1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/ADT/SetVector.h"
17#include "llvm/ADT/SmallSet.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/AssumptionCache.h"
22#include "llvm/Analysis/CallGraph.h"
23#include "llvm/Analysis/CaptureTracking.h"
24#include "llvm/Analysis/EHPersonalities.h"
25#include "llvm/Analysis/InstructionSimplify.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/IR/Attributes.h"
28#include "llvm/IR/CallSite.h"
29#include "llvm/IR/CFG.h"
30#include "llvm/IR/Constants.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/DebugInfo.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/DIBuilder.h"
35#include "llvm/IR/Dominators.h"
36#include "llvm/IR/IRBuilder.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/IntrinsicInst.h"
39#include "llvm/IR/Intrinsics.h"
40#include "llvm/IR/MDBuilder.h"
41#include "llvm/IR/Module.h"
42#include "llvm/Transforms/Utils/Local.h"
43#include "llvm/Support/CommandLine.h"
44#include <algorithm>
45
46using namespace llvm;
47
48static cl::opt<bool>
49EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
50  cl::Hidden,
51  cl::desc("Convert noalias attributes to metadata during inlining."));
52
53static cl::opt<bool>
54PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
55  cl::init(true), cl::Hidden,
56  cl::desc("Convert align attributes to assumptions during inlining."));
57
58bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
59                          AAResults *CalleeAAR, bool InsertLifetime) {
60  return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime);
61}
62bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
63                          AAResults *CalleeAAR, bool InsertLifetime) {
64  return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime);
65}
66
67namespace {
68  /// A class for recording information about inlining a landing pad.
69  class LandingPadInliningInfo {
70    BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
71    BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
72    LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
73    PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
74    SmallVector<Value*, 8> UnwindDestPHIValues;
75
76  public:
77    LandingPadInliningInfo(InvokeInst *II)
78      : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
79        CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
80      // If there are PHI nodes in the unwind destination block, we need to keep
81      // track of which values came into them from the invoke before removing
82      // the edge from this block.
83      llvm::BasicBlock *InvokeBB = II->getParent();
84      BasicBlock::iterator I = OuterResumeDest->begin();
85      for (; isa<PHINode>(I); ++I) {
86        // Save the value to use for this edge.
87        PHINode *PHI = cast<PHINode>(I);
88        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
89      }
90
91      CallerLPad = cast<LandingPadInst>(I);
92    }
93
94    /// The outer unwind destination is the target of
95    /// unwind edges introduced for calls within the inlined function.
96    BasicBlock *getOuterResumeDest() const {
97      return OuterResumeDest;
98    }
99
100    BasicBlock *getInnerResumeDest();
101
102    LandingPadInst *getLandingPadInst() const { return CallerLPad; }
103
104    /// Forward the 'resume' instruction to the caller's landing pad block.
105    /// When the landing pad block has only one predecessor, this is
106    /// a simple branch. When there is more than one predecessor, we need to
107    /// split the landing pad block after the landingpad instruction and jump
108    /// to there.
109    void forwardResume(ResumeInst *RI,
110                       SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
111
112    /// Add incoming-PHI values to the unwind destination block for the given
113    /// basic block, using the values for the original invoke's source block.
114    void addIncomingPHIValuesFor(BasicBlock *BB) const {
115      addIncomingPHIValuesForInto(BB, OuterResumeDest);
116    }
117
118    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
119      BasicBlock::iterator I = dest->begin();
120      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
121        PHINode *phi = cast<PHINode>(I);
122        phi->addIncoming(UnwindDestPHIValues[i], src);
123      }
124    }
125  };
126} // anonymous namespace
127
128/// Get or create a target for the branch from ResumeInsts.
129BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
130  if (InnerResumeDest) return InnerResumeDest;
131
132  // Split the landing pad.
133  BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
134  InnerResumeDest =
135    OuterResumeDest->splitBasicBlock(SplitPoint,
136                                     OuterResumeDest->getName() + ".body");
137
138  // The number of incoming edges we expect to the inner landing pad.
139  const unsigned PHICapacity = 2;
140
141  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
142  Instruction *InsertPoint = &InnerResumeDest->front();
143  BasicBlock::iterator I = OuterResumeDest->begin();
144  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
145    PHINode *OuterPHI = cast<PHINode>(I);
146    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
147                                        OuterPHI->getName() + ".lpad-body",
148                                        InsertPoint);
149    OuterPHI->replaceAllUsesWith(InnerPHI);
150    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
151  }
152
153  // Create a PHI for the exception values.
154  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
155                                     "eh.lpad-body", InsertPoint);
156  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
157  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
158
159  // All done.
160  return InnerResumeDest;
161}
162
163/// Forward the 'resume' instruction to the caller's landing pad block.
164/// When the landing pad block has only one predecessor, this is a simple
165/// branch. When there is more than one predecessor, we need to split the
166/// landing pad block after the landingpad instruction and jump to there.
167void LandingPadInliningInfo::forwardResume(
168    ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
169  BasicBlock *Dest = getInnerResumeDest();
170  BasicBlock *Src = RI->getParent();
171
172  BranchInst::Create(Dest, Src);
173
174  // Update the PHIs in the destination. They were inserted in an order which
175  // makes this work.
176  addIncomingPHIValuesForInto(Src, Dest);
177
178  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
179  RI->eraseFromParent();
180}
181
182/// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
183static Value *getParentPad(Value *EHPad) {
184  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
185    return FPI->getParentPad();
186  return cast<CatchSwitchInst>(EHPad)->getParentPad();
187}
188
189typedef DenseMap<Instruction *, Value *> UnwindDestMemoTy;
190
191/// Helper for getUnwindDestToken that does the descendant-ward part of
192/// the search.
193static Value *getUnwindDestTokenHelper(Instruction *EHPad,
194                                       UnwindDestMemoTy &MemoMap) {
195  SmallVector<Instruction *, 8> Worklist(1, EHPad);
196
197  while (!Worklist.empty()) {
198    Instruction *CurrentPad = Worklist.pop_back_val();
199    // We only put pads on the worklist that aren't in the MemoMap.  When
200    // we find an unwind dest for a pad we may update its ancestors, but
201    // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
202    // so they should never get updated while queued on the worklist.
203    assert(!MemoMap.count(CurrentPad));
204    Value *UnwindDestToken = nullptr;
205    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
206      if (CatchSwitch->hasUnwindDest()) {
207        UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
208      } else {
209        // Catchswitch doesn't have a 'nounwind' variant, and one might be
210        // annotated as "unwinds to caller" when really it's nounwind (see
211        // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
212        // parent's unwind dest from this.  We can check its catchpads'
213        // descendants, since they might include a cleanuppad with an
214        // "unwinds to caller" cleanupret, which can be trusted.
215        for (auto HI = CatchSwitch->handler_begin(),
216                  HE = CatchSwitch->handler_end();
217             HI != HE && !UnwindDestToken; ++HI) {
218          BasicBlock *HandlerBlock = *HI;
219          auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
220          for (User *Child : CatchPad->users()) {
221            // Intentionally ignore invokes here -- since the catchswitch is
222            // marked "unwind to caller", it would be a verifier error if it
223            // contained an invoke which unwinds out of it, so any invoke we'd
224            // encounter must unwind to some child of the catch.
225            if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
226              continue;
227
228            Instruction *ChildPad = cast<Instruction>(Child);
229            auto Memo = MemoMap.find(ChildPad);
230            if (Memo == MemoMap.end()) {
231              // Haven't figure out this child pad yet; queue it.
232              Worklist.push_back(ChildPad);
233              continue;
234            }
235            // We've already checked this child, but might have found that
236            // it offers no proof either way.
237            Value *ChildUnwindDestToken = Memo->second;
238            if (!ChildUnwindDestToken)
239              continue;
240            // We already know the child's unwind dest, which can either
241            // be ConstantTokenNone to indicate unwind to caller, or can
242            // be another child of the catchpad.  Only the former indicates
243            // the unwind dest of the catchswitch.
244            if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
245              UnwindDestToken = ChildUnwindDestToken;
246              break;
247            }
248            assert(getParentPad(ChildUnwindDestToken) == CatchPad);
249          }
250        }
251      }
252    } else {
253      auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
254      for (User *U : CleanupPad->users()) {
255        if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
256          if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
257            UnwindDestToken = RetUnwindDest->getFirstNonPHI();
258          else
259            UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
260          break;
261        }
262        Value *ChildUnwindDestToken;
263        if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
264          ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
265        } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
266          Instruction *ChildPad = cast<Instruction>(U);
267          auto Memo = MemoMap.find(ChildPad);
268          if (Memo == MemoMap.end()) {
269            // Haven't resolved this child yet; queue it and keep searching.
270            Worklist.push_back(ChildPad);
271            continue;
272          }
273          // We've checked this child, but still need to ignore it if it
274          // had no proof either way.
275          ChildUnwindDestToken = Memo->second;
276          if (!ChildUnwindDestToken)
277            continue;
278        } else {
279          // Not a relevant user of the cleanuppad
280          continue;
281        }
282        // In a well-formed program, the child/invoke must either unwind to
283        // an(other) child of the cleanup, or exit the cleanup.  In the
284        // first case, continue searching.
285        if (isa<Instruction>(ChildUnwindDestToken) &&
286            getParentPad(ChildUnwindDestToken) == CleanupPad)
287          continue;
288        UnwindDestToken = ChildUnwindDestToken;
289        break;
290      }
291    }
292    // If we haven't found an unwind dest for CurrentPad, we may have queued its
293    // children, so move on to the next in the worklist.
294    if (!UnwindDestToken)
295      continue;
296
297    // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
298    // any ancestors of CurrentPad up to but not including UnwindDestToken's
299    // parent pad.  Record this in the memo map, and check to see if the
300    // original EHPad being queried is one of the ones exited.
