiteIsHot(FS, CalleeSamples))
348      Count += countBodyRecords(CalleeSamples);
349  }
350
351  return Count;
352}
353
354/// Return the number of samples collected in the body of this profile.
355///
356/// This count does not include samples from cold inlined callsites.
357uint64_t
358SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
359  uint64_t Total = 0;
360  for (const auto &I : FS->getBodySamples())
361    Total += I.second.getSamples();
362
363  // Only count samples in hot callsites.
364  for (const auto &I : FS->getCallsiteSamples()) {
365    const FunctionSamples *CalleeSamples = &I.second;
366    if (callsiteIsHot(FS, CalleeSamples))
367      Total += countBodySamples(CalleeSamples);
368  }
369
370  return Total;
371}
372
373/// Return the fraction of sample records used in this profile.
374///
375/// The returned value is an unsigned integer in the range 0-100 indicating
376/// the percentage of sample records that were used while applying this
377/// profile to the associated function.
378unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
379                                                unsigned Total) const {
380  assert(Used <= Total &&
381         "number of used records cannot exceed the total number of records");
382  return Total > 0 ? Used * 100 / Total : 100;
383}
384
385/// Clear all the per-function data used to load samples and propagate weights.
386void SampleProfileLoader::clearFunctionData() {
387  BlockWeights.clear();
388  EdgeWeights.clear();
389  VisitedBlocks.clear();
390  VisitedEdges.clear();
391  EquivalenceClass.clear();
392  DT = nullptr;
393  PDT = nullptr;
394  LI = nullptr;
395  Predecessors.clear();
396  Successors.clear();
397  CoverageTracker.clear();
398}
399
400/// \brief Returns the offset of lineno \p L to head_lineno \p H
401///
402/// \param L  Lineno
403/// \param H  Header lineno of the function
404///
405/// \returns offset to the header lineno. 16 bits are used to represent offset.
406/// We assume that a single function will not exceed 65535 LOC.
407unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const {
408  return (L - H) & 0xffff;
409}
410
411/// \brief Print the weight of edge \p E on stream \p OS.
412///
413/// \param OS  Stream to emit the output to.
414/// \param E  Edge to print.
415void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
416  OS << "weight[" << E.first->getName() << "->" << E.second->getName()
417     << "]: " << EdgeWeights[E] << "\n";
418}
419
420/// \brief Print the equivalence class of block \p BB on stream \p OS.
421///
422/// \param OS  Stream to emit the output to.
423/// \param BB  Block to print.
424void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
425                                                const BasicBlock *BB) {
426  const BasicBlock *Equiv = EquivalenceClass[BB];
427  OS << "equivalence[" << BB->getName()
428     << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
429}
430
431/// \brief Print the weight of block \p BB on stream \p OS.
432///
433/// \param OS  Stream to emit the output to.
434/// \param BB  Block to print.
435void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
436                                           const BasicBlock *BB) const {
437  const auto &I = BlockWeights.find(BB);
438  uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
439  OS << "weight[" << BB->getName() << "]: " << W << "\n";
440}
441
442/// \brief Get the weight for an instruction.
443///
444/// The "weight" of an instruction \p Inst is the number of samples
445/// collected on that instruction at runtime. To retrieve it, we
446/// need to compute the line number of \p Inst relative to the start of its
447/// function. We use HeaderLineno to compute the offset. We then
448/// look up the samples collected for \p Inst using BodySamples.
449///
450/// \param Inst Instruction to query.
451///
452/// \returns the weight of \p Inst.
453ErrorOr<uint64_t>
454SampleProfileLoader::getInstWeight(const Instruction &Inst) const {
455  const DebugLoc &DLoc = Inst.getDebugLoc();
456  if (!DLoc)
457    return std::error_code();
458
459  const FunctionSamples *FS = findFunctionSamples(Inst);
460  if (!FS)
461    return std::error_code();
462
463  // Ignore all dbg_value intrinsics.
