1//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements some loop unrolling utilities. It does not define any 11// actual pass or policy, but provides a single function to perform loop 12// unrolling. 13// 14// The process of unrolling can produce extraneous basic blocks linked with 15// unconditional branches. This will be corrected in the future. 16// 17//===----------------------------------------------------------------------===// 18 19#include "llvm/Transforms/Utils/UnrollLoop.h" 20#include "llvm/ADT/SmallPtrSet.h" 21#include "llvm/ADT/Statistic.h" 22#include "llvm/Analysis/AssumptionCache.h" 23#include "llvm/Analysis/InstructionSimplify.h" 24#include "llvm/Analysis/LoopIterator.h" 25#include "llvm/Analysis/LoopPass.h" 26#include "llvm/Analysis/ScalarEvolution.h" 27#include "llvm/IR/BasicBlock.h" 28#include "llvm/IR/DataLayout.h" 29#include "llvm/IR/DiagnosticInfo.h" 30#include "llvm/IR/Dominators.h" 31#include "llvm/IR/LLVMContext.h" 32#include "llvm/Support/Debug.h" 33#include "llvm/Support/raw_ostream.h" 34#include "llvm/Transforms/Utils/BasicBlockUtils.h" 35#include "llvm/Transforms/Utils/Cloning.h" 36#include "llvm/Transforms/Utils/Local.h" 37#include "llvm/Transforms/Utils/LoopSimplify.h" 38#include "llvm/Transforms/Utils/LoopUtils.h" 39#include "llvm/Transforms/Utils/SimplifyIndVar.h" 40using namespace llvm; 41 42#define DEBUG_TYPE "loop-unroll" 43 44// TODO: Should these be here or in LoopUnroll? 45STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 46STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 47 48static cl::opt<bool> 49UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(true), cl::Hidden, 50 cl::desc("Allow runtime unrolled loops to be unrolled " 51 "with epilog instead of prolog.")); 52 53/// Convert the instruction operands from referencing the current values into 54/// those specified by VMap. 55static inline void remapInstruction(Instruction *I, 56 ValueToValueMapTy &VMap) { 57 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 58 Value *Op = I->getOperand(op); 59 ValueToValueMapTy::iterator It = VMap.find(Op); 60 if (It != VMap.end()) 61 I->setOperand(op, It->second); 62 } 63 64 if (PHINode *PN = dyn_cast<PHINode>(I)) { 65 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 66 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 67 if (It != VMap.end()) 68 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 69 } 70 } 71} 72 73/// Folds a basic block into its predecessor if it only has one predecessor, and 74/// that predecessor only has one successor. 75/// The LoopInfo Analysis that is passed will be kept consistent. If folding is 76/// successful references to the containing loop must be removed from 77/// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 78/// references to the eliminated BB. The argument ForgottenLoops contains a set 79/// of loops that have already been forgotten to prevent redundant, expensive 80/// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 81static BasicBlock * 82foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE, 83 SmallPtrSetImpl<Loop *> &ForgottenLoops, 84 DominatorTree *DT) { 85 // Merge basic blocks into their predecessor if there is only one distinct 86 // pred, and if there is only one distinct successor of the predecessor, and 87 // if there are no PHI nodes. 88 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 89 if (!OnlyPred) return nullptr; 90 91 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 92 return nullptr; 93 94 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 95 96 // Resolve any PHI nodes at the start of the block. They are all 97 // guaranteed to have exactly one entry if they exist, unless there are 98 // multiple duplicate (but guaranteed to be equal) entries for the 99 // incoming edges. This occurs when there are multiple edges from 100 // OnlyPred to OnlySucc. 101 FoldSingleEntryPHINodes(BB); 102 103 // Delete the unconditional branch from the predecessor... 104 OnlyPred->getInstList().pop_back(); 105 106 // Make all PHI nodes that referred to BB now refer to Pred as their 107 // source... 108 BB->replaceAllUsesWith(OnlyPred); 109 110 // Move all definitions in the successor to the predecessor... 111 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 112 113 // OldName will be valid until erased. 