301    Value *UnwindParent;
302    if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
303      UnwindParent = getParentPad(UnwindPad);
304    else
305      UnwindParent = nullptr;
306    bool ExitedOriginalPad = false;
307    for (Instruction *ExitedPad = CurrentPad;
308         ExitedPad && ExitedPad != UnwindParent;
309         ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
310      // Skip over catchpads since they just follow their catchswitches.
311      if (isa<CatchPadInst>(ExitedPad))
312        continue;
313      MemoMap[ExitedPad] = UnwindDestToken;
314      ExitedOriginalPad |= (ExitedPad == EHPad);
315    }
316
317    if (ExitedOriginalPad)
318      return UnwindDestToken;
319
320    // Continue the search.
321  }
322
323  // No definitive information is contained within this funclet.
324  return nullptr;
325}
326
327/// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
328/// return that pad instruction.  If it unwinds to caller, return
329/// ConstantTokenNone.  If it does not have a definitive unwind destination,
330/// return nullptr.
331///
332/// This routine gets invoked for calls in funclets in inlinees when inlining
333/// an invoke.  Since many funclets don't have calls inside them, it's queried
334/// on-demand rather than building a map of pads to unwind dests up front.
335/// Determining a funclet's unwind dest may require recursively searching its
336/// descendants, and also ancestors and cousins if the descendants don't provide
337/// an answer.  Since most funclets will have their unwind dest immediately
338/// available as the unwind dest of a catchswitch or cleanupret, this routine
339/// searches top-down from the given pad and then up. To avoid worst-case
340/// quadratic run-time given that approach, it uses a memo map to avoid
341/// re-processing funclet trees.  The callers that rewrite the IR as they go
342/// take advantage of this, for correctness, by checking/forcing rewritten
343/// pads' entries to match the original callee view.
344static Value *getUnwindDestToken(Instruction *EHPad,
345                                 UnwindDestMemoTy &MemoMap) {
346  // Catchpads unwind to the same place as their catchswitch;
347  // redirct any queries on catchpads so the code below can
348  // deal with just catchswitches and cleanuppads.
349  if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
350    EHPad = CPI->getCatchSwitch();
351
352  // Check if we've already determined the unwind dest for this pad.
353  auto Memo = MemoMap.find(EHPad);
354  if (Memo != MemoMap.end())
355    return Memo->second;
356
357  // Search EHPad and, if necessary, its descendants.
358  Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
359  assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
360  if (UnwindDestToken)
361    return UnwindDestToken;
362
363  // No information is available for this EHPad from itself or any of its
364  // descendants.  An unwind all the way out to a pad in the caller would
365  // need also to agree with the unwind dest of the parent funclet, so
366  // search up the chain to try to find a funclet with information.  Put
367  // null entries in the memo map to avoid re-processing as we go up.
368  MemoMap[EHPad] = nullptr;
369  Instruction *LastUselessPad = EHPad;
370  Value *AncestorToken;
371  for (AncestorToken = getParentPad(EHPad);
372       auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
373       AncestorToken = getParentPad(AncestorToken)) {
374    // Skip over catchpads since they just follow their catchswitches.
375    if (isa<CatchPadInst>(AncestorPad))
376      continue;
377    assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
378    auto AncestorMemo = MemoMap.find(AncestorPad);
379    if (AncestorMemo == MemoMap.end()) {
380      UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
381    } else {
382      UnwindDestToken = AncestorMemo->second;
383    }
384    if (UnwindDestToken)
385      break;
386    LastUselessPad = AncestorPad;
387  }
388
389  // Since the whole tree under LastUselessPad has no information, it all must
390  // match UnwindDestToken; record that to avoid repeating the search.
391  SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
392  while (!Worklist.empty()) {
393    Instruction *UselessPad = Worklist.pop_back_val();
394    assert(!MemoMap.count(UselessPad) || MemoMap[UselessPad] == nullptr);
395    MemoMap[UselessPad] = UnwindDestToken;
396    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
397      for (BasicBlock *HandlerBlock : CatchSwitch->handlers())
398        for (User *U : HandlerBlock->getFirstNonPHI()->users())
399          if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
400            Worklist.push_back(cast<Instruction>(U));
401    } else {
402      assert(isa<CleanupPadInst>(UselessPad));
403      for (User *U : UselessPad->users())
404        if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
405          Worklist.push_back(cast<Instruction>(U));
406    }
407  }
408
409  return UnwindDestToken;
410}
411
412/// When we inline a basic block into an invoke,
413/// we have to turn all of the calls that can throw into invokes.
414/// This function analyze BB to see if there are any calls, and if so,
415/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
416/// nodes in that block with the values specified in InvokeDestPHIValues.
417static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
418    BasicBlock *BB, BasicBlock *UnwindEdge,
419    UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
420  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
421    Instruction *I = &*BBI++;
422
423    // We only need to check for function calls: inlined invoke
424    // instructions require no special handling.
425    CallInst *CI = dyn_cast<CallInst>(I);
426
427    if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
428      continue;
429
430    // We do not need to (and in fact, cannot) convert possibly throwing calls
431    // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
432    // invokes.  The caller's "segment" of the deoptimization continuation
433    // attached to the newly inlined @llvm.experimental_deoptimize
434    // (resp. @llvm.experimental.guard) call should contain the exception
435    // handling logic, if any.
436    if (auto *F = CI->getCalledFunction())
437      if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
438          F->getIntrinsicID() == Intrinsic::experimental_guard)
439        continue;
440
441    if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
442      // This call is nested inside a funclet.  If that funclet has an unwind
443      // destination within the inlinee, then unwinding out of this call would
444      // be UB.  Rewriting this call to an invoke which targets the inlined
445      // invoke's unwind dest would give the call's parent funclet multiple
446      // unwind destinations, which is something that subsequent EH table
447      // generation can't handle and that the veirifer rejects.  So when we
448      // see such a call, leave it as a call.
449      auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
450      Value *UnwindDestToken =
451          getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
452      if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
453        continue;
454#ifndef NDEBUG
455      Instruction *MemoKey;
456      if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
457        MemoKey = CatchPad->getCatchSwitch();
458      else
459        MemoKey = FuncletPad;
460      assert(FuncletUnwindMap->count(MemoKey) &&
461             (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
462             "must get memoized to avoid confusing later searches");
463#endif // NDEBUG
464    }
465
466    // Convert this function call into an invoke instruction.  First, split the
467    // basic block.
468    BasicBlock *Split =
469        BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
470
471    // Delete the unconditional branch inserted by splitBasicBlock
472    BB->getInstList().pop_back();
473
474    // Create the new invoke instruction.
475    SmallVector<Value*, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
476    SmallVector<OperandBundleDef, 1> OpBundles;
477
478    CI->getOperandBundlesAsDefs(OpBundles);
479
480    // Note: we're round tripping operand bundles through memory here, and that
481    // can potentially be avoided with a cleverer API design that we do not have
482    // as of this time.
483
484    InvokeInst *II =
485        InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, InvokeArgs,
486                           OpBundles, CI->getName(), BB);
487    II->setDebugLoc(CI->getDebugLoc());
488    II->setCallingConv(CI->getCallingConv());
489    II->setAttributes(CI->getAttributes());
490
491    // Make sure that anything using the call now uses the invoke!  This also
492    // updates the CallGraph if present, because it uses a WeakVH.
493    CI->replaceAllUsesWith(II);
494
495    // Delete the original call
496    Split->getInstList().pop_front();
497    return BB;
498  }
499  return nullptr;
500}
501
502/// If we inlined an invoke site, we need to convert calls
503/// in the body of the inlined function into invokes.
504///
505/// II is the invoke instruction being inlined.  FirstNewBlock is the first
506/// block of the inlined code (the last block is the end of the function),
507/// and InlineCodeInfo is information about the code that got inlined.
508static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
509                                    ClonedCodeInfo &InlinedCodeInfo) {
510  BasicBlock *InvokeDest = II->getUnwindDest();
511
512  Function *Caller = FirstNewBlock->getParent();
513
514  // The inlined code is currently at the end of the function, scan from the
515  // start of the inlined code to its end, checking for stuff we need to
516  // rewrite.
517  LandingPadInliningInfo Invoke(II);
518
519  // Get all of the inlined landing pad instructions.
520  SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
521  for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
522       I != E; ++I)
523    if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
524      InlinedLPads.insert(II->getLandingPadInst());
525
526  // Append the clauses from the outer landing pad instruction into the inlined
527  // landing pad instructions.
528  LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
529  for (LandingPadInst *InlinedLPad : InlinedLPads) {
530    unsigned OuterNum = OuterLPad->getNumClauses();
531    InlinedLPad->reserveClauses(OuterNum);
532    for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
533      InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
534    if (OuterLPad->isCleanup())
535      InlinedLPad->setCleanup(true);
536  }
537
538  for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
539       BB != E; ++BB) {
540    if (InlinedCodeInfo.ContainsCalls)
541      if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
542              &*BB, Invoke.getOuterResumeDest()))
543        // Update any PHI nodes in the exceptional block to indicate that there
544        // is now a new entry in them.
545        Invoke.addIncomingPHIValuesFor(NewBB);
546
547    // Forward any resumes that are remaining here.
548    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
549      Invoke.forwardResume(RI, InlinedLPads);
550  }
551
552  // Now that everything is happy, we have one final detail.  The PHI nodes in
553  // the exception destination block still have entries due to the original
554  // invoke instruction. Eliminate these entries (which might even delete the
555  // PHI node) now.
556  InvokeDest->removePredecessor(II->getParent());
557}
558
559/// If we inlined an invoke site, we need to convert calls
560/// in the body of the inlined function into invokes.
