1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/SetOperations.h"
17#include "llvm/ADT/SetVector.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/EHPersonalities.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/TargetTransformInfo.h"
25#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/IR/CFG.h"
27#include "llvm/IR/ConstantRange.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/IRBuilder.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/MDBuilder.h"
37#include "llvm/IR/Metadata.h"
38#include "llvm/IR/Module.h"
39#include "llvm/IR/NoFolder.h"
40#include "llvm/IR/Operator.h"
41#include "llvm/IR/PatternMatch.h"
42#include "llvm/IR/Type.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Transforms/Utils/Local.h"
48#include "llvm/Transforms/Utils/ValueMapper.h"
49#include <algorithm>
50#include <map>
51#include <set>
52using namespace llvm;
53using namespace PatternMatch;
54
55#define DEBUG_TYPE "simplifycfg"
56
57// Chosen as 2 so as to be cheap, but still to have enough power to fold
58// a select, so the "clamp" idiom (of a min followed by a max) will be caught.
59// To catch this, we need to fold a compare and a select, hence '2' being the
60// minimum reasonable default.
61static cl::opt<unsigned> PHINodeFoldingThreshold(
62    "phi-node-folding-threshold", cl::Hidden, cl::init(2),
63    cl::desc(
64        "Control the amount of phi node folding to perform (default = 2)"));
65
66static cl::opt<bool> DupRet(
67    "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
68    cl::desc("Duplicate return instructions into unconditional branches"));
69
70static cl::opt<bool>
71    SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
72               cl::desc("Sink common instructions down to the end block"));
73
74static cl::opt<bool> HoistCondStores(
75    "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
76    cl::desc("Hoist conditional stores if an unconditional store precedes"));
77
78static cl::opt<bool> MergeCondStores(
79    "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
80    cl::desc("Hoist conditional stores even if an unconditional store does not "
81             "precede - hoist multiple conditional stores into a single "
82             "predicated store"));
83
84static cl::opt<bool> MergeCondStoresAggressively(
85    "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
86    cl::desc("When merging conditional stores, do so even if the resultant "
87             "basic blocks are unlikely to be if-converted as a result"));
88
89static cl::opt<bool> SpeculateOneExpensiveInst(
90    "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
91    cl::desc("Allow exactly one expensive instruction to be speculatively "
92             "executed"));
93
94static cl::opt<unsigned> MaxSpeculationDepth(
95    "max-speculation-depth", cl::Hidden, cl::init(10),
96    cl::desc("Limit maximum recursion depth when calculating costs of "
97             "speculatively executed instructions"));
98
99STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
100STATISTIC(NumLinearMaps,
101          "Number of switch instructions turned into linear mapping");
102STATISTIC(NumLookupTables,
103          "Number of switch instructions turned into lookup tables");
104STATISTIC(
105    NumLookupTablesHoles,
106    "Number of switch instructions turned into lookup tables (holes checked)");
107STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
108STATISTIC(NumSinkCommons,
109          "Number of common instructions sunk down to the end block");
110STATISTIC(NumSpeculations, "Number of speculative executed instructions");
111
112namespace {
113// The first field contains the value that the switch produces when a certain
114// case group is selected, and the second field is a vector containing the
115// cases composing the case group.
116typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
117    SwitchCaseResultVectorTy;
118// The first field contains the phi node that generates a result of the switch
119// and the second field contains the value generated for a certain case in the
120// switch for that PHI.
121typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
122
123/// ValueEqualityComparisonCase - Represents a case of a switch.
124struct ValueEqualityComparisonCase {
125  ConstantInt *Value;
126  BasicBlock *Dest;
127
128  ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
129      : Value(Value), Dest(Dest) {}
130
131  bool operator<(ValueEqualityComparisonCase RHS) const {
132    // Comparing pointers is ok as we only rely on the order for uniquing.
133    return Value < RHS.Value;
134  }
135
136  bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
137};
138
139class SimplifyCFGOpt {
140  const TargetTransformInfo &TTI;
141  const DataLayout &DL;
142  unsigned BonusInstThreshold;
143  AssumptionCache *AC;
144  SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
145  Value *isValueEqualityComparison(TerminatorInst *TI);
146  BasicBlock *GetValueEqualityComparisonCases(
147      TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
148  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
149                                                     BasicBlock *Pred,
150                                                     IRBuilder<> &Builder);
151  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
152                                           IRBuilder<> &Builder);
153
154  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
155  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
156  bool SimplifySingleResume(ResumeInst *RI);
157  bool SimplifyCommonResume(ResumeInst *RI);
158  bool SimplifyCleanupReturn(CleanupReturnInst *RI);
159  bool SimplifyUnreachable(UnreachableInst *UI);
160  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
161  bool SimplifyIndirectBr(IndirectBrInst *IBI);
162  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
163  bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
164
165public:
166  SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
167                 unsigned BonusInstThreshold, AssumptionCache *AC,
168                 SmallPtrSetImpl<BasicBlock *> *LoopHeaders)
169      : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
170        LoopHeaders(LoopHeaders) {}
171  bool run(BasicBlock *BB);
172};
173}
174
175/// Return true if it is safe to merge these two
176/// terminator instructions together.
177static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
178  if (SI1 == SI2)
179    return false; // Can't merge with self!
180
181  // It is not safe to merge these two switch instructions if they have a common
182  // successor, and if that successor has a PHI node, and if *that* PHI node has
183  // conflicting incoming values from the two switch blocks.
184  BasicBlock *SI1BB = SI1->getParent();
185  BasicBlock *SI2BB = SI2->getParent();
186  SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
187
188  for (BasicBlock *Succ : successors(SI2BB))
189    if (SI1Succs.count(Succ))
190      for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
191        PHINode *PN = cast<PHINode>(BBI);
192        if (PN->getIncomingValueForBlock(SI1BB) !=
193            PN->getIncomingValueForBlock(SI2BB))
194          return false;
195      }
196
197  return true;
198}
199
200/// Return true if it is safe and profitable to merge these two terminator
201/// instructions together, where SI1 is an unconditional branch. PhiNodes will
202/// store all PHI nodes in common successors.
203static bool
204isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
205                                Instruction *Cond,
206                                SmallVectorImpl<PHINode *> &PhiNodes) {
207  if (SI1 == SI2)
208    return false; // Can't merge with self!
209  assert(SI1->isUnconditional() && SI2->isConditional());
210
211  // We fold the unconditional branch if we can easily update all PHI nodes in
212  // common successors:
213  // 1> We have a constant incoming value for the conditional branch;
214  // 2> We have "Cond" as the incoming value for the unconditional branch;
215  // 3> SI2->getCondition() and Cond have same operands.
216  CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
217  if (!Ci2)
218    return false;
219  if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
220        Cond->getOperand(1) == Ci2->getOperand(1)) &&
221      !(Cond->getOperand(0) == Ci2->getOperand(1) &&
222        Cond->getOperand(1) == Ci2->getOperand(0)))
223    return false;
224
225  BasicBlock *SI1BB = SI1->getParent();
226  BasicBlock *SI2BB = SI2->getParent();
227  SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
228  for (BasicBlock *Succ : successors(SI2BB))
229    if (SI1Succs.count(Succ))
230      for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
231        PHINode *PN = cast<PHINode>(BBI);
232        if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
233            !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
234          return false;
235        PhiNodes.push_back(PN);
236      }
237  return true;
238}
239
240/// Update PHI nodes in Succ to indicate that there will now be entries in it
241/// from the 'NewPred' block. The values that will be flowing into the PHI nodes
242/// will be the same as those coming in from ExistPred, an existing predecessor
243/// of Succ.
244static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
245                                  BasicBlock *ExistPred) {
246  if (!isa<PHINode>(Succ->begin()))
247    return; // Quick exit if nothing to do
248
249  PHINode *PN;
250  for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
251    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
252}
253
254/// Compute an abstract "cost" of speculating the given instruction,
255/// which is assumed to be safe to speculate. TCC_Free means cheap,
256/// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
257/// expensive.
258static unsigned ComputeSpeculationCost(const User *I,
259                                       const TargetTransformInfo &TTI) {
260  assert(isSafeToSpeculativelyExecute(I) &&
261         "Instruction is not safe to speculatively execute!");
262  return TTI.getUserCost(I);
263}
264
265/// If we have a merge point of an "if condition" as accepted above,
266/// return true if the specified value dominates the block.  We
267/// don't handle the true generality of domination here, just a special case
268/// which works well enough for us.