114 StringRef OldName = BB->getName(); 115 116 // Erase the old block and update dominator info. 117 if (DT) 118 if (DomTreeNode *DTN = DT->getNode(BB)) { 119 DomTreeNode *PredDTN = DT->getNode(OnlyPred); 120 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 121 for (auto *DI : Children) 122 DT->changeImmediateDominator(DI, PredDTN); 123 124 DT->eraseNode(BB); 125 } 126 127 // ScalarEvolution holds references to loop exit blocks. 128 if (SE) { 129 if (Loop *L = LI->getLoopFor(BB)) { 130 if (ForgottenLoops.insert(L).second) 131 SE->forgetLoop(L); 132 } 133 } 134 LI->removeBlock(BB); 135 136 // Inherit predecessor's name if it exists... 137 if (!OldName.empty() && !OnlyPred->hasName()) 138 OnlyPred->setName(OldName); 139 140 BB->eraseFromParent(); 141 142 return OnlyPred; 143} 144 145/// Check if unrolling created a situation where we need to insert phi nodes to 146/// preserve LCSSA form. 147/// \param Blocks is a vector of basic blocks representing unrolled loop. 148/// \param L is the outer loop. 149/// It's possible that some of the blocks are in L, and some are not. In this 150/// case, if there is a use is outside L, and definition is inside L, we need to 151/// insert a phi-node, otherwise LCSSA will be broken. 152/// The function is just a helper function for llvm::UnrollLoop that returns 153/// true if this situation occurs, indicating that LCSSA needs to be fixed. 154static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 155 LoopInfo *LI) { 156 for (BasicBlock *BB : Blocks) { 157 if (LI->getLoopFor(BB) == L) 158 continue; 159 for (Instruction &I : *BB) { 160 for (Use &U : I.operands()) { 161 if (auto Def = dyn_cast<Instruction>(U)) { 162 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 163 if (!DefLoop) 164 continue; 165 if (DefLoop->contains(L)) 166 return true; 167 } 168 } 169 } 170 } 171 return false; 172} 173 174/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 175/// if unrolling was successful, or false if the loop was unmodified. Unrolling 176/// can only fail when the loop's latch block is not terminated by a conditional 177/// branch instruction. However, if the trip count (and multiple) are not known, 178/// loop unrolling will mostly produce more code that is no faster. 179/// 180/// TripCount is generally defined as the number of times the loop header 181/// executes. UnrollLoop relaxes the definition to permit early exits: here 182/// TripCount is the iteration on which control exits LatchBlock if no early 183/// exits were taken. Note that UnrollLoop assumes that the loop counter test 184/// terminates LatchBlock in order to remove unnecesssary instances of the 185/// test. In other words, control may exit the loop prior to TripCount 186/// iterations via an early branch, but control may not exit the loop from the 187/// LatchBlock's terminator prior to TripCount iterations. 188/// 189/// Similarly, TripMultiple divides the number of times that the LatchBlock may 190/// execute without exiting the loop. 191/// 192/// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 193/// have a runtime (i.e. not compile time constant) trip count. Unrolling these 194/// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 195/// iterations before branching into the unrolled loop. UnrollLoop will not 196/// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 197/// AllowExpensiveTripCount is false. 198/// 199/// The LoopInfo Analysis that is passed will be kept consistent. 200/// 201/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 202/// DominatorTree if they are non-null. 203bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force, 204 bool AllowRuntime, bool AllowExpensiveTripCount, 205 unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE, 206 DominatorTree *DT, AssumptionCache *AC, 207 bool PreserveLCSSA) { 208 BasicBlock *Preheader = L->getLoopPreheader(); 209 if (!Preheader) { 210 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 211 return false; 212 } 213 214 BasicBlock *LatchBlock = L->getLoopLatch(); 215 if (!LatchBlock) { 216 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 217 return false; 218 } 219 220 // Loops with indirectbr cannot be cloned. 221 if (!L->isSafeToClone()) { 222 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 223 return false; 224 } 225 226 BasicBlock *Header = L->getHeader(); 227 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 228 229 if (!BI || BI->isUnconditional()) { 230 // The loop-rotate pass can be helpful to avoid this in many cases. 