464  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst);
465  if (II && II->getIntrinsicID() == Intrinsic::dbg_value)
466    return std::error_code();
467
468  const DILocation *DIL = DLoc;
469  unsigned Lineno = DLoc.getLine();
470  unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine();
471
472  uint32_t LineOffset = getOffset(Lineno, HeaderLineno);
473  uint32_t Discriminator = DIL->getDiscriminator();
474  ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
475  if (R) {
476    bool FirstMark =
477        CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
478    if (FirstMark) {
479      const Function *F = Inst.getParent()->getParent();
480      LLVMContext &Ctx = F->getContext();
481      emitOptimizationRemark(
482          Ctx, DEBUG_TYPE, *F, DLoc,
483          Twine("Applied ") + Twine(*R) + " samples from profile (offset: " +
484              Twine(LineOffset) +
485              ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")");
486    }
487    DEBUG(dbgs() << "    " << Lineno << "." << DIL->getDiscriminator() << ":"
488                 << Inst << " (line offset: " << Lineno - HeaderLineno << "."
489                 << DIL->getDiscriminator() << " - weight: " << R.get()
490                 << ")\n");
491  } else {
492    // If a call instruction is inlined in profile, but not inlined here,
493    // it means that the inlined callsite has no sample, thus the call
494    // instruction should have 0 count.
495    const CallInst *CI = dyn_cast<CallInst>(&Inst);
496    if (CI && findCalleeFunctionSamples(*CI))
497      R = 0;
498  }
499  return R;
500}
501
502/// \brief Compute the weight of a basic block.
503///
504/// The weight of basic block \p BB is the maximum weight of all the
505/// instructions in BB.
506///
507/// \param BB The basic block to query.
508///
509/// \returns the weight for \p BB.
510ErrorOr<uint64_t>
511SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const {
512  DenseMap<uint64_t, uint64_t> CM;
513  for (auto &I : BB->getInstList()) {
514    const ErrorOr<uint64_t> &R = getInstWeight(I);
515    if (R) CM[R.get()]++;
516  }
517  if (CM.size() == 0) return std::error_code();
518  uint64_t W = 0, C = 0;
519  for (const auto &C_W : CM) {
520    if (C_W.second == W) {
521      C = std::max(C, C_W.first);
522    } else if (C_W.second > W) {
523      C = C_W.first;
524      W = C_W.second;
525    }
526  }
527  return C;
528}
529
530/// \brief Compute and store the weights of every basic block.
531///
532/// This populates the BlockWeights map by computing
533/// the weights of every basic block in the CFG.
534///
535/// \param F The function to query.
536bool SampleProfileLoader::computeBlockWeights(Function &F) {
537  bool Changed = false;
538  DEBUG(dbgs() << "Block weights\n");
539  for (const auto &BB : F) {
540    ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
541    if (Weight) {
542      BlockWeights[&BB] = Weight.get();
543      VisitedBlocks.insert(&BB);
544      Changed = true;
545    }
546    DEBUG(printBlockWeight(dbgs(), &BB));
547  }
548
549  return Changed;
550}
551
552/// \brief Get the FunctionSamples for a call instruction.
553///
554/// The FunctionSamples of a call instruction \p Inst is the inlined
555/// instance in which that call instruction is calling to. It contains
556/// all samples that resides in the inlined instance. We first find the
557/// inlined instance in which the call instruction is from, then we
558/// traverse its children to find the callsite with the matching
559/// location and callee function name.
560///
561/// \param Inst Call instruction to query.
562///
563/// \returns The FunctionSamples pointer to the inlined instance.
564const FunctionSamples *
565SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const {
566  const DILocation *DIL = Inst.getDebugLoc();
567  if (!DIL) {
568    return nullptr;
569  }
570  DISubprogram *SP = DIL->getScope()->getSubprogram();
571  if (!SP)
572    return nullptr;
573
574  const FunctionSamples *FS = findFunctionSamples(Inst);
575  if (FS == nullptr)
576    return nullptr;
577
578  return FS->findFunctionSamplesAt(LineLocation(
579      getOffset(DIL->getLine(), SP->getLine()), DIL->getDiscriminator()));
580}
581
582/// \brief Get the FunctionSamples for an instruction.
583///
584/// The FunctionSamples of an instruction \p Inst is the inlined instance
585/// in which that instruction is coming from. We traverse the inline stack
586/// of that instruction, and match it with the tree nodes in the profile.
587///
588/// \param Inst Instruction to query.
589///
590/// \returns the FunctionSamples pointer to the inlined instance.