269///
270/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
271/// see if V (which must be an instruction) and its recursive operands
272/// that do not dominate BB have a combined cost lower than CostRemaining and
273/// are non-trapping.  If both are true, the instruction is inserted into the
274/// set and true is returned.
275///
276/// The cost for most non-trapping instructions is defined as 1 except for
277/// Select whose cost is 2.
278///
279/// After this function returns, CostRemaining is decreased by the cost of
280/// V plus its non-dominating operands.  If that cost is greater than
281/// CostRemaining, false is returned and CostRemaining is undefined.
282static bool DominatesMergePoint(Value *V, BasicBlock *BB,
283                                SmallPtrSetImpl<Instruction *> *AggressiveInsts,
284                                unsigned &CostRemaining,
285                                const TargetTransformInfo &TTI,
286                                unsigned Depth = 0) {
287  // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
288  // so limit the recursion depth.
289  // TODO: While this recursion limit does prevent pathological behavior, it
290  // would be better to track visited instructions to avoid cycles.
291  if (Depth == MaxSpeculationDepth)
292    return false;
293
294  Instruction *I = dyn_cast<Instruction>(V);
295  if (!I) {
296    // Non-instructions all dominate instructions, but not all constantexprs
297    // can be executed unconditionally.
298    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
299      if (C->canTrap())
300        return false;
301    return true;
302  }
303  BasicBlock *PBB = I->getParent();
304
305  // We don't want to allow weird loops that might have the "if condition" in
306  // the bottom of this block.
307  if (PBB == BB)
308    return false;
309
310  // If this instruction is defined in a block that contains an unconditional
311  // branch to BB, then it must be in the 'conditional' part of the "if
312  // statement".  If not, it definitely dominates the region.
313  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
314  if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
315    return true;
316
317  // If we aren't allowing aggressive promotion anymore, then don't consider
318  // instructions in the 'if region'.
319  if (!AggressiveInsts)
320    return false;
321
322  // If we have seen this instruction before, don't count it again.
323  if (AggressiveInsts->count(I))
324    return true;
325
326  // Okay, it looks like the instruction IS in the "condition".  Check to
327  // see if it's a cheap instruction to unconditionally compute, and if it
328  // only uses stuff defined outside of the condition.  If so, hoist it out.
329  if (!isSafeToSpeculativelyExecute(I))
330    return false;
331
332  unsigned Cost = ComputeSpeculationCost(I, TTI);
333
334  // Allow exactly one instruction to be speculated regardless of its cost
335  // (as long as it is safe to do so).
336  // This is intended to flatten the CFG even if the instruction is a division
337  // or other expensive operation. The speculation of an expensive instruction
338  // is expected to be undone in CodeGenPrepare if the speculation has not
339  // enabled further IR optimizations.
340  if (Cost > CostRemaining &&
341      (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
342    return false;
343
344  // Avoid unsigned wrap.
345  CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
346
347  // Okay, we can only really hoist these out if their operands do
348  // not take us over the cost threshold.
349  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
350    if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
351                             Depth + 1))
352      return false;
353  // Okay, it's safe to do this!  Remember this instruction.
354  AggressiveInsts->insert(I);
355  return true;
356}
357
358/// Extract ConstantInt from value, looking through IntToPtr
359/// and PointerNullValue. Return NULL if value is not a constant int.
360static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
361  // Normal constant int.
362  ConstantInt *CI = dyn_cast<ConstantInt>(V);
363  if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
364    return CI;
365
366  // This is some kind of pointer constant. Turn it into a pointer-sized
367  // ConstantInt if possible.
368  IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
369
370  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
371  if (isa<ConstantPointerNull>(V))
372    return ConstantInt::get(PtrTy, 0);
373
374  // IntToPtr const int.
375  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
376    if (CE->getOpcode() == Instruction::IntToPtr)
377      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
378        // The constant is very likely to have the right type already.
379        if (CI->getType() == PtrTy)
380          return CI;
381        else
382          return cast<ConstantInt>(
383              ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
384      }
385  return nullptr;
386}
387
388namespace {
389
390/// Given a chain of or (||) or and (&&) comparison of a value against a
391/// constant, this will try to recover the information required for a switch
392/// structure.
393/// It will depth-first traverse the chain of comparison, seeking for patterns
394/// like %a == 12 or %a < 4 and combine them to produce a set of integer
395/// representing the different cases for the switch.
396/// Note that if the chain is composed of '||' it will build the set of elements
397/// that matches the comparisons (i.e. any of this value validate the chain)
398/// while for a chain of '&&' it will build the set elements that make the test
399/// fail.
400struct ConstantComparesGatherer {
401  const DataLayout &DL;
402  Value *CompValue; /// Value found for the switch comparison
403  Value *Extra;     /// Extra clause to be checked before the switch
404  SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
405  unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
406
407  /// Construct and compute the result for the comparison instruction Cond
408  ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
409      : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
410    gather(Cond);
411  }
412
413  /// Prevent copy
414  ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
415  ConstantComparesGatherer &
416  operator=(const ConstantComparesGatherer &) = delete;
417
418private:
419  /// Try to set the current value used for the comparison, it succeeds only if
420  /// it wasn't set before or if the new value is the same as the old one
421  bool setValueOnce(Value *NewVal) {
422    if (CompValue && CompValue != NewVal)
423      return false;
424    CompValue = NewVal;
425    return (CompValue != nullptr);
426  }
427
428  /// Try to match Instruction "I" as a comparison against a constant and
429  /// populates the array Vals with the set of values that match (or do not
430  /// match depending on isEQ).
431  /// Return false on failure. On success, the Value the comparison matched
432  /// against is placed in CompValue.
433  /// If CompValue is already set, the function is expected to fail if a match
434  /// is found but the value compared to is different.
435  bool matchInstruction(Instruction *I, bool isEQ) {
436    // If this is an icmp against a constant, handle this as one of the cases.
437    ICmpInst *ICI;
438    ConstantInt *C;
439    if (!((ICI = dyn_cast<ICmpInst>(I)) &&
440          (C = GetConstantInt(I->getOperand(1), DL)))) {
441      return false;
442    }
443
444    Value *RHSVal;
445    const APInt *RHSC;
446
447    // Pattern match a special case
448    // (x & ~2^z) == y --> x == y || x == y|2^z
449    // This undoes a transformation done by instcombine to fuse 2 compares.
450    if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
451
452      // It's a little bit hard to see why the following transformations are
453      // correct. Here is a CVC3 program to verify them for 64-bit values:
454
455      /*
456         ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
457         x    : BITVECTOR(64);
458         y    : BITVECTOR(64);
459         z    : BITVECTOR(64);
460         mask : BITVECTOR(64) = BVSHL(ONE, z);
461         QUERY( (y & ~mask = y) =>
462                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
463         );
464         QUERY( (y |  mask = y) =>
465                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
466         );
467      */
468
469      // Please note that each pattern must be a dual implication (<--> or
470      // iff). One directional implication can create spurious matches. If the
471      // implication is only one-way, an unsatisfiable condition on the left
472      // side can imply a satisfiable condition on the right side. Dual
473      // implication ensures that satisfiable conditions are transformed to
474      // other satisfiable conditions and unsatisfiable conditions are
475      // transformed to other unsatisfiable conditions.
476
477      // Here is a concrete example of a unsatisfiable condition on the left
478      // implying a satisfiable condition on the right:
479      //
480      // mask = (1 << z)
481      // (x & ~mask) == y  --> (x == y || x == (y | mask))
482      //
483      // Substituting y = 3, z = 0 yields:
484      // (x & -2) == 3 --> (x == 3 || x == 2)
485
486      // Pattern match a special case:
487      /*
488        QUERY( (y & ~mask = y) =>
489               ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
490        );
491      */
492      if (match(ICI->getOperand(0),
493                m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
494        APInt Mask = ~*RHSC;
495        if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
496          // If we already have a value for the switch, it has to match!
497          if (!setValueOnce(RHSVal))
498            return false;
499
500          Vals.push_back(C);
501          Vals.push_back(
502              ConstantInt::get(C->getContext(),
503                               C->getValue() | Mask));
504          UsedICmps++;
505          return true;
506        }
507      }
508
509      // Pattern match a special case:
510      /*
511        QUERY( (y |  mask = y) =>
512               ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
513        );
514      */
515      if (match(ICI->getOperand(0),
516                m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
517        APInt Mask = *RHSC;
518        if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
519          // If we already have a value for the switch, it has to match!