231 DEBUG(dbgs() << 232 " Can't unroll; loop not terminated by a conditional branch.\n"); 233 return false; 234 } 235 236 if (Header->hasAddressTaken()) { 237 // The loop-rotate pass can be helpful to avoid this in many cases. 238 DEBUG(dbgs() << 239 " Won't unroll loop: address of header block is taken.\n"); 240 return false; 241 } 242 243 if (TripCount != 0) 244 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 245 if (TripMultiple != 1) 246 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 247 248 // Effectively "DCE" unrolled iterations that are beyond the tripcount 249 // and will never be executed. 250 if (TripCount != 0 && Count > TripCount) 251 Count = TripCount; 252 253 // Don't enter the unroll code if there is nothing to do. This way we don't 254 // need to support "partial unrolling by 1". 255 if (TripCount == 0 && Count < 2) 256 return false; 257 258 assert(Count > 0); 259 assert(TripMultiple > 0); 260 assert(TripCount == 0 || TripCount % TripMultiple == 0); 261 262 // Are we eliminating the loop control altogether? 263 bool CompletelyUnroll = Count == TripCount; 264 SmallVector<BasicBlock *, 4> ExitBlocks; 265 L->getExitBlocks(ExitBlocks); 266 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 267 268 // Go through all exits of L and see if there are any phi-nodes there. We just 269 // conservatively assume that they're inserted to preserve LCSSA form, which 270 // means that complete unrolling might break this form. We need to either fix 271 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 272 // now we just recompute LCSSA for the outer loop, but it should be possible 273 // to fix it in-place. 274 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 275 std::any_of(ExitBlocks.begin(), ExitBlocks.end(), 276 [&](BasicBlock *BB) { return isa<PHINode>(BB->begin()); }); 277 278 // We assume a run-time trip count if the compiler cannot 279 // figure out the loop trip count and the unroll-runtime 280 // flag is specified. 281 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 282 283 // Loops containing convergent instructions must have a count that divides 284 // their TripMultiple. 285 DEBUG( 286 { 287 bool HasConvergent = false; 288 for (auto &BB : L->blocks()) 289 for (auto &I : *BB) 290 if (auto CS = CallSite(&I)) 291 HasConvergent |= CS.isConvergent(); 292 assert((!HasConvergent || TripMultiple % Count == 0) && 293 "Unroll count must divide trip multiple if loop contains a " 294 "convergent operation."); 295 }); 296 // Don't output the runtime loop remainder if Count is a multiple of 297 // TripMultiple. Such a remainder is never needed, and is unsafe if the loop 298 // contains a convergent instruction. 299 if (RuntimeTripCount && TripMultiple % Count != 0 && 300 !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount, 301 UnrollRuntimeEpilog, LI, SE, DT, 302 PreserveLCSSA)) { 303 if (Force) 304 RuntimeTripCount = false; 305 else 306 return false; 307 } 308 309 // Notify ScalarEvolution that the loop will be substantially changed, 310 // if not outright eliminated. 311 if (SE) 312 SE->forgetLoop(L); 313 314 // If we know the trip count, we know the multiple... 315 unsigned BreakoutTrip = 0; 316 if (TripCount != 0) { 317 BreakoutTrip = TripCount % Count; 318 TripMultiple = 0; 319 } else { 320 // Figure out what multiple to use. 321 BreakoutTrip = TripMultiple = 322 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 323 } 324 325 // Report the unrolling decision. 326 DebugLoc LoopLoc = L->getStartLoc(); 327 Function *F = Header->getParent(); 328 LLVMContext &Ctx = F->getContext(); 329 330 if (CompletelyUnroll) { 331 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 332 << " with trip count " << TripCount << "!\n"); 333 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 334 Twine("completely unrolled loop with ") + 335 Twine(TripCount) + " iterations"); 336 } else { 337 auto EmitDiag = [&](const Twine &T) { 338 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 339 "unrolled loop by a factor of " + Twine(Count) + 340 T); 341 }; 342 343 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 344 << " by " << Count); 345 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 346 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 347 EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip)); 348 } else if (TripMultiple != 1) { 349 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 350 EmitDiag(" with " + Twine(TripMultiple) + " trips per branch"); 351 } else if (RuntimeTripCount) { 352 DEBUG(dbgs() << " with run-time trip count"); 353 EmitDiag(" with run-time trip count"); 354 } 355 DEBUG(dbgs() << "!