1//===- CloneFunction.cpp - Clone a function into another function ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CloneFunctionInto interface, which is used as the
11// low-level function cloner.  This is used by the CloneFunction and function
12// inliner to do the dirty work of copying the body of a function around.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/Cloning.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Analysis/ConstantFolding.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LoopInfo.h"
21#include "llvm/IR/CFG.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DebugInfo.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/Function.h"
26#include "llvm/IR/GlobalVariable.h"
27#include "llvm/IR/Instructions.h"
28#include "llvm/IR/IntrinsicInst.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/IR/Metadata.h"
31#include "llvm/IR/Module.h"
32#include "llvm/Transforms/Utils/BasicBlockUtils.h"
33#include "llvm/Transforms/Utils/Local.h"
34#include "llvm/Transforms/Utils/ValueMapper.h"
35#include <map>
36using namespace llvm;
37
38/// See comments in Cloning.h.
39BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
40                                  ValueToValueMapTy &VMap,
41                                  const Twine &NameSuffix, Function *F,
42                                  ClonedCodeInfo *CodeInfo) {
43  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
44  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
45
46  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
47
48  // Loop over all instructions, and copy them over.
49  for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
50       II != IE; ++II) {
51    Instruction *NewInst = II->clone();
52    if (II->hasName())
53      NewInst->setName(II->getName()+NameSuffix);
54    NewBB->getInstList().push_back(NewInst);
55    VMap[&*II] = NewInst; // Add instruction map to value.
56
57    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
58    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
59      if (isa<ConstantInt>(AI->getArraySize()))
60        hasStaticAllocas = true;
61      else
62        hasDynamicAllocas = true;
63    }
64  }
65
66  if (CodeInfo) {
67    CodeInfo->ContainsCalls          |= hasCalls;
68    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
69    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
70                                        BB != &BB->getParent()->getEntryBlock();
71  }
72  return NewBB;
73}
74
75// Clone OldFunc into NewFunc, transforming the old arguments into references to
76// VMap values.
77//
78void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
79                             ValueToValueMapTy &VMap,
80                             bool ModuleLevelChanges,
81                             SmallVectorImpl<ReturnInst*> &Returns,
82                             const char *NameSuffix, ClonedCodeInfo *CodeInfo,
83                             ValueMapTypeRemapper *TypeMapper,
84                             ValueMaterializer *Materializer) {
85  assert(NameSuffix && "NameSuffix cannot be null!");
86
87#ifndef NDEBUG
88  for (const Argument &I : OldFunc->args())
89    assert(VMap.count(&I) && "No mapping from source argument specified!");
90#endif
91
92  // Copy all attributes other than those stored in the AttributeSet.  We need
93  // to remap the parameter indices of the AttributeSet.
94  AttributeSet NewAttrs = NewFunc->getAttributes();
95  NewFunc->copyAttributesFrom(OldFunc);
96  NewFunc->setAttributes(NewAttrs);
97
98  // Fix up the personality function that got copied over.
99  if (OldFunc->hasPersonalityFn())
100    NewFunc->setPersonalityFn(
101        MapValue(OldFunc->getPersonalityFn(), VMap,
102                 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
103                 TypeMapper, Materializer));
104
105  AttributeSet OldAttrs = OldFunc->getAttributes();
106  // Clone any argument attributes that are present in the VMap.
107  for (const Argument &OldArg : OldFunc->args())
108    if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
109      AttributeSet attrs =
110          OldAttrs.getParamAttributes(OldArg.getArgNo() + 1);
111      if (attrs.getNumSlots() > 0)
112        NewArg->addAttr(attrs);
113    }
114
115  NewFunc->setAttributes(
116      NewFunc->getAttributes()
117          .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex,
118                         OldAttrs.getRetAttributes())
119          .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex,
120                         OldAttrs.getFnAttributes()));
121
122  SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
123  OldFunc->getAllMetadata(MDs);
124  for (auto MD : MDs)
125    NewFunc->addMetadata(
126        MD.first,
127        *MapMetadata(MD.second, VMap,
128                     ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
129                     TypeMapper, Materializer));
130
131  // Loop over all of the basic blocks in the function, cloning them as
132  // appropriate.  Note that we save BE this way in order to handle cloning of
133  // recursive functions into themselves.
