1//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements some loop unrolling utilities. It does not define any
11// actual pass or policy, but provides a single function to perform loop
12// unrolling.
13//
14// The process of unrolling can produce extraneous basic blocks linked with
15// unconditional branches.  This will be corrected in the future.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/Utils/UnrollLoop.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/AssumptionCache.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/LoopIterator.h"
25#include "llvm/Analysis/LoopPass.h"
26#include "llvm/Analysis/ScalarEvolution.h"
27#include "llvm/IR/BasicBlock.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/DiagnosticInfo.h"
30#include "llvm/IR/Dominators.h"
31#include "llvm/IR/LLVMContext.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Transforms/Utils/BasicBlockUtils.h"
35#include "llvm/Transforms/Utils/Cloning.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Transforms/Utils/LoopSimplify.h"
38#include "llvm/Transforms/Utils/LoopUtils.h"
39#include "llvm/Transforms/Utils/SimplifyIndVar.h"
40using namespace llvm;
41
42#define DEBUG_TYPE "loop-unroll"
43
44// TODO: Should these be here or in LoopUnroll?
45STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
46STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
47
48static cl::opt<bool>
49UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(true), cl::Hidden,
50                    cl::desc("Allow runtime unrolled loops to be unrolled "
51                             "with epilog instead of prolog."));
52
53/// Convert the instruction operands from referencing the current values into
54/// those specified by VMap.
55static inline void remapInstruction(Instruction *I,
56                                    ValueToValueMapTy &VMap) {
57  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
58    Value *Op = I->getOperand(op);
59    ValueToValueMapTy::iterator It = VMap.find(Op);
60    if (It != VMap.end())
61      I->setOperand(op, It->second);
62  }
63
64  if (PHINode *PN = dyn_cast<PHINode>(I)) {
65    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
66      ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
67      if (It != VMap.end())
68        PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
69    }
70  }
71}
72
73/// Folds a basic block into its predecessor if it only has one predecessor, and
74/// that predecessor only has one successor.
75/// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
76/// successful references to the containing loop must be removed from
77/// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
78/// references to the eliminated BB.  The argument ForgottenLoops contains a set
79/// of loops that have already been forgotten to prevent redundant, expensive
80/// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
81static BasicBlock *
82foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE,
83                         SmallPtrSetImpl<Loop *> &ForgottenLoops,
84                         DominatorTree *DT) {
85  // Merge basic blocks into their predecessor if there is only one distinct
86  // pred, and if there is only one distinct successor of the predecessor, and
87  // if there are no PHI nodes.
88  BasicBlock *OnlyPred = BB->getSinglePredecessor();
89  if (!OnlyPred) return nullptr;
90
91  if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
92    return nullptr;
93
94  DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
95
96  // Resolve any PHI nodes at the start of the block.  They are all
97  // guaranteed to have exactly one entry if they exist, unless there are
98  // multiple duplicate (but guaranteed to be equal) entries for the
99  // incoming edges.  This occurs when there are multiple edges from
100  // OnlyPred to OnlySucc.
101  FoldSingleEntryPHINodes(BB);
102
103  // Delete the unconditional branch from the predecessor...
104  OnlyPred->getInstList().pop_back();
105
106  // Make all PHI nodes that referred to BB now refer to Pred as their
107  // source...
108  BB->replaceAllUsesWith(OnlyPred);
109
110  // Move all definitions in the successor to the predecessor...
111  OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
112
113  // OldName will be valid until erased.
114  StringRef OldName = BB->getName();
115
116  // Erase the old block and update dominator info.
117  if (DT)
118    if (DomTreeNode *DTN = DT->getNode(BB)) {
119      DomTreeNode *PredDTN = DT->getNode(OnlyPred);
120      SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
121      for (auto *DI : Children)
122        DT->changeImmediateDominator(DI, PredDTN);
123
124      DT->eraseNode(BB);
125    }
126
127  // ScalarEvolution holds references to loop exit blocks.
128  if (SE) {
129    if (Loop *L = LI->getLoopFor(BB)) {
130      if (ForgottenLoops.insert(L).second)
131        SE->forgetLoop(L);
132    }
133  }
134  LI->removeBlock(BB);
135
136  // Inherit predecessor's name if it exists...