591const FunctionSamples *
592SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
593  SmallVector<LineLocation, 10> S;
594  const DILocation *DIL = Inst.getDebugLoc();
595  if (!DIL) {
596    return Samples;
597  }
598  for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) {
599    DISubprogram *SP = DIL->getScope()->getSubprogram();
600    if (!SP)
601      return nullptr;
602    S.push_back(LineLocation(getOffset(DIL->getLine(), SP->getLine()),
603                             DIL->getDiscriminator()));
604  }
605  if (S.size() == 0)
606    return Samples;
607  const FunctionSamples *FS = Samples;
608  for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
609    FS = FS->findFunctionSamplesAt(S[i]);
610  }
611  return FS;
612}
613
614
615/// \brief Iteratively inline hot callsites of a function.
616///
617/// Iteratively traverse all callsites of the function \p F, and find if
618/// the corresponding inlined instance exists and is hot in profile. If
619/// it is hot enough, inline the callsites and adds new callsites of the
620/// callee into the caller.
621///
622/// TODO: investigate the possibility of not invoking InlineFunction directly.
623///
624/// \param F function to perform iterative inlining.
625///
626/// \returns True if there is any inline happened.
627bool SampleProfileLoader::inlineHotFunctions(Function &F) {
628  bool Changed = false;
629  LLVMContext &Ctx = F.getContext();
630  while (true) {
631    bool LocalChanged = false;
632    SmallVector<CallInst *, 10> CIS;
633    for (auto &BB : F) {
634      for (auto &I : BB.getInstList()) {
635        CallInst *CI = dyn_cast<CallInst>(&I);
636        if (CI && callsiteIsHot(Samples, findCalleeFunctionSamples(*CI)))
637          CIS.push_back(CI);
638      }
639    }
640    for (auto CI : CIS) {
641      InlineFunctionInfo IFI(nullptr, ACT);
642      Function *CalledFunction = CI->getCalledFunction();
643      DebugLoc DLoc = CI->getDebugLoc();
644      uint64_t NumSamples = findCalleeFunctionSamples(*CI)->getTotalSamples();
645      if (InlineFunction(CI, IFI)) {
646        LocalChanged = true;
647        emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc,
648                               Twine("inlined hot callee '") +
649                                   CalledFunction->getName() + "' with " +
650                                   Twine(NumSamples) + " samples into '" +
651                                   F.getName() + "'");
652      }
653    }
654    if (LocalChanged) {
655      Changed = true;
656    } else {
657      break;
658    }
659  }
660  return Changed;
661}
662
663/// \brief Find equivalence classes for the given block.
664///
665/// This finds all the blocks that are guaranteed to execute the same
666/// number of times as \p BB1. To do this, it traverses all the
667/// descendants of \p BB1 in the dominator or post-dominator tree.
668///
669/// A block BB2 will be in the same equivalence class as \p BB1 if
670/// the following holds:
671///
672/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
673///    is a descendant of \p BB1 in the dominator tree, then BB2 should
674///    dominate BB1 in the post-dominator tree.
675///
676/// 2- Both BB2 and \p BB1 must be in the same loop.
677///
678/// For every block BB2 that meets those two requirements, we set BB2's
679/// equivalence class to \p BB1.
680///
681/// \param BB1  Block to check.
682/// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
683/// \param DomTree  Opposite dominator tree. If \p Descendants is filled
684///                 with blocks from \p BB1's dominator tree, then
685///                 this is the post-dominator tree, and vice versa.
686void SampleProfileLoader::findEquivalencesFor(
687    BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
688    DominatorTreeBase<BasicBlock> *DomTree) {
689  const BasicBlock *EC = EquivalenceClass[BB1];
690  uint64_t Weight = BlockWeights[EC];
691  for (const auto *BB2 : Descendants) {
692    bool IsDomParent = DomTree->dominates(BB2, BB1);
693    bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
694    if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
695      EquivalenceClass[BB2] = EC;
696
697      // If BB2 is heavier than BB1, make BB2 have the same weight
698      // as BB1.
699      //
700      // Note that we don't worry about the opposite situation here
701      // (when BB2 is lighter than BB1). We will deal with this
702      // during the propagation phase. Right now, we just want to
703      // make sure that BB1 has the largest weight of all the
704      // members of its equivalence set.