134  //
135  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
136       BI != BE; ++BI) {
137    const BasicBlock &BB = *BI;
138
139    // Create a new basic block and copy instructions into it!
140    BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
141
142    // Add basic block mapping.
143    VMap[&BB] = CBB;
144
145    // It is only legal to clone a function if a block address within that
146    // function is never referenced outside of the function.  Given that, we
147    // want to map block addresses from the old function to block addresses in
148    // the clone. (This is different from the generic ValueMapper
149    // implementation, which generates an invalid blockaddress when
150    // cloning a function.)
151    if (BB.hasAddressTaken()) {
152      Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
153                                              const_cast<BasicBlock*>(&BB));
154      VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
155    }
156
157    // Note return instructions for the caller.
158    if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
159      Returns.push_back(RI);
160  }
161
162  // Loop over all of the instructions in the function, fixing up operand
163  // references as we go.  This uses VMap to do all the hard work.
164  for (Function::iterator BB =
165           cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
166                          BE = NewFunc->end();
167       BB != BE; ++BB)
168    // Loop over all instructions, fixing each one as we find it...
169    for (Instruction &II : *BB)
170      RemapInstruction(&II, VMap,
171                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
172                       TypeMapper, Materializer);
173}
174
175/// Return a copy of the specified function and add it to that function's
176/// module.  Also, any references specified in the VMap are changed to refer to
177/// their mapped value instead of the original one.  If any of the arguments to
178/// the function are in the VMap, the arguments are deleted from the resultant
179/// function.  The VMap is updated to include mappings from all of the
180/// instructions and basicblocks in the function from their old to new values.
181///
182Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
183                              ClonedCodeInfo *CodeInfo) {
184  std::vector<Type*> ArgTypes;
185
186  // The user might be deleting arguments to the function by specifying them in
187  // the VMap.  If so, we need to not add the arguments to the arg ty vector
188  //
189  for (const Argument &I : F->args())
190    if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
191      ArgTypes.push_back(I.getType());
192
193  // Create a new function type...
194  FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
195                                    ArgTypes, F->getFunctionType()->isVarArg());
196
197  // Create the new function...
198  Function *NewF =
199      Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent());
200
201  // Loop over the arguments, copying the names of the mapped arguments over...
202  Function::arg_iterator DestI = NewF->arg_begin();
203  for (const Argument & I : F->args())
204    if (VMap.count(&I) == 0) {     // Is this argument preserved?
205      DestI->setName(I.getName()); // Copy the name over...
206      VMap[&I] = &*DestI++;        // Add mapping to VMap
207    }
208
209  SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
210  CloneFunctionInto(NewF, F, VMap, /*ModuleLevelChanges=*/false, Returns, "",
211                    CodeInfo);
212
213  return NewF;
214}
215
216
217
218namespace {
219  /// This is a private class used to implement CloneAndPruneFunctionInto.
220  struct PruningFunctionCloner {
221    Function *NewFunc;
222    const Function *OldFunc;
223    ValueToValueMapTy &VMap;
224    bool ModuleLevelChanges;
225    const char *NameSuffix;
226    ClonedCodeInfo *CodeInfo;
227
228  public:
229    PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
230                          ValueToValueMapTy &valueMap, bool moduleLevelChanges,
231                          const char *nameSuffix, ClonedCodeInfo *codeInfo)
232        : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
233          ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
234          CodeInfo(codeInfo) {}
235
236    /// The specified block is found to be reachable, clone it and
237    /// anything that it can reach.
238    void CloneBlock(const BasicBlock *BB,
239                    BasicBlock::const_iterator StartingInst,
240                    std::vector<const BasicBlock*> &ToClone);
241  };
242}
243
244/// The specified block is found to be reachable, clone it and
245/// anything that it can reach.
246void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
247                                       BasicBlock::const_iterator StartingInst,
248                                       std::vector<const BasicBlock*> &ToClone){
249  WeakVH &BBEntry = VMap[BB];
250
251  // Have we already cloned this block?
252  if (BBEntry) return;
253
254  // Nope, clone it now.
