1//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements some loop unrolling utilities for loops with run-time
11// trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
12// trip counts.
13//
14// The functions in this file are used to generate extra code when the
15// run-time trip count modulo the unroll factor is not 0.  When this is the
16// case, we need to generate code to execute these 'left over' iterations.
17//
18// The current strategy generates an if-then-else sequence prior to the
19// unrolled loop to execute the 'left over' iterations before or after the
20// unrolled loop.
21//
22//===----------------------------------------------------------------------===//
23
24#include "llvm/Transforms/Utils/UnrollLoop.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/LoopIterator.h"
28#include "llvm/Analysis/LoopPass.h"
29#include "llvm/Analysis/ScalarEvolution.h"
30#include "llvm/Analysis/ScalarEvolutionExpander.h"
31#include "llvm/IR/BasicBlock.h"
32#include "llvm/IR/Dominators.h"
33#include "llvm/IR/Metadata.h"
34#include "llvm/IR/Module.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/Transforms/Utils/BasicBlockUtils.h"
39#include "llvm/Transforms/Utils/Cloning.h"
40#include <algorithm>
41
42using namespace llvm;
43
44#define DEBUG_TYPE "loop-unroll"
45
46STATISTIC(NumRuntimeUnrolled,
47          "Number of loops unrolled with run-time trip counts");
48
49/// Connect the unrolling prolog code to the original loop.
50/// The unrolling prolog code contains code to execute the
51/// 'extra' iterations if the run-time trip count modulo the
52/// unroll count is non-zero.
53///
54/// This function performs the following:
55/// - Create PHI nodes at prolog end block to combine values
56///   that exit the prolog code and jump around the prolog.
57/// - Add a PHI operand to a PHI node at the loop exit block
58///   for values that exit the prolog and go around the loop.
59/// - Branch around the original loop if the trip count is less
60///   than the unroll factor.
61///
62static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
63                          BasicBlock *PrologExit, BasicBlock *PreHeader,
64                          BasicBlock *NewPreHeader, ValueToValueMapTy &VMap,
65                          DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA) {
66  BasicBlock *Latch = L->getLoopLatch();
67  assert(Latch && "Loop must have a latch");
68  BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
69
70  // Create a PHI node for each outgoing value from the original loop
71  // (which means it is an outgoing value from the prolog code too).
72  // The new PHI node is inserted in the prolog end basic block.
73  // The new PHI node value is added as an operand of a PHI node in either
74  // the loop header or the loop exit block.
75  for (BasicBlock *Succ : successors(Latch)) {
76    for (Instruction &BBI : *Succ) {
77      PHINode *PN = dyn_cast<PHINode>(&BBI);
78      // Exit when we passed all PHI nodes.
79      if (!PN)
80        break;
81      // Add a new PHI node to the prolog end block and add the
82      // appropriate incoming values.
83      PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
84                                       PrologExit->getFirstNonPHI());
85      // Adding a value to the new PHI node from the original loop preheader.
86      // This is the value that skips all the prolog code.
87      if (L->contains(PN)) {
88        NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader),
89                           PreHeader);
90      } else {
91        NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
92      }
93
94      Value *V = PN->getIncomingValueForBlock(Latch);
95      if (Instruction *I = dyn_cast<Instruction>(V)) {
96        if (L->contains(I)) {
97          V = VMap.lookup(I);
98        }
99      }
100      // Adding a value to the new PHI node from the last prolog block
101      // that was created.
102      NewPN->addIncoming(V, PrologLatch);
103
104      // Update the existing PHI node operand with the value from the
105      // new PHI node.  How this is done depends on if the existing
106      // PHI node is in the original loop block, or the exit block.
107      if (L->contains(PN)) {
108        PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN);
109      } else {
110        PN->addIncoming(NewPN, PrologExit);
111      }
112    }
113  }
114
115  // Create a branch around the original loop, which is taken if there are no
116  // iterations remaining to be executed after running the prologue.
117  Instruction *InsertPt = PrologExit->getTerminator();
118  IRBuilder<> B(InsertPt);
119
120  assert(Count != 0 && "nonsensical Count!");
121
122  // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
123  // This means %xtraiter is (BECount + 1) and all of the iterations of this
124  // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
125  // then (BECount + 1) cannot unsigned-overflow.