520          if (!setValueOnce(RHSVal))
521            return false;
522
523          Vals.push_back(C);
524          Vals.push_back(ConstantInt::get(C->getContext(),
525                                          C->getValue() & ~Mask));
526          UsedICmps++;
527          return true;
528        }
529      }
530
531      // If we already have a value for the switch, it has to match!
532      if (!setValueOnce(ICI->getOperand(0)))
533        return false;
534
535      UsedICmps++;
536      Vals.push_back(C);
537      return ICI->getOperand(0);
538    }
539
540    // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
541    ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
542        ICI->getPredicate(), C->getValue());
543
544    // Shift the range if the compare is fed by an add. This is the range
545    // compare idiom as emitted by instcombine.
546    Value *CandidateVal = I->getOperand(0);
547    if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
548      Span = Span.subtract(*RHSC);
549      CandidateVal = RHSVal;
550    }
551
552    // If this is an and/!= check, then we are looking to build the set of
553    // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
554    // x != 0 && x != 1.
555    if (!isEQ)
556      Span = Span.inverse();
557
558    // If there are a ton of values, we don't want to make a ginormous switch.
559    if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
560      return false;
561    }
562
563    // If we already have a value for the switch, it has to match!
564    if (!setValueOnce(CandidateVal))
565      return false;
566
567    // Add all values from the range to the set
568    for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
569      Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
570
571    UsedICmps++;
572    return true;
573  }
574
575  /// Given a potentially 'or'd or 'and'd together collection of icmp
576  /// eq/ne/lt/gt instructions that compare a value against a constant, extract
577  /// the value being compared, and stick the list constants into the Vals
578  /// vector.
579  /// One "Extra" case is allowed to differ from the other.
580  void gather(Value *V) {
581    Instruction *I = dyn_cast<Instruction>(V);
582    bool isEQ = (I->getOpcode() == Instruction::Or);
583
584    // Keep a stack (SmallVector for efficiency) for depth-first traversal
585    SmallVector<Value *, 8> DFT;
586    SmallPtrSet<Value *, 8> Visited;
587
588    // Initialize
589    Visited.insert(V);
590    DFT.push_back(V);
591
592    while (!DFT.empty()) {
593      V = DFT.pop_back_val();
594
595      if (Instruction *I = dyn_cast<Instruction>(V)) {
596        // If it is a || (or && depending on isEQ), process the operands.
597        if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
598          if (Visited.insert(I->getOperand(1)).second)
599            DFT.push_back(I->getOperand(1));
600          if (Visited.insert(I->getOperand(0)).second)
601            DFT.push_back(I->getOperand(0));
602          continue;
603        }
604
605        // Try to match the current instruction
606        if (matchInstruction(I, isEQ))
607          // Match succeed, continue the loop
608          continue;
609      }
610
611      // One element of the sequence of || (or &&) could not be match as a
612      // comparison against the same value as the others.
613      // We allow only one "Extra" case to be checked before the switch
614      if (!Extra) {
615        Extra = V;
616        continue;
617      }
618      // Failed to parse a proper sequence, abort now
619      CompValue = nullptr;
620      break;
621    }
622  }
623};
624}
625
626static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
627  Instruction *Cond = nullptr;
628  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
629    Cond = dyn_cast<Instruction>(SI->getCondition());
630  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
631    if (BI->isConditional())
632      Cond = dyn_cast<Instruction>(BI->getCondition());
633  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
634    Cond = dyn_cast<Instruction>(IBI->getAddress());
635  }
636
637  TI->eraseFromParent();
638  if (Cond)
639    RecursivelyDeleteTriviallyDeadInstructions(Cond);
640}
641
642/// Return true if the specified terminator checks
643/// to see if a value is equal to constant integer value.
644Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
645  Value *CV = nullptr;
646  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
647    // Do not permit merging of large switch instructions into their
648    // predecessors unless there is only one predecessor.
649    if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
650                                               pred_end(SI->getParent())) <=
651        128)
652      CV = SI->getCondition();
653  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
654    if (BI->isConditional() && BI->getCondition()->hasOneUse())
655      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
656        if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
657          CV = ICI->getOperand(0);
658      }
659
660  // Unwrap any lossless ptrtoint cast.
661  if (CV) {
662    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
663      Value *Ptr = PTII->getPointerOperand();
664      if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
665        CV = Ptr;
666    }
667  }
668  return CV;
669}
670
671/// Given a value comparison instruction,
672/// decode all of the 'cases' that it represents and return the 'default' block.
673BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
674    TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
675  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
676    Cases.reserve(SI->getNumCases());
677    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
678         ++i)
679      Cases.push_back(
680          ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor()));
681    return SI->getDefaultDest();
682  }
683
684  BranchInst *BI = cast<BranchInst>(TI);
685  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
686  BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
687  Cases.push_back(ValueEqualityComparisonCase(
688      GetConstantInt(ICI->getOperand(1), DL), Succ));
689  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
690}
691
692/// Given a vector of bb/value pairs, remove any entries
693/// in the list that match the specified block.
694static void
695EliminateBlockCases(BasicBlock *BB,
696                    std::vector<ValueEqualityComparisonCase> &Cases) {
697  Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
698}
699
700/// Return true if there are any keys in C1 that exist in C2 as well.
701static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
702                          std::vector<ValueEqualityComparisonCase> &C2) {
703  std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
704
705  // Make V1 be smaller than V2.
706  if (V1->size() > V2->size())
707    std::swap(V1, V2);
708
709  if (V1->size() == 0)
710    return false;
711  if (V1->size() == 1) {
712    // Just scan V2.
713    ConstantInt *TheVal = (*V1)[0].Value;
714    for (unsigned i = 0, e = V2->size(); i != e; ++i)
715      if (TheVal == (*V2)[i].Value)
716        return true;
717  }
718
719  // Otherwise, just sort both lists and compare element by element.
720  array_pod_sort(V1->begin(), V1->end());
721  array_pod_sort(V2->begin(), V2->end());
722  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
723  while (i1 != e1 && i2 != e2) {
724    if ((*V1)[i1].Value == (*V2)[i2].Value)
725      return true;
726    if ((*V1)[i1].Value < (*V2)[i2].Value)
727      ++i1;
728    else
729      ++i2;
730  }
731  return false;
732}
733
734/// If TI is known to be a terminator instruction and its block is known to
735/// only have a single predecessor block, check to see if that predecessor is
736/// also a value comparison with the same value, and if that comparison
737/// determines the outcome of this comparison. If so, simplify TI. This does a
738/// very limited form of jump threading.
739bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
740    TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
741  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
742  if (!PredVal)
743    return false; // Not a value comparison in predecessor.
744
745  Value *ThisVal = isValueEqualityComparison(TI);
746  assert(ThisVal && "This isn't a value comparison!!");
747  if (ThisVal != PredVal)
748    return false; // Different predicates.
749
750  // TODO: Preserve branch weight metadata, similarly to how
751  // FoldValueComparisonIntoPredecessors preserves it.
752
753  // Find out information about when control will move from Pred to TI's block.
754  std::vector<ValueEqualityComparisonCase> PredCases;
755  BasicBlock *PredDef =
756      GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
757  EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
758
759  // Find information about how control leaves this block.
760  std::vector<ValueEqualityComparisonCase> ThisCases;
761  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
762  EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
763
764  // If TI's block is the default block from Pred's comparison, potentially
765  // simplify TI based on this knowledge.
766  if (PredDef == TI->getParent()) {
767    // If we are here, we know that the value is none of those cases listed in
768    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
769    // can simplify TI.
770    if (!ValuesOverlap(PredCases, ThisCases))
771      return false;
772
773    if (isa<BranchInst>(TI)) {
774      // Okay, one of the successors of this condbr is dead.  Convert it to a
775      // uncond br.
776      assert(ThisCases.size() == 1 && "Branch can only have one case!");
777      // Insert the new branch.
778      Instruction *NI = Builder.CreateBr(ThisDef);
779      (void)NI;
780
781      // Remove PHI node entries for the dead edge.
782      ThisCases[0].Dest->removePredecessor(TI->getParent());
783
784      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
785                   << "Through successor TI: " << *TI << "Leaving: " << *NI
786                   << "\n");
787
788      EraseTerminatorInstAndDCECond(TI);
789      return true;
790    }
791
792    SwitchInst *SI = cast<SwitchInst>(TI);
793    // Okay, TI has cases that are statically dead, prune them away.