705      Weight = std::max(Weight, BlockWeights[BB2]);
706    }
707  }
708  BlockWeights[EC] = Weight;
709}
710
711/// \brief Find equivalence classes.
712///
713/// Since samples may be missing from blocks, we can fill in the gaps by setting
714/// the weights of all the blocks in the same equivalence class to the same
715/// weight. To compute the concept of equivalence, we use dominance and loop
716/// information. Two blocks B1 and B2 are in the same equivalence class if B1
717/// dominates B2, B2 post-dominates B1 and both are in the same loop.
718///
719/// \param F The function to query.
720void SampleProfileLoader::findEquivalenceClasses(Function &F) {
721  SmallVector<BasicBlock *, 8> DominatedBBs;
722  DEBUG(dbgs() << "\nBlock equivalence classes\n");
723  // Find equivalence sets based on dominance and post-dominance information.
724  for (auto &BB : F) {
725    BasicBlock *BB1 = &BB;
726
727    // Compute BB1's equivalence class once.
728    if (EquivalenceClass.count(BB1)) {
729      DEBUG(printBlockEquivalence(dbgs(), BB1));
730      continue;
731    }
732
733    // By default, blocks are in their own equivalence class.
734    EquivalenceClass[BB1] = BB1;
735
736    // Traverse all the blocks dominated by BB1. We are looking for
737    // every basic block BB2 such that:
738    //
739    // 1- BB1 dominates BB2.
740    // 2- BB2 post-dominates BB1.
741    // 3- BB1 and BB2 are in the same loop nest.
742    //
743    // If all those conditions hold, it means that BB2 is executed
744    // as many times as BB1, so they are placed in the same equivalence
745    // class by making BB2's equivalence class be BB1.
746    DominatedBBs.clear();
747    DT->getDescendants(BB1, DominatedBBs);
748    findEquivalencesFor(BB1, DominatedBBs, PDT.get());
749
750    DEBUG(printBlockEquivalence(dbgs(), BB1));
751  }
752
753  // Assign weights to equivalence classes.
754  //
755  // All the basic blocks in the same equivalence class will execute
756  // the same number of times. Since we know that the head block in
757  // each equivalence class has the largest weight, assign that weight
758  // to all the blocks in that equivalence class.
759  DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
760  for (auto &BI : F) {
761    const BasicBlock *BB = &BI;
762    const BasicBlock *EquivBB = EquivalenceClass[BB];
763    if (BB != EquivBB)
764      BlockWeights[BB] = BlockWeights[EquivBB];
765    DEBUG(printBlockWeight(dbgs(), BB));
766  }
767}
768
769/// \brief Visit the given edge to decide if it has a valid weight.
770///
771/// If \p E has not been visited before, we copy to \p UnknownEdge
772/// and increment the count of unknown edges.
773///
774/// \param E  Edge to visit.
775/// \param NumUnknownEdges  Current number of unknown edges.
776/// \param UnknownEdge  Set if E has not been visited before.
777///
778/// \returns E's weight, if known. Otherwise, return 0.
779uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
780                                        Edge *UnknownEdge) {
781  if (!VisitedEdges.count(E)) {
782    (*NumUnknownEdges)++;
783    *UnknownEdge = E;
784    return 0;
785  }
786
787  return EdgeWeights[E];
788}
789
790/// \brief Propagate weights through incoming/outgoing edges.
791///
792/// If the weight of a basic block is known, and there is only one edge
793/// with an unknown weight, we can calculate the weight of that edge.
794///
795/// Similarly, if all the edges have a known count, we can calculate the
796/// count of the basic block, if needed.
797///
798/// \param F  Function to process.
799///
800/// \returns  True if new weights were assigned to edges or blocks.
801bool SampleProfileLoader::propagateThroughEdges(Function &F) {
802  bool Changed = false;
803  DEBUG(dbgs() << "\nPropagation through edges\n");
804  for (const auto &BI : F) {
805    const BasicBlock *BB = &BI;
806    const BasicBlock *EC = EquivalenceClass[BB];
807
808    // Visit all the predecessor and successor edges to determine
809    // which ones have a weight assigned already. Note that it doesn't
810    // matter that we only keep track of a single unknown edge. The
811    // only case we are interested in handling is when only a single
812    // edge is unknown (see setEdgeOrBlockWeight).