126  Value *BrLoopExit =
127      B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
128  BasicBlock *Exit = L->getUniqueExitBlock();
129  assert(Exit && "Loop must have a single exit block only");
130  // Split the exit to maintain loop canonicalization guarantees
131  SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
132  SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI,
133                         PreserveLCSSA);
134  // Add the branch to the exit block (around the unrolled loop)
135  B.CreateCondBr(BrLoopExit, Exit, NewPreHeader);
136  InsertPt->eraseFromParent();
137}
138
139/// Connect the unrolling epilog code to the original loop.
140/// The unrolling epilog code contains code to execute the
141/// 'extra' iterations if the run-time trip count modulo the
142/// unroll count is non-zero.
143///
144/// This function performs the following:
145/// - Update PHI nodes at the unrolling loop exit and epilog loop exit
146/// - Create PHI nodes at the unrolling loop exit to combine
147///   values that exit the unrolling loop code and jump around it.
148/// - Update PHI operands in the epilog loop by the new PHI nodes
149/// - Branch around the epilog loop if extra iters (ModVal) is zero.
150///
151static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
152                          BasicBlock *Exit, BasicBlock *PreHeader,
153                          BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
154                          ValueToValueMapTy &VMap, DominatorTree *DT,
155                          LoopInfo *LI, bool PreserveLCSSA)  {
156  BasicBlock *Latch = L->getLoopLatch();
157  assert(Latch && "Loop must have a latch");
158  BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
159
160  // Loop structure should be the following:
161  //
162  // PreHeader
163  // NewPreHeader
164  //   Header
165  //   ...
166  //   Latch
167  // NewExit (PN)
168  // EpilogPreHeader
169  //   EpilogHeader
170  //   ...
171  //   EpilogLatch
172  // Exit (EpilogPN)
173
174  // Update PHI nodes at NewExit and Exit.
175  for (Instruction &BBI : *NewExit) {
176    PHINode *PN = dyn_cast<PHINode>(&BBI);
177    // Exit when we passed all PHI nodes.
178    if (!PN)
179      break;
180    // PN should be used in another PHI located in Exit block as
181    // Exit was split by SplitBlockPredecessors into Exit and NewExit
182    // Basicaly it should look like:
183    // NewExit:
184    //   PN = PHI [I, Latch]
185    // ...
186    // Exit:
187    //   EpilogPN = PHI [PN, EpilogPreHeader]
188    //
189    // There is EpilogPreHeader incoming block instead of NewExit as
190    // NewExit was spilt 1 more time to get EpilogPreHeader.
191    assert(PN->hasOneUse() && "The phi should have 1 use");
192    PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser());
193    assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
194
195    // Add incoming PreHeader from branch around the Loop
196    PN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
197
198    Value *V = PN->getIncomingValueForBlock(Latch);
199    Instruction *I = dyn_cast<Instruction>(V);
200    if (I && L->contains(I))
201      // If value comes from an instruction in the loop add VMap value.
202      V = VMap.lookup(I);
203    // For the instruction out of the loop, constant or undefined value
204    // insert value itself.
205    EpilogPN->addIncoming(V, EpilogLatch);
206
207    assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
208          "EpilogPN should have EpilogPreHeader incoming block");
209    // Change EpilogPreHeader incoming block to NewExit.
210    EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
211                               NewExit);
212    // Now PHIs should look like:
213    // NewExit:
214    //   PN = PHI [I, Latch], [undef, PreHeader]
215    // ...
216    // Exit:
217    //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
218  }
219
220  // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
221  // Update corresponding PHI nodes in epilog loop.
222  for (BasicBlock *Succ : successors(Latch)) {
223    // Skip this as we already updated phis in exit blocks.
224    if (!L->contains(Succ))
225      continue;
226    for (Instruction &BBI : *Succ) {
227      PHINode *PN = dyn_cast<PHINode>(&BBI);
228      // Exit when we passed all PHI nodes.
229      if (!PN)
230        break;
231      // Add new PHI nodes to the loop exit block and update epilog
232      // PHIs with the new PHI values.
233      PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
234                                       NewExit->getFirstNonPHI());
235      // Adding a value to the new PHI node from the unrolling loop preheader.