255  BasicBlock *NewBB;
256  BBEntry = NewBB = BasicBlock::Create(BB->getContext());
257  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
258
259  // It is only legal to clone a function if a block address within that
260  // function is never referenced outside of the function.  Given that, we
261  // want to map block addresses from the old function to block addresses in
262  // the clone. (This is different from the generic ValueMapper
263  // implementation, which generates an invalid blockaddress when
264  // cloning a function.)
265  //
266  // Note that we don't need to fix the mapping for unreachable blocks;
267  // the default mapping there is safe.
268  if (BB->hasAddressTaken()) {
269    Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
270                                            const_cast<BasicBlock*>(BB));
271    VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
272  }
273
274  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
275
276  // Loop over all instructions, and copy them over, DCE'ing as we go.  This
277  // loop doesn't include the terminator.
278  for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
279       II != IE; ++II) {
280
281    Instruction *NewInst = II->clone();
282
283    // Eagerly remap operands to the newly cloned instruction, except for PHI
284    // nodes for which we defer processing until we update the CFG.
285    if (!isa<PHINode>(NewInst)) {
286      RemapInstruction(NewInst, VMap,
287                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
288
289      // If we can simplify this instruction to some other value, simply add
290      // a mapping to that value rather than inserting a new instruction into
291      // the basic block.
292      if (Value *V =
293              SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
294        // On the off-chance that this simplifies to an instruction in the old
295        // function, map it back into the new function.
296        if (Value *MappedV = VMap.lookup(V))
297          V = MappedV;
298
299        if (!NewInst->mayHaveSideEffects()) {
300          VMap[&*II] = V;
301          delete NewInst;
302          continue;
303        }
304      }
305    }
306
307    if (II->hasName())
308      NewInst->setName(II->getName()+NameSuffix);
309    VMap[&*II] = NewInst; // Add instruction map to value.
310    NewBB->getInstList().push_back(NewInst);
311    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
312
313    if (CodeInfo)
314      if (auto CS = ImmutableCallSite(&*II))
315        if (CS.hasOperandBundles())
316          CodeInfo->OperandBundleCallSites.push_back(NewInst);
317
318    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
319      if (isa<ConstantInt>(AI->getArraySize()))
320        hasStaticAllocas = true;
321      else
322        hasDynamicAllocas = true;
323    }
324  }
325
326  // Finally, clone over the terminator.
327  const TerminatorInst *OldTI = BB->getTerminator();
328  bool TerminatorDone = false;
329  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
330    if (BI->isConditional()) {
331      // If the condition was a known constant in the callee...
332      ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
333      // Or is a known constant in the caller...
334      if (!Cond) {
335        Value *V = VMap.lookup(BI->getCondition());
336        Cond = dyn_cast_or_null<ConstantInt>(V);
337      }
338
339      // Constant fold to uncond branch!
340      if (Cond) {
341        BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
342        VMap[OldTI] = BranchInst::Create(Dest, NewBB);
343        ToClone.push_back(Dest);
344        TerminatorDone = true;
345      }
346    }
347  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
348    // If switching on a value known constant in the caller.
349    ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
350    if (!Cond) { // Or known constant after constant prop in the callee...
351      Value *V = VMap.lookup(SI->getCondition());
352      Cond = dyn_cast_or_null<ConstantInt>(V);
353    }
354    if (Cond) {     // Constant fold to uncond branch!
355      SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
356      BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
357      VMap[OldTI] = BranchInst::Create(Dest, NewBB);
358      ToClone.push_back(Dest);
359      TerminatorDone = true;
360    }
361  }
362
363  if (!TerminatorDone) {
364    Instruction *NewInst = OldTI->clone();
365    if (OldTI->hasName())
366      NewInst->setName(OldTI->getName()+NameSuffix);
367    NewBB->getInstList().push_back(NewInst);
368    VMap[OldTI] = NewInst;             // Add instruction map to value.
369
370    if (CodeInfo)
371      if (auto CS = ImmutableCallSite(OldTI))
372        if (CS.hasOperandBundles())
373          CodeInfo->OperandBundleCallSites.push_back(NewInst);
374
375    // Recursively clone any reachable successor blocks.