794    SmallPtrSet<Constant *, 16> DeadCases;
795    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
796      DeadCases.insert(PredCases[i].Value);
797
798    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
799                 << "Through successor TI: " << *TI);
800
801    // Collect branch weights into a vector.
802    SmallVector<uint32_t, 8> Weights;
803    MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
804    bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
805    if (HasWeight)
806      for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
807           ++MD_i) {
808        ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
809        Weights.push_back(CI->getValue().getZExtValue());
810      }
811    for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
812      --i;
813      if (DeadCases.count(i.getCaseValue())) {
814        if (HasWeight) {
815          std::swap(Weights[i.getCaseIndex() + 1], Weights.back());
816          Weights.pop_back();
817        }
818        i.getCaseSuccessor()->removePredecessor(TI->getParent());
819        SI->removeCase(i);
820      }
821    }
822    if (HasWeight && Weights.size() >= 2)
823      SI->setMetadata(LLVMContext::MD_prof,
824                      MDBuilder(SI->getParent()->getContext())
825                          .createBranchWeights(Weights));
826
827    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
828    return true;
829  }
830
831  // Otherwise, TI's block must correspond to some matched value.  Find out
832  // which value (or set of values) this is.
833  ConstantInt *TIV = nullptr;
834  BasicBlock *TIBB = TI->getParent();
835  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
836    if (PredCases[i].Dest == TIBB) {
837      if (TIV)
838        return false; // Cannot handle multiple values coming to this block.
839      TIV = PredCases[i].Value;
840    }
841  assert(TIV && "No edge from pred to succ?");
842
843  // Okay, we found the one constant that our value can be if we get into TI's
844  // BB.  Find out which successor will unconditionally be branched to.
845  BasicBlock *TheRealDest = nullptr;
846  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
847    if (ThisCases[i].Value == TIV) {
848      TheRealDest = ThisCases[i].Dest;
849      break;
850    }
851
852  // If not handled by any explicit cases, it is handled by the default case.
853  if (!TheRealDest)
854    TheRealDest = ThisDef;
855
856  // Remove PHI node entries for dead edges.
857  BasicBlock *CheckEdge = TheRealDest;
858  for (BasicBlock *Succ : successors(TIBB))
859    if (Succ != CheckEdge)
860      Succ->removePredecessor(TIBB);
861    else
862      CheckEdge = nullptr;
863
864  // Insert the new branch.
865  Instruction *NI = Builder.CreateBr(TheRealDest);
866  (void)NI;
867
868  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
869               << "Through successor TI: " << *TI << "Leaving: " << *NI
870               << "\n");
871
872  EraseTerminatorInstAndDCECond(TI);
873  return true;
874}
875
876namespace {
877/// This class implements a stable ordering of constant
878/// integers that does not depend on their address.  This is important for
879/// applications that sort ConstantInt's to ensure uniqueness.
880struct ConstantIntOrdering {
881  bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
882    return LHS->getValue().ult(RHS->getValue());
883  }
884};
885}
886
887static int ConstantIntSortPredicate(ConstantInt *const *P1,
888                                    ConstantInt *const *P2) {
889  const ConstantInt *LHS = *P1;
890  const ConstantInt *RHS = *P2;
891  if (LHS == RHS)
892    return 0;
893  return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
894}
895
896static inline bool HasBranchWeights(const Instruction *I) {
897  MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
898  if (ProfMD && ProfMD->getOperand(0))
899    if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
900      return MDS->getString().equals("branch_weights");
901
902  return false;
903}
904
905/// Get Weights of a given TerminatorInst, the default weight is at the front
906/// of the vector. If TI is a conditional eq, we need to swap the branch-weight
907/// metadata.
908static void GetBranchWeights(TerminatorInst *TI,
909                             SmallVectorImpl<uint64_t> &Weights) {
910  MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
911  assert(MD);
912  for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
913    ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
914    Weights.push_back(CI->getValue().getZExtValue());
915  }
916
917  // If TI is a conditional eq, the default case is the false case,
918  // and the corresponding branch-weight data is at index 2. We swap the
919  // default weight to be the first entry.
920  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
921    assert(Weights.size() == 2);
922    ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
923    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
924      std::swap(Weights.front(), Weights.back());
925  }
926}
927
928/// Keep halving the weights until all can fit in uint32_t.
929static void FitWeights(MutableArrayRef<uint64_t> Weights) {
930  uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
931  if (Max > UINT_MAX) {
932    unsigned Offset = 32 - countLeadingZeros(Max);
933    for (uint64_t &I : Weights)
934      I >>= Offset;
935  }
936}
937
938/// The specified terminator is a value equality comparison instruction
939/// (either a switch or a branch on "X == c").
940/// See if any of the predecessors of the terminator block are value comparisons
941/// on the same value.  If so, and if safe to do so, fold them together.
942bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
943                                                         IRBuilder<> &Builder) {
944  BasicBlock *BB = TI->getParent();
945  Value *CV = isValueEqualityComparison(TI); // CondVal
946  assert(CV && "Not a comparison?");
947  bool Changed = false;
948
949  SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
950  while (!Preds.empty()) {
951    BasicBlock *Pred = Preds.pop_back_val();
952
953    // See if the predecessor is a comparison with the same value.
954    TerminatorInst *PTI = Pred->getTerminator();
955    Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
956
957    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
958      // Figure out which 'cases' to copy from SI to PSI.
959      std::vector<ValueEqualityComparisonCase> BBCases;
960      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
961
962      std::vector<ValueEqualityComparisonCase> PredCases;
963      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
964
965      // Based on whether the default edge from PTI goes to BB or not, fill in
966      // PredCases and PredDefault with the new switch cases we would like to
967      // build.
968      SmallVector<BasicBlock *, 8> NewSuccessors;
969
970      // Update the branch weight metadata along the way
971      SmallVector<uint64_t, 8> Weights;
972      bool PredHasWeights = HasBranchWeights(PTI);
973      bool SuccHasWeights = HasBranchWeights(TI);
974
975      if (PredHasWeights) {
976        GetBranchWeights(PTI, Weights);
977        // branch-weight metadata is inconsistent here.
978        if (Weights.size() != 1 + PredCases.size())
979          PredHasWeights = SuccHasWeights = false;
980      } else if (SuccHasWeights)
981        // If there are no predecessor weights but there are successor weights,
982        // populate Weights with 1, which will later be scaled to the sum of
983        // successor's weights
984        Weights.assign(1 + PredCases.size(), 1);
985
986      SmallVector<uint64_t, 8> SuccWeights;
987      if (SuccHasWeights) {
988        GetBranchWeights(TI, SuccWeights);
989        // branch-weight metadata is inconsistent here.
990        if (SuccWeights.size() != 1 + BBCases.size())
991          PredHasWeights = SuccHasWeights = false;
992      } else if (PredHasWeights)
993        SuccWeights.assign(1 + BBCases.size(), 1);
994
995      if (PredDefault == BB) {
996        // If this is the default destination from PTI, only the edges in TI
997        // that don't occur in PTI, or that branch to BB will be activated.
998        std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
999        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1000          if (PredCases[i].Dest != BB)
1001            PTIHandled.insert(PredCases[i].Value);
1002          else {
1003            // The default destination is BB, we don't need explicit targets.
1004            std::swap(PredCases[i], PredCases.back());
1005
1006            if (PredHasWeights || SuccHasWeights) {
1007              // Increase weight for the default case.
1008              Weights[0] += Weights[i + 1];
1009              std::swap(Weights[i + 1], Weights.back());
1010              Weights.pop_back();
1011            }
1012
1013            PredCases.pop_back();
1014            --i;
1015            --e;
1016          }
1017
1018        // Reconstruct the new switch statement we will be building.
1019        if (PredDefault != BBDefault) {
1020          PredDefault->removePredecessor(Pred);
1021          PredDefault = BBDefault;
1022          NewSuccessors.push_back(BBDefault);
1023        }
1024
1025        unsigned CasesFromPred = Weights.size();
1026        uint64_t ValidTotalSuccWeight = 0;
1027        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1028          if (!PTIHandled.count(BBCases[i].Value) &&
1029              BBCases[i].Dest != BBDefault) {
1030            PredCases.push_back(BBCases[i]);
1031            NewSuccessors.push_back(BBCases[i].Dest);
1032            if (SuccHasWeights || PredHasWeights) {
1033              // The default weight is at index 0, so weight for the ith case
1034              // should be at index i+1. Scale the cases from successor by
1035              // PredDefaultWeight (Weights[0]).