236      NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader);
237      // Adding a value to the new PHI node from the unrolling loop latch.
238      NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch);
239
240      // Update the existing PHI node operand with the value from the new PHI
241      // node.  Corresponding instruction in epilog loop should be PHI.
242      PHINode *VPN = cast<PHINode>(VMap[&BBI]);
243      VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN);
244    }
245  }
246
247  Instruction *InsertPt = NewExit->getTerminator();
248  IRBuilder<> B(InsertPt);
249  Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
250  assert(Exit && "Loop must have a single exit block only");
251  // Split the exit to maintain loop canonicalization guarantees
252  SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
253  SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI,
254                         PreserveLCSSA);
255  // Add the branch to the exit block (around the unrolling loop)
256  B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
257  InsertPt->eraseFromParent();
258}
259
260/// Create a clone of the blocks in a loop and connect them together.
261/// If CreateRemainderLoop is false, loop structure will not be cloned,
262/// otherwise a new loop will be created including all cloned blocks, and the
263/// iterator of it switches to count NewIter down to 0.
264/// The cloned blocks should be inserted between InsertTop and InsertBot.
265/// If loop structure is cloned InsertTop should be new preheader, InsertBot
266/// new loop exit.
267///
268static void CloneLoopBlocks(Loop *L, Value *NewIter,
269                            const bool CreateRemainderLoop,
270                            const bool UseEpilogRemainder,
271                            BasicBlock *InsertTop, BasicBlock *InsertBot,
272                            BasicBlock *Preheader,
273                            std::vector<BasicBlock *> &NewBlocks,
274                            LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
275                            LoopInfo *LI) {
276  StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
277  BasicBlock *Header = L->getHeader();
278  BasicBlock *Latch = L->getLoopLatch();
279  Function *F = Header->getParent();
280  LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
281  LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
282  Loop *NewLoop = nullptr;
283  Loop *ParentLoop = L->getParentLoop();
284  if (CreateRemainderLoop) {
285    NewLoop = new Loop();
286    if (ParentLoop)
287      ParentLoop->addChildLoop(NewLoop);
288    else
289      LI->addTopLevelLoop(NewLoop);
290  }
291
292  // For each block in the original loop, create a new copy,
293  // and update the value map with the newly created values.
294  for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
295    BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
296    NewBlocks.push_back(NewBB);
297
298    if (NewLoop)
299      NewLoop->addBasicBlockToLoop(NewBB, *LI);
300    else if (ParentLoop)
301      ParentLoop->addBasicBlockToLoop(NewBB, *LI);
302
303    VMap[*BB] = NewBB;
304    if (Header == *BB) {
305      // For the first block, add a CFG connection to this newly
306      // created block.
307      InsertTop->getTerminator()->setSuccessor(0, NewBB);
308    }
309
310    if (Latch == *BB) {
311      // For the last block, if CreateRemainderLoop is false, create a direct
312      // jump to InsertBot. If not, create a loop back to cloned head.
313      VMap.erase((*BB)->getTerminator());
314      BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
315      BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
316      IRBuilder<> Builder(LatchBR);
317      if (!CreateRemainderLoop) {
318        Builder.CreateBr(InsertBot);
319      } else {
320        PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
321                                          suffix + ".iter",
322                                          FirstLoopBB->getFirstNonPHI());
323        Value *IdxSub =
324            Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
325                              NewIdx->getName() + ".sub");
326        Value *IdxCmp =
327            Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
328        Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
329        NewIdx->addIncoming(NewIter, InsertTop);
330        NewIdx->addIncoming(IdxSub, NewBB);
331      }
332      LatchBR->eraseFromParent();
333    }
334  }
335
336  // Change the incoming values to the ones defined in the preheader or
337  // cloned loop.
338  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
339    PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
340    if (!CreateRemainderLoop) {
341      if (UseEpilogRemainder) {
342        unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
343        NewPHI->setIncomingBlock(idx, InsertTop);
344        NewPHI->removeIncomingValue(Latch, false);
345      } else {
346        VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
347        cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
348      }
349    } else {
350      unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
351      NewPHI->setIncomingBlock(idx, InsertTop);
352      BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
353      idx = NewPHI->getBasicBlockIndex(Latch);
354      Value *InVal = NewPHI->getIncomingValue(idx);
355      NewPHI->setIncomingBlock(idx, NewLatch);
356      if (Value *V = VMap.lookup(InVal))
357        NewPHI->setIncomingValue(idx, V);
358    }
359  }
360  if (NewLoop) {
361    // Add unroll disable metadata to disable future unrolling for this loop.