376    const TerminatorInst *TI = BB->getTerminator();
377    for (const BasicBlock *Succ : TI->successors())
378      ToClone.push_back(Succ);
379  }
380
381  if (CodeInfo) {
382    CodeInfo->ContainsCalls          |= hasCalls;
383    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
384    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
385      BB != &BB->getParent()->front();
386  }
387}
388
389/// This works like CloneAndPruneFunctionInto, except that it does not clone the
390/// entire function. Instead it starts at an instruction provided by the caller
391/// and copies (and prunes) only the code reachable from that instruction.
392void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
393                                     const Instruction *StartingInst,
394                                     ValueToValueMapTy &VMap,
395                                     bool ModuleLevelChanges,
396                                     SmallVectorImpl<ReturnInst *> &Returns,
397                                     const char *NameSuffix,
398                                     ClonedCodeInfo *CodeInfo) {
399  assert(NameSuffix && "NameSuffix cannot be null!");
400
401  ValueMapTypeRemapper *TypeMapper = nullptr;
402  ValueMaterializer *Materializer = nullptr;
403
404#ifndef NDEBUG
405  // If the cloning starts at the beginning of the function, verify that
406  // the function arguments are mapped.
407  if (!StartingInst)
408    for (const Argument &II : OldFunc->args())
409      assert(VMap.count(&II) && "No mapping from source argument specified!");
410#endif
411
412  PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
413                            NameSuffix, CodeInfo);
414  const BasicBlock *StartingBB;
415  if (StartingInst)
416    StartingBB = StartingInst->getParent();
417  else {
418    StartingBB = &OldFunc->getEntryBlock();
419    StartingInst = &StartingBB->front();
420  }
421
422  // Clone the entry block, and anything recursively reachable from it.
423  std::vector<const BasicBlock*> CloneWorklist;
424  PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
425  while (!CloneWorklist.empty()) {
426    const BasicBlock *BB = CloneWorklist.back();
427    CloneWorklist.pop_back();
428    PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
429  }
430
431  // Loop over all of the basic blocks in the old function.  If the block was
432  // reachable, we have cloned it and the old block is now in the value map:
433  // insert it into the new function in the right order.  If not, ignore it.
434  //
435  // Defer PHI resolution until rest of function is resolved.
436  SmallVector<const PHINode*, 16> PHIToResolve;
437  for (const BasicBlock &BI : *OldFunc) {
438    Value *V = VMap.lookup(&BI);
439    BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
440    if (!NewBB) continue;  // Dead block.
441
442    // Add the new block to the new function.
443    NewFunc->getBasicBlockList().push_back(NewBB);
444
445    // Handle PHI nodes specially, as we have to remove references to dead
446    // blocks.
447    for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) {
448      // PHI nodes may have been remapped to non-PHI nodes by the caller or
449      // during the cloning process.
450      if (const PHINode *PN = dyn_cast<PHINode>(I)) {
451        if (isa<PHINode>(VMap[PN]))
452          PHIToResolve.push_back(PN);
453        else
454          break;
455      } else {
456        break;
457      }
458    }
459
460    // Finally, remap the terminator instructions, as those can't be remapped
461    // until all BBs are mapped.
462    RemapInstruction(NewBB->getTerminator(), VMap,
463                     ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
464                     TypeMapper, Materializer);
465  }
466
467  // Defer PHI resolution until rest of function is resolved, PHI resolution
468  // requires the CFG to be up-to-date.
469  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
470    const PHINode *OPN = PHIToResolve[phino];
471    unsigned NumPreds = OPN->getNumIncomingValues();
472    const BasicBlock *OldBB = OPN->getParent();
473    BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
474
475    // Map operands for blocks that are live and remove operands for blocks
476    // that are dead.