137  if (!OldName.empty() && !OnlyPred->hasName())
138    OnlyPred->setName(OldName);
139
140  BB->eraseFromParent();
141
142  return OnlyPred;
143}
144
145/// Check if unrolling created a situation where we need to insert phi nodes to
146/// preserve LCSSA form.
147/// \param Blocks is a vector of basic blocks representing unrolled loop.
148/// \param L is the outer loop.
149/// It's possible that some of the blocks are in L, and some are not. In this
150/// case, if there is a use is outside L, and definition is inside L, we need to
151/// insert a phi-node, otherwise LCSSA will be broken.
152/// The function is just a helper function for llvm::UnrollLoop that returns
153/// true if this situation occurs, indicating that LCSSA needs to be fixed.
154static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
155                                     LoopInfo *LI) {
156  for (BasicBlock *BB : Blocks) {
157    if (LI->getLoopFor(BB) == L)
158      continue;
159    for (Instruction &I : *BB) {
160      for (Use &U : I.operands()) {
161        if (auto Def = dyn_cast<Instruction>(U)) {
162          Loop *DefLoop = LI->getLoopFor(Def->getParent());
163          if (!DefLoop)
164            continue;
165          if (DefLoop->contains(L))
166            return true;
167        }
168      }
169    }
170  }
171  return false;
172}
173
174/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
175/// if unrolling was successful, or false if the loop was unmodified. Unrolling
176/// can only fail when the loop's latch block is not terminated by a conditional
177/// branch instruction. However, if the trip count (and multiple) are not known,
178/// loop unrolling will mostly produce more code that is no faster.
179///
180/// TripCount is generally defined as the number of times the loop header
181/// executes. UnrollLoop relaxes the definition to permit early exits: here
182/// TripCount is the iteration on which control exits LatchBlock if no early
183/// exits were taken. Note that UnrollLoop assumes that the loop counter test
184/// terminates LatchBlock in order to remove unnecesssary instances of the
185/// test. In other words, control may exit the loop prior to TripCount
186/// iterations via an early branch, but control may not exit the loop from the
187/// LatchBlock's terminator prior to TripCount iterations.
188///
189/// Similarly, TripMultiple divides the number of times that the LatchBlock may
190/// execute without exiting the loop.
191///
192/// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
193/// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
194/// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
195/// iterations before branching into the unrolled loop.  UnrollLoop will not
196/// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
197/// AllowExpensiveTripCount is false.
198///
199/// The LoopInfo Analysis that is passed will be kept consistent.
200///
201/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
202/// DominatorTree if they are non-null.
203bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
204                      bool AllowRuntime, bool AllowExpensiveTripCount,
205                      unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE,
206                      DominatorTree *DT, AssumptionCache *AC,
207                      bool PreserveLCSSA) {
208  BasicBlock *Preheader = L->getLoopPreheader();
209  if (!Preheader) {
210    DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
211    return false;
212  }
213
214  BasicBlock *LatchBlock = L->getLoopLatch();
215  if (!LatchBlock) {
216    DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
217    return false;
218  }
219
220  // Loops with indirectbr cannot be cloned.
221  if (!L->isSafeToClone()) {
222    DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
223    return false;
224  }
225
226  BasicBlock *Header = L->getHeader();
227  BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
228
229  if (!BI || BI->isUnconditional()) {
230    // The loop-rotate pass can be helpful to avoid this in many cases.
231    DEBUG(dbgs() <<
232             "  Can't unroll; loop not terminated by a conditional branch.\n");
233    return false;
234  }
235
236  if (Header->hasAddressTaken()) {
237    // The loop-rotate pass can be helpful to avoid this in many cases.
238    DEBUG(dbgs() <<
239          "  Won't unroll loop: address of header block is taken.\n");
240    return false;
241  }
242
243  if (TripCount != 0)
244    DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
245  if (TripMultiple != 1)
246    DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
247
248  // Effectively "DCE" unrolled iterations that are beyond the tripcount
249  // and will never be executed.