362    SmallVector<Metadata *, 4> MDs;
363    // Reserve first location for self reference to the LoopID metadata node.
364    MDs.push_back(nullptr);
365    MDNode *LoopID = NewLoop->getLoopID();
366    if (LoopID) {
367      // First remove any existing loop unrolling metadata.
368      for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
369        bool IsUnrollMetadata = false;
370        MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
371        if (MD) {
372          const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
373          IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
374        }
375        if (!IsUnrollMetadata)
376          MDs.push_back(LoopID->getOperand(i));
377      }
378    }
379
380    LLVMContext &Context = NewLoop->getHeader()->getContext();
381    SmallVector<Metadata *, 1> DisableOperands;
382    DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
383    MDNode *DisableNode = MDNode::get(Context, DisableOperands);
384    MDs.push_back(DisableNode);
385
386    MDNode *NewLoopID = MDNode::get(Context, MDs);
387    // Set operand 0 to refer to the loop id itself.
388    NewLoopID->replaceOperandWith(0, NewLoopID);
389    NewLoop->setLoopID(NewLoopID);
390  }
391}
392
393/// Insert code in the prolog/epilog code when unrolling a loop with a
394/// run-time trip-count.
395///
396/// This method assumes that the loop unroll factor is total number
397/// of loop bodies in the loop after unrolling. (Some folks refer
398/// to the unroll factor as the number of *extra* copies added).
399/// We assume also that the loop unroll factor is a power-of-two. So, after
400/// unrolling the loop, the number of loop bodies executed is 2,
401/// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
402/// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
403/// the switch instruction is generated.
404///
405/// ***Prolog case***
406///        extraiters = tripcount % loopfactor
407///        if (extraiters == 0) jump Loop:
408///        else jump Prol:
409/// Prol:  LoopBody;
410///        extraiters -= 1                 // Omitted if unroll factor is 2.
411///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
412///        if (tripcount < loopfactor) jump End:
413/// Loop:
414/// ...
415/// End:
416///
417/// ***Epilog case***
418///        extraiters = tripcount % loopfactor
419///        if (tripcount < loopfactor) jump LoopExit:
420///        unroll_iters = tripcount - extraiters
421/// Loop:  LoopBody; (executes unroll_iter times);
422///        unroll_iter -= 1
423///        if (unroll_iter != 0) jump Loop:
424/// LoopExit:
425///        if (extraiters == 0) jump EpilExit:
426/// Epil:  LoopBody; (executes extraiters times)
427///        extraiters -= 1                 // Omitted if unroll factor is 2.
428///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
429/// EpilExit:
430
431bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
432                                      bool AllowExpensiveTripCount,
433                                      bool UseEpilogRemainder,
434                                      LoopInfo *LI, ScalarEvolution *SE,
435                                      DominatorTree *DT, bool PreserveLCSSA) {
436  // for now, only unroll loops that contain a single exit
437  if (!L->getExitingBlock())
438    return false;
439
440  // Make sure the loop is in canonical form, and there is a single
441  // exit block only.
442  if (!L->isLoopSimplifyForm())
443    return false;
444  BasicBlock *Exit = L->getUniqueExitBlock(); // successor out of loop
445  if (!Exit)
446    return false;
447
448  // Use Scalar Evolution to compute the trip count. This allows more loops to
449  // be unrolled than relying on induction var simplification.
450  if (!SE)
451    return false;
452
453  // Only unroll loops with a computable trip count, and the trip count needs
454  // to be an int value (allowing a pointer type is a TODO item).
455  const SCEV *BECountSC = SE->getBackedgeTakenCount(L);
456  if (isa<SCEVCouldNotCompute>(BECountSC) ||
457      !BECountSC->getType()->isIntegerTy())
458    return false;
459
460  unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
461
462  // Add 1 since the backedge count doesn't include the first loop iteration.