561///
562/// II is the invoke instruction being inlined.  FirstNewBlock is the first
563/// block of the inlined code (the last block is the end of the function),
564/// and InlineCodeInfo is information about the code that got inlined.
565static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
566                               ClonedCodeInfo &InlinedCodeInfo) {
567  BasicBlock *UnwindDest = II->getUnwindDest();
568  Function *Caller = FirstNewBlock->getParent();
569
570  assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
571
572  // If there are PHI nodes in the unwind destination block, we need to keep
573  // track of which values came into them from the invoke before removing the
574  // edge from this block.
575  SmallVector<Value *, 8> UnwindDestPHIValues;
576  llvm::BasicBlock *InvokeBB = II->getParent();
577  for (Instruction &I : *UnwindDest) {
578    // Save the value to use for this edge.
579    PHINode *PHI = dyn_cast<PHINode>(&I);
580    if (!PHI)
581      break;
582    UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
583  }
584
585  // Add incoming-PHI values to the unwind destination block for the given basic
586  // block, using the values for the original invoke's source block.
587  auto UpdatePHINodes = [&](BasicBlock *Src) {
588    BasicBlock::iterator I = UnwindDest->begin();
589    for (Value *V : UnwindDestPHIValues) {
590      PHINode *PHI = cast<PHINode>(I);
591      PHI->addIncoming(V, Src);
592      ++I;
593    }
594  };
595
596  // This connects all the instructions which 'unwind to caller' to the invoke
597  // destination.
598  UnwindDestMemoTy FuncletUnwindMap;
599  for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
600       BB != E; ++BB) {
601    if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
602      if (CRI->unwindsToCaller()) {
603        auto *CleanupPad = CRI->getCleanupPad();
604        CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
605        CRI->eraseFromParent();
606        UpdatePHINodes(&*BB);
607        // Finding a cleanupret with an unwind destination would confuse
608        // subsequent calls to getUnwindDestToken, so map the cleanuppad
609        // to short-circuit any such calls and recognize this as an "unwind
610        // to caller" cleanup.
611        assert(!FuncletUnwindMap.count(CleanupPad) ||
612               isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
613        FuncletUnwindMap[CleanupPad] =
614            ConstantTokenNone::get(Caller->getContext());
615      }
616    }
617
618    Instruction *I = BB->getFirstNonPHI();
619    if (!I->isEHPad())
620      continue;
621
622    Instruction *Replacement = nullptr;
623    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
624      if (CatchSwitch->unwindsToCaller()) {
625        Value *UnwindDestToken;
626        if (auto *ParentPad =
627                dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
628          // This catchswitch is nested inside another funclet.  If that
629          // funclet has an unwind destination within the inlinee, then
630          // unwinding out of this catchswitch would be UB.  Rewriting this
631          // catchswitch to unwind to the inlined invoke's unwind dest would
632          // give the parent funclet multiple unwind destinations, which is
633          // something that subsequent EH table generation can't handle and
634          // that the veirifer rejects.  So when we see such a call, leave it
635          // as "unwind to caller".
636          UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
637          if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
638            continue;
639        } else {
640          // This catchswitch has no parent to inherit constraints from, and
641          // none of its descendants can have an unwind edge that exits it and
642          // targets another funclet in the inlinee.  It may or may not have a
643          // descendant that definitively has an unwind to caller.  In either
644          // case, we'll have to assume that any unwinds out of it may need to
645          // be routed to the caller, so treat it as though it has a definitive
646          // unwind to caller.
647          UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
648        }
649        auto *NewCatchSwitch = CatchSwitchInst::Create(
650            CatchSwitch->getParentPad(), UnwindDest,
651            CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
652            CatchSwitch);
653        for (BasicBlock *PadBB : CatchSwitch->handlers())
654          NewCatchSwitch->addHandler(PadBB);
655        // Propagate info for the old catchswitch over to the new one in
656        // the unwind map.  This also serves to short-circuit any subsequent
657        // checks for the unwind dest of this catchswitch, which would get
658        // confused if they found the outer handler in the callee.
659        FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
660        Replacement = NewCatchSwitch;
661      }
662    } else if (!isa<FuncletPadInst>(I)) {
663      llvm_unreachable("unexpected EHPad!");
664    }
665
666    if (Replacement) {
667      Replacement->takeName(I);
668      I->replaceAllUsesWith(Replacement);
669      I->eraseFromParent();
670      UpdatePHINodes(&*BB);
671    }
672  }
673
674  if (InlinedCodeInfo.ContainsCalls)
675    for (Function::iterator BB = FirstNewBlock->getIterator(),
676                            E = Caller->end();
677         BB != E; ++BB)
678      if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
679              &*BB, UnwindDest, &FuncletUnwindMap))
680        // Update any PHI nodes in the exceptional block to indicate that there
681        // is now a new entry in them.
682        UpdatePHINodes(NewBB);
683
684  // Now that everything is happy, we have one final detail.  The PHI nodes in
685  // the exception destination block still have entries due to the original
686  // invoke instruction. Eliminate these entries (which might even delete the
687  // PHI node) now.
688  UnwindDest->removePredecessor(InvokeBB);
689}
690
691/// When inlining a call site that has !llvm.mem.parallel_loop_access metadata,
692/// that metadata should be propagated to all memory-accessing cloned
693/// instructions.
694static void PropagateParallelLoopAccessMetadata(CallSite CS,
695                                                ValueToValueMapTy &VMap) {
696  MDNode *M =
697    CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
698  if (!M)
699    return;
700
701  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
702       VMI != VMIE; ++VMI) {
703    if (!VMI->second)
704      continue;
705
706    Instruction *NI = dyn_cast<Instruction>(VMI->second);
707    if (!NI)
708      continue;
709
710    if (MDNode *PM = NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
711        M = MDNode::concatenate(PM, M);
712      NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
713    } else if (NI->mayReadOrWriteMemory()) {
714      NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
715    }
716  }
717}
718
719/// When inlining a function that contains noalias scope metadata,
720/// this metadata needs to be cloned so that the inlined blocks
721/// have different "unqiue scopes" at every call site. Were this not done, then
722/// aliasing scopes from a function inlined into a caller multiple times could
723/// not be differentiated (and this would lead to miscompiles because the
724/// non-aliasing property communicated by the metadata could have
725/// call-site-specific control dependencies).
726static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
727  const Function *CalledFunc = CS.getCalledFunction();
728  SetVector<const MDNode *> MD;
729
730  // Note: We could only clone the metadata if it is already used in the
731  // caller. I'm omitting that check here because it might confuse
732  // inter-procedural alias analysis passes. We can revisit this if it becomes
733  // an efficiency or overhead problem.
734
735  for (const BasicBlock &I : *CalledFunc)
736    for (const Instruction &J : I) {
737      if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
738        MD.insert(M);
739      if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
740        MD.insert(M);
741    }
742
743  if (MD.empty())
744    return;
745
746  // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
747  // the set.
748  SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
749  while (!Queue.empty()) {
750    const MDNode *M = cast<MDNode>(Queue.pop_back_val());
751    for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
752      if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
753        if (MD.insert(M1))
754          Queue.push_back(M1);
755  }
756
757  // Now we have a complete set of all metadata in the chains used to specify
758  // the noalias scopes and the lists of those scopes.
759  SmallVector<TempMDTuple, 16> DummyNodes;
760  DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
761  for (const MDNode *I : MD) {
762    DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
763    MDMap[I].reset(DummyNodes.back().get());
764  }
765
766  // Create new metadata nodes to replace the dummy nodes, replacing old
767  // metadata references with either a dummy node or an already-created new
768  // node.
769  for (const MDNode *I : MD) {
770    SmallVector<Metadata *, 4> NewOps;
771    for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
772      const Metadata *V = I->getOperand(i);
773      if (const MDNode *M = dyn_cast<MDNode>(V))
774        NewOps.push_back(MDMap[M]);
775      else
776        NewOps.push_back(const_cast<Metadata *>(V));
777    }
778
779    MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
780    MDTuple *TempM = cast<MDTuple>(MDMap[I]);
781    assert(TempM->isTemporary() && "Expected temporary node");
782
783    TempM->replaceAllUsesWith(NewM);
784  }
785
786  // Now replace the metadata in the new inlined instructions with the
787  // repacements from the map.
788  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
789       VMI != VMIE; ++VMI) {
790    if (!VMI->second)
791      continue;
792
793    Instruction *NI = dyn_cast<Instruction>(VMI->second);
794    if (!NI)
795      continue;
796
797    if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
798      MDNode *NewMD = MDMap[M];
799      // If the call site also had alias scope metadata (a list of scopes to
800      // which instructions inside it might belong), propagate those scopes to
801      // the inlined instructions.
802      if (MDNode *CSM =
803              CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
804        NewMD = MDNode::concatenate(NewMD, CSM);
805      NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
806    } else if (NI->mayReadOrWriteMemory()) {
807      if (MDNode *M =
808              CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
809        NI->setMetadata(LLVMContext::MD_alias_scope, M);
810    }
811
812    if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
813      MDNode *NewMD = MDMap[M];
814      // If the call site also had noalias metadata (a list of scopes with
815      // which instructions inside it don't alias), propagate those scopes to
816      // the inlined instructions.
817      if (MDNode *CSM =
818              CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
819        NewMD = MDNode::concatenate(NewMD, CSM);
820      NI->setMetadata(LLVMContext::MD_noalias, NewMD);
821    } else if (NI->mayReadOrWriteMemory()) {
822      if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
823        NI->setMetadata(LLVMContext::MD_noalias, M);
824    }
825  }
826}
827
828/// If the inlined function has noalias arguments,
829/// then add new alias scopes for each noalias argument, tag the mapped noalias
830/// parameters with noalias metadata specifying the new scope, and tag all
831/// non-derived loads, stores and memory intrinsics with the new alias scopes.