\n"); 356 } 357 358 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 359 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 360 361 // For the first iteration of the loop, we should use the precloned values for 362 // PHI nodes. Insert associations now. 363 ValueToValueMapTy LastValueMap; 364 std::vector<PHINode*> OrigPHINode; 365 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 366 OrigPHINode.push_back(cast<PHINode>(I)); 367 } 368 369 std::vector<BasicBlock*> Headers; 370 std::vector<BasicBlock*> Latches; 371 Headers.push_back(Header); 372 Latches.push_back(LatchBlock); 373 374 // The current on-the-fly SSA update requires blocks to be processed in 375 // reverse postorder so that LastValueMap contains the correct value at each 376 // exit. 377 LoopBlocksDFS DFS(L); 378 DFS.perform(LI); 379 380 // Stash the DFS iterators before adding blocks to the loop. 381 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 382 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 383 384 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 385 for (unsigned It = 1; It != Count; ++It) { 386 std::vector<BasicBlock*> NewBlocks; 387 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 388 NewLoops[L] = L; 389 390 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 391 ValueToValueMapTy VMap; 392 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 393 Header->getParent()->getBasicBlockList().push_back(New); 394 395 // Tell LI about New. 396 if (*BB == Header) { 397 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop"); 398 L->addBasicBlockToLoop(New, *LI); 399 } else { 400 // Figure out which loop New is in. 401 const Loop *OldLoop = LI->getLoopFor(*BB); 402 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 403 404 Loop *&NewLoop = NewLoops[OldLoop]; 405 if (!NewLoop) { 406 // Found a new sub-loop. 407 assert(*BB == OldLoop->getHeader() && 408 "Header should be first in RPO"); 409 410 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 411 assert(NewLoopParent && 412 "Expected parent loop before sub-loop in RPO"); 413 NewLoop = new Loop; 414 NewLoopParent->addChildLoop(NewLoop); 415 416 // Forget the old loop, since its inputs may have changed. 417 if (SE) 418 SE->forgetLoop(OldLoop); 419 } 420 NewLoop->addBasicBlockToLoop(New, *LI); 421 } 422 423 if (*BB == Header) 424 // Loop over all of the PHI nodes in the block, changing them to use 425 // the incoming values from the previous block. 426 for (PHINode *OrigPHI : OrigPHINode) { 427 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 428 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 429 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 430 if (It > 1 && L->contains(InValI)) 431 InVal = LastValueMap[InValI]; 432 VMap[OrigPHI] = InVal; 433 New->getInstList().erase(NewPHI); 434 } 435 436 // Update our running map of newest clones 437 LastValueMap[*BB] = New; 438 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 439 VI != VE; ++VI) 440 LastValueMap[VI->first] = VI->second; 441 442 // Add phi entries for newly created values to all exit blocks. 443 for (BasicBlock *Succ : successors(*BB)) { 444 if (L->contains(Succ)) 445 continue; 446 for (BasicBlock::iterator BBI = Succ->begin(); 447 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 448 Value *Incoming = phi->getIncomingValueForBlock(*BB); 449 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 450 if (It != LastValueMap.end()) 451 Incoming = It->second; 452 phi->addIncoming(Incoming, New); 453 } 454 } 455 // Keep track of new headers and latches as we create them, so that 456 // we can insert the proper branches later. 