1036              Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1037              ValidTotalSuccWeight += SuccWeights[i + 1];
1038            }
1039          }
1040
1041        if (SuccHasWeights || PredHasWeights) {
1042          ValidTotalSuccWeight += SuccWeights[0];
1043          // Scale the cases from predecessor by ValidTotalSuccWeight.
1044          for (unsigned i = 1; i < CasesFromPred; ++i)
1045            Weights[i] *= ValidTotalSuccWeight;
1046          // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1047          Weights[0] *= SuccWeights[0];
1048        }
1049      } else {
1050        // If this is not the default destination from PSI, only the edges
1051        // in SI that occur in PSI with a destination of BB will be
1052        // activated.
1053        std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1054        std::map<ConstantInt *, uint64_t> WeightsForHandled;
1055        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1056          if (PredCases[i].Dest == BB) {
1057            PTIHandled.insert(PredCases[i].Value);
1058
1059            if (PredHasWeights || SuccHasWeights) {
1060              WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1061              std::swap(Weights[i + 1], Weights.back());
1062              Weights.pop_back();
1063            }
1064
1065            std::swap(PredCases[i], PredCases.back());
1066            PredCases.pop_back();
1067            --i;
1068            --e;
1069          }
1070
1071        // Okay, now we know which constants were sent to BB from the
1072        // predecessor.  Figure out where they will all go now.
1073        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1074          if (PTIHandled.count(BBCases[i].Value)) {
1075            // If this is one we are capable of getting...
1076            if (PredHasWeights || SuccHasWeights)
1077              Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1078            PredCases.push_back(BBCases[i]);
1079            NewSuccessors.push_back(BBCases[i].Dest);
1080            PTIHandled.erase(
1081                BBCases[i].Value); // This constant is taken care of
1082          }
1083
1084        // If there are any constants vectored to BB that TI doesn't handle,
1085        // they must go to the default destination of TI.
1086        for (ConstantInt *I : PTIHandled) {
1087          if (PredHasWeights || SuccHasWeights)
1088            Weights.push_back(WeightsForHandled[I]);
1089          PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1090          NewSuccessors.push_back(BBDefault);
1091        }
1092      }
1093
1094      // Okay, at this point, we know which new successor Pred will get.  Make
1095      // sure we update the number of entries in the PHI nodes for these
1096      // successors.
1097      for (BasicBlock *NewSuccessor : NewSuccessors)
1098        AddPredecessorToBlock(NewSuccessor, Pred, BB);
1099
1100      Builder.SetInsertPoint(PTI);
1101      // Convert pointer to int before we switch.
1102      if (CV->getType()->isPointerTy()) {
1103        CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1104                                    "magicptr");
1105      }
1106
1107      // Now that the successors are updated, create the new Switch instruction.
1108      SwitchInst *NewSI =
1109          Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1110      NewSI->setDebugLoc(PTI->getDebugLoc());
1111      for (ValueEqualityComparisonCase &V : PredCases)
1112        NewSI->addCase(V.Value, V.Dest);
1113
1114      if (PredHasWeights || SuccHasWeights) {
1115        // Halve the weights if any of them cannot fit in an uint32_t
1116        FitWeights(Weights);
1117
1118        SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1119
1120        NewSI->setMetadata(
1121            LLVMContext::MD_prof,
1122            MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
1123      }
1124
1125      EraseTerminatorInstAndDCECond(PTI);
1126
1127      // Okay, last check.  If BB is still a successor of PSI, then we must
1128      // have an infinite loop case.  If so, add an infinitely looping block
1129      // to handle the case to preserve the behavior of the code.
1130      BasicBlock *InfLoopBlock = nullptr;
1131      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1132        if (NewSI->getSuccessor(i) == BB) {
1133          if (!InfLoopBlock) {
1134            // Insert it at the end of the function, because it's either code,
1135            // or it won't matter if it's hot. :)
1136            InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1137                                              BB->getParent());
1138            BranchInst::Create(InfLoopBlock, InfLoopBlock);
1139          }
1140          NewSI->setSuccessor(i, InfLoopBlock);
1141        }
1142
1143      Changed = true;
1144    }
1145  }
1146  return Changed;
1147}
1148
1149// If we would need to insert a select that uses the value of this invoke
1150// (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1151// can't hoist the invoke, as there is nowhere to put the select in this case.
1152static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1153                                Instruction *I1, Instruction *I2) {
1154  for (BasicBlock *Succ : successors(BB1)) {
1155    PHINode *PN;
1156    for (BasicBlock::iterator BBI = Succ->begin();
1157         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1158      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1159      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1160      if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1161        return false;
1162      }
1163    }
1164  }
1165  return true;
1166}
1167
1168static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1169
1170/// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1171/// in the two blocks up into the branch block. The caller of this function
1172/// guarantees that BI's block dominates BB1 and BB2.
1173static bool HoistThenElseCodeToIf(BranchInst *BI,
1174                                  const TargetTransformInfo &TTI) {
1175  // This does very trivial matching, with limited scanning, to find identical
1176  // instructions in the two blocks.  In particular, we don't want to get into
1177  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1178  // such, we currently just scan for obviously identical instructions in an
1179  // identical order.
1180  BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1181  BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1182
1183  BasicBlock::iterator BB1_Itr = BB1->begin();
1184  BasicBlock::iterator BB2_Itr = BB2->begin();
1185
1186  Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1187  // Skip debug info if it is not identical.
1188  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1189  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1190  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1191    while (isa<DbgInfoIntrinsic>(I1))
1192      I1 = &*BB1_Itr++;
1193    while (isa<DbgInfoIntrinsic>(I2))
1194      I2 = &*BB2_Itr++;
1195  }
1196  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1197      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1198    return false;
1199
1200  BasicBlock *BIParent = BI->getParent();
1201
1202  bool Changed = false;
1203  do {
1204    // If we are hoisting the terminator instruction, don't move one (making a
1205    // broken BB), instead clone it, and remove BI.
1206    if (isa<TerminatorInst>(I1))
1207      goto HoistTerminator;
1208
1209    if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1210      return Changed;
1211
1212    // For a normal instruction, we just move one to right before the branch,
1213    // then replace all uses of the other with the first.  Finally, we remove
1214    // the now redundant second instruction.
1215    BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1216    if (!I2->use_empty())
1217      I2->replaceAllUsesWith(I1);
1218    I1->intersectOptionalDataWith(I2);
1219    unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1220                           LLVMContext::MD_range,
1221                           LLVMContext::MD_fpmath,
1222                           LLVMContext::MD_invariant_load,
1223                           LLVMContext::MD_nonnull,
1224                           LLVMContext::MD_invariant_group,
1225                           LLVMContext::MD_align,
1226                           LLVMContext::MD_dereferenceable,
1227                           LLVMContext::MD_dereferenceable_or_null,
1228                           LLVMContext::MD_mem_parallel_loop_access};
1229    combineMetadata(I1, I2, KnownIDs);
1230    I2->eraseFromParent();
1231    Changed = true;
1232
1233    I1 = &*BB1_Itr++;
1234    I2 = &*BB2_Itr++;
1235    // Skip debug info if it is not identical.
1236    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1237    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1238    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1239      while (isa<DbgInfoIntrinsic>(I1))
1240        I1 = &*BB1_Itr++;
1241      while (isa<DbgInfoIntrinsic>(I2))
1242        I2 = &*BB2_Itr++;
1243    }
1244  } while (I1->isIdenticalToWhenDefined(I2));
1245
1246  return true;
1247
1248HoistTerminator:
1249  // It may not be possible to hoist an invoke.
1250  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1251    return Changed;
1252
1253  for (BasicBlock *Succ : successors(BB1)) {
1254    PHINode *PN;
1255    for (BasicBlock::iterator BBI = Succ->begin();
1256         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1257      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1258      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1259      if (BB1V == BB2V)
1260        continue;
1261
1262      // Check for passingValueIsAlwaysUndefined here because we would rather
1263      // eliminate undefined control flow then converting it to a select.
1264      if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1265          passingValueIsAlwaysUndefined(BB2V, PN))
1266        return Changed;
1267
1268      if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1269        return Changed;
1270      if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1271        return Changed;
1272    }
1273  }
1274
1275  // Okay, it is safe to hoist the terminator.