832static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
833                                  const DataLayout &DL, AAResults *CalleeAAR) {
834  if (!EnableNoAliasConversion)
835    return;
836
837  const Function *CalledFunc = CS.getCalledFunction();
838  SmallVector<const Argument *, 4> NoAliasArgs;
839
840  for (const Argument &Arg : CalledFunc->args())
841    if (Arg.hasNoAliasAttr() && !Arg.use_empty())
842      NoAliasArgs.push_back(&Arg);
843
844  if (NoAliasArgs.empty())
845    return;
846
847  // To do a good job, if a noalias variable is captured, we need to know if
848  // the capture point dominates the particular use we're considering.
849  DominatorTree DT;
850  DT.recalculate(const_cast<Function&>(*CalledFunc));
851
852  // noalias indicates that pointer values based on the argument do not alias
853  // pointer values which are not based on it. So we add a new "scope" for each
854  // noalias function argument. Accesses using pointers based on that argument
855  // become part of that alias scope, accesses using pointers not based on that
856  // argument are tagged as noalias with that scope.
857
858  DenseMap<const Argument *, MDNode *> NewScopes;
859  MDBuilder MDB(CalledFunc->getContext());
860
861  // Create a new scope domain for this function.
862  MDNode *NewDomain =
863    MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
864  for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
865    const Argument *A = NoAliasArgs[i];
866
867    std::string Name = CalledFunc->getName();
868    if (A->hasName()) {
869      Name += ": %";
870      Name += A->getName();
871    } else {
872      Name += ": argument ";
873      Name += utostr(i);
874    }
875
876    // Note: We always create a new anonymous root here. This is true regardless
877    // of the linkage of the callee because the aliasing "scope" is not just a
878    // property of the callee, but also all control dependencies in the caller.
879    MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
880    NewScopes.insert(std::make_pair(A, NewScope));
881  }
882
883  // Iterate over all new instructions in the map; for all memory-access
884  // instructions, add the alias scope metadata.
885  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
886       VMI != VMIE; ++VMI) {
887    if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
888      if (!VMI->second)
889        continue;
890
891      Instruction *NI = dyn_cast<Instruction>(VMI->second);
892      if (!NI)
893        continue;
894
895      bool IsArgMemOnlyCall = false, IsFuncCall = false;
896      SmallVector<const Value *, 2> PtrArgs;
897
898      if (const LoadInst *LI = dyn_cast<LoadInst>(I))
899        PtrArgs.push_back(LI->getPointerOperand());
900      else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
901        PtrArgs.push_back(SI->getPointerOperand());
902      else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
903        PtrArgs.push_back(VAAI->getPointerOperand());
904      else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
905        PtrArgs.push_back(CXI->getPointerOperand());
906      else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
907        PtrArgs.push_back(RMWI->getPointerOperand());
908      else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
909        // If we know that the call does not access memory, then we'll still
910        // know that about the inlined clone of this call site, and we don't
911        // need to add metadata.
912        if (ICS.doesNotAccessMemory())
913          continue;
914
915        IsFuncCall = true;
916        if (CalleeAAR) {
917          FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS);
918          if (MRB == FMRB_OnlyAccessesArgumentPointees ||
919              MRB == FMRB_OnlyReadsArgumentPointees)
920            IsArgMemOnlyCall = true;
921        }
922
923        for (Value *Arg : ICS.args()) {
924          // We need to check the underlying objects of all arguments, not just
925          // the pointer arguments, because we might be passing pointers as
926          // integers, etc.
927          // However, if we know that the call only accesses pointer arguments,
928          // then we only need to check the pointer arguments.
929          if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
930            continue;
931
932          PtrArgs.push_back(Arg);
933        }
934      }
935
936      // If we found no pointers, then this instruction is not suitable for
937      // pairing with an instruction to receive aliasing metadata.
938      // However, if this is a call, this we might just alias with none of the
939      // noalias arguments.
940      if (PtrArgs.empty() && !IsFuncCall)
941        continue;
942
943      // It is possible that there is only one underlying object, but you
944      // need to go through several PHIs to see it, and thus could be
945      // repeated in the Objects list.
946      SmallPtrSet<const Value *, 4> ObjSet;
947      SmallVector<Metadata *, 4> Scopes, NoAliases;
948
949      SmallSetVector<const Argument *, 4> NAPtrArgs;
950      for (const Value *V : PtrArgs) {
951        SmallVector<Value *, 4> Objects;
952        GetUnderlyingObjects(const_cast<Value*>(V),
953                             Objects, DL, /* LI = */ nullptr);
954
955        for (Value *O : Objects)
956          ObjSet.insert(O);
957      }
958
959      // Figure out if we're derived from anything that is not a noalias
960      // argument.
961      bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
962      for (const Value *V : ObjSet) {
963        // Is this value a constant that cannot be derived from any pointer
964        // value (we need to exclude constant expressions, for example, that
965        // are formed from arithmetic on global symbols).
966        bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
967                             isa<ConstantPointerNull>(V) ||
968                             isa<ConstantDataVector>(V) || isa<UndefValue>(V);
969        if (IsNonPtrConst)
970          continue;
971
972        // If this is anything other than a noalias argument, then we cannot
973        // completely describe the aliasing properties using alias.scope
974        // metadata (and, thus, won't add any).
975        if (const Argument *A = dyn_cast<Argument>(V)) {
976          if (!A->hasNoAliasAttr())
977            UsesAliasingPtr = true;
978        } else {
979          UsesAliasingPtr = true;
980        }
981
982        // If this is not some identified function-local object (which cannot
983        // directly alias a noalias argument), or some other argument (which,
984        // by definition, also cannot alias a noalias argument), then we could
985        // alias a noalias argument that has been captured).
986        if (!isa<Argument>(V) &&
987            !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
988          CanDeriveViaCapture = true;
989      }
990
991      // A function call can always get captured noalias pointers (via other
992      // parameters, globals, etc.).
993      if (IsFuncCall && !IsArgMemOnlyCall)
994        CanDeriveViaCapture = true;
995
996      // First, we want to figure out all of the sets with which we definitely
997      // don't alias. Iterate over all noalias set, and add those for which:
998      //   1. The noalias argument is not in the set of objects from which we
999      //      definitely derive.
1000      //   2. The noalias argument has not yet been captured.
1001      // An arbitrary function that might load pointers could see captured
1002      // noalias arguments via other noalias arguments or globals, and so we
1003      // must always check for prior capture.
1004      for (const Argument *A : NoAliasArgs) {
1005        if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1006                                 // It might be tempting to skip the
1007                                 // PointerMayBeCapturedBefore check if
1008                                 // A->hasNoCaptureAttr() is true, but this is
1009                                 // incorrect because nocapture only guarantees
1010                                 // that no copies outlive the function, not
1011                                 // that the value cannot be locally captured.
1012                                 !PointerMayBeCapturedBefore(A,
1013                                   /* ReturnCaptures */ false,
1014                                   /* StoreCaptures */ false, I, &DT)))
1015          NoAliases.push_back(NewScopes[A]);
1016      }
1017
1018      if (!NoAliases.empty())
1019        NI->setMetadata(LLVMContext::MD_noalias,
1020                        MDNode::concatenate(
1021                            NI->getMetadata(LLVMContext::MD_noalias),
1022                            MDNode::get(CalledFunc->getContext(), NoAliases)));
1023
1024      // Next, we want to figure out all of the sets to which we might belong.
1025      // We might belong to a set if the noalias argument is in the set of
1026      // underlying objects. If there is some non-noalias argument in our list
1027      // of underlying objects, then we cannot add a scope because the fact
1028      // that some access does not alias with any set of our noalias arguments
1029      // cannot itself guarantee that it does not alias with this access
1030      // (because there is some pointer of unknown origin involved and the
1031      // other access might also depend on this pointer). We also cannot add
1032      // scopes to arbitrary functions unless we know they don't access any
1033      // non-parameter pointer-values.
1034      bool CanAddScopes = !UsesAliasingPtr;
1035      if (CanAddScopes && IsFuncCall)
1036        CanAddScopes = IsArgMemOnlyCall;
1037
1038      if (CanAddScopes)
1039        for (const Argument *A : NoAliasArgs) {
1040          if (ObjSet.count(A))
1041            Scopes.push_back(NewScopes[A]);
1042        }
1043
1044      if (!Scopes.empty())
1045        NI->setMetadata(
1046            LLVMContext::MD_alias_scope,
1047            MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1048                                MDNode::get(CalledFunc->getContext(), Scopes)));
1049    }
1050  }
1051}
1052
1053/// If the inlined function has non-byval align arguments, then
1054/// add @llvm.assume-based alignment assumptions to preserve this information.
1055static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
1056  if (!PreserveAlignmentAssumptions)
1057    return;
1058  auto &DL = CS.getCaller()->getParent()->getDataLayout();
1059
1060  // To avoid inserting redundant assumptions, we should check for assumptions
1061  // already in the caller. To do this, we might need a DT of the caller.
1062  DominatorTree DT;
1063  bool DTCalculated = false;
1064
1065  Function *CalledFunc = CS.getCalledFunction();
1066  for (Function::arg_iterator I = CalledFunc->arg_begin(),
1067                              E = CalledFunc->arg_end();
1068       I != E; ++I) {
1069    unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0;
1070    if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) {
1071      if (!DTCalculated) {
1072        DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent()
1073                                               ->getParent()));
1074        DTCalculated = true;
1075      }
1076
1077      // If we can already prove the asserted alignment in the context of the
1078      // caller, then don't bother inserting the assumption.
