1//===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// The InductiveRangeCheckElimination pass splits a loop's iteration space into
10// three disjoint ranges.  It does that in a way such that the loop running in
11// the middle loop provably does not need range checks. As an example, it will
12// convert
13//
14//   len = < known positive >
15//   for (i = 0; i < n; i++) {
16//     if (0 <= i && i < len) {
17//       do_something();
18//     } else {
19//       throw_out_of_bounds();
20//     }
21//   }
22//
23// to
24//
25//   len = < known positive >
26//   limit = smin(n, len)
27//   // no first segment
28//   for (i = 0; i < limit; i++) {
29//     if (0 <= i && i < len) { // this check is fully redundant
30//       do_something();
31//     } else {
32//       throw_out_of_bounds();
33//     }
34//   }
35//   for (i = limit; i < n; i++) {
36//     if (0 <= i && i < len) {
37//       do_something();
38//     } else {
39//       throw_out_of_bounds();
40//     }
41//   }
42//===----------------------------------------------------------------------===//
43
44#include "llvm/ADT/Optional.h"
45#include "llvm/Analysis/BranchProbabilityInfo.h"
46#include "llvm/Analysis/InstructionSimplify.h"
47#include "llvm/Analysis/LoopInfo.h"
48#include "llvm/Analysis/LoopPass.h"
49#include "llvm/Analysis/ScalarEvolution.h"
50#include "llvm/Analysis/ScalarEvolutionExpander.h"
51#include "llvm/Analysis/ScalarEvolutionExpressions.h"
52#include "llvm/Analysis/ValueTracking.h"
53#include "llvm/IR/Dominators.h"
54#include "llvm/IR/Function.h"
55#include "llvm/IR/IRBuilder.h"
56#include "llvm/IR/Instructions.h"
57#include "llvm/IR/Module.h"
58#include "llvm/IR/PatternMatch.h"
59#include "llvm/IR/ValueHandle.h"
60#include "llvm/IR/Verifier.h"
61#include "llvm/Pass.h"
62#include "llvm/Support/Debug.h"
63#include "llvm/Support/raw_ostream.h"
64#include "llvm/Transforms/Scalar.h"
65#include "llvm/Transforms/Utils/BasicBlockUtils.h"
66#include "llvm/Transforms/Utils/Cloning.h"
67#include "llvm/Transforms/Utils/LoopUtils.h"
68#include "llvm/Transforms/Utils/SimplifyIndVar.h"
69#include "llvm/Transforms/Utils/UnrollLoop.h"
70
71using namespace llvm;
72
73static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
74                                        cl::init(64));
75
76static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
77                                       cl::init(false));
78
79static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
80                                      cl::init(false));
81
82static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
83                                          cl::Hidden, cl::init(10));
84
85#define DEBUG_TYPE "irce"
86
87namespace {
88
89/// An inductive range check is conditional branch in a loop with
90///
91///  1. a very cold successor (i.e. the branch jumps to that successor very
92///     rarely)
93///
94///  and
95///
96///  2. a condition that is provably true for some contiguous range of values
97///     taken by the containing loop's induction variable.
98///
99class InductiveRangeCheck {
100  // Classifies a range check
101  enum RangeCheckKind : unsigned {
102    // Range check of the form "0 <= I".
103    RANGE_CHECK_LOWER = 1,
104
105    // Range check of the form "I < L" where L is known positive.
106    RANGE_CHECK_UPPER = 2,
107
108    // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER
109    // conditions.
110    RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER,
111
112    // Unrecognized range check condition.
113    RANGE_CHECK_UNKNOWN = (unsigned)-1
114  };
115
116  static StringRef rangeCheckKindToStr(RangeCheckKind);
117
118  const SCEV *Offset = nullptr;
119  const SCEV *Scale = nullptr;
120  Value *Length = nullptr;
121  Use *CheckUse = nullptr;
122  RangeCheckKind Kind = RANGE_CHECK_UNKNOWN;
123
124  static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
125                                            ScalarEvolution &SE, Value *&Index,
126                                            Value *&Length);
127
128  static void
129  extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
130                             SmallVectorImpl<InductiveRangeCheck> &Checks,
131                             SmallPtrSetImpl<Value *> &Visited);
132
133public:
134  const SCEV *getOffset() const { return Offset; }
135  const SCEV *getScale() const { return Scale; }
136  Value *getLength() const { return Length; }
137
138  void print(raw_ostream &OS) const {
139    OS << "InductiveRangeCheck:\n";
140    OS << "  Kind: " << rangeCheckKindToStr(Kind) << "\n";
141    OS << "  Offset: ";
142    Offset->print(OS);
143    OS << "  Scale: ";
144    Scale->print(OS);
145    OS << "  Length: ";
146    if (Length)
147      Length->print(OS);
148    else
149      OS << "(null)";
150    OS << "\n  CheckUse: ";
151    getCheckUse()->getUser()->print(OS);
152    OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
153  }
154
155#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
156  void dump() {
157    print(dbgs());
158  }
159#endif
160
161  Use *getCheckUse() const { return CheckUse; }
162
163  /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
164  /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
165
166  class Range {
167    const SCEV *Begin;
168    const SCEV *End;
169
170  public:
171    Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
172      assert(Begin->getType() == End->getType() && "ill-typed range!");
173    }
174
175    Type *getType() const { return Begin->getType(); }
176    const SCEV *getBegin() const { return Begin; }
177    const SCEV *getEnd() const { return End; }
178  };
179
180  /// This is the value the condition of the branch needs to evaluate to for the
181  /// branch to take the hot successor (see (1) above).
182  bool getPassingDirection() { return true; }
183
184  /// Computes a range for the induction variable (IndVar) in which the range
185  /// check is redundant and can be constant-folded away.  The induction
186  /// variable is not required to be the canonical {0,+,1} induction variable.
187  Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
188                                            const SCEVAddRecExpr *IndVar) const;
189
190  /// Parse out a set of inductive range checks from \p BI and append them to \p
191  /// Checks.