463  const SCEV *TripCountSC =
464      SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
465  if (isa<SCEVCouldNotCompute>(TripCountSC))
466    return false;
467
468  BasicBlock *Header = L->getHeader();
469  BasicBlock *PreHeader = L->getLoopPreheader();
470  BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
471  const DataLayout &DL = Header->getModule()->getDataLayout();
472  SCEVExpander Expander(*SE, DL, "loop-unroll");
473  if (!AllowExpensiveTripCount &&
474      Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR))
475    return false;
476
477  // This constraint lets us deal with an overflowing trip count easily; see the
478  // comment on ModVal below.
479  if (Log2_32(Count) > BEWidth)
480    return false;
481
482  // If this loop is nested, then the loop unroller changes the code in the
483  // parent loop, so the Scalar Evolution pass needs to be run again.
484  if (Loop *ParentLoop = L->getParentLoop())
485    SE->forgetLoop(ParentLoop);
486
487  BasicBlock *Latch = L->getLoopLatch();
488
489  // Loop structure is the following:
490  //
491  // PreHeader
492  //   Header
493  //   ...
494  //   Latch
495  // Exit
496
497  BasicBlock *NewPreHeader;
498  BasicBlock *NewExit = nullptr;
499  BasicBlock *PrologExit = nullptr;
500  BasicBlock *EpilogPreHeader = nullptr;
501  BasicBlock *PrologPreHeader = nullptr;
502
503  if (UseEpilogRemainder) {
504    // If epilog remainder
505    // Split PreHeader to insert a branch around loop for unrolling.
506    NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
507    NewPreHeader->setName(PreHeader->getName() + ".new");
508    // Split Exit to create phi nodes from branch above.
509    SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
510    NewExit = SplitBlockPredecessors(Exit, Preds, ".unr-lcssa",
511                                     DT, LI, PreserveLCSSA);
512    // Split NewExit to insert epilog remainder loop.
513    EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI);
514    EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
515  } else {
516    // If prolog remainder
517    // Split the original preheader twice to insert prolog remainder loop
518    PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
519    PrologPreHeader->setName(Header->getName() + ".prol.preheader");
520    PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
521                            DT, LI);
522    PrologExit->setName(Header->getName() + ".prol.loopexit");
523    // Split PrologExit to get NewPreHeader.
524    NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
525    NewPreHeader->setName(PreHeader->getName() + ".new");
526  }
527  // Loop structure should be the following:
528  //  Epilog             Prolog
529  //
530  // PreHeader         PreHeader
531  // *NewPreHeader     *PrologPreHeader
532  //   Header          *PrologExit
533  //   ...             *NewPreHeader
534  //   Latch             Header
535  // *NewExit            ...
536  // *EpilogPreHeader    Latch
537  // Exit              Exit
538
539  // Calculate conditions for branch around loop for unrolling
540  // in epilog case and around prolog remainder loop in prolog case.
541  // Compute the number of extra iterations required, which is:
542  //  extra iterations = run-time trip count % loop unroll factor
543  PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
544  Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
545                                            PreHeaderBR);
546  Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
547                                          PreHeaderBR);
548  IRBuilder<> B(PreHeaderBR);
549  Value *ModVal;
550  // Calculate ModVal = (BECount + 1) % Count.
551  // Note that TripCount is BECount + 1.
552  if (isPowerOf2_32(Count)) {
553    // When Count is power of 2 we don't BECount for epilog case, however we'll
554    // need it for a branch around unrolling loop for prolog case.
555    ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
556    //  1. There are no iterations to be run in the prolog/epilog loop.
557    // OR
558    //  2. The addition computing TripCount overflowed.
559    //
560    // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
561    // the number of iterations that remain to be run in the original loop is a
562    // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
563    // explicitly check this above).
564  } else {
565    // As (BECount + 1) can potentially unsigned overflow we count
566    // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
567    Value *ModValTmp = B.CreateURem(BECount,
568                                    ConstantInt::get(BECount->getType(),
569                                                     Count));
570    Value *ModValAdd = B.CreateAdd(ModValTmp,
571                                   ConstantInt::get(ModValTmp->getType(), 1));
572    // At that point (BECount % Count) + 1 could be equal to Count.