1079      Value *Arg = CS.getArgument(I->getArgNo());
1080      if (getKnownAlignment(Arg, DL, CS.getInstruction(),
1081                            &IFI.ACT->getAssumptionCache(*CS.getCaller()),
1082                            &DT) >= Align)
1083        continue;
1084
1085      IRBuilder<>(CS.getInstruction())
1086          .CreateAlignmentAssumption(DL, Arg, Align);
1087    }
1088  }
1089}
1090
1091/// Once we have cloned code over from a callee into the caller,
1092/// update the specified callgraph to reflect the changes we made.
1093/// Note that it's possible that not all code was copied over, so only
1094/// some edges of the callgraph may remain.
1095static void UpdateCallGraphAfterInlining(CallSite CS,
1096                                         Function::iterator FirstNewBlock,
1097                                         ValueToValueMapTy &VMap,
1098                                         InlineFunctionInfo &IFI) {
1099  CallGraph &CG = *IFI.CG;
1100  const Function *Caller = CS.getInstruction()->getParent()->getParent();
1101  const Function *Callee = CS.getCalledFunction();
1102  CallGraphNode *CalleeNode = CG[Callee];
1103  CallGraphNode *CallerNode = CG[Caller];
1104
1105  // Since we inlined some uninlined call sites in the callee into the caller,
1106  // add edges from the caller to all of the callees of the callee.
1107  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1108
1109  // Consider the case where CalleeNode == CallerNode.
1110  CallGraphNode::CalledFunctionsVector CallCache;
1111  if (CalleeNode == CallerNode) {
1112    CallCache.assign(I, E);
1113    I = CallCache.begin();
1114    E = CallCache.end();
1115  }
1116
1117  for (; I != E; ++I) {
1118    const Value *OrigCall = I->first;
1119
1120    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1121    // Only copy the edge if the call was inlined!
1122    if (VMI == VMap.end() || VMI->second == nullptr)
1123      continue;
1124
1125    // If the call was inlined, but then constant folded, there is no edge to
1126    // add.  Check for this case.
1127    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
1128    if (!NewCall)
1129      continue;
1130
1131    // We do not treat intrinsic calls like real function calls because we
1132    // expect them to become inline code; do not add an edge for an intrinsic.
1133    CallSite CS = CallSite(NewCall);
1134    if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic())
1135      continue;
1136
1137    // Remember that this call site got inlined for the client of
1138    // InlineFunction.
1139    IFI.InlinedCalls.push_back(NewCall);
1140
1141    // It's possible that inlining the callsite will cause it to go from an
1142    // indirect to a direct call by resolving a function pointer.  If this
1143    // happens, set the callee of the new call site to a more precise
1144    // destination.  This can also happen if the call graph node of the caller
1145    // was just unnecessarily imprecise.
1146    if (!I->second->getFunction())
1147      if (Function *F = CallSite(NewCall).getCalledFunction()) {
1148        // Indirect call site resolved to direct call.
1149        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
1150
1151        continue;
1152      }
1153
1154    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
1155  }
1156
1157  // Update the call graph by deleting the edge from Callee to Caller.  We must
1158  // do this after the loop above in case Caller and Callee are the same.
1159  CallerNode->removeCallEdgeFor(CS);
1160}
1161
1162static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1163                                    BasicBlock *InsertBlock,
1164                                    InlineFunctionInfo &IFI) {
1165  Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1166  IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1167
1168  Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1169
1170  // Always generate a memcpy of alignment 1 here because we don't know
1171  // the alignment of the src pointer.  Other optimizations can infer
1172  // better alignment.
1173  Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1);
1174}
1175
1176/// When inlining a call site that has a byval argument,
1177/// we have to make the implicit memcpy explicit by adding it.
1178static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1179                                  const Function *CalledFunc,
1180                                  InlineFunctionInfo &IFI,
1181                                  unsigned ByValAlignment) {
1182  PointerType *ArgTy = cast<PointerType>(Arg->getType());
1183  Type *AggTy = ArgTy->getElementType();
1184
1185  Function *Caller = TheCall->getParent()->getParent();
1186
1187  // If the called function is readonly, then it could not mutate the caller's
1188  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1189  // temporary.
1190  if (CalledFunc->onlyReadsMemory()) {
1191    // If the byval argument has a specified alignment that is greater than the
1192    // passed in pointer, then we either have to round up the input pointer or
1193    // give up on this transformation.
1194    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
1195      return Arg;
1196
1197    const DataLayout &DL = Caller->getParent()->getDataLayout();
1198
1199    // If the pointer is already known to be sufficiently aligned, or if we can
1200    // round it up to a larger alignment, then we don't need a temporary.
1201    if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall,
1202                                   &IFI.ACT->getAssumptionCache(*Caller)) >=
1203        ByValAlignment)
1204      return Arg;
1205
1206    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1207    // for code quality, but rarely happens and is required for correctness.
1208  }
1209
1210  // Create the alloca.  If we have DataLayout, use nice alignment.
1211  unsigned Align =
1212      Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy);
1213
1214  // If the byval had an alignment specified, we *must* use at least that
1215  // alignment, as it is required by the byval argument (and uses of the
1216  // pointer inside the callee).
1217  Align = std::max(Align, ByValAlignment);
1218
1219  Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(),
1220                                    &*Caller->begin()->begin());
1221  IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1222
1223  // Uses of the argument in the function should use our new alloca
1224  // instead.
1225  return NewAlloca;
1226}
1227
1228// Check whether this Value is used by a lifetime intrinsic.
1229static bool isUsedByLifetimeMarker(Value *V) {
1230  for (User *U : V->users()) {
1231    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
1232      switch (II->getIntrinsicID()) {
1233      default: break;
1234      case Intrinsic::lifetime_start:
1235      case Intrinsic::lifetime_end:
1236        return true;
1237      }
1238    }
1239  }
1240  return false;
1241}
1242
1243// Check whether the given alloca already has
1244// lifetime.start or lifetime.end intrinsics.
1245static bool hasLifetimeMarkers(AllocaInst *AI) {
1246  Type *Ty = AI->getType();
1247  Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1248                                       Ty->getPointerAddressSpace());
1249  if (Ty == Int8PtrTy)
1250    return isUsedByLifetimeMarker(AI);
1251
1252  // Do a scan to find all the casts to i8*.
1253  for (User *U : AI->users()) {
1254    if (U->getType() != Int8PtrTy) continue;
1255    if (U->stripPointerCasts() != AI) continue;
1256    if (isUsedByLifetimeMarker(U))
1257      return true;
1258  }
1259  return false;
1260}
1261
1262/// Rebuild the entire inlined-at chain for this instruction so that the top of
1263/// the chain now is inlined-at the new call site.
1264static DebugLoc
1265updateInlinedAtInfo(const DebugLoc &DL, DILocation *InlinedAtNode,
1266                    LLVMContext &Ctx,
1267                    DenseMap<const DILocation *, DILocation *> &IANodes) {
1268  SmallVector<DILocation *, 3> InlinedAtLocations;
1269  DILocation *Last = InlinedAtNode;
1270  DILocation *CurInlinedAt = DL;
1271
1272  // Gather all the inlined-at nodes
1273  while (DILocation *IA = CurInlinedAt->getInlinedAt()) {
1274    // Skip any we've already built nodes for
1275    if (DILocation *Found = IANodes[IA]) {
1276      Last = Found;
1277      break;
1278    }
1279
1280    InlinedAtLocations.push_back(IA);
1281    CurInlinedAt = IA;
1282  }
1283
1284  // Starting from the top, rebuild the nodes to point to the new inlined-at
1285  // location (then rebuilding the rest of the chain behind it) and update the
1286  // map of already-constructed inlined-at nodes.
1287  for (const DILocation *MD : reverse(InlinedAtLocations)) {
1288    Last = IANodes[MD] = DILocation::getDistinct(
1289        Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last);
1290  }
1291
1292  // And finally create the normal location for this instruction, referring to
1293  // the new inlined-at chain.
1294  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last);
1295}
1296
1297/// Update inlined instructions' line numbers to
1298/// to encode location where these instructions are inlined.
1299static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1300                             Instruction *TheCall) {
1301  const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1302  if (!TheCallDL)
1303    return;
1304
1305  auto &Ctx = Fn->getContext();
1306  DILocation *InlinedAtNode = TheCallDL;
1307
1308  // Create a unique call site, not to be confused with any other call from the
1309  // same location.
1310  InlinedAtNode = DILocation::getDistinct(
1311      Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1312      InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1313
1314  // Cache the inlined-at nodes as they're built so they are reused, without
1315  // this every instruction's inlined-at chain would become distinct from each
1316  // other.
1317  DenseMap<const DILocation *, DILocation *> IANodes;
1318
1319  for (; FI != Fn->end(); ++FI) {
1320    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1321         BI != BE; ++BI) {
1322      DebugLoc DL = BI->getDebugLoc();
1323      if (!DL) {
1324        // If the inlined instruction has no line number, make it look as if it
1325        // originates from the call location. This is important for
1326        // ((__always_inline__, __nodebug__)) functions which must use caller
1327        // location for all instructions in their function body.
1328
1329        // Don't update static allocas, as they may get moved later.
1330        if (auto *AI = dyn_cast<AllocaInst>(BI))
1331          if (isa<Constant>(AI->getArraySize()))
1332            continue;
1333
1334        BI->setDebugLoc(TheCallDL);
1335      } else {
1336        BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes));
1337      }
1338    }
1339  }
1340}
1341
1342/// This function inlines the called function into the basic block of the
1343/// caller. This returns false if it is not possible to inline this call.
1344/// The program is still in a well defined state if this occurs though.
1345///
1346/// Note that this only does one level of inlining.  For example, if the
1347/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1348/// exists in the instruction stream.  Similarly this will inline a recursive
1349/// function by one level.