192  ///
193  /// NB! There may be conditions feeding into \p BI that aren't inductive range
194  /// checks, and hence don't end up in \p Checks.
195  static void
196  extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
197                               BranchProbabilityInfo &BPI,
198                               SmallVectorImpl<InductiveRangeCheck> &Checks);
199};
200
201class InductiveRangeCheckElimination : public LoopPass {
202public:
203  static char ID;
204  InductiveRangeCheckElimination() : LoopPass(ID) {
205    initializeInductiveRangeCheckEliminationPass(
206        *PassRegistry::getPassRegistry());
207  }
208
209  void getAnalysisUsage(AnalysisUsage &AU) const override {
210    AU.addRequired<BranchProbabilityInfoWrapperPass>();
211    getLoopAnalysisUsage(AU);
212  }
213
214  bool runOnLoop(Loop *L, LPPassManager &LPM) override;
215};
216
217char InductiveRangeCheckElimination::ID = 0;
218}
219
220INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce",
221                      "Inductive range check elimination", false, false)
222INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
223INITIALIZE_PASS_DEPENDENCY(LoopPass)
224INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce",
225                    "Inductive range check elimination", false, false)
226
227StringRef InductiveRangeCheck::rangeCheckKindToStr(
228    InductiveRangeCheck::RangeCheckKind RCK) {
229  switch (RCK) {
230  case InductiveRangeCheck::RANGE_CHECK_UNKNOWN:
231    return "RANGE_CHECK_UNKNOWN";
232
233  case InductiveRangeCheck::RANGE_CHECK_UPPER:
234    return "RANGE_CHECK_UPPER";
235
236  case InductiveRangeCheck::RANGE_CHECK_LOWER:
237    return "RANGE_CHECK_LOWER";
238
239  case InductiveRangeCheck::RANGE_CHECK_BOTH:
240    return "RANGE_CHECK_BOTH";
241  }
242
243  llvm_unreachable("unknown range check type!");
244}
245
246/// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
247/// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set
248/// `Index` and `Length` to `nullptr`.  Otherwise set `Index` to the value being
249/// range checked, and set `Length` to the upper limit `Index` is being range
250/// checked with if (and only if) the range check type is stronger or equal to
251/// RANGE_CHECK_UPPER.
252///
253InductiveRangeCheck::RangeCheckKind
254InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
255                                         ScalarEvolution &SE, Value *&Index,
256                                         Value *&Length) {
257
258  auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) {
259    const SCEV *S = SE.getSCEV(V);
260    if (isa<SCEVCouldNotCompute>(S))
261      return false;
262
263    return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant &&
264           SE.isKnownNonNegative(S);
265  };
266
267  using namespace llvm::PatternMatch;
268
269  ICmpInst::Predicate Pred = ICI->getPredicate();
270  Value *LHS = ICI->getOperand(0);
271  Value *RHS = ICI->getOperand(1);
272
273  switch (Pred) {
274  default:
275    return RANGE_CHECK_UNKNOWN;
276
277  case ICmpInst::ICMP_SLE:
278    std::swap(LHS, RHS);
279  // fallthrough
280  case ICmpInst::ICMP_SGE:
281    if (match(RHS, m_ConstantInt<0>())) {
282      Index = LHS;
283      return RANGE_CHECK_LOWER;
284    }
285    return RANGE_CHECK_UNKNOWN;
286
287  case ICmpInst::ICMP_SLT:
288    std::swap(LHS, RHS);
289  // fallthrough
290  case ICmpInst::ICMP_SGT:
291    if (match(RHS, m_ConstantInt<-1>())) {
292      Index = LHS;
293      return RANGE_CHECK_LOWER;
294    }
295
296    if (IsNonNegativeAndNotLoopVarying(LHS)) {
297      Index = RHS;
298      Length = LHS;
299      return RANGE_CHECK_UPPER;
300    }
301    return RANGE_CHECK_UNKNOWN;
302
303  case ICmpInst::ICMP_ULT:
304    std::swap(LHS, RHS);
305  // fallthrough
306  case ICmpInst::ICMP_UGT:
307    if (IsNonNegativeAndNotLoopVarying(LHS)) {
308      Index = RHS;
309      Length = LHS;
310      return RANGE_CHECK_BOTH;
311    }
312    return RANGE_CHECK_UNKNOWN;
313  }
314
315  llvm_unreachable("default clause returns!");
316}
317
318void InductiveRangeCheck::extractRangeChecksFromCond(
319    Loop *L, ScalarEvolution &SE, Use &ConditionUse,
320    SmallVectorImpl<InductiveRangeCheck> &Checks,
321    SmallPtrSetImpl<Value *> &Visited) {
322  using namespace llvm::PatternMatch;
323
324  Value *Condition = ConditionUse.get();
325  if (!Visited.insert(Condition).second)
326    return;
327
328  if (match(Condition, m_And(m_Value(), m_Value()))) {
329    SmallVector<InductiveRangeCheck, 8> SubChecks;
330    extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
331                               SubChecks, Visited);
332    extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
333                               SubChecks, Visited);
334
335    if (SubChecks.size() == 2) {
336      // Handle a special case where we know how to merge two checks separately
337      // checking the upper and lower bounds into a full range check.
338      const auto &RChkA = SubChecks[0];
339      const auto &RChkB = SubChecks[1];
340      if ((RChkA.Length == RChkB.Length || !RChkA.Length || !RChkB.Length) &&
341          RChkA.Offset == RChkB.Offset && RChkA.Scale == RChkB.Scale) {
342
343        // If RChkA.Kind == RChkB.Kind then we just found two identical checks.
344        // But if one of them is a RANGE_CHECK_LOWER and the other is a
345        // RANGE_CHECK_UPPER (only possibility if they're different) then
346        // together they form a RANGE_CHECK_BOTH.