250  if (TripCount != 0 && Count > TripCount)
251    Count = TripCount;
252
253  // Don't enter the unroll code if there is nothing to do. This way we don't
254  // need to support "partial unrolling by 1".
255  if (TripCount == 0 && Count < 2)
256    return false;
257
258  assert(Count > 0);
259  assert(TripMultiple > 0);
260  assert(TripCount == 0 || TripCount % TripMultiple == 0);
261
262  // Are we eliminating the loop control altogether?
263  bool CompletelyUnroll = Count == TripCount;
264  SmallVector<BasicBlock *, 4> ExitBlocks;
265  L->getExitBlocks(ExitBlocks);
266  std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
267
268  // Go through all exits of L and see if there are any phi-nodes there. We just
269  // conservatively assume that they're inserted to preserve LCSSA form, which
270  // means that complete unrolling might break this form. We need to either fix
271  // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
272  // now we just recompute LCSSA for the outer loop, but it should be possible
273  // to fix it in-place.
274  bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
275      std::any_of(ExitBlocks.begin(), ExitBlocks.end(),
276                  [&](BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
277
278  // We assume a run-time trip count if the compiler cannot
279  // figure out the loop trip count and the unroll-runtime
280  // flag is specified.
281  bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
282
283  // Loops containing convergent instructions must have a count that divides
284  // their TripMultiple.
285  DEBUG(
286      {
287        bool HasConvergent = false;
288        for (auto &BB : L->blocks())
289          for (auto &I : *BB)
290            if (auto CS = CallSite(&I))
291              HasConvergent |= CS.isConvergent();
292        assert((!HasConvergent || TripMultiple % Count == 0) &&
293               "Unroll count must divide trip multiple if loop contains a "
294               "convergent operation.");
295      });
296  // Don't output the runtime loop remainder if Count is a multiple of
297  // TripMultiple.  Such a remainder is never needed, and is unsafe if the loop
298  // contains a convergent instruction.
299  if (RuntimeTripCount && TripMultiple % Count != 0 &&
300      !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
301                                  UnrollRuntimeEpilog, LI, SE, DT,
302                                  PreserveLCSSA)) {
303    if (Force)
304      RuntimeTripCount = false;
305    else
306      return false;
307  }
308
309  // Notify ScalarEvolution that the loop will be substantially changed,
310  // if not outright eliminated.
311  if (SE)
312    SE->forgetLoop(L);
313
314  // If we know the trip count, we know the multiple...
315  unsigned BreakoutTrip = 0;
316  if (TripCount != 0) {
317    BreakoutTrip = TripCount % Count;
318    TripMultiple = 0;
319  } else {
320    // Figure out what multiple to use.
321    BreakoutTrip = TripMultiple =
322      (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
323  }
324
325  // Report the unrolling decision.
326  DebugLoc LoopLoc = L->getStartLoc();
327  Function *F = Header->getParent();
328  LLVMContext &Ctx = F->getContext();
329
330  if (CompletelyUnroll) {
331    DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
332          << " with trip count " << TripCount << "!\n");
333    emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
334                           Twine("completely unrolled loop with ") +
335                               Twine(TripCount) + " iterations");
336  } else {
337    auto EmitDiag = [&](const Twine &T) {
338      emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
339                             "unrolled loop by a factor of " + Twine(Count) +
340                                 T);
341    };
342
343    DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
344          << " by " << Count);
345    if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
346      DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
347      EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip));
348    } else if (TripMultiple != 1) {
349      DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
350      EmitDiag(" with " + Twine(TripMultiple) + " trips per branch");
351    } else if (RuntimeTripCount) {
352      DEBUG(dbgs() << " with run-time trip count");
353      EmitDiag(" with run-time trip count");
354    }
355    DEBUG(dbgs() << "!\n");
356  }
357
358  bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
359  BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
360
361  // For the first iteration of the loop, we should use the precloned values for
362  // PHI nodes.  Insert associations now.