813    for (unsigned i = 0; i < 2; i++) {
814      uint64_t TotalWeight = 0;
815      unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
816      Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
817
818      if (i == 0) {
819        // First, visit all predecessor edges.
820        NumTotalEdges = Predecessors[BB].size();
821        for (auto *Pred : Predecessors[BB]) {
822          Edge E = std::make_pair(Pred, BB);
823          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
824          if (E.first == E.second)
825            SelfReferentialEdge = E;
826        }
827        if (NumTotalEdges == 1) {
828          SingleEdge = std::make_pair(Predecessors[BB][0], BB);
829        }
830      } else {
831        // On the second round, visit all successor edges.
832        NumTotalEdges = Successors[BB].size();
833        for (auto *Succ : Successors[BB]) {
834          Edge E = std::make_pair(BB, Succ);
835          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
836        }
837        if (NumTotalEdges == 1) {
838          SingleEdge = std::make_pair(BB, Successors[BB][0]);
839        }
840      }
841
842      // After visiting all the edges, there are three cases that we
843      // can handle immediately:
844      //
845      // - All the edge weights are known (i.e., NumUnknownEdges == 0).
846      //   In this case, we simply check that the sum of all the edges
847      //   is the same as BB's weight. If not, we change BB's weight
848      //   to match. Additionally, if BB had not been visited before,
849      //   we mark it visited.
850      //
851      // - Only one edge is unknown and BB has already been visited.
852      //   In this case, we can compute the weight of the edge by
853      //   subtracting the total block weight from all the known
854      //   edge weights. If the edges weight more than BB, then the
855      //   edge of the last remaining edge is set to zero.
856      //
857      // - There exists a self-referential edge and the weight of BB is
858      //   known. In this case, this edge can be based on BB's weight.
859      //   We add up all the other known edges and set the weight on
860      //   the self-referential edge as we did in the previous case.
861      //
862      // In any other case, we must continue iterating. Eventually,
863      // all edges will get a weight, or iteration will stop when
864      // it reaches SampleProfileMaxPropagateIterations.
865      if (NumUnknownEdges <= 1) {
866        uint64_t &BBWeight = BlockWeights[EC];
867        if (NumUnknownEdges == 0) {
868          if (!VisitedBlocks.count(EC)) {
869            // If we already know the weight of all edges, the weight of the
870            // basic block can be computed. It should be no larger than the sum
871            // of all edge weights.
872            if (TotalWeight > BBWeight) {
873              BBWeight = TotalWeight;
874              Changed = true;
875              DEBUG(dbgs() << "All edge weights for " << BB->getName()
876                           << " known. Set weight for block: ";
877                    printBlockWeight(dbgs(), BB););
878            }
879          } else if (NumTotalEdges == 1 &&
880                     EdgeWeights[SingleEdge] < BlockWeights[EC]) {
881            // If there is only one edge for the visited basic block, use the
882            // block weight to adjust edge weight if edge weight is smaller.
883            EdgeWeights[SingleEdge] = BlockWeights[EC];
884            Changed = true;
885          }
886        } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
887          // If there is a single unknown edge and the block has been
888          // visited, then we can compute E's weight.
889          if (BBWeight >= TotalWeight)
890            EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
891          else
892            EdgeWeights[UnknownEdge] = 0;
893          VisitedEdges.insert(UnknownEdge);
894          Changed = true;
895          DEBUG(dbgs() << "Set weight for edge: ";
896                printEdgeWeight(dbgs(), UnknownEdge));
897        }
898      } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
899        uint64_t &BBWeight = BlockWeights[BB];
900        // We have a self-referential edge and the weight of BB is known.
901        if (BBWeight >= TotalWeight)
902          EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
903        else
904          EdgeWeights[SelfReferentialEdge] = 0;
905        VisitedEdges.insert(SelfReferentialEdge);
906        Changed = true;
907        DEBUG(dbgs() << "Set self-referential edge weight to: ";
908              printEdgeWeight(dbgs(), SelfReferentialEdge));
909      }
910    }
911  }
912
913  return Changed;
914}
915
916/// \brief Build in/out edge lists for each basic block in the CFG.
917///
918/// We are interested in unique edges. If a block B1 has multiple
919/// edges to another block B2, we only add a single B1->B2 edge.