1350bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
1351                          AAResults *CalleeAAR, bool InsertLifetime) {
1352  Instruction *TheCall = CS.getInstruction();
1353  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
1354         "Instruction not in function!");
1355
1356  // If IFI has any state in it, zap it before we fill it in.
1357  IFI.reset();
1358
1359  const Function *CalledFunc = CS.getCalledFunction();
1360  if (!CalledFunc ||              // Can't inline external function or indirect
1361      CalledFunc->isDeclaration() || // call, or call to a vararg function!
1362      CalledFunc->getFunctionType()->isVarArg()) return false;
1363
1364  // The inliner does not know how to inline through calls with operand bundles
1365  // in general ...
1366  if (CS.hasOperandBundles()) {
1367    for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
1368      uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
1369      // ... but it knows how to inline through "deopt" operand bundles ...
1370      if (Tag == LLVMContext::OB_deopt)
1371        continue;
1372      // ... and "funclet" operand bundles.
1373      if (Tag == LLVMContext::OB_funclet)
1374        continue;
1375
1376      return false;
1377    }
1378  }
1379
1380  // If the call to the callee cannot throw, set the 'nounwind' flag on any
1381  // calls that we inline.
1382  bool MarkNoUnwind = CS.doesNotThrow();
1383
1384  BasicBlock *OrigBB = TheCall->getParent();
1385  Function *Caller = OrigBB->getParent();
1386
1387  // GC poses two hazards to inlining, which only occur when the callee has GC:
1388  //  1. If the caller has no GC, then the callee's GC must be propagated to the
1389  //     caller.
1390  //  2. If the caller has a differing GC, it is invalid to inline.
1391  if (CalledFunc->hasGC()) {
1392    if (!Caller->hasGC())
1393      Caller->setGC(CalledFunc->getGC());
1394    else if (CalledFunc->getGC() != Caller->getGC())
1395      return false;
1396  }
1397
1398  // Get the personality function from the callee if it contains a landing pad.
1399  Constant *CalledPersonality =
1400      CalledFunc->hasPersonalityFn()
1401          ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1402          : nullptr;
1403
1404  // Find the personality function used by the landing pads of the caller. If it
1405  // exists, then check to see that it matches the personality function used in
1406  // the callee.
1407  Constant *CallerPersonality =
1408      Caller->hasPersonalityFn()
1409          ? Caller->getPersonalityFn()->stripPointerCasts()
1410          : nullptr;
1411  if (CalledPersonality) {
1412    if (!CallerPersonality)
1413      Caller->setPersonalityFn(CalledPersonality);
1414    // If the personality functions match, then we can perform the
1415    // inlining. Otherwise, we can't inline.
1416    // TODO: This isn't 100% true. Some personality functions are proper
1417    //       supersets of others and can be used in place of the other.
1418    else if (CalledPersonality != CallerPersonality)
1419      return false;
1420  }
1421
1422  // We need to figure out which funclet the callsite was in so that we may
1423  // properly nest the callee.
1424  Instruction *CallSiteEHPad = nullptr;
1425  if (CallerPersonality) {
1426    EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1427    if (isFuncletEHPersonality(Personality)) {
1428      Optional<OperandBundleUse> ParentFunclet =
1429          CS.getOperandBundle(LLVMContext::OB_funclet);
1430      if (ParentFunclet)
1431        CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1432
1433      // OK, the inlining site is legal.  What about the target function?
1434
1435      if (CallSiteEHPad) {
1436        if (Personality == EHPersonality::MSVC_CXX) {
1437          // The MSVC personality cannot tolerate catches getting inlined into
1438          // cleanup funclets.
1439          if (isa<CleanupPadInst>(CallSiteEHPad)) {
1440            // Ok, the call site is within a cleanuppad.  Let's check the callee
1441            // for catchpads.
1442            for (const BasicBlock &CalledBB : *CalledFunc) {
1443              if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1444                return false;
1445            }
1446          }
1447        } else if (isAsynchronousEHPersonality(Personality)) {
1448          // SEH is even less tolerant, there may not be any sort of exceptional
1449          // funclet in the callee.
1450          for (const BasicBlock &CalledBB : *CalledFunc) {
1451            if (CalledBB.isEHPad())
1452              return false;
1453          }
1454        }
1455      }
1456    }
1457  }
1458
1459  // Determine if we are dealing with a call in an EHPad which does not unwind
1460  // to caller.
1461  bool EHPadForCallUnwindsLocally = false;
1462  if (CallSiteEHPad && CS.isCall()) {
1463    UnwindDestMemoTy FuncletUnwindMap;
1464    Value *CallSiteUnwindDestToken =
1465        getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1466
1467    EHPadForCallUnwindsLocally =
1468        CallSiteUnwindDestToken &&
1469        !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1470  }
1471
1472  // Get an iterator to the last basic block in the function, which will have
1473  // the new function inlined after it.
1474  Function::iterator LastBlock = --Caller->end();
1475
1476  // Make sure to capture all of the return instructions from the cloned
1477  // function.
1478  SmallVector<ReturnInst*, 8> Returns;
1479  ClonedCodeInfo InlinedFunctionInfo;
1480  Function::iterator FirstNewBlock;
1481
1482  { // Scope to destroy VMap after cloning.
1483    ValueToValueMapTy VMap;
1484    // Keep a list of pair (dst, src) to emit byval initializations.
1485    SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1486
1487    auto &DL = Caller->getParent()->getDataLayout();
1488
1489    assert(CalledFunc->arg_size() == CS.arg_size() &&
1490           "No varargs calls can be inlined!");
1491
1492    // Calculate the vector of arguments to pass into the function cloner, which
1493    // matches up the formal to the actual argument values.
1494    CallSite::arg_iterator AI = CS.arg_begin();
1495    unsigned ArgNo = 0;
1496    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
1497         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1498      Value *ActualArg = *AI;
1499
1500      // When byval arguments actually inlined, we need to make the copy implied
1501      // by them explicit.  However, we don't do this if the callee is readonly
1502      // or readnone, because the copy would be unneeded: the callee doesn't
1503      // modify the struct.
1504      if (CS.isByValArgument(ArgNo)) {
1505        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
1506                                        CalledFunc->getParamAlignment(ArgNo+1));
1507        if (ActualArg != *AI)
1508          ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1509      }
1510
1511      VMap[&*I] = ActualArg;
1512    }
1513
1514    // Add alignment assumptions if necessary. We do this before the inlined
1515    // instructions are actually cloned into the caller so that we can easily
1516    // check what will be known at the start of the inlined code.
1517    AddAlignmentAssumptions(CS, IFI);
1518
1519    // We want the inliner to prune the code as it copies.  We would LOVE to
1520    // have no dead or constant instructions leftover after inlining occurs
1521    // (which can happen, e.g., because an argument was constant), but we'll be
1522    // happy with whatever the cloner can do.
1523    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1524                              /*ModuleLevelChanges=*/false, Returns, ".i",
1525                              &InlinedFunctionInfo, TheCall);
1526
1527    // Remember the first block that is newly cloned over.
1528    FirstNewBlock = LastBlock; ++FirstNewBlock;
1529
1530    // Inject byval arguments initialization.
1531    for (std::pair<Value*, Value*> &Init : ByValInit)
1532      HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1533                              &*FirstNewBlock, IFI);
1534
1535    Optional<OperandBundleUse> ParentDeopt =
1536        CS.getOperandBundle(LLVMContext::OB_deopt);
1537    if (ParentDeopt) {
1538      SmallVector<OperandBundleDef, 2> OpDefs;
1539
1540      for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1541        Instruction *I = dyn_cast_or_null<Instruction>(VH);
1542        if (!I) continue;  // instruction was DCE'd or RAUW'ed to undef
1543
1544        OpDefs.clear();
1545
1546        CallSite ICS(I);
1547        OpDefs.reserve(ICS.getNumOperandBundles());
1548
1549        for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
1550          auto ChildOB = ICS.getOperandBundleAt(i);
1551          if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1552            // If the inlined call has other operand bundles, let them be
1553            OpDefs.emplace_back(ChildOB);
1554            continue;
1555          }
1556
1557          // It may be useful to separate this logic (of handling operand
1558          // bundles) out to a separate "policy" component if this gets crowded.
1559          // Prepend the parent's deoptimization continuation to the newly
1560          // inlined call's deoptimization continuation.
1561          std::vector<Value *> MergedDeoptArgs;
1562          MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
1563                                  ChildOB.Inputs.size());
1564
1565          MergedDeoptArgs.insert(MergedDeoptArgs.end(),
1566                                 ParentDeopt->Inputs.begin(),
1567                                 ParentDeopt->Inputs.end());
1568          MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
1569                                 ChildOB.Inputs.end());
1570
1571          OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
1572        }
1573
1574        Instruction *NewI = nullptr;
1575        if (isa<CallInst>(I))
1576          NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
1577        else
1578          NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
1579
1580        // Note: the RAUW does the appropriate fixup in VMap, so we need to do
1581        // this even if the call returns void.
1582        I->replaceAllUsesWith(NewI);
1583
1584        VH = nullptr;
1585        I->eraseFromParent();
1586      }
1587    }
1588
1589    // Update the callgraph if requested.
1590    if (IFI.CG)
1591      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
1592
1593    // Update inlined instructions' line number information.
1594    fixupLineNumbers(Caller, FirstNewBlock, TheCall);
1595
1596    // Clone existing noalias metadata if necessary.
1597    CloneAliasScopeMetadata(CS, VMap);
1598
1599    // Add noalias metadata if necessary.
1600    AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
1601
1602    // Propagate llvm.mem.parallel_loop_access if necessary.
1603    PropagateParallelLoopAccessMetadata(CS, VMap);
1604
1605    // FIXME: We could register any cloned assumptions instead of clearing the
1606    // whole function's cache.