477    for (; phino != PHIToResolve.size() &&
478         PHIToResolve[phino]->getParent() == OldBB; ++phino) {
479      OPN = PHIToResolve[phino];
480      PHINode *PN = cast<PHINode>(VMap[OPN]);
481      for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
482        Value *V = VMap.lookup(PN->getIncomingBlock(pred));
483        if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
484          Value *InVal = MapValue(PN->getIncomingValue(pred),
485                                  VMap,
486                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
487          assert(InVal && "Unknown input value?");
488          PN->setIncomingValue(pred, InVal);
489          PN->setIncomingBlock(pred, MappedBlock);
490        } else {
491          PN->removeIncomingValue(pred, false);
492          --pred;  // Revisit the next entry.
493          --e;
494        }
495      }
496    }
497
498    // The loop above has removed PHI entries for those blocks that are dead
499    // and has updated others.  However, if a block is live (i.e. copied over)
500    // but its terminator has been changed to not go to this block, then our
501    // phi nodes will have invalid entries.  Update the PHI nodes in this
502    // case.
503    PHINode *PN = cast<PHINode>(NewBB->begin());
504    NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
505    if (NumPreds != PN->getNumIncomingValues()) {
506      assert(NumPreds < PN->getNumIncomingValues());
507      // Count how many times each predecessor comes to this block.
508      std::map<BasicBlock*, unsigned> PredCount;
509      for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
510           PI != E; ++PI)
511        --PredCount[*PI];
512
513      // Figure out how many entries to remove from each PHI.
514      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
515        ++PredCount[PN->getIncomingBlock(i)];
516
517      // At this point, the excess predecessor entries are positive in the
518      // map.  Loop over all of the PHIs and remove excess predecessor
519      // entries.
520      BasicBlock::iterator I = NewBB->begin();
521      for (; (PN = dyn_cast<PHINode>(I)); ++I) {
522        for (const auto &PCI : PredCount) {
523          BasicBlock *Pred = PCI.first;
524          for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
525            PN->removeIncomingValue(Pred, false);
526        }
527      }
528    }
529
530    // If the loops above have made these phi nodes have 0 or 1 operand,
531    // replace them with undef or the input value.  We must do this for
532    // correctness, because 0-operand phis are not valid.
533    PN = cast<PHINode>(NewBB->begin());
534    if (PN->getNumIncomingValues() == 0) {
535      BasicBlock::iterator I = NewBB->begin();
536      BasicBlock::const_iterator OldI = OldBB->begin();
537      while ((PN = dyn_cast<PHINode>(I++))) {
538        Value *NV = UndefValue::get(PN->getType());
539        PN->replaceAllUsesWith(NV);
540        assert(VMap[&*OldI] == PN && "VMap mismatch");
541        VMap[&*OldI] = NV;
542        PN->eraseFromParent();
543        ++OldI;
544      }
545    }
546  }
547
548  // Make a second pass over the PHINodes now that all of them have been
549  // remapped into the new function, simplifying the PHINode and performing any
550  // recursive simplifications exposed. This will transparently update the
551  // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
552  // two PHINodes, the iteration over the old PHIs remains valid, and the
553  // mapping will just map us to the new node (which may not even be a PHI
554  // node).
555  for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
556    if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
557      recursivelySimplifyInstruction(PN);
558
559  // Now that the inlined function body has been fully constructed, go through
560  // and zap unconditional fall-through branches. This happens all the time when
561  // specializing code: code specialization turns conditional branches into
562  // uncond branches, and this code folds them.
563  Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
564  Function::iterator I = Begin;
565  while (I != NewFunc->end()) {
566    // Check if this block has become dead during inlining or other
567    // simplifications. Note that the first block will appear dead, as it has
568    // not yet been wired up properly.
569    if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
570                       I->getSinglePredecessor() == &*I)) {
571      BasicBlock *DeadBB = &*I++;
572      DeleteDeadBlock(DeadBB);
573      continue;
574    }
575
576    // We need to simplify conditional branches and switches with a constant
577    // operand. We try to prune these out when cloning, but if the
578    // simplification required looking through PHI nodes, those are only
579    // available after forming the full basic block. That may leave some here,
580    // and we still want to prune the dead code as early as possible.
581    ConstantFoldTerminator(&*I);
582
583    BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
584    if (!BI || BI->isConditional()) { ++I; continue; }
585
586    BasicBlock *Dest = BI->getSuccessor(0);
587    if (!Dest->getSinglePredecessor()) {
588      ++I; continue;
589    }
590
591    // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
592    // above should have zapped all of them..