347        SubChecks[0].Kind =
348            (InductiveRangeCheck::RangeCheckKind)(RChkA.Kind | RChkB.Kind);
349        SubChecks[0].Length = RChkA.Length ? RChkA.Length : RChkB.Length;
350        SubChecks[0].CheckUse = &ConditionUse;
351
352        // We updated one of the checks in place, now erase the other.
353        SubChecks.pop_back();
354      }
355    }
356
357    Checks.insert(Checks.end(), SubChecks.begin(), SubChecks.end());
358    return;
359  }
360
361  ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
362  if (!ICI)
363    return;
364
365  Value *Length = nullptr, *Index;
366  auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length);
367  if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
368    return;
369
370  const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
371  bool IsAffineIndex =
372      IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
373
374  if (!IsAffineIndex)
375    return;
376
377  InductiveRangeCheck IRC;
378  IRC.Length = Length;
379  IRC.Offset = IndexAddRec->getStart();
380  IRC.Scale = IndexAddRec->getStepRecurrence(SE);
381  IRC.CheckUse = &ConditionUse;
382  IRC.Kind = RCKind;
383  Checks.push_back(IRC);
384}
385
386void InductiveRangeCheck::extractRangeChecksFromBranch(
387    BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI,
388    SmallVectorImpl<InductiveRangeCheck> &Checks) {
389
390  if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
391    return;
392
393  BranchProbability LikelyTaken(15, 16);
394
395  if (BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
396    return;
397
398  SmallPtrSet<Value *, 8> Visited;
399  InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
400                                                  Checks, Visited);
401}
402
403namespace {
404
405// Keeps track of the structure of a loop.  This is similar to llvm::Loop,
406// except that it is more lightweight and can track the state of a loop through
407// changing and potentially invalid IR.  This structure also formalizes the
408// kinds of loops we can deal with -- ones that have a single latch that is also
409// an exiting block *and* have a canonical induction variable.
410struct LoopStructure {
411  const char *Tag;
412
413  BasicBlock *Header;
414  BasicBlock *Latch;
415
416  // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
417  // successor is `LatchExit', the exit block of the loop.
418  BranchInst *LatchBr;
419  BasicBlock *LatchExit;
420  unsigned LatchBrExitIdx;
421
422  Value *IndVarNext;
423  Value *IndVarStart;
424  Value *LoopExitAt;
425  bool IndVarIncreasing;
426
427  LoopStructure()
428      : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
429        LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr),
430        IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {}
431
432  template <typename M> LoopStructure map(M Map) const {
433    LoopStructure Result;
434    Result.Tag = Tag;
435    Result.Header = cast<BasicBlock>(Map(Header));
436    Result.Latch = cast<BasicBlock>(Map(Latch));
437    Result.LatchBr = cast<BranchInst>(Map(LatchBr));
438    Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
439    Result.LatchBrExitIdx = LatchBrExitIdx;
440    Result.IndVarNext = Map(IndVarNext);
441    Result.IndVarStart = Map(IndVarStart);
442    Result.LoopExitAt = Map(LoopExitAt);
443    Result.IndVarIncreasing = IndVarIncreasing;
444    return Result;
445  }
446
447  static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
448                                                    BranchProbabilityInfo &BPI,
449                                                    Loop &,
450                                                    const char *&);
451};
452
453/// This class is used to constrain loops to run within a given iteration space.
454/// The algorithm this class implements is given a Loop and a range [Begin,
455/// End).  The algorithm then tries to break out a "main loop" out of the loop
456/// it is given in a way that the "main loop" runs with the induction variable
457/// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
458/// loops to run any remaining iterations.  The pre loop runs any iterations in
459/// which the induction variable is < Begin, and the post loop runs any
460/// iterations in which the induction variable is >= End.
461///
462class LoopConstrainer {
463  // The representation of a clone of the original loop we started out with.
464  struct ClonedLoop {
465    // The cloned blocks
466    std::vector<BasicBlock *> Blocks;
467
468    // `Map` maps values in the clonee into values in the cloned version
469    ValueToValueMapTy Map;
470
471    // An instance of `LoopStructure` for the cloned loop
472    LoopStructure Structure;
473  };
474
475  // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
476  // more details on what these fields mean.
477  struct RewrittenRangeInfo {
478    BasicBlock *PseudoExit;
479    BasicBlock *ExitSelector;
480    std::vector<PHINode *> PHIValuesAtPseudoExit;
481    PHINode *IndVarEnd;
482
483    RewrittenRangeInfo()
484        : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
485  };
486
487  // Calculated subranges we restrict the iteration space of the main loop to.
488  // See the implementation of `calculateSubRanges' for more details on how
489  // these fields are computed.  `LowLimit` is None if there is no restriction
490  // on low end of the restricted iteration space of the main loop.  `HighLimit`
491  // is None if there is no restriction on high end of the restricted iteration
492  // space of the main loop.
493
494  struct SubRanges {
495    Optional<const SCEV *> LowLimit;
496    Optional<const SCEV *> HighLimit;
497  };
498
499  // A utility function that does a `replaceUsesOfWith' on the incoming block
500  // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
501  // incoming block list with `ReplaceBy'.
502  static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
503                              BasicBlock *ReplaceBy);
504
505  // Compute a safe set of limits for the main loop to run in -- effectively the
506  // intersection of `Range' and the iteration space of the original loop.
507  // Return None if unable to compute the set of subranges.
508  //
509  Optional<SubRanges> calculateSubRanges() const;
510
511  // Clone `OriginalLoop' and return the result in CLResult.  The IR after
512  // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
513  // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
514  // but there is no such edge.
515  //
516  void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
517
518  // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
519  // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
520  // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
521  // `OriginalHeaderCount'.
522  //
523  // If there are iterations left to execute, control is made to jump to
524  // `ContinuationBlock', otherwise they take the normal loop exit.  The
525  // returned `RewrittenRangeInfo' object is populated as follows:
526  //
527  //  .PseudoExit is a basic block that unconditionally branches to
528  //      `ContinuationBlock'.
529  //
530  //  .ExitSelector is a basic block that decides, on exit from the loop,
531  //      whether to branch to the "true" exit or to `PseudoExit'.