920void SampleProfileLoader::buildEdges(Function &F) {
921  for (auto &BI : F) {
922    BasicBlock *B1 = &BI;
923
924    // Add predecessors for B1.
925    SmallPtrSet<BasicBlock *, 16> Visited;
926    if (!Predecessors[B1].empty())
927      llvm_unreachable("Found a stale predecessors list in a basic block.");
928    for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
929      BasicBlock *B2 = *PI;
930      if (Visited.insert(B2).second)
931        Predecessors[B1].push_back(B2);
932    }
933
934    // Add successors for B1.
935    Visited.clear();
936    if (!Successors[B1].empty())
937      llvm_unreachable("Found a stale successors list in a basic block.");
938    for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
939      BasicBlock *B2 = *SI;
940      if (Visited.insert(B2).second)
941        Successors[B1].push_back(B2);
942    }
943  }
944}
945
946/// \brief Propagate weights into edges
947///
948/// The following rules are applied to every block BB in the CFG:
949///
950/// - If BB has a single predecessor/successor, then the weight
951///   of that edge is the weight of the block.
952///
953/// - If all incoming or outgoing edges are known except one, and the
954///   weight of the block is already known, the weight of the unknown
955///   edge will be the weight of the block minus the sum of all the known
956///   edges. If the sum of all the known edges is larger than BB's weight,
957///   we set the unknown edge weight to zero.
958///
959/// - If there is a self-referential edge, and the weight of the block is
960///   known, the weight for that edge is set to the weight of the block
961///   minus the weight of the other incoming edges to that block (if
962///   known).
963void SampleProfileLoader::propagateWeights(Function &F) {
964  bool Changed = true;
965  unsigned I = 0;
966
967  // Add an entry count to the function using the samples gathered
968  // at the function entry.
969  F.setEntryCount(Samples->getHeadSamples());
970
971  // Before propagation starts, build, for each block, a list of
972  // unique predecessors and successors. This is necessary to handle
973  // identical edges in multiway branches. Since we visit all blocks and all
974  // edges of the CFG, it is cleaner to build these lists once at the start
975  // of the pass.
976  buildEdges(F);
977
978  // Propagate until we converge or we go past the iteration limit.
979  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
980    Changed = propagateThroughEdges(F);
981  }
982
983  // Generate MD_prof metadata for every branch instruction using the
984  // edge weights computed during propagation.
985  DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
986  LLVMContext &Ctx = F.getContext();
987  MDBuilder MDB(Ctx);
988  for (auto &BI : F) {
989    BasicBlock *BB = &BI;
990
991    if (BlockWeights[BB]) {
992      for (auto &I : BB->getInstList()) {
993        if (CallInst *CI = dyn_cast<CallInst>(&I)) {
994          if (!dyn_cast<IntrinsicInst>(&I)) {
995            SmallVector<uint32_t, 1> Weights;
996            Weights.push_back(BlockWeights[BB]);
997            CI->setMetadata(LLVMContext::MD_prof,
998                            MDB.createBranchWeights(Weights));
999          }
1000        }
1001      }
1002    }
1003    TerminatorInst *TI = BB->getTerminator();
1004    if (TI->getNumSuccessors() == 1)
1005      continue;
1006    if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1007      continue;
1008
1009    DEBUG(dbgs() << "\nGetting weights for branch at line "
1010                 << TI->getDebugLoc().getLine() << ".\n");
1011    SmallVector<uint32_t, 4> Weights;
1012    uint32_t MaxWeight = 0;
1013    DebugLoc MaxDestLoc;
1014    for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1015      BasicBlock *Succ = TI->getSuccessor(I);
1016      Edge E = std::make_pair(BB, Succ);
1017      uint64_t Weight = EdgeWeights[E];
1018      DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1019      // Use uint32_t saturated arithmetic to adjust the incoming weights,
1020      // if needed. Sample counts in profiles are 64-bit unsigned values,
1021      // but internally branch weights are expressed as 32-bit values.
1022      if (Weight > std::numeric_limits<uint32_t>::max()) {
1023        DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1024        Weight = std::numeric_limits<uint32_t>::max();
1025      }
1026      Weights.push_back(static_cast<uint32_t>(Weight));
1027      if (Weight != 0) {
1028        if (Weight > MaxWeight) {
1029          MaxWeight = Weight;
1030          MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc();
1031        }
1032      }
1033    }
1034
1035    // Only set weights if there is at least one non-zero weight.