363  ValueToValueMapTy LastValueMap;
364  std::vector<PHINode*> OrigPHINode;
365  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
366    OrigPHINode.push_back(cast<PHINode>(I));
367  }
368
369  std::vector<BasicBlock*> Headers;
370  std::vector<BasicBlock*> Latches;
371  Headers.push_back(Header);
372  Latches.push_back(LatchBlock);
373
374  // The current on-the-fly SSA update requires blocks to be processed in
375  // reverse postorder so that LastValueMap contains the correct value at each
376  // exit.
377  LoopBlocksDFS DFS(L);
378  DFS.perform(LI);
379
380  // Stash the DFS iterators before adding blocks to the loop.
381  LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
382  LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
383
384  std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
385  for (unsigned It = 1; It != Count; ++It) {
386    std::vector<BasicBlock*> NewBlocks;
387    SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
388    NewLoops[L] = L;
389
390    for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
391      ValueToValueMapTy VMap;
392      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
393      Header->getParent()->getBasicBlockList().push_back(New);
394
395      // Tell LI about New.
396      if (*BB == Header) {
397        assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
398        L->addBasicBlockToLoop(New, *LI);
399      } else {
400        // Figure out which loop New is in.
401        const Loop *OldLoop = LI->getLoopFor(*BB);
402        assert(OldLoop && "Should (at least) be in the loop being unrolled!");
403
404        Loop *&NewLoop = NewLoops[OldLoop];
405        if (!NewLoop) {
406          // Found a new sub-loop.
407          assert(*BB == OldLoop->getHeader() &&
408                 "Header should be first in RPO");
409
410          Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
411          assert(NewLoopParent &&
412                 "Expected parent loop before sub-loop in RPO");
413          NewLoop = new Loop;
414          NewLoopParent->addChildLoop(NewLoop);
415
416          // Forget the old loop, since its inputs may have changed.
417          if (SE)
418            SE->forgetLoop(OldLoop);
419        }
420        NewLoop->addBasicBlockToLoop(New, *LI);
421      }
422
423      if (*BB == Header)
424        // Loop over all of the PHI nodes in the block, changing them to use
425        // the incoming values from the previous block.
426        for (PHINode *OrigPHI : OrigPHINode) {
427          PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
428          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
429          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
430            if (It > 1 && L->contains(InValI))
431              InVal = LastValueMap[InValI];
432          VMap[OrigPHI] = InVal;
433          New->getInstList().erase(NewPHI);
434        }
435
436      // Update our running map of newest clones
437      LastValueMap[*BB] = New;
438      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
439           VI != VE; ++VI)
440        LastValueMap[VI->first] = VI->second;
441
442      // Add phi entries for newly created values to all exit blocks.
443      for (BasicBlock *Succ : successors(*BB)) {
444        if (L->contains(Succ))
445          continue;
446        for (BasicBlock::iterator BBI = Succ->begin();
447             PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
448          Value *Incoming = phi->getIncomingValueForBlock(*BB);
449          ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
450          if (It != LastValueMap.end())
451            Incoming = It->second;
452          phi->addIncoming(Incoming, New);
453        }
454      }
455      // Keep track of new headers and latches as we create them, so that
456      // we can insert the proper branches later.
457      if (*BB == Header)
458        Headers.push_back(New);
459      if (*BB == LatchBlock)
460        Latches.push_back(New);
461
462      NewBlocks.push_back(New);
463      UnrolledLoopBlocks.push_back(New);
464
465      // Update DomTree: since we just copy the loop body, and each copy has a
466      // dedicated entry block (copy of the header block), this header's copy
467      // dominates all copied blocks. That means, dominance relations in the
468      // copied body are the same as in the original body.
469      if (DT) {
470        if (*BB == Header)
471          DT->addNewBlock(New, Latches[It - 1]);
472        else {
473          auto BBDomNode = DT->getNode(*BB);
474          auto BBIDom = BBDomNode->getIDom();
475          BasicBlock *OriginalBBIDom = BBIDom->getBlock();
476          DT->addNewBlock(
477              New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
478        }
479      }
480    }
481
482    // Remap all instructions in the most recent iteration
483    for (BasicBlock *NewBlock : NewBlocks)
484      for (Instruction &I : *NewBlock)
485        ::remapInstruction(&I, LastValueMap);
486  }
487
488  // Loop over the PHI nodes in the original block, setting incoming values.