532  //
533  //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
534  //      for each PHINode in the loop header on taking the pseudo exit.
535  //
536  // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
537  // preheader because it is made to branch to the loop header only
538  // conditionally.
539  //
540  RewrittenRangeInfo
541  changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
542                          Value *ExitLoopAt,
543                          BasicBlock *ContinuationBlock) const;
544
545  // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
546  // function creates a new preheader for `LS' and returns it.
547  //
548  BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
549                              const char *Tag) const;
550
551  // `ContinuationBlockAndPreheader' was the continuation block for some call to
552  // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
553  // This function rewrites the PHI nodes in `LS.Header' to start with the
554  // correct value.
555  void rewriteIncomingValuesForPHIs(
556      LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
557      const LoopConstrainer::RewrittenRangeInfo &RRI) const;
558
559  // Even though we do not preserve any passes at this time, we at least need to
560  // keep the parent loop structure consistent.  The `LPPassManager' seems to
561  // verify this after running a loop pass.  This function adds the list of
562  // blocks denoted by BBs to this loops parent loop if required.
563  void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
564
565  // Some global state.
566  Function &F;
567  LLVMContext &Ctx;
568  ScalarEvolution &SE;
569
570  // Information about the original loop we started out with.
571  Loop &OriginalLoop;
572  LoopInfo &OriginalLoopInfo;
573  const SCEV *LatchTakenCount;
574  BasicBlock *OriginalPreheader;
575
576  // The preheader of the main loop.  This may or may not be different from
577  // `OriginalPreheader'.
578  BasicBlock *MainLoopPreheader;
579
580  // The range we need to run the main loop in.
581  InductiveRangeCheck::Range Range;
582
583  // The structure of the main loop (see comment at the beginning of this class
584  // for a definition)
585  LoopStructure MainLoopStructure;
586
587public:
588  LoopConstrainer(Loop &L, LoopInfo &LI, const LoopStructure &LS,
589                  ScalarEvolution &SE, InductiveRangeCheck::Range R)
590      : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
591        SE(SE), OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr),
592        OriginalPreheader(nullptr), MainLoopPreheader(nullptr), Range(R),
593        MainLoopStructure(LS) {}
594
595  // Entry point for the algorithm.  Returns true on success.
596  bool run();
597};
598
599}
600
601void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
602                                      BasicBlock *ReplaceBy) {
603  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
604    if (PN->getIncomingBlock(i) == Block)
605      PN->setIncomingBlock(i, ReplaceBy);
606}
607
608static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) {
609  APInt SMax =
610      APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
611  return SE.getSignedRange(S).contains(SMax) &&
612         SE.getUnsignedRange(S).contains(SMax);
613}
614
615static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) {
616  APInt SMin =
617      APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth());
618  return SE.getSignedRange(S).contains(SMin) &&
619         SE.getUnsignedRange(S).contains(SMin);
620}
621
622Optional<LoopStructure>
623LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI,
624                                  Loop &L, const char *&FailureReason) {
625  assert(L.isLoopSimplifyForm() && "should follow from addRequired<>");
626
627  BasicBlock *Latch = L.getLoopLatch();
628  if (!L.isLoopExiting(Latch)) {
629    FailureReason = "no loop latch";
630    return None;
631  }
632
633  BasicBlock *Header = L.getHeader();
634  BasicBlock *Preheader = L.getLoopPreheader();
635  if (!Preheader) {
636    FailureReason = "no preheader";
637    return None;
638  }
639
640  BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
641  if (!LatchBr || LatchBr->isUnconditional()) {
642    FailureReason = "latch terminator not conditional branch";
643    return None;
644  }
645
646  unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
647
648  BranchProbability ExitProbability =
649    BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
650
651  if (ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
652    FailureReason = "short running loop, not profitable";
653    return None;
654  }
655
656  ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
657  if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
658    FailureReason = "latch terminator branch not conditional on integral icmp";
659    return None;
660  }
661
662  const SCEV *LatchCount = SE.getExitCount(&L, Latch);
663  if (isa<SCEVCouldNotCompute>(LatchCount)) {
664    FailureReason = "could not compute latch count";
665    return None;
666  }
667
668  ICmpInst::Predicate Pred = ICI->getPredicate();
669  Value *LeftValue = ICI->getOperand(0);
670  const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
671  IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
672
673  Value *RightValue = ICI->getOperand(1);
674  const SCEV *RightSCEV = SE.getSCEV(RightValue);
675
676  // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
677  if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
678    if (isa<SCEVAddRecExpr>(RightSCEV)) {
679      std::swap(LeftSCEV, RightSCEV);
680      std::swap(LeftValue, RightValue);
681      Pred = ICmpInst::getSwappedPredicate(Pred);
682    } else {
683      FailureReason = "no add recurrences in the icmp";
684      return None;
685    }
686  }
687
688  auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
689    if (AR->getNoWrapFlags(SCEV::FlagNSW))
690      return true;
691
692    IntegerType *Ty = cast<IntegerType>(AR->getType());
693    IntegerType *WideTy =
694        IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
695
696    const SCEVAddRecExpr *ExtendAfterOp =
697        dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
698    if (ExtendAfterOp) {
699      const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
700      const SCEV *ExtendedStep =
701          SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
702
703      bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
704                          ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
705
706      if (NoSignedWrap)
707        return true;
708    }
709
710    // We may have proved this when computing the sign extension above.
711    return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
712  };
713
714  auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing) {
715    if (!AR->isAffine())
716      return false;
717
718    // Currently we only work with induction variables that have been proved to
719    // not wrap.  This restriction can potentially be lifted in the future.
720
721    if (!HasNoSignedWrap(AR))
722      return false;
723
724    if (const SCEVConstant *StepExpr =
725            dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
726      ConstantInt *StepCI = StepExpr->getValue();
727      if (StepCI->isOne() || StepCI->isMinusOne()) {
728        IsIncreasing = StepCI->isOne();
729        return true;
730      }
731    }
732
733    return false;
734  };
735
736  // `ICI` is interpreted as taking the backedge if the *next* value of the
737  // induction variable satisfies some constraint.