1036    // In any other case, let the analyzer set weights.
1037    if (MaxWeight > 0) {
1038      DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1039      TI->setMetadata(llvm::LLVMContext::MD_prof,
1040                      MDB.createBranchWeights(Weights));
1041      DebugLoc BranchLoc = TI->getDebugLoc();
1042      emitOptimizationRemark(
1043          Ctx, DEBUG_TYPE, F, MaxDestLoc,
1044          Twine("most popular destination for conditional branches at ") +
1045              ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" +
1046                                   Twine(BranchLoc.getLine()) + ":" +
1047                                   Twine(BranchLoc.getCol()))
1048                           : Twine("<UNKNOWN LOCATION>")));
1049    } else {
1050      DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1051    }
1052  }
1053}
1054
1055/// \brief Get the line number for the function header.
1056///
1057/// This looks up function \p F in the current compilation unit and
1058/// retrieves the line number where the function is defined. This is
1059/// line 0 for all the samples read from the profile file. Every line
1060/// number is relative to this line.
1061///
1062/// \param F  Function object to query.
1063///
1064/// \returns the line number where \p F is defined. If it returns 0,
1065///          it means that there is no debug information available for \p F.
1066unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1067  if (DISubprogram *S = F.getSubprogram())
1068    return S->getLine();
1069
1070  // If the start of \p F is missing, emit a diagnostic to inform the user
1071  // about the missed opportunity.
1072  F.getContext().diagnose(DiagnosticInfoSampleProfile(
1073      "No debug information found in function " + F.getName() +
1074          ": Function profile not used",
1075      DS_Warning));
1076  return 0;
1077}
1078
1079void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1080  DT.reset(new DominatorTree);
1081  DT->recalculate(F);
1082
1083  PDT.reset(new DominatorTreeBase<BasicBlock>(true));
1084  PDT->recalculate(F);
1085
1086  LI.reset(new LoopInfo);
1087  LI->analyze(*DT);
1088}
1089
1090/// \brief Generate branch weight metadata for all branches in \p F.
1091///
1092/// Branch weights are computed out of instruction samples using a
1093/// propagation heuristic. Propagation proceeds in 3 phases:
1094///
1095/// 1- Assignment of block weights. All the basic blocks in the function
1096///    are initial assigned the same weight as their most frequently
1097///    executed instruction.
1098///
1099/// 2- Creation of equivalence classes. Since samples may be missing from
1100///    blocks, we can fill in the gaps by setting the weights of all the
1101///    blocks in the same equivalence class to the same weight. To compute
1102///    the concept of equivalence, we use dominance and loop information.
1103///    Two blocks B1 and B2 are in the same equivalence class if B1
1104///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1105///
1106/// 3- Propagation of block weights into edges. This uses a simple
1107///    propagation heuristic. The following rules are applied to every
1108///    block BB in the CFG:
1109///
1110///    - If BB has a single predecessor/successor, then the weight
1111///      of that edge is the weight of the block.
1112///
1113///    - If all the edges are known except one, and the weight of the
1114///      block is already known, the weight of the unknown edge will
1115///      be the weight of the block minus the sum of all the known
1116///      edges. If the sum of all the known edges is larger than BB's weight,
1117///      we set the unknown edge weight to zero.
1118///
1119///    - If there is a self-referential edge, and the weight of the block is
1120///      known, the weight for that edge is set to the weight of the block
1121///      minus the weight of the other incoming edges to that block (if
1122///      known).
1123///
1124/// Since this propagation is not guaranteed to finalize for every CFG, we
1125/// only allow it to proceed for a limited number of iterations (controlled
1126/// by -sample-profile-max-propagate-iterations).
1127///
1128/// FIXME: Try to replace this propagation heuristic with a scheme
1129/// that is guaranteed to finalize. A work-list approach similar to
1130/// the standard value propagation algorithm used by SSA-CCP might
1131/// work here.
1132///
1133/// Once all the branch weights are computed, we emit the MD_prof
1134/// metadata on BB using the computed values for each of its branches.
1135///
1136/// \param F The function to query.