1607    if (IFI.ACT)
1608      IFI.ACT->getAssumptionCache(*Caller).clear();
1609  }
1610
1611  // If there are any alloca instructions in the block that used to be the entry
1612  // block for the callee, move them to the entry block of the caller.  First
1613  // calculate which instruction they should be inserted before.  We insert the
1614  // instructions at the end of the current alloca list.
1615  {
1616    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1617    for (BasicBlock::iterator I = FirstNewBlock->begin(),
1618         E = FirstNewBlock->end(); I != E; ) {
1619      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1620      if (!AI) continue;
1621
1622      // If the alloca is now dead, remove it.  This often occurs due to code
1623      // specialization.
1624      if (AI->use_empty()) {
1625        AI->eraseFromParent();
1626        continue;
1627      }
1628
1629      if (!isa<Constant>(AI->getArraySize()))
1630        continue;
1631
1632      // Keep track of the static allocas that we inline into the caller.
1633      IFI.StaticAllocas.push_back(AI);
1634
1635      // Scan for the block of allocas that we can move over, and move them
1636      // all at once.
1637      while (isa<AllocaInst>(I) &&
1638             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
1639        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1640        ++I;
1641      }
1642
1643      // Transfer all of the allocas over in a block.  Using splice means
1644      // that the instructions aren't removed from the symbol table, then
1645      // reinserted.
1646      Caller->getEntryBlock().getInstList().splice(
1647          InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
1648    }
1649    // Move any dbg.declares describing the allocas into the entry basic block.
1650    DIBuilder DIB(*Caller->getParent());
1651    for (auto &AI : IFI.StaticAllocas)
1652      replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false);
1653  }
1654
1655  bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
1656  if (InlinedFunctionInfo.ContainsCalls) {
1657    CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
1658    if (CallInst *CI = dyn_cast<CallInst>(TheCall))
1659      CallSiteTailKind = CI->getTailCallKind();
1660
1661    for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
1662         ++BB) {
1663      for (Instruction &I : *BB) {
1664        CallInst *CI = dyn_cast<CallInst>(&I);
1665        if (!CI)
1666          continue;
1667
1668        if (Function *F = CI->getCalledFunction())
1669          InlinedDeoptimizeCalls |=
1670              F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
1671
1672        // We need to reduce the strength of any inlined tail calls.  For
1673        // musttail, we have to avoid introducing potential unbounded stack
1674        // growth.  For example, if functions 'f' and 'g' are mutually recursive
1675        // with musttail, we can inline 'g' into 'f' so long as we preserve
1676        // musttail on the cloned call to 'f'.  If either the inlined call site
1677        // or the cloned call site is *not* musttail, the program already has
1678        // one frame of stack growth, so it's safe to remove musttail.  Here is
1679        // a table of example transformations:
1680        //
1681        //    f -> musttail g -> musttail f  ==>  f -> musttail f
1682        //    f -> musttail g ->     tail f  ==>  f ->     tail f
1683        //    f ->          g -> musttail f  ==>  f ->          f
1684        //    f ->          g ->     tail f  ==>  f ->          f
1685        CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
1686        ChildTCK = std::min(CallSiteTailKind, ChildTCK);
1687        CI->setTailCallKind(ChildTCK);
1688        InlinedMustTailCalls |= CI->isMustTailCall();
1689
1690        // Calls inlined through a 'nounwind' call site should be marked
1691        // 'nounwind'.
1692        if (MarkNoUnwind)
1693          CI->setDoesNotThrow();
1694      }
1695    }
1696  }
1697
1698  // Leave lifetime markers for the static alloca's, scoping them to the
1699  // function we just inlined.
1700  if (InsertLifetime && !IFI.StaticAllocas.empty()) {
1701    IRBuilder<> builder(&FirstNewBlock->front());
1702    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1703      AllocaInst *AI = IFI.StaticAllocas[ai];
1704
1705      // If the alloca is already scoped to something smaller than the whole
1706      // function then there's no need to add redundant, less accurate markers.
1707      if (hasLifetimeMarkers(AI))
1708        continue;
1709
1710      // Try to determine the size of the allocation.
1711      ConstantInt *AllocaSize = nullptr;
1712      if (ConstantInt *AIArraySize =
1713          dyn_cast<ConstantInt>(AI->getArraySize())) {
1714        auto &DL = Caller->getParent()->getDataLayout();
1715        Type *AllocaType = AI->getAllocatedType();
1716        uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
1717        uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
1718
1719        // Don't add markers for zero-sized allocas.
1720        if (AllocaArraySize == 0)
1721          continue;
1722
1723        // Check that array size doesn't saturate uint64_t and doesn't
1724        // overflow when it's multiplied by type size.
1725        if (AllocaArraySize != ~0ULL &&
1726            UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
1727          AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
1728                                        AllocaArraySize * AllocaTypeSize);
1729        }
1730      }
1731
1732      builder.CreateLifetimeStart(AI, AllocaSize);
1733      for (ReturnInst *RI : Returns) {
1734        // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
1735        // call and a return.  The return kills all local allocas.
1736        if (InlinedMustTailCalls &&
1737            RI->getParent()->getTerminatingMustTailCall())
1738          continue;
1739        if (InlinedDeoptimizeCalls &&
1740            RI->getParent()->getTerminatingDeoptimizeCall())
1741          continue;
1742        IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
1743      }
1744    }
1745  }
1746
1747  // If the inlined code contained dynamic alloca instructions, wrap the inlined
1748  // code with llvm.stacksave/llvm.stackrestore intrinsics.
1749  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
1750    Module *M = Caller->getParent();
1751    // Get the two intrinsics we care about.
1752    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
1753    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
1754
1755    // Insert the llvm.stacksave.
1756    CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
1757                             .CreateCall(StackSave, {}, "savedstack");
1758
1759    // Insert a call to llvm.stackrestore before any return instructions in the
1760    // inlined function.
1761    for (ReturnInst *RI : Returns) {
1762      // Don't insert llvm.stackrestore calls between a musttail or deoptimize
1763      // call and a return.  The return will restore the stack pointer.
1764      if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
1765        continue;
1766      if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
1767        continue;
1768      IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
1769    }
1770  }
1771
1772  // If we are inlining for an invoke instruction, we must make sure to rewrite
1773  // any call instructions into invoke instructions.  This is sensitive to which
1774  // funclet pads were top-level in the inlinee, so must be done before
1775  // rewriting the "parent pad" links.
1776  if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
1777    BasicBlock *UnwindDest = II->getUnwindDest();
1778    Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
1779    if (isa<LandingPadInst>(FirstNonPHI)) {
1780      HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1781    } else {
1782      HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1783    }
1784  }
1785
1786  // Update the lexical scopes of the new funclets and callsites.
1787  // Anything that had 'none' as its parent is now nested inside the callsite's
1788  // EHPad.
1789
1790  if (CallSiteEHPad) {
1791    for (Function::iterator BB = FirstNewBlock->getIterator(),
1792                            E = Caller->end();
1793         BB != E; ++BB) {
1794      // Add bundle operands to any top-level call sites.
1795      SmallVector<OperandBundleDef, 1> OpBundles;
1796      for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
1797        Instruction *I = &*BBI++;
1798        CallSite CS(I);
1799        if (!CS)
1800          continue;
1801
1802        // Skip call sites which are nounwind intrinsics.
1803        auto *CalledFn =
1804            dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
1805        if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
1806          continue;
1807
1808        // Skip call sites which already have a "funclet" bundle.
1809        if (CS.getOperandBundle(LLVMContext::OB_funclet))
1810          continue;
1811
1812        CS.getOperandBundlesAsDefs(OpBundles);
1813        OpBundles.emplace_back("funclet", CallSiteEHPad);
1814
1815        Instruction *NewInst;
1816        if (CS.isCall())
1817          NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
1818        else
1819          NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
1820        NewInst->takeName(I);
1821        I->replaceAllUsesWith(NewInst);
1822        I->eraseFromParent();
1823
1824        OpBundles.clear();
1825      }
1826
1827      // It is problematic if the inlinee has a cleanupret which unwinds to
1828      // caller and we inline it into a call site which doesn't unwind but into
1829      // an EH pad that does.  Such an edge must be dynamically unreachable.
1830      // As such, we replace the cleanupret with unreachable.
1831      if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
1832        if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
1833          changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
1834
1835      Instruction *I = BB->getFirstNonPHI();
1836      if (!I->isEHPad())
1837        continue;
1838
1839      if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
1840        if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
1841          CatchSwitch->setParentPad(CallSiteEHPad);
1842      } else {
1843        auto *FPI = cast<FuncletPadInst>(I);
1844        if (isa<ConstantTokenNone>(FPI->getParentPad()))
1845          FPI->setParentPad(CallSiteEHPad);
1846      }
1847    }
1848  }
1849
1850  if (InlinedDeoptimizeCalls) {
1851    // We need to at least remove the deoptimizing returns from the Return set,
1852    // so that the control flow from those returns does not get merged into the
1853    // caller (but terminate it instead).  If the caller's return type does not
1854    // match the callee's return type, we also need to change the return type of
1855    // the intrinsic.
1856    if (Caller->getReturnType() == TheCall->getType()) {
1857      auto NewEnd = remove_if(Returns, [](ReturnInst *RI) {
1858        return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
1859      });
1860      Returns.erase(NewEnd, Returns.end());
1861    } else {
1862      SmallVector<ReturnInst *, 8> NormalReturns;
1863      Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
1864          Caller->getParent(), Intrinsic::experimental_deoptimize,
1865          {Caller->getReturnType()});
1866
1867      for (ReturnInst *RI : Returns) {
1868        CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
1869        if (!DeoptCall) {
1870          NormalReturns.push_back(RI);
1871          continue;
1872        }
1873
1874        // The calling convention on the deoptimize call itself may be bogus,
1875        // since the code we're inlining may have undefined behavior (and may
1876        // never actually execute at runtime); but all
1877        // @llvm.experimental.deoptimize declarations have to have the same
1878        // calling convention in a well-formed module.