738
739  const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV);
740  bool IsIncreasing = false;
741  if (!IsInductionVar(IndVarNext, IsIncreasing)) {
742    FailureReason = "LHS in icmp not induction variable";
743    return None;
744  }
745
746  ConstantInt *One = ConstantInt::get(IndVarTy, 1);
747  // TODO: generalize the predicates here to also match their unsigned variants.
748  if (IsIncreasing) {
749    bool FoundExpectedPred =
750        (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) ||
751        (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0);
752
753    if (!FoundExpectedPred) {
754      FailureReason = "expected icmp slt semantically, found something else";
755      return None;
756    }
757
758    if (LatchBrExitIdx == 0) {
759      if (CanBeSMax(SE, RightSCEV)) {
760        // TODO: this restriction is easily removable -- we just have to
761        // remember that the icmp was an slt and not an sle.
762        FailureReason = "limit may overflow when coercing sle to slt";
763        return None;
764      }
765
766      IRBuilder<> B(Preheader->getTerminator());
767      RightValue = B.CreateAdd(RightValue, One);
768    }
769
770  } else {
771    bool FoundExpectedPred =
772        (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) ||
773        (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0);
774
775    if (!FoundExpectedPred) {
776      FailureReason = "expected icmp sgt semantically, found something else";
777      return None;
778    }
779
780    if (LatchBrExitIdx == 0) {
781      if (CanBeSMin(SE, RightSCEV)) {
782        // TODO: this restriction is easily removable -- we just have to
783        // remember that the icmp was an sgt and not an sge.
784        FailureReason = "limit may overflow when coercing sge to sgt";
785        return None;
786      }
787
788      IRBuilder<> B(Preheader->getTerminator());
789      RightValue = B.CreateSub(RightValue, One);
790    }
791  }
792
793  const SCEV *StartNext = IndVarNext->getStart();
794  const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE));
795  const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
796
797  BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
798
799  assert(SE.getLoopDisposition(LatchCount, &L) ==
800             ScalarEvolution::LoopInvariant &&
801         "loop variant exit count doesn't make sense!");
802
803  assert(!L.contains(LatchExit) && "expected an exit block!");
804  const DataLayout &DL = Preheader->getModule()->getDataLayout();
805  Value *IndVarStartV =
806      SCEVExpander(SE, DL, "irce")
807          .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator());
808  IndVarStartV->setName("indvar.start");
809
810  LoopStructure Result;
811
812  Result.Tag = "main";
813  Result.Header = Header;
814  Result.Latch = Latch;
815  Result.LatchBr = LatchBr;
816  Result.LatchExit = LatchExit;
817  Result.LatchBrExitIdx = LatchBrExitIdx;
818  Result.IndVarStart = IndVarStartV;
819  Result.IndVarNext = LeftValue;
820  Result.IndVarIncreasing = IsIncreasing;
821  Result.LoopExitAt = RightValue;
822
823  FailureReason = nullptr;
824
825  return Result;
826}
827
828Optional<LoopConstrainer::SubRanges>
829LoopConstrainer::calculateSubRanges() const {
830  IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
831
832  if (Range.getType() != Ty)
833    return None;
834
835  LoopConstrainer::SubRanges Result;
836
837  // I think we can be more aggressive here and make this nuw / nsw if the
838  // addition that feeds into the icmp for the latch's terminating branch is nuw
839  // / nsw.  In any case, a wrapping 2's complement addition is safe.
840  ConstantInt *One = ConstantInt::get(Ty, 1);
841  const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
842  const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
843
844  bool Increasing = MainLoopStructure.IndVarIncreasing;
845
846  // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the
847  // range of values the induction variable takes.
848
849  const SCEV *Smallest = nullptr, *Greatest = nullptr;
850
851  if (Increasing) {
852    Smallest = Start;
853    Greatest = End;
854  } else {
855    // These two computations may sign-overflow.  Here is why that is okay:
856    //
857    // We know that the induction variable does not sign-overflow on any
858    // iteration except the last one, and it starts at `Start` and ends at
859    // `End`, decrementing by one every time.
860    //
861    //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
862    //    induction variable is decreasing we know that that the smallest value
863    //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
864    //
865    //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
866    //    that case, `Clamp` will always return `Smallest` and
867    //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
868    //    will be an empty range.  Returning an empty range is always safe.
869    //
870
871    Smallest = SE.getAddExpr(End, SE.getSCEV(One));
872    Greatest = SE.getAddExpr(Start, SE.getSCEV(One));
873  }
874
875  auto Clamp = [this, Smallest, Greatest](const SCEV *S) {
876    return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S));
877  };
878
879  // In some cases we can prove that we don't need a pre or post loop
880
881  bool ProvablyNoPreloop =
882      SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest);
883  if (!ProvablyNoPreloop)
884    Result.LowLimit = Clamp(Range.getBegin());
885
886  bool ProvablyNoPostLoop =
887      SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd());
888  if (!ProvablyNoPostLoop)
889    Result.HighLimit = Clamp(Range.getEnd());
890
891  return Result;
892}
893
894void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
895                                const char *Tag) const {
896  for (BasicBlock *BB : OriginalLoop.getBlocks()) {
897    BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
898    Result.Blocks.push_back(Clone);
899    Result.Map[BB] = Clone;
900  }
901
902  auto GetClonedValue = [&Result](Value *V) {
903    assert(V && "null values not in domain!");
904    auto It = Result.Map.find(V);
905    if (It == Result.Map.end())
906      return V;
907    return static_cast<Value *>(It->second);
908  };
909
910  Result.Structure = MainLoopStructure.map(GetClonedValue);
911  Result.Structure.Tag = Tag;
912
913  for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
914    BasicBlock *ClonedBB = Result.Blocks[i];
915    BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
916
917    assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
918
919    for (Instruction &I : *ClonedBB)
920      RemapInstruction(&I, Result.Map,
921                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
922
923    // Exit blocks will now have one more predecessor and their PHI nodes need
924    // to be edited to reflect that.  No phi nodes need to be introduced because
925    // the loop is in LCSSA.