1137///
1138/// \returns true if \p F was modified. Returns false, otherwise.
1139bool SampleProfileLoader::emitAnnotations(Function &F) {
1140  bool Changed = false;
1141
1142  if (getFunctionLoc(F) == 0)
1143    return false;
1144
1145  DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1146               << ": " << getFunctionLoc(F) << "\n");
1147
1148  Changed |= inlineHotFunctions(F);
1149
1150  // Compute basic block weights.
1151  Changed |= computeBlockWeights(F);
1152
1153  if (Changed) {
1154    // Compute dominance and loop info needed for propagation.
1155    computeDominanceAndLoopInfo(F);
1156
1157    // Find equivalence classes.
1158    findEquivalenceClasses(F);
1159
1160    // Propagate weights to all edges.
1161    propagateWeights(F);
1162  }
1163
1164  // If coverage checking was requested, compute it now.
1165  if (SampleProfileRecordCoverage) {
1166    unsigned Used = CoverageTracker.countUsedRecords(Samples);
1167    unsigned Total = CoverageTracker.countBodyRecords(Samples);
1168    unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1169    if (Coverage < SampleProfileRecordCoverage) {
1170      F.getContext().diagnose(DiagnosticInfoSampleProfile(
1171          F.getSubprogram()->getFilename(), getFunctionLoc(F),
1172          Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1173              Twine(Coverage) + "%) were applied",
1174          DS_Warning));
1175    }
1176  }
1177
1178  if (SampleProfileSampleCoverage) {
1179    uint64_t Used = CoverageTracker.getTotalUsedSamples();
1180    uint64_t Total = CoverageTracker.countBodySamples(Samples);
1181    unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1182    if (Coverage < SampleProfileSampleCoverage) {
1183      F.getContext().diagnose(DiagnosticInfoSampleProfile(
1184          F.getSubprogram()->getFilename(), getFunctionLoc(F),
1185          Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1186              Twine(Coverage) + "%) were applied",
1187          DS_Warning));
1188    }
1189  }
1190  return Changed;
1191}
1192
1193char SampleProfileLoaderLegacyPass::ID = 0;
1194INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1195                "Sample Profile loader", false, false)
1196INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1197INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1198                "Sample Profile loader", false, false)
1199
1200bool SampleProfileLoader::doInitialization(Module &M) {
1201  auto &Ctx = M.getContext();
1202  auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1203  if (std::error_code EC = ReaderOrErr.getError()) {
1204    std::string Msg = "Could not open profile: " + EC.message();
1205    Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1206    return false;
1207  }
1208  Reader = std::move(ReaderOrErr.get());
1209  ProfileIsValid = (Reader->read() == sampleprof_error::success);
1210  return true;
1211}
1212
1213ModulePass *llvm::createSampleProfileLoaderPass() {
1214  return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1215}
1216
1217ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1218  return new SampleProfileLoaderLegacyPass(Name);
1219}
1220
1221bool SampleProfileLoader::runOnModule(Module &M) {
1222  if (!ProfileIsValid)
1223    return false;
1224
1225  // Compute the total number of samples collected in this profile.
1226  for (const auto &I : Reader->getProfiles())
1227    TotalCollectedSamples += I.second.getTotalSamples();
1228
1229  bool retval = false;
1230  for (auto &F : M)
1231    if (!F.isDeclaration()) {
1232      clearFunctionData();
1233      retval |= runOnFunction(F);
1234    }
1235  M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1236  return retval;
1237}
1238
1239bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1240  // FIXME: pass in AssumptionCache correctly for the new pass manager.
1241  SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>());
1242  return SampleLoader.runOnModule(M);
1243}
1244
1245bool SampleProfileLoader::runOnFunction(Function &F) {
1246  F.setEntryCount(0);
1247  Samples = Reader->getSamplesFor(F);
1248  if (!Samples->empty())
1249    return emitAnnotations(F);
1250  return false;
1251}
1252
1253PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1254                                               AnalysisManager<Module> &AM) {
1255
1256  SampleProfileLoader SampleLoader(SampleProfileFile);
1257
1258  SampleLoader.doInitialization(M);
1259
1260  if (!SampleLoader.runOnModule(M))
1261    return PreservedAnalyses::all();
1262
1263  return PreservedAnalyses::none();
1264}
1265