489  for (PHINode *PN : OrigPHINode) {
490    if (CompletelyUnroll) {
491      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
492      Header->getInstList().erase(PN);
493    }
494    else if (Count > 1) {
495      Value *InVal = PN->removeIncomingValue(LatchBlock, false);
496      // If this value was defined in the loop, take the value defined by the
497      // last iteration of the loop.
498      if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
499        if (L->contains(InValI))
500          InVal = LastValueMap[InVal];
501      }
502      assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
503      PN->addIncoming(InVal, Latches.back());
504    }
505  }
506
507  // Now that all the basic blocks for the unrolled iterations are in place,
508  // set up the branches to connect them.
509  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
510    // The original branch was replicated in each unrolled iteration.
511    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
512
513    // The branch destination.
514    unsigned j = (i + 1) % e;
515    BasicBlock *Dest = Headers[j];
516    bool NeedConditional = true;
517
518    if (RuntimeTripCount && j != 0) {
519      NeedConditional = false;
520    }
521
522    // For a complete unroll, make the last iteration end with a branch
523    // to the exit block.
524    if (CompletelyUnroll) {
525      if (j == 0)
526        Dest = LoopExit;
527      NeedConditional = false;
528    }
529
530    // If we know the trip count or a multiple of it, we can safely use an
531    // unconditional branch for some iterations.
532    if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
533      NeedConditional = false;
534    }
535
536    if (NeedConditional) {
537      // Update the conditional branch's successor for the following
538      // iteration.
539      Term->setSuccessor(!ContinueOnTrue, Dest);
540    } else {
541      // Remove phi operands at this loop exit
542      if (Dest != LoopExit) {
543        BasicBlock *BB = Latches[i];
544        for (BasicBlock *Succ: successors(BB)) {
545          if (Succ == Headers[i])
546            continue;
547          for (BasicBlock::iterator BBI = Succ->begin();
548               PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
549            Phi->removeIncomingValue(BB, false);
550          }
551        }
552      }
553      // Replace the conditional branch with an unconditional one.
554      BranchInst::Create(Dest, Term);
555      Term->eraseFromParent();
556    }
557  }
558  // Update dominators of blocks we might reach through exits.
559  // Immediate dominator of such block might change, because we add more
560  // routes which can lead to the exit: we can now reach it from the copied
561  // iterations too. Thus, the new idom of the block will be the nearest
562  // common dominator of the previous idom and common dominator of all copies of
563  // the previous idom. This is equivalent to the nearest common dominator of
564  // the previous idom and the first latch, which dominates all copies of the
565  // previous idom.
566  if (DT && Count > 1) {
567    for (auto *BB : OriginalLoopBlocks) {
568      auto *BBDomNode = DT->getNode(BB);
569      SmallVector<BasicBlock *, 16> ChildrenToUpdate;
570      for (auto *ChildDomNode : BBDomNode->getChildren()) {
571        auto *ChildBB = ChildDomNode->getBlock();
572        if (!L->contains(ChildBB))
573          ChildrenToUpdate.push_back(ChildBB);
574      }
575      BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]);
576      for (auto *ChildBB : ChildrenToUpdate)
577        DT->changeImmediateDominator(ChildBB, NewIDom);
578    }
579  }
580
581  // Merge adjacent basic blocks, if possible.
582  SmallPtrSet<Loop *, 4> ForgottenLoops;
583  for (BasicBlock *Latch : Latches) {
584    BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
585    if (Term->isUnconditional()) {
586      BasicBlock *Dest = Term->getSuccessor(0);
587      if (BasicBlock *Fold =
588              foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) {
589        // Dest has been folded into Fold. Update our worklists accordingly.
590        std::replace(Latches.begin(), Latches.end(), Dest, Fold);
591        UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
592                                             UnrolledLoopBlocks.end(), Dest),
593                                 UnrolledLoopBlocks.end());
594      }
595    }
596  }
597
598  // FIXME: We could register any cloned assumptions instead of clearing the
599  // whole function's cache.