926
927    for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB);
928         SBBI != SBBE; ++SBBI) {
929
930      if (OriginalLoop.contains(*SBBI))
931        continue; // not an exit block
932
933      for (Instruction &I : **SBBI) {
934        if (!isa<PHINode>(&I))
935          break;
936
937        PHINode *PN = cast<PHINode>(&I);
938        Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
939        PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
940      }
941    }
942  }
943}
944
945LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
946    const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
947    BasicBlock *ContinuationBlock) const {
948
949  // We start with a loop with a single latch:
950  //
951  //    +--------------------+
952  //    |                    |
953  //    |     preheader      |
954  //    |                    |
955  //    +--------+-----------+
956  //             |      ----------------\
957  //             |     /                |
958  //    +--------v----v------+          |
959  //    |                    |          |
960  //    |      header        |          |
961  //    |                    |          |
962  //    +--------------------+          |
963  //                                    |
964  //            .....                   |
965  //                                    |
966  //    +--------------------+          |
967  //    |                    |          |
968  //    |       latch        >----------/
969  //    |                    |
970  //    +-------v------------+
971  //            |
972  //            |
973  //            |   +--------------------+
974  //            |   |                    |
975  //            +--->   original exit    |
976  //                |                    |
977  //                +--------------------+
978  //
979  // We change the control flow to look like
980  //
981  //
982  //    +--------------------+
983  //    |                    |
984  //    |     preheader      >-------------------------+
985  //    |                    |                         |
986  //    +--------v-----------+                         |
987  //             |    /-------------+                  |
988  //             |   /              |                  |
989  //    +--------v--v--------+      |                  |
990  //    |                    |      |                  |
991  //    |      header        |      |   +--------+     |
992  //    |                    |      |   |        |     |
993  //    +--------------------+      |   |  +-----v-----v-----------+
994  //                                |   |  |                       |
995  //                                |   |  |     .pseudo.exit      |
996  //                                |   |  |                       |
997  //                                |   |  +-----------v-----------+
998  //                                |   |              |
999  //            .....               |   |              |
1000  //                                |   |     +--------v-------------+
1001  //    +--------------------+      |   |     |                      |
1002  //    |                    |      |   |     |   ContinuationBlock  |
1003  //    |       latch        >------+   |     |                      |
1004  //    |                    |          |     +----------------------+
1005  //    +---------v----------+          |
1006  //              |                     |
1007  //              |                     |
1008  //              |     +---------------^-----+
1009  //              |     |                     |
1010  //              +----->    .exit.selector   |
1011  //                    |                     |
1012  //                    +----------v----------+
1013  //                               |
1014  //     +--------------------+    |
1015  //     |                    |    |
1016  //     |   original exit    <----+
1017  //     |                    |
1018  //     +--------------------+
1019  //
1020
1021  RewrittenRangeInfo RRI;
1022
1023  auto BBInsertLocation = std::next(Function::iterator(LS.Latch));
1024  RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1025                                        &F, &*BBInsertLocation);
1026  RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1027                                      &*BBInsertLocation);
1028
1029  BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1030  bool Increasing = LS.IndVarIncreasing;
1031
1032  IRBuilder<> B(PreheaderJump);
1033
1034  // EnterLoopCond - is it okay to start executing this `LS'?
1035  Value *EnterLoopCond = Increasing
1036                             ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
1037                             : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt);
1038
1039  B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1040  PreheaderJump->eraseFromParent();
1041
1042  LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1043  B.SetInsertPoint(LS.LatchBr);
1044  Value *TakeBackedgeLoopCond =
1045      Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt)
1046                 : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt);
1047  Value *CondForBranch = LS.LatchBrExitIdx == 1
1048                             ? TakeBackedgeLoopCond
1049                             : B.CreateNot(TakeBackedgeLoopCond);
1050
1051  LS.LatchBr->setCondition(CondForBranch);
1052
1053  B.SetInsertPoint(RRI.ExitSelector);
1054
1055  // IterationsLeft - are there any more iterations left, given the original
1056  // upper bound on the induction variable?  If not, we branch to the "real"
1057  // exit.
1058  Value *IterationsLeft = Increasing
1059                              ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt)
1060                              : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt);
1061  B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1062
1063  BranchInst *BranchToContinuation =
1064      BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1065
1066  // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1067  // each of the PHI nodes in the loop header.  This feeds into the initial
1068  // value of the same PHI nodes if/when we continue execution.