1879        auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
1880        NewDeoptIntrinsic->setCallingConv(CallingConv);
1881        auto *CurBB = RI->getParent();
1882        RI->eraseFromParent();
1883
1884        SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
1885                                         DeoptCall->arg_end());
1886
1887        SmallVector<OperandBundleDef, 1> OpBundles;
1888        DeoptCall->getOperandBundlesAsDefs(OpBundles);
1889        DeoptCall->eraseFromParent();
1890        assert(!OpBundles.empty() &&
1891               "Expected at least the deopt operand bundle");
1892
1893        IRBuilder<> Builder(CurBB);
1894        CallInst *NewDeoptCall =
1895            Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
1896        NewDeoptCall->setCallingConv(CallingConv);
1897        if (NewDeoptCall->getType()->isVoidTy())
1898          Builder.CreateRetVoid();
1899        else
1900          Builder.CreateRet(NewDeoptCall);
1901      }
1902
1903      // Leave behind the normal returns so we can merge control flow.
1904      std::swap(Returns, NormalReturns);
1905    }
1906  }
1907
1908  // Handle any inlined musttail call sites.  In order for a new call site to be
1909  // musttail, the source of the clone and the inlined call site must have been
1910  // musttail.  Therefore it's safe to return without merging control into the
1911  // phi below.
1912  if (InlinedMustTailCalls) {
1913    // Check if we need to bitcast the result of any musttail calls.
1914    Type *NewRetTy = Caller->getReturnType();
1915    bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
1916
1917    // Handle the returns preceded by musttail calls separately.
1918    SmallVector<ReturnInst *, 8> NormalReturns;
1919    for (ReturnInst *RI : Returns) {
1920      CallInst *ReturnedMustTail =
1921          RI->getParent()->getTerminatingMustTailCall();
1922      if (!ReturnedMustTail) {
1923        NormalReturns.push_back(RI);
1924        continue;
1925      }
1926      if (!NeedBitCast)
1927        continue;
1928
1929      // Delete the old return and any preceding bitcast.
1930      BasicBlock *CurBB = RI->getParent();
1931      auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
1932      RI->eraseFromParent();
1933      if (OldCast)
1934        OldCast->eraseFromParent();
1935
1936      // Insert a new bitcast and return with the right type.
1937      IRBuilder<> Builder(CurBB);
1938      Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
1939    }
1940
1941    // Leave behind the normal returns so we can merge control flow.
1942    std::swap(Returns, NormalReturns);
1943  }
1944
1945  // If we cloned in _exactly one_ basic block, and if that block ends in a
1946  // return instruction, we splice the body of the inlined callee directly into
1947  // the calling basic block.
1948  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
1949    // Move all of the instructions right before the call.
1950    OrigBB->getInstList().splice(TheCall->getIterator(),
1951                                 FirstNewBlock->getInstList(),
1952                                 FirstNewBlock->begin(), FirstNewBlock->end());
1953    // Remove the cloned basic block.
1954    Caller->getBasicBlockList().pop_back();
1955
1956    // If the call site was an invoke instruction, add a branch to the normal
1957    // destination.
1958    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1959      BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
1960      NewBr->setDebugLoc(Returns[0]->getDebugLoc());
1961    }
1962
1963    // If the return instruction returned a value, replace uses of the call with
1964    // uses of the returned value.
1965    if (!TheCall->use_empty()) {
1966      ReturnInst *R = Returns[0];
1967      if (TheCall == R->getReturnValue())
1968        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1969      else
1970        TheCall->replaceAllUsesWith(R->getReturnValue());
1971    }
1972    // Since we are now done with the Call/Invoke, we can delete it.
1973    TheCall->eraseFromParent();
1974
1975    // Since we are now done with the return instruction, delete it also.
1976    Returns[0]->eraseFromParent();
1977
1978    // We are now done with the inlining.
1979    return true;
1980  }
1981
1982  // Otherwise, we have the normal case, of more than one block to inline or
1983  // multiple return sites.
1984
1985  // We want to clone the entire callee function into the hole between the
1986  // "starter" and "ender" blocks.  How we accomplish this depends on whether
1987  // this is an invoke instruction or a call instruction.
1988  BasicBlock *AfterCallBB;
1989  BranchInst *CreatedBranchToNormalDest = nullptr;
1990  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1991
1992    // Add an unconditional branch to make this look like the CallInst case...
1993    CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
1994
1995    // Split the basic block.  This guarantees that no PHI nodes will have to be
1996    // updated due to new incoming edges, and make the invoke case more
1997    // symmetric to the call case.
1998    AfterCallBB =
1999        OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2000                                CalledFunc->getName() + ".exit");
2001
2002  } else {  // It's a call
2003    // If this is a call instruction, we need to split the basic block that
2004    // the call lives in.
2005    //
2006    AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
2007                                          CalledFunc->getName() + ".exit");
2008  }
2009
2010  // Change the branch that used to go to AfterCallBB to branch to the first
2011  // basic block of the inlined function.
2012  //
2013  TerminatorInst *Br = OrigBB->getTerminator();
2014  assert(Br && Br->getOpcode() == Instruction::Br &&
2015         "splitBasicBlock broken!");
2016  Br->setOperand(0, &*FirstNewBlock);
2017
2018  // Now that the function is correct, make it a little bit nicer.  In
2019  // particular, move the basic blocks inserted from the end of the function
2020  // into the space made by splitting the source basic block.
2021  Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2022                                     Caller->getBasicBlockList(), FirstNewBlock,
2023                                     Caller->end());
2024
2025  // Handle all of the return instructions that we just cloned in, and eliminate
2026  // any users of the original call/invoke instruction.
2027  Type *RTy = CalledFunc->getReturnType();
2028
2029  PHINode *PHI = nullptr;
2030  if (Returns.size() > 1) {
2031    // The PHI node should go at the front of the new basic block to merge all
2032    // possible incoming values.
2033    if (!TheCall->use_empty()) {
2034      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
2035                            &AfterCallBB->front());
2036      // Anything that used the result of the function call should now use the
2037      // PHI node as their operand.
2038      TheCall->replaceAllUsesWith(PHI);
2039    }
2040
2041    // Loop over all of the return instructions adding entries to the PHI node
2042    // as appropriate.
2043    if (PHI) {
2044      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2045        ReturnInst *RI = Returns[i];
2046        assert(RI->getReturnValue()->getType() == PHI->getType() &&
2047               "Ret value not consistent in function!");
2048        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2049      }
2050    }
2051
2052    // Add a branch to the merge points and remove return instructions.
2053    DebugLoc Loc;
2054    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2055      ReturnInst *RI = Returns[i];
2056      BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2057      Loc = RI->getDebugLoc();
2058      BI->setDebugLoc(Loc);
2059      RI->eraseFromParent();
2060    }
2061    // We need to set the debug location to *somewhere* inside the
2062    // inlined function. The line number may be nonsensical, but the
2063    // instruction will at least be associated with the right
2064    // function.
2065    if (CreatedBranchToNormalDest)
2066      CreatedBranchToNormalDest->setDebugLoc(Loc);
2067  } else if (!Returns.empty()) {
2068    // Otherwise, if there is exactly one return value, just replace anything
2069    // using the return value of the call with the computed value.
2070    if (!TheCall->use_empty()) {
2071      if (TheCall == Returns[0]->getReturnValue())
2072        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2073      else
2074        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
2075    }
2076
2077    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2078    BasicBlock *ReturnBB = Returns[0]->getParent();
2079    ReturnBB->replaceAllUsesWith(AfterCallBB);
2080
2081    // Splice the code from the return block into the block that it will return
2082    // to, which contains the code that was after the call.
2083    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2084                                      ReturnBB->getInstList());
2085
2086    if (CreatedBranchToNormalDest)
2087      CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2088
2089    // Delete the return instruction now and empty ReturnBB now.
2090    Returns[0]->eraseFromParent();
2091    ReturnBB->eraseFromParent();
2092  } else if (!TheCall->use_empty()) {
2093    // No returns, but something is using the return value of the call.  Just
2094    // nuke the result.
2095    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2096  }
2097
2098  // Since we are now done with the Call/Invoke, we can delete it.
2099  TheCall->eraseFromParent();
2100
2101  // If we inlined any musttail calls and the original return is now
2102  // unreachable, delete it.  It can only contain a bitcast and ret.
2103  if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
2104    AfterCallBB->eraseFromParent();
2105
2106  // We should always be able to fold the entry block of the function into the
2107  // single predecessor of the block...
2108  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2109  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2110
2111  // Splice the code entry block into calling block, right before the
2112  // unconditional branch.
2113  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
2114  OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2115
2116  // Remove the unconditional branch.
2117  OrigBB->getInstList().erase(Br);
2118
2119  // Now we can remove the CalleeEntry block, which is now empty.
2120  Caller->getBasicBlockList().erase(CalleeEntry);
2121
2122  // If we inserted a phi node, check to see if it has a single value (e.g. all
2123  // the entries are the same or undef).  If so, remove the PHI so it doesn't
2124  // block other optimizations.
2125  if (PHI) {
2126    auto &DL = Caller->getParent()->getDataLayout();
2127    if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr,
2128                                       &IFI.ACT->getAssumptionCache(*Caller))) {
2129      PHI->replaceAllUsesWith(V);
2130      PHI->eraseFromParent();
2131    }
2132  }
2133
2134  return true;
2135}
2136