593    assert(!isa<PHINode>(Dest->begin()));
594
595    // We know all single-entry PHI nodes in the inlined function have been
596    // removed, so we just need to splice the blocks.
597    BI->eraseFromParent();
598
599    // Make all PHI nodes that referred to Dest now refer to I as their source.
600    Dest->replaceAllUsesWith(&*I);
601
602    // Move all the instructions in the succ to the pred.
603    I->getInstList().splice(I->end(), Dest->getInstList());
604
605    // Remove the dest block.
606    Dest->eraseFromParent();
607
608    // Do not increment I, iteratively merge all things this block branches to.
609  }
610
611  // Make a final pass over the basic blocks from the old function to gather
612  // any return instructions which survived folding. We have to do this here
613  // because we can iteratively remove and merge returns above.
614  for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
615                          E = NewFunc->end();
616       I != E; ++I)
617    if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
618      Returns.push_back(RI);
619}
620
621
622/// This works exactly like CloneFunctionInto,
623/// except that it does some simple constant prop and DCE on the fly.  The
624/// effect of this is to copy significantly less code in cases where (for
625/// example) a function call with constant arguments is inlined, and those
626/// constant arguments cause a significant amount of code in the callee to be
627/// dead.  Since this doesn't produce an exact copy of the input, it can't be
628/// used for things like CloneFunction or CloneModule.
629void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
630                                     ValueToValueMapTy &VMap,
631                                     bool ModuleLevelChanges,
632                                     SmallVectorImpl<ReturnInst*> &Returns,
633                                     const char *NameSuffix,
634                                     ClonedCodeInfo *CodeInfo,
635                                     Instruction *TheCall) {
636  CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
637                            ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
638}
639
640/// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
641void llvm::remapInstructionsInBlocks(
642    const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
643  // Rewrite the code to refer to itself.
644  for (auto *BB : Blocks)
645    for (auto &Inst : *BB)
646      RemapInstruction(&Inst, VMap,
647                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
648}
649
650/// \brief Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
651/// Blocks.
652///
653/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
654/// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
655Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
656                                   Loop *OrigLoop, ValueToValueMapTy &VMap,
657                                   const Twine &NameSuffix, LoopInfo *LI,
658                                   DominatorTree *DT,
659                                   SmallVectorImpl<BasicBlock *> &Blocks) {
660  assert(OrigLoop->getSubLoops().empty() &&
661         "Loop to be cloned cannot have inner loop");
662  Function *F = OrigLoop->getHeader()->getParent();
663  Loop *ParentLoop = OrigLoop->getParentLoop();
664
665  Loop *NewLoop = new Loop();
666  if (ParentLoop)
667    ParentLoop->addChildLoop(NewLoop);
668  else
669    LI->addTopLevelLoop(NewLoop);
670
671  BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
672  assert(OrigPH && "No preheader");
673  BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
674  // To rename the loop PHIs.
675  VMap[OrigPH] = NewPH;
676  Blocks.push_back(NewPH);
677
678  // Update LoopInfo.
679  if (ParentLoop)
680    ParentLoop->addBasicBlockToLoop(NewPH, *LI);
681
682  // Update DominatorTree.
683  DT->addNewBlock(NewPH, LoopDomBB);
684
685  for (BasicBlock *BB : OrigLoop->getBlocks()) {
686    BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
687    VMap[BB] = NewBB;
688
689    // Update LoopInfo.
690    NewLoop->addBasicBlockToLoop(NewBB, *LI);
691
692    // Add DominatorTree node. After seeing all blocks, update to correct IDom.
693    DT->addNewBlock(NewBB, NewPH);
694
695    Blocks.push_back(NewBB);
696  }
697
698  for (BasicBlock *BB : OrigLoop->getBlocks()) {
699    // Update DominatorTree.
700    BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
701    DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
702                                 cast<BasicBlock>(VMap[IDomBB]));
703  }
704
705  // Move them physically from the end of the block list.
706  F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
707                                NewPH);
708  F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
709                                NewLoop->getHeader()->getIterator(), F->end());
710
711  return NewLoop;
712}
713