1069  for (Instruction &I : *LS.Header) {
1070    if (!isa<PHINode>(&I))
1071      break;
1072
1073    PHINode *PN = cast<PHINode>(&I);
1074
1075    PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
1076                                      BranchToContinuation);
1077
1078    NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
1079    NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
1080                        RRI.ExitSelector);
1081    RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1082  }
1083
1084  RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end",
1085                                  BranchToContinuation);
1086  RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
1087  RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector);
1088
1089  // The latch exit now has a branch from `RRI.ExitSelector' instead of
1090  // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
1091  for (Instruction &I : *LS.LatchExit) {
1092    if (PHINode *PN = dyn_cast<PHINode>(&I))
1093      replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
1094    else
1095      break;
1096  }
1097
1098  return RRI;
1099}
1100
1101void LoopConstrainer::rewriteIncomingValuesForPHIs(
1102    LoopStructure &LS, BasicBlock *ContinuationBlock,
1103    const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1104
1105  unsigned PHIIndex = 0;
1106  for (Instruction &I : *LS.Header) {
1107    if (!isa<PHINode>(&I))
1108      break;
1109
1110    PHINode *PN = cast<PHINode>(&I);
1111
1112    for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1113      if (PN->getIncomingBlock(i) == ContinuationBlock)
1114        PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1115  }
1116
1117  LS.IndVarStart = RRI.IndVarEnd;
1118}
1119
1120BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1121                                             BasicBlock *OldPreheader,
1122                                             const char *Tag) const {
1123
1124  BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1125  BranchInst::Create(LS.Header, Preheader);
1126
1127  for (Instruction &I : *LS.Header) {
1128    if (!isa<PHINode>(&I))
1129      break;
1130
1131    PHINode *PN = cast<PHINode>(&I);
1132    for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1133      replacePHIBlock(PN, OldPreheader, Preheader);
1134  }
1135
1136  return Preheader;
1137}
1138
1139void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1140  Loop *ParentLoop = OriginalLoop.getParentLoop();
1141  if (!ParentLoop)
1142    return;
1143
1144  for (BasicBlock *BB : BBs)
1145    ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo);
1146}
1147
1148bool LoopConstrainer::run() {
1149  BasicBlock *Preheader = nullptr;
1150  LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1151  Preheader = OriginalLoop.getLoopPreheader();
1152  assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1153         "preconditions!");
1154
1155  OriginalPreheader = Preheader;
1156  MainLoopPreheader = Preheader;
1157
1158  Optional<SubRanges> MaybeSR = calculateSubRanges();
1159  if (!MaybeSR.hasValue()) {
1160    DEBUG(dbgs() << "irce: could not compute subranges\n");
1161    return false;
1162  }
1163
1164  SubRanges SR = MaybeSR.getValue();
1165  bool Increasing = MainLoopStructure.IndVarIncreasing;
1166  IntegerType *IVTy =
1167      cast<IntegerType>(MainLoopStructure.IndVarNext->getType());
1168
1169  SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1170  Instruction *InsertPt = OriginalPreheader->getTerminator();
1171
1172  // It would have been better to make `PreLoop' and `PostLoop'
1173  // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1174  // constructor.
1175  ClonedLoop PreLoop, PostLoop;
1176  bool NeedsPreLoop =
1177      Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1178  bool NeedsPostLoop =
1179      Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1180
1181  Value *ExitPreLoopAt = nullptr;
1182  Value *ExitMainLoopAt = nullptr;
1183  const SCEVConstant *MinusOneS =
1184      cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1185
1186  if (NeedsPreLoop) {
1187    const SCEV *ExitPreLoopAtSCEV = nullptr;
1188
1189    if (Increasing)
1190      ExitPreLoopAtSCEV = *SR.LowLimit;
1191    else {
1192      if (CanBeSMin(SE, *SR.HighLimit)) {
1193        DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1194                     << "preloop exit limit.  HighLimit = " << *(*SR.HighLimit)
1195                     << "\n");
1196        return false;
1197      }
1198      ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1199    }
1200
1201    ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1202    ExitPreLoopAt->setName("exit.preloop.at");
1203  }
1204
1205  if (NeedsPostLoop) {
1206    const SCEV *ExitMainLoopAtSCEV = nullptr;
1207
1208    if (Increasing)
1209      ExitMainLoopAtSCEV = *SR.HighLimit;
1210    else {
1211      if (CanBeSMin(SE, *SR.LowLimit)) {
1212        DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1213                     << "mainloop exit limit.  LowLimit = " << *(*SR.LowLimit)
1214                     << "\n");
1215        return false;
1216      }
1217      ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1218    }
1219
1220    ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1221    ExitMainLoopAt->setName("exit.mainloop.at");
1222  }
1223
1224  // We clone these ahead of time so that we don't have to deal with changing
1225  // and temporarily invalid IR as we transform the loops.
1226  if (NeedsPreLoop)
1227    cloneLoop(PreLoop, "preloop");
1228  if (NeedsPostLoop)
1229    cloneLoop(PostLoop, "postloop");
1230
1231  RewrittenRangeInfo PreLoopRRI;
1232
1233  if (NeedsPreLoop) {
1234    Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1235                                                  PreLoop.Structure.Header);
1236
1237    MainLoopPreheader =
1238        createPreheader(MainLoopStructure, Preheader, "mainloop");
1239    PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1240                                         ExitPreLoopAt, MainLoopPreheader);
1241    rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1242                                 PreLoopRRI);
1243  }
1244
1245  BasicBlock *PostLoopPreheader = nullptr;
1246  RewrittenRangeInfo PostLoopRRI;
1247
1248  if (NeedsPostLoop) {
1249    PostLoopPreheader =
1250        createPreheader(PostLoop.Structure, Preheader, "postloop");
1251    PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1252                                          ExitMainLoopAt, PostLoopPreheader);
1253    rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1254                                 PostLoopRRI);
1255  }
1256
1257  BasicBlock *NewMainLoopPreheader =
1258      MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1259  BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
1260                             PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
1261                             PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1262
1263  // Some of the above may be nullptr, filter them out before passing to
1264  // addToParentLoopIfNeeded.
1265  auto NewBlocksEnd =
1266      std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1267
1268  addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1269  addToParentLoopIfNeeded(PreLoop.Blocks);
1270  addToParentLoopIfNeeded(PostLoop.Blocks);
1271
1272  return true;
1273}
1274
1275/// Computes and returns a range of values for the induction variable (IndVar)
1276/// in which the range check can be safely elided.  If it cannot compute such a
1277/// range, returns None.
1278Optional<InductiveRangeCheck::Range>
1279InductiveRangeCheck::computeSafeIterationSpace(
1280    ScalarEvolution &SE, const SCEVAddRecExpr *IndVar) const {
1281  // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1282  // variable, that may or may not exist as a real llvm::Value in the loop) and
1283  // this inductive range check is a range check on the "C + D * I" ("C" is
1284  // getOffset() and "D" is getScale()).  We rewrite the value being range
1285  // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1286  // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code
1287  // can be generalized as needed.
1288  //
1289  // The actual inequalities we solve are of the form
1290  //
1291  //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
1292  //
1293  // The inequality is satisfied by -M <= IndVar < (L - M) [^1].  All additions
1294  // and subtractions are twos-complement wrapping and comparisons are signed.