1276  Instruction *NT = I1->clone();
1277  BIParent->getInstList().insert(BI->getIterator(), NT);
1278  if (!NT->getType()->isVoidTy()) {
1279    I1->replaceAllUsesWith(NT);
1280    I2->replaceAllUsesWith(NT);
1281    NT->takeName(I1);
1282  }
1283
1284  IRBuilder<NoFolder> Builder(NT);
1285  // Hoisting one of the terminators from our successor is a great thing.
1286  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1287  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1288  // nodes, so we insert select instruction to compute the final result.
1289  std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1290  for (BasicBlock *Succ : successors(BB1)) {
1291    PHINode *PN;
1292    for (BasicBlock::iterator BBI = Succ->begin();
1293         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1294      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1295      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1296      if (BB1V == BB2V)
1297        continue;
1298
1299      // These values do not agree.  Insert a select instruction before NT
1300      // that determines the right value.
1301      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1302      if (!SI)
1303        SI = cast<SelectInst>(
1304            Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1305                                 BB1V->getName() + "." + BB2V->getName(), BI));
1306
1307      // Make the PHI node use the select for all incoming values for BB1/BB2
1308      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1309        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1310          PN->setIncomingValue(i, SI);
1311    }
1312  }
1313
1314  // Update any PHI nodes in our new successors.
1315  for (BasicBlock *Succ : successors(BB1))
1316    AddPredecessorToBlock(Succ, BIParent, BB1);
1317
1318  EraseTerminatorInstAndDCECond(BI);
1319  return true;
1320}
1321
1322/// Given an unconditional branch that goes to BBEnd,
1323/// check whether BBEnd has only two predecessors and the other predecessor
1324/// ends with an unconditional branch. If it is true, sink any common code
1325/// in the two predecessors to BBEnd.
1326static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1327  assert(BI1->isUnconditional());
1328  BasicBlock *BB1 = BI1->getParent();
1329  BasicBlock *BBEnd = BI1->getSuccessor(0);
1330
1331  // Check that BBEnd has two predecessors and the other predecessor ends with
1332  // an unconditional branch.
1333  pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1334  BasicBlock *Pred0 = *PI++;
1335  if (PI == PE) // Only one predecessor.
1336    return false;
1337  BasicBlock *Pred1 = *PI++;
1338  if (PI != PE) // More than two predecessors.
1339    return false;
1340  BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1341  BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1342  if (!BI2 || !BI2->isUnconditional())
1343    return false;
1344
1345  // Gather the PHI nodes in BBEnd.
1346  SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
1347  Instruction *FirstNonPhiInBBEnd = nullptr;
1348  for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
1349    if (PHINode *PN = dyn_cast<PHINode>(I)) {
1350      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1351      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1352      JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
1353    } else {
1354      FirstNonPhiInBBEnd = &*I;
1355      break;
1356    }
1357  }
1358  if (!FirstNonPhiInBBEnd)
1359    return false;
1360
1361  // This does very trivial matching, with limited scanning, to find identical
1362  // instructions in the two blocks.  We scan backward for obviously identical
1363  // instructions in an identical order.
1364  BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1365                                             RE1 = BB1->getInstList().rend(),
1366                                             RI2 = BB2->getInstList().rbegin(),
1367                                             RE2 = BB2->getInstList().rend();
1368  // Skip debug info.
1369  while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1))
1370    ++RI1;
1371  if (RI1 == RE1)
1372    return false;
1373  while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2))
1374    ++RI2;
1375  if (RI2 == RE2)
1376    return false;
1377  // Skip the unconditional branches.
1378  ++RI1;
1379  ++RI2;
1380
1381  bool Changed = false;
1382  while (RI1 != RE1 && RI2 != RE2) {
1383    // Skip debug info.
1384    while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1))
1385      ++RI1;
1386    if (RI1 == RE1)
1387      return Changed;
1388    while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2))
1389      ++RI2;
1390    if (RI2 == RE2)
1391      return Changed;
1392
1393    Instruction *I1 = &*RI1, *I2 = &*RI2;
1394    auto InstPair = std::make_pair(I1, I2);
1395    // I1 and I2 should have a single use in the same PHI node, and they
1396    // perform the same operation.
1397    // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1398    if (isa<PHINode>(I1) || isa<PHINode>(I2) || isa<TerminatorInst>(I1) ||
1399        isa<TerminatorInst>(I2) || I1->isEHPad() || I2->isEHPad() ||
1400        isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1401        I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1402        I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1403        !I1->hasOneUse() || !I2->hasOneUse() || !JointValueMap.count(InstPair))
1404      return Changed;
1405
1406    // Check whether we should swap the operands of ICmpInst.
1407    // TODO: Add support of communativity.
1408    ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1409    bool SwapOpnds = false;
1410    if (ICmp1 && ICmp2 && ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1411        ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1412        (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1413         ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1414      ICmp2->swapOperands();
1415      SwapOpnds = true;
1416    }
1417    if (!I1->isSameOperationAs(I2)) {
1418      if (SwapOpnds)
1419        ICmp2->swapOperands();
1420      return Changed;
1421    }
1422
1423    // The operands should be either the same or they need to be generated
1424    // with a PHI node after sinking. We only handle the case where there is
1425    // a single pair of different operands.
1426    Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
1427    unsigned Op1Idx = ~0U;
1428    for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1429      if (I1->getOperand(I) == I2->getOperand(I))
1430        continue;
1431      // Early exit if we have more-than one pair of different operands or if
1432      // we need a PHI node to replace a constant.
1433      if (Op1Idx != ~0U || isa<Constant>(I1->getOperand(I)) ||
1434          isa<Constant>(I2->getOperand(I))) {
1435        // If we can't sink the instructions, undo the swapping.
1436        if (SwapOpnds)
1437          ICmp2->swapOperands();
1438        return Changed;
1439      }
1440      DifferentOp1 = I1->getOperand(I);
1441      Op1Idx = I;
1442      DifferentOp2 = I2->getOperand(I);
1443    }
1444
1445    DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
1446    DEBUG(dbgs() << "                         " << *I2 << "\n");
1447
1448    // We insert the pair of different operands to JointValueMap and
1449    // remove (I1, I2) from JointValueMap.
1450    if (Op1Idx != ~0U) {
1451      auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
1452      if (!NewPN) {
1453        NewPN =
1454            PHINode::Create(DifferentOp1->getType(), 2,
1455                            DifferentOp1->getName() + ".sink", &BBEnd->front());
1456        NewPN->addIncoming(DifferentOp1, BB1);
1457        NewPN->addIncoming(DifferentOp2, BB2);
1458        DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1459      }
1460      // I1 should use NewPN instead of DifferentOp1.
1461      I1->setOperand(Op1Idx, NewPN);
1462    }
1463    PHINode *OldPN = JointValueMap[InstPair];
1464    JointValueMap.erase(InstPair);
1465
1466    // We need to update RE1 and RE2 if we are going to sink the first
1467    // instruction in the basic block down.
1468    bool UpdateRE1 = (I1 == &BB1->front()), UpdateRE2 = (I2 == &BB2->front());
1469    // Sink the instruction.
1470    BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(),
1471                                BB1->getInstList(), I1);
1472    if (!OldPN->use_empty())
1473      OldPN->replaceAllUsesWith(I1);
1474    OldPN->eraseFromParent();
1475
1476    if (!I2->use_empty())
1477      I2->replaceAllUsesWith(I1);
1478    I1->intersectOptionalDataWith(I2);
1479    // TODO: Use combineMetadata here to preserve what metadata we can
1480    // (analogous to the hoisting case above).
1481    I2->eraseFromParent();
1482
1483    if (UpdateRE1)
1484      RE1 = BB1->getInstList().rend();
1485    if (UpdateRE2)
1486      RE2 = BB2->getInstList().rend();
1487    FirstNonPhiInBBEnd = &*I1;
1488    NumSinkCommons++;
1489    Changed = true;
1490  }
1491  return Changed;
1492}
1493
1494/// \brief Determine if we can hoist sink a sole store instruction out of a
1495/// conditional block.
1496///
1497/// We are looking for code like the following:
1498///   BrBB:
1499///     store i32 %add, i32* %arrayidx2
1500///     ... // No other stores or function calls (we could be calling a memory
1501///     ... // function).
1502///     %cmp = icmp ult %x, %y
1503///     br i1 %cmp, label %EndBB, label %ThenBB
1504///   ThenBB:
1505///     store i32 %add5, i32* %arrayidx2
1506///     br label EndBB
1507///   EndBB:
1508///     ...