600  AC->clear();
601
602  // FIXME: We only preserve DT info for complete unrolling now. Incrementally
603  // updating domtree after partial loop unrolling should also be easy.
604  if (DT && !CompletelyUnroll)
605    DT->recalculate(*L->getHeader()->getParent());
606  else if (DT)
607    DEBUG(DT->verifyDomTree());
608
609  // Simplify any new induction variables in the partially unrolled loop.
610  if (SE && !CompletelyUnroll) {
611    SmallVector<WeakVH, 16> DeadInsts;
612    simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
613
614    // Aggressively clean up dead instructions that simplifyLoopIVs already
615    // identified. Any remaining should be cleaned up below.
616    while (!DeadInsts.empty())
617      if (Instruction *Inst =
618              dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
619        RecursivelyDeleteTriviallyDeadInstructions(Inst);
620  }
621
622  // At this point, the code is well formed.  We now do a quick sweep over the
623  // inserted code, doing constant propagation and dead code elimination as we
624  // go.
625  const DataLayout &DL = Header->getModule()->getDataLayout();
626  const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
627  for (BasicBlock *BB : NewLoopBlocks) {
628    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
629      Instruction *Inst = &*I++;
630
631      if (Value *V = SimplifyInstruction(Inst, DL))
632        if (LI->replacementPreservesLCSSAForm(Inst, V))
633          Inst->replaceAllUsesWith(V);
634      if (isInstructionTriviallyDead(Inst))
635        BB->getInstList().erase(Inst);
636    }
637  }
638
639  NumCompletelyUnrolled += CompletelyUnroll;
640  ++NumUnrolled;
641
642  Loop *OuterL = L->getParentLoop();
643  // Update LoopInfo if the loop is completely removed.
644  if (CompletelyUnroll)
645    LI->markAsRemoved(L);
646
647  // After complete unrolling most of the blocks should be contained in OuterL.
648  // However, some of them might happen to be out of OuterL (e.g. if they
649  // precede a loop exit). In this case we might need to insert PHI nodes in
650  // order to preserve LCSSA form.
651  // We don't need to check this if we already know that we need to fix LCSSA
652  // form.
653  // TODO: For now we just recompute LCSSA for the outer loop in this case, but
654  // it should be possible to fix it in-place.
655  if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
656    NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
657
658  // If we have a pass and a DominatorTree we should re-simplify impacted loops
659  // to ensure subsequent analyses can rely on this form. We want to simplify
660  // at least one layer outside of the loop that was unrolled so that any
661  // changes to the parent loop exposed by the unrolling are considered.
662  if (DT) {
663    if (!OuterL && !CompletelyUnroll)
664      OuterL = L;
665    if (OuterL) {
666      simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
667
668      // LCSSA must be performed on the outermost affected loop. The unrolled
669      // loop's last loop latch is guaranteed to be in the outermost loop after
670      // LoopInfo's been updated by markAsRemoved.
671      Loop *LatchLoop = LI->getLoopFor(Latches.back());
672      if (!OuterL->contains(LatchLoop))
673        while (OuterL->getParentLoop() != LatchLoop)
674          OuterL = OuterL->getParentLoop();
675
676      if (NeedToFixLCSSA)
677        formLCSSARecursively(*OuterL, *DT, LI, SE);
678      else
679        assert(OuterL->isLCSSAForm(*DT) &&
680               "Loops should be in LCSSA form after loop-unroll.");
681    }
682  }
683
684  return true;
685}
686
687/// Given an llvm.loop loop id metadata node, returns the loop hint metadata
688/// node with the given name (for example, "llvm.loop.unroll.count"). If no
689/// such metadata node exists, then nullptr is returned.
690MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
691  // First operand should refer to the loop id itself.
692  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
693  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
694
695  for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
696    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
697    if (!MD)
698      continue;
699
700    MDString *S = dyn_cast<MDString>(MD->getOperand(0));
701    if (!S)
702      continue;
703
704    if (Name.equals(S->getString()))
705      return MD;
706  }
707  return nullptr;
708}
709