1295  //
1296  // Proof:
1297  //
1298  //   If there exists IndVar such that -M <= IndVar < (L - M) then it follows
1299  //   that -M <= (-M + L) [== Eq. 1].  Since L >= 0, if (-M + L) sign-overflows
1300  //   then (-M + L) < (-M).  Hence by [Eq. 1], (-M + L) could not have
1301  //   overflown.
1302  //
1303  //   This means IndVar = t + (-M) for t in [0, L).  Hence (IndVar + M) = t.
1304  //   Hence 0 <= (IndVar + M) < L
1305
1306  // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
1307  // 127, IndVar = 126 and L = -2 in an i8 world.
1308
1309  if (!IndVar->isAffine())
1310    return None;
1311
1312  const SCEV *A = IndVar->getStart();
1313  const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
1314  if (!B)
1315    return None;
1316
1317  const SCEV *C = getOffset();
1318  const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
1319  if (D != B)
1320    return None;
1321
1322  ConstantInt *ConstD = D->getValue();
1323  if (!(ConstD->isMinusOne() || ConstD->isOne()))
1324    return None;
1325
1326  const SCEV *M = SE.getMinusSCEV(C, A);
1327
1328  const SCEV *Begin = SE.getNegativeSCEV(M);
1329  const SCEV *UpperLimit = nullptr;
1330
1331  // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
1332  // We can potentially do much better here.
1333  if (Value *V = getLength()) {
1334    UpperLimit = SE.getSCEV(V);
1335  } else {
1336    assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!");
1337    unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth();
1338    UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1339  }
1340
1341  const SCEV *End = SE.getMinusSCEV(UpperLimit, M);
1342  return InductiveRangeCheck::Range(Begin, End);
1343}
1344
1345static Optional<InductiveRangeCheck::Range>
1346IntersectRange(ScalarEvolution &SE,
1347               const Optional<InductiveRangeCheck::Range> &R1,
1348               const InductiveRangeCheck::Range &R2) {
1349  if (!R1.hasValue())
1350    return R2;
1351  auto &R1Value = R1.getValue();
1352
1353  // TODO: we could widen the smaller range and have this work; but for now we
1354  // bail out to keep things simple.
1355  if (R1Value.getType() != R2.getType())
1356    return None;
1357
1358  const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1359  const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1360
1361  return InductiveRangeCheck::Range(NewBegin, NewEnd);
1362}
1363
1364bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
1365  if (skipLoop(L))
1366    return false;
1367
1368  if (L->getBlocks().size() >= LoopSizeCutoff) {
1369    DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
1370    return false;
1371  }
1372
1373  BasicBlock *Preheader = L->getLoopPreheader();
1374  if (!Preheader) {
1375    DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1376    return false;
1377  }
1378
1379  LLVMContext &Context = Preheader->getContext();
1380  SmallVector<InductiveRangeCheck, 16> RangeChecks;
1381  ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1382  BranchProbabilityInfo &BPI =
1383      getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1384
1385  for (auto BBI : L->getBlocks())
1386    if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1387      InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1388                                                        RangeChecks);
1389
1390  if (RangeChecks.empty())
1391    return false;
1392
1393  auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1394    OS << "irce: looking at loop "; L->print(OS);
1395    OS << "irce: loop has " << RangeChecks.size()
1396       << " inductive range checks: \n";
1397    for (InductiveRangeCheck &IRC : RangeChecks)
1398      IRC.print(OS);
1399  };
1400
1401  DEBUG(PrintRecognizedRangeChecks(dbgs()));
1402
1403  if (PrintRangeChecks)
1404    PrintRecognizedRangeChecks(errs());
1405
1406  const char *FailureReason = nullptr;
1407  Optional<LoopStructure> MaybeLoopStructure =
1408      LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
1409  if (!MaybeLoopStructure.hasValue()) {
1410    DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
1411                 << "\n";);
1412    return false;
1413  }
1414  LoopStructure LS = MaybeLoopStructure.getValue();
1415  bool Increasing = LS.IndVarIncreasing;
1416  const SCEV *MinusOne =
1417      SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true);
1418  const SCEVAddRecExpr *IndVar =
1419      cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne));
1420
1421  Optional<InductiveRangeCheck::Range> SafeIterRange;
1422  Instruction *ExprInsertPt = Preheader->getTerminator();
1423
1424  SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1425
1426  IRBuilder<> B(ExprInsertPt);
1427  for (InductiveRangeCheck &IRC : RangeChecks) {
1428    auto Result = IRC.computeSafeIterationSpace(SE, IndVar);
1429    if (Result.hasValue()) {
1430      auto MaybeSafeIterRange =
1431          IntersectRange(SE, SafeIterRange, Result.getValue());
1432      if (MaybeSafeIterRange.hasValue()) {
1433        RangeChecksToEliminate.push_back(IRC);
1434        SafeIterRange = MaybeSafeIterRange.getValue();
1435      }
1436    }
1437  }
1438
1439  if (!SafeIterRange.hasValue())
1440    return false;
1441
1442  LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LS,
1443                     SE, SafeIterRange.getValue());
1444  bool Changed = LC.run();
1445
1446  if (Changed) {
1447    auto PrintConstrainedLoopInfo = [L]() {
1448      dbgs() << "irce: in function ";
1449      dbgs() << L->getHeader()->getParent()->getName() << ": ";
1450      dbgs() << "constrained ";
1451      L->print(dbgs());
1452    };
1453
1454    DEBUG(PrintConstrainedLoopInfo());
1455
1456    if (PrintChangedLoops)
1457      PrintConstrainedLoopInfo();
1458
1459    // Optimize away the now-redundant range checks.
1460
1461    for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1462      ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1463                                          ? ConstantInt::getTrue(Context)
1464                                          : ConstantInt::getFalse(Context);
1465      IRC.getCheckUse()->set(FoldedRangeCheck);
1466    }
1467  }
1468
1469  return Changed;
1470}
1471
1472Pass *llvm::createInductiveRangeCheckEliminationPass() {
1473  return new InductiveRangeCheckElimination;
1474}
1475