1509///   We are going to transform this into:
1510///   BrBB:
1511///     store i32 %add, i32* %arrayidx2
1512///     ... //
1513///     %cmp = icmp ult %x, %y
1514///     %add.add5 = select i1 %cmp, i32 %add, %add5
1515///     store i32 %add.add5, i32* %arrayidx2
1516///     ...
1517///
1518/// \return The pointer to the value of the previous store if the store can be
1519///         hoisted into the predecessor block. 0 otherwise.
1520static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1521                                     BasicBlock *StoreBB, BasicBlock *EndBB) {
1522  StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1523  if (!StoreToHoist)
1524    return nullptr;
1525
1526  // Volatile or atomic.
1527  if (!StoreToHoist->isSimple())
1528    return nullptr;
1529
1530  Value *StorePtr = StoreToHoist->getPointerOperand();
1531
1532  // Look for a store to the same pointer in BrBB.
1533  unsigned MaxNumInstToLookAt = 9;
1534  for (Instruction &CurI : reverse(*BrBB)) {
1535    if (!MaxNumInstToLookAt)
1536      break;
1537    // Skip debug info.
1538    if (isa<DbgInfoIntrinsic>(CurI))
1539      continue;
1540    --MaxNumInstToLookAt;
1541
1542    // Could be calling an instruction that effects memory like free().
1543    if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1544      return nullptr;
1545
1546    if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1547      // Found the previous store make sure it stores to the same location.
1548      if (SI->getPointerOperand() == StorePtr)
1549        // Found the previous store, return its value operand.
1550        return SI->getValueOperand();
1551      return nullptr; // Unknown store.
1552    }
1553  }
1554
1555  return nullptr;
1556}
1557
1558/// \brief Speculate a conditional basic block flattening the CFG.
1559///
1560/// Note that this is a very risky transform currently. Speculating
1561/// instructions like this is most often not desirable. Instead, there is an MI
1562/// pass which can do it with full awareness of the resource constraints.
1563/// However, some cases are "obvious" and we should do directly. An example of
1564/// this is speculating a single, reasonably cheap instruction.
1565///
1566/// There is only one distinct advantage to flattening the CFG at the IR level:
1567/// it makes very common but simplistic optimizations such as are common in
1568/// instcombine and the DAG combiner more powerful by removing CFG edges and
1569/// modeling their effects with easier to reason about SSA value graphs.
1570///
1571///
1572/// An illustration of this transform is turning this IR:
1573/// \code
1574///   BB:
1575///     %cmp = icmp ult %x, %y
1576///     br i1 %cmp, label %EndBB, label %ThenBB
1577///   ThenBB:
1578///     %sub = sub %x, %y
1579///     br label BB2
1580///   EndBB:
1581///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1582///     ...
1583/// \endcode
1584///
1585/// Into this IR:
1586/// \code
1587///   BB:
1588///     %cmp = icmp ult %x, %y
1589///     %sub = sub %x, %y
1590///     %cond = select i1 %cmp, 0, %sub
1591///     ...
1592/// \endcode
1593///
1594/// \returns true if the conditional block is removed.
1595static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1596                                   const TargetTransformInfo &TTI) {
1597  // Be conservative for now. FP select instruction can often be expensive.
1598  Value *BrCond = BI->getCondition();
1599  if (isa<FCmpInst>(BrCond))
1600    return false;
1601
1602  BasicBlock *BB = BI->getParent();
1603  BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1604
1605  // If ThenBB is actually on the false edge of the conditional branch, remember
1606  // to swap the select operands later.
1607  bool Invert = false;
1608  if (ThenBB != BI->getSuccessor(0)) {
1609    assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1610    Invert = true;
1611  }
1612  assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1613
1614  // Keep a count of how many times instructions are used within CondBB when
1615  // they are candidates for sinking into CondBB. Specifically:
1616  // - They are defined in BB, and
1617  // - They have no side effects, and
1618  // - All of their uses are in CondBB.
1619  SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1620
1621  unsigned SpeculationCost = 0;
1622  Value *SpeculatedStoreValue = nullptr;
1623  StoreInst *SpeculatedStore = nullptr;
1624  for (BasicBlock::iterator BBI = ThenBB->begin(),
1625                            BBE = std::prev(ThenBB->end());
1626       BBI != BBE; ++BBI) {
1627    Instruction *I = &*BBI;
1628    // Skip debug info.
1629    if (isa<DbgInfoIntrinsic>(I))
1630      continue;
1631
1632    // Only speculatively execute a single instruction (not counting the
1633    // terminator) for now.
1634    ++SpeculationCost;
1635    if (SpeculationCost > 1)
1636      return false;
1637
1638    // Don't hoist the instruction if it's unsafe or expensive.
1639    if (!isSafeToSpeculativelyExecute(I) &&
1640        !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1641                                  I, BB, ThenBB, EndBB))))
1642      return false;
1643    if (!SpeculatedStoreValue &&
1644        ComputeSpeculationCost(I, TTI) >
1645            PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1646      return false;
1647
1648    // Store the store speculation candidate.
1649    if (SpeculatedStoreValue)
1650      SpeculatedStore = cast<StoreInst>(I);
1651
1652    // Do not hoist the instruction if any of its operands are defined but not
1653    // used in BB. The transformation will prevent the operand from
1654    // being sunk into the use block.
1655    for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1656      Instruction *OpI = dyn_cast<Instruction>(*i);
1657      if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1658        continue; // Not a candidate for sinking.
1659
1660      ++SinkCandidateUseCounts[OpI];
1661    }
1662  }
1663
1664  // Consider any sink candidates which are only used in CondBB as costs for
1665  // speculation. Note, while we iterate over a DenseMap here, we are summing
1666  // and so iteration order isn't significant.
1667  for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
1668           I = SinkCandidateUseCounts.begin(),
1669           E = SinkCandidateUseCounts.end();
1670       I != E; ++I)
1671    if (I->first->getNumUses() == I->second) {
1672      ++SpeculationCost;
1673      if (SpeculationCost > 1)
1674        return false;
1675    }
1676
1677  // Check that the PHI nodes can be converted to selects.
1678  bool HaveRewritablePHIs = false;
1679  for (BasicBlock::iterator I = EndBB->begin();
1680       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1681    Value *OrigV = PN->getIncomingValueForBlock(BB);
1682    Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1683
1684    // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1685    // Skip PHIs which are trivial.
1686    if (ThenV == OrigV)
1687      continue;
1688
1689    // Don't convert to selects if we could remove undefined behavior instead.
1690    if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1691        passingValueIsAlwaysUndefined(ThenV, PN))
1692      return false;
1693
1694    HaveRewritablePHIs = true;
1695    ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1696    ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1697    if (!OrigCE && !ThenCE)
1698      continue; // Known safe and cheap.
1699
1700    if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1701        (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1702      return false;
1703    unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
1704    unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
1705    unsigned MaxCost =
1706        2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
1707    if (OrigCost + ThenCost > MaxCost)
1708      return false;
1709
1710    // Account for the cost of an unfolded ConstantExpr which could end up
1711    // getting expanded into Instructions.
1712    // FIXME: This doesn't account for how many operations are combined in the
1713    // constant expression.
1714    ++SpeculationCost;
1715    if (SpeculationCost > 1)
1716      return false;
1717  }
1718
1719  // If there are no PHIs to process, bail early. This helps ensure idempotence
1720  // as well.
1721  if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1722    return false;
1723
1724  // If we get here, we can hoist the instruction and if-convert.
1725  DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1726
1727  // Insert a select of the value of the speculated store.
1728  if (SpeculatedStoreValue) {
1729    IRBuilder<NoFolder> Builder(BI);
1730    Value *TrueV = SpeculatedStore->getValueOperand();
1731    Value *FalseV = SpeculatedStoreValue;
1732    if (Invert)
1733      std::swap(TrueV, FalseV);
1734    Value *S = Builder.CreateSelect(
1735        BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
1736    SpeculatedStore->setOperand(0, S);
1737  }
1738
1739  // Metadata can be dependent on the condition we are hoisting above.
1740  // Conservatively strip all metadata on the instruction.
1741  for (auto &I : *ThenBB)
1742    I.dropUnknownNonDebugMetadata();
1743
1744  // Hoist the instructions.
1745  BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
1746                           ThenBB->begin(), std::prev(ThenBB->end()));
1747
1748  // Insert selects and rewrite the PHI operands.