573    // To handle this case we need to take mod by Count one more time.
574    ModVal = B.CreateURem(ModValAdd,
575                          ConstantInt::get(BECount->getType(), Count),
576                          "xtraiter");
577  }
578  Value *BranchVal =
579      UseEpilogRemainder ? B.CreateICmpULT(BECount,
580                                           ConstantInt::get(BECount->getType(),
581                                                            Count - 1)) :
582                           B.CreateIsNotNull(ModVal, "lcmp.mod");
583  BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
584  BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
585  // Branch to either remainder (extra iterations) loop or unrolling loop.
586  B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
587  PreHeaderBR->eraseFromParent();
588  Function *F = Header->getParent();
589  // Get an ordered list of blocks in the loop to help with the ordering of the
590  // cloned blocks in the prolog/epilog code
591  LoopBlocksDFS LoopBlocks(L);
592  LoopBlocks.perform(LI);
593
594  //
595  // For each extra loop iteration, create a copy of the loop's basic blocks
596  // and generate a condition that branches to the copy depending on the
597  // number of 'left over' iterations.
598  //
599  std::vector<BasicBlock *> NewBlocks;
600  ValueToValueMapTy VMap;
601
602  // For unroll factor 2 remainder loop will have 1 iterations.
603  // Do not create 1 iteration loop.
604  bool CreateRemainderLoop = (Count != 2);
605
606  // Clone all the basic blocks in the loop. If Count is 2, we don't clone
607  // the loop, otherwise we create a cloned loop to execute the extra
608  // iterations. This function adds the appropriate CFG connections.
609  BasicBlock *InsertBot = UseEpilogRemainder ? Exit : PrologExit;
610  BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
611  CloneLoopBlocks(L, ModVal, CreateRemainderLoop, UseEpilogRemainder, InsertTop,
612                  InsertBot, NewPreHeader, NewBlocks, LoopBlocks, VMap, LI);
613
614  // Insert the cloned blocks into the function.
615  F->getBasicBlockList().splice(InsertBot->getIterator(),
616                                F->getBasicBlockList(),
617                                NewBlocks[0]->getIterator(),
618                                F->end());
619
620  // Loop structure should be the following:
621  //  Epilog             Prolog
622  //
623  // PreHeader         PreHeader
624  // NewPreHeader      PrologPreHeader
625  //   Header            PrologHeader
626  //   ...               ...
627  //   Latch             PrologLatch
628  // NewExit           PrologExit
629  // EpilogPreHeader   NewPreHeader
630  //   EpilogHeader      Header
631  //   ...               ...
632  //   EpilogLatch       Latch
633  // Exit              Exit
634
635  // Rewrite the cloned instruction operands to use the values created when the
636  // clone is created.
637  for (BasicBlock *BB : NewBlocks) {
638    for (Instruction &I : *BB) {
639      RemapInstruction(&I, VMap,
640                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
641    }
642  }
643
644  if (UseEpilogRemainder) {
645    // Connect the epilog code to the original loop and update the
646    // PHI functions.
647    ConnectEpilog(L, ModVal, NewExit, Exit, PreHeader,
648                  EpilogPreHeader, NewPreHeader, VMap, DT, LI,
649                  PreserveLCSSA);
650
651    // Update counter in loop for unrolling.
652    // I should be multiply of Count.
653    IRBuilder<> B2(NewPreHeader->getTerminator());
654    Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
655    BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
656    B2.SetInsertPoint(LatchBR);
657    PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
658                                      Header->getFirstNonPHI());
659    Value *IdxSub =
660        B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
661                     NewIdx->getName() + ".nsub");
662    Value *IdxCmp;
663    if (LatchBR->getSuccessor(0) == Header)
664      IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
665    else
666      IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
667    NewIdx->addIncoming(TestVal, NewPreHeader);
668    NewIdx->addIncoming(IdxSub, Latch);
669    LatchBR->setCondition(IdxCmp);
670  } else {
671    // Connect the prolog code to the original loop and update the
672    // PHI functions.
673    ConnectProlog(L, BECount, Count, PrologExit, PreHeader, NewPreHeader,
674                  VMap, DT, LI, PreserveLCSSA);
675  }
676  NumRuntimeUnrolled++;
677  return true;
678}
679