457 if (*BB == Header) 458 Headers.push_back(New); 459 if (*BB == LatchBlock) 460 Latches.push_back(New); 461 462 NewBlocks.push_back(New); 463 UnrolledLoopBlocks.push_back(New); 464 465 // Update DomTree: since we just copy the loop body, and each copy has a 466 // dedicated entry block (copy of the header block), this header's copy 467 // dominates all copied blocks. That means, dominance relations in the 468 // copied body are the same as in the original body. 469 if (DT) { 470 if (*BB == Header) 471 DT->addNewBlock(New, Latches[It - 1]); 472 else { 473 auto BBDomNode = DT->getNode(*BB); 474 auto BBIDom = BBDomNode->getIDom(); 475 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 476 DT->addNewBlock( 477 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 478 } 479 } 480 } 481 482 // Remap all instructions in the most recent iteration 483 for (BasicBlock *NewBlock : NewBlocks) 484 for (Instruction &I : *NewBlock) 485 ::remapInstruction(&I, LastValueMap); 486 } 487 488 // Loop over the PHI nodes in the original block, setting incoming values. 489 for (PHINode *PN : OrigPHINode) { 490 if (CompletelyUnroll) { 491 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 492 Header->getInstList().erase(PN); 493 } 494 else if (Count > 1) { 495 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 496 // If this value was defined in the loop, take the value defined by the 497 // last iteration of the loop. 498 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 499 if (L->contains(InValI)) 500 InVal = LastValueMap[InVal]; 501 } 502 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 503 PN->addIncoming(InVal, Latches.back()); 504 } 505 } 506 507 // Now that all the basic blocks for the unrolled iterations are in place, 508 // set up the branches to connect them. 509 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 510 // The original branch was replicated in each unrolled iteration. 511 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 512 513 // The branch destination. 514 unsigned j = (i + 1) % e; 515 BasicBlock *Dest = Headers[j]; 516 bool NeedConditional = true; 517 518 if (RuntimeTripCount && j != 0) { 519 NeedConditional = false; 520 } 521 522 // For a complete unroll, make the last iteration end with a branch 523 // to the exit block. 524 if (CompletelyUnroll) { 525 if (j == 0) 526 Dest = LoopExit; 527 NeedConditional = false; 528 } 529 530 // If we know the trip count or a multiple of it, we can safely use an 531 // unconditional branch for some iterations. 532 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 533 NeedConditional = false; 534 } 535 536 if (NeedConditional) { 537 // Update the conditional branch's successor for the following 538 // iteration. 539 Term->setSuccessor(!ContinueOnTrue, Dest); 540 } else { 541 // Remove phi operands at this loop exit 542 if (Dest != LoopExit) { 543 BasicBlock *BB = Latches[i]; 544 for (BasicBlock *Succ: successors(BB)) { 545 if (Succ == Headers[i]) 546 continue; 547 for (BasicBlock::iterator BBI = Succ->begin(); 548 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 549 Phi->removeIncomingValue(BB, false); 550 } 551 } 552 } 553 // Replace the conditional branch with an unconditional one. 554 BranchInst::Create(Dest, Term); 555 Term->eraseFromParent(); 556 } 557 } 558 // Update dominators of blocks we might reach through exits. 559 // Immediate dominator of such block might change, because we add more 560 // routes which can lead to the exit: we can now reach it from the copied 561 // iterations too. Thus, the new idom of the block will be the nearest 562 // common dominator of the previous idom and common dominator of all copies of 563 // the previous idom. This is equivalent to the nearest common dominator of 564 // the previous idom and the first latch, which dominates all copies of the 565 // previous idom. 566 if (DT && Count > 1) { 567 for (auto *BB : OriginalLoopBlocks) { 568 auto *BBDomNode = DT->getNode(BB); 569 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 570 for (auto *ChildDomNode : BBDomNode->getChildren()) { 571 auto *ChildBB = ChildDomNode->getBlock(); 572 if (!L->contains(ChildBB)) 573 ChildrenToUpdate.push_back(ChildBB); 574 } 575 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]); 576 for (auto *ChildBB : ChildrenToUpdate) 577 DT->changeImmediateDominator(ChildBB, NewIDom); 578 } 579 } 580 581 // Merge adjacent basic blocks, if possible. 582 SmallPtrSet<Loop *, 4> ForgottenLoops; 583 for (BasicBlock *Latch : Latches) { 584 BranchInst *Term = cast<BranchInst>(Latch->getTerminator()); 585 if (Term->isUnconditional()) { 586 BasicBlock *Dest = Term->getSuccessor(0); 587 if (BasicBlock *Fold = 588 foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) { 589 // Dest has been folded into Fold. Update our worklists accordingly. 590 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 591 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 592 UnrolledLoopBlocks.end(), Dest), 593 UnrolledLoopBlocks.end()); 594 } 595 } 596 } 597 598 // FIXME: We could register any cloned assumptions instead of clearing the 599 // whole function's cache. 600 AC->clear(); 601 602 // FIXME: We only preserve DT info for complete unrolling now. Incrementally 603 // updating domtree after partial loop unrolling should also be easy. 604 if (DT && !CompletelyUnroll) 605 DT->recalculate(*L->getHeader()->getParent()); 606 else if (DT) 607 DEBUG(DT->verifyDomTree()); 608 609 // Simplify any new induction variables in the partially unrolled loop. 610 if (SE && !CompletelyUnroll) { 611 SmallVector<WeakVH, 16> DeadInsts; 612 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 613 614 // Aggressively clean up dead instructions that simplifyLoopIVs already 615 // identified. Any remaining should be cleaned up below. 616 while (!DeadInsts.empty()) 617 if (Instruction *Inst = 618 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 619 RecursivelyDeleteTriviallyDeadInstructions(Inst); 620 } 621 622 // At this point, the code is well formed. We now do a quick sweep over the 623 // inserted code, doing constant propagation and dead code elimination as we 624 // go. 625 const DataLayout &DL = Header->getModule()->getDataLayout(); 626 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 627 for (BasicBlock *BB : NewLoopBlocks) { 628 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 629 Instruction *Inst = &*I++; 630 631 if (Value *V = SimplifyInstruction(Inst, DL)) 632 if (LI->replacementPreservesLCSSAForm(Inst, V)) 633 Inst->replaceAllUsesWith(V); 634 if (isInstructionTriviallyDead(Inst)) 635 BB->getInstList().erase(Inst); 636 } 637 } 638 639 NumCompletelyUnrolled += CompletelyUnroll; 640 ++NumUnrolled; 641 642 Loop *OuterL = L->getParentLoop(); 643 // Update LoopInfo if the loop is completely removed. 644 if (CompletelyUnroll) 645 LI->markAsRemoved(L); 646 647 // After complete unrolling most of the blocks should be contained in OuterL. 648 // However, some of them might happen to be out of OuterL (e.g. if they 649 // precede a loop exit). In this case we might need to insert PHI nodes in 650 // order to preserve LCSSA form. 651 // We don't need to check this if we already know that we need to fix LCSSA 652 // form. 653 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 654 // it should be possible to fix it in-place. 655 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 656 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 657 658 // If we have a pass and a DominatorTree we should re-simplify impacted loops 659 // to ensure subsequent analyses can rely on this form. We want to simplify 660 // at least one layer outside of the loop that was unrolled so that any 661 // changes to the parent loop exposed by the unrolling are considered. 662 if (DT) { 663 if (!OuterL && !CompletelyUnroll) 664 OuterL = L; 665 if (OuterL) { 666 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); 667 668 // LCSSA must be performed on the outermost affected loop. The unrolled 669 // loop's last loop latch is guaranteed to be in the outermost loop after 670 // LoopInfo's been updated by markAsRemoved. 671 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 672 if (!OuterL->contains(LatchLoop)) 673 while (OuterL->getParentLoop() != LatchLoop) 674 OuterL = OuterL->getParentLoop(); 675 676 if (NeedToFixLCSSA) 677 formLCSSARecursively(*OuterL, *DT, LI, SE); 678 else 679 assert(OuterL->isLCSSAForm(*DT) && 680 "Loops should be in LCSSA form after loop-unroll."); 681 } 682 } 683 684 return true; 685} 686 687/// Given an llvm.loop loop id metadata node, returns the loop hint metadata 688/// node with the given name (for example, "llvm.loop.unroll.count"). If no 689/// such metadata node exists, then nullptr is returned. 690MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 691 // First operand should refer to the loop id itself. 692 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 693 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 694 695 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 696 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 697 if (!MD) 698 continue; 699 700 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 701 if (!S) 702 continue; 703 704 if (Name.equals(S->getString())) 705 return MD; 706 } 707 return nullptr; 708} 709