1749  IRBuilder<NoFolder> Builder(BI);
1750  for (BasicBlock::iterator I = EndBB->begin();
1751       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1752    unsigned OrigI = PN->getBasicBlockIndex(BB);
1753    unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1754    Value *OrigV = PN->getIncomingValue(OrigI);
1755    Value *ThenV = PN->getIncomingValue(ThenI);
1756
1757    // Skip PHIs which are trivial.
1758    if (OrigV == ThenV)
1759      continue;
1760
1761    // Create a select whose true value is the speculatively executed value and
1762    // false value is the preexisting value. Swap them if the branch
1763    // destinations were inverted.
1764    Value *TrueV = ThenV, *FalseV = OrigV;
1765    if (Invert)
1766      std::swap(TrueV, FalseV);
1767    Value *V = Builder.CreateSelect(
1768        BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
1769    PN->setIncomingValue(OrigI, V);
1770    PN->setIncomingValue(ThenI, V);
1771  }
1772
1773  ++NumSpeculations;
1774  return true;
1775}
1776
1777/// Return true if we can thread a branch across this block.
1778static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1779  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1780  unsigned Size = 0;
1781
1782  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1783    if (isa<DbgInfoIntrinsic>(BBI))
1784      continue;
1785    if (Size > 10)
1786      return false; // Don't clone large BB's.
1787    ++Size;
1788
1789    // We can only support instructions that do not define values that are
1790    // live outside of the current basic block.
1791    for (User *U : BBI->users()) {
1792      Instruction *UI = cast<Instruction>(U);
1793      if (UI->getParent() != BB || isa<PHINode>(UI))
1794        return false;
1795    }
1796
1797    // Looks ok, continue checking.
1798  }
1799
1800  return true;
1801}
1802
1803/// If we have a conditional branch on a PHI node value that is defined in the
1804/// same block as the branch and if any PHI entries are constants, thread edges
1805/// corresponding to that entry to be branches to their ultimate destination.
1806static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
1807  BasicBlock *BB = BI->getParent();
1808  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1809  // NOTE: we currently cannot transform this case if the PHI node is used
1810  // outside of the block.
1811  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1812    return false;
1813
1814  // Degenerate case of a single entry PHI.
1815  if (PN->getNumIncomingValues() == 1) {
1816    FoldSingleEntryPHINodes(PN->getParent());
1817    return true;
1818  }
1819
1820  // Now we know that this block has multiple preds and two succs.
1821  if (!BlockIsSimpleEnoughToThreadThrough(BB))
1822    return false;
1823
1824  // Can't fold blocks that contain noduplicate or convergent calls.
1825  if (llvm::any_of(*BB, [](const Instruction &I) {
1826        const CallInst *CI = dyn_cast<CallInst>(&I);
1827        return CI && (CI->cannotDuplicate() || CI->isConvergent());
1828      }))
1829    return false;
1830
1831  // Okay, this is a simple enough basic block.  See if any phi values are
1832  // constants.
1833  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1834    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1835    if (!CB || !CB->getType()->isIntegerTy(1))
1836      continue;
1837
1838    // Okay, we now know that all edges from PredBB should be revectored to
1839    // branch to RealDest.
1840    BasicBlock *PredBB = PN->getIncomingBlock(i);
1841    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1842
1843    if (RealDest == BB)
1844      continue; // Skip self loops.
1845    // Skip if the predecessor's terminator is an indirect branch.
1846    if (isa<IndirectBrInst>(PredBB->getTerminator()))
1847      continue;
1848
1849    // The dest block might have PHI nodes, other predecessors and other
1850    // difficult cases.  Instead of being smart about this, just insert a new
1851    // block that jumps to the destination block, effectively splitting
1852    // the edge we are about to create.
1853    BasicBlock *EdgeBB =
1854        BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
1855                           RealDest->getParent(), RealDest);
1856    BranchInst::Create(RealDest, EdgeBB);
1857
1858    // Update PHI nodes.
1859    AddPredecessorToBlock(RealDest, EdgeBB, BB);
1860
1861    // BB may have instructions that are being threaded over.  Clone these
1862    // instructions into EdgeBB.  We know that there will be no uses of the
1863    // cloned instructions outside of EdgeBB.
1864    BasicBlock::iterator InsertPt = EdgeBB->begin();
1865    DenseMap<Value *, Value *> TranslateMap; // Track translated values.
1866    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1867      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1868        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1869        continue;
1870      }
1871      // Clone the instruction.
1872      Instruction *N = BBI->clone();
1873      if (BBI->hasName())
1874        N->setName(BBI->getName() + ".c");
1875
1876      // Update operands due to translation.
1877      for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
1878        DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
1879        if (PI != TranslateMap.end())
1880          *i = PI->second;
1881      }
1882
1883      // Check for trivial simplification.
1884      if (Value *V = SimplifyInstruction(N, DL)) {
1885        if (!BBI->use_empty())
1886          TranslateMap[&*BBI] = V;
1887        if (!N->mayHaveSideEffects()) {
1888          delete N; // Instruction folded away, don't need actual inst
1889          N = nullptr;
1890        }
1891      } else {
1892        if (!BBI->use_empty())
1893          TranslateMap[&*BBI] = N;
1894      }
1895      // Insert the new instruction into its new home.
1896      if (N)
1897        EdgeBB->getInstList().insert(InsertPt, N);
1898    }
1899
1900    // Loop over all of the edges from PredBB to BB, changing them to branch
1901    // to EdgeBB instead.
1902    TerminatorInst *PredBBTI = PredBB->getTerminator();
1903    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1904      if (PredBBTI->getSuccessor(i) == BB) {
1905        BB->removePredecessor(PredBB);
1906        PredBBTI->setSuccessor(i, EdgeBB);
1907      }
1908
1909    // Recurse, simplifying any other constants.
1910    return FoldCondBranchOnPHI(BI, DL) | true;
1911  }
1912
1913  return false;
1914}
1915
1916/// Given a BB that starts with the specified two-entry PHI node,
1917/// see if we can eliminate it.
1918static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
1919                                const DataLayout &DL) {
1920  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1921  // statement", which has a very simple dominance structure.  Basically, we
1922  // are trying to find the condition that is being branched on, which
1923  // subsequently causes this merge to happen.  We really want control
1924  // dependence information for this check, but simplifycfg can't keep it up
1925  // to date, and this catches most of the cases we care about anyway.
1926  BasicBlock *BB = PN->getParent();
1927  BasicBlock *IfTrue, *IfFalse;
1928  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1929  if (!IfCond ||
1930      // Don't bother if the branch will be constant folded trivially.
1931      isa<ConstantInt>(IfCond))
1932    return false;
1933
1934  // Okay, we found that we can merge this two-entry phi node into a select.
1935  // Doing so would require us to fold *all* two entry phi nodes in this block.
1936  // At some point this becomes non-profitable (particularly if the target
1937  // doesn't support cmov's).  Only do this transformation if there are two or
1938  // fewer PHI nodes in this block.
1939  unsigned NumPhis = 0;
1940  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1941    if (NumPhis > 2)
1942      return false;
1943
1944  // Loop over the PHI's seeing if we can promote them all to select
1945  // instructions.  While we are at it, keep track of the instructions
1946  // that need to be moved to the dominating block.
1947  SmallPtrSet<Instruction *, 4> AggressiveInsts;
1948  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1949           MaxCostVal1 = PHINodeFoldingThreshold;
1950  MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
1951  MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
1952
1953  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1954    PHINode *PN = cast<PHINode>(II++);
1955    if (Value *V = SimplifyInstruction(PN, DL)) {
1956      PN->replaceAllUsesWith(V);
1957      PN->eraseFromParent();
1958      continue;
1959    }
1960
1961    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1962                             MaxCostVal0, TTI) ||
1963        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1964                             MaxCostVal1, TTI))
1965      return false;
1966  }
1967
1968  // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1969  // we ran out of PHIs then we simplified them all.
1970  PN = dyn_cast<PHINode>(BB->begin());
1971  if (!PN)
1972    return true;
1973
1974  // Don't fold i1 branches on PHIs which contain binary operators.  These can
1975  // often be turned into switches and other things.
1976  if (PN->getType()->isIntegerTy(1) &&
1977      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1978       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1979       isa<BinaryOperator>(IfCond)))
1980    return false;
1981
1982  // If all PHI nodes are promotable, check to make sure that all instructions
1983  // in the predecessor blocks can be promoted as well. If not, we won't be able
1984  // to get rid of the control flow, so it's not worth promoting to select
1985  // instructions.
1986  BasicBlock *DomBlock = nullptr;
1987  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1988  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1989  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1990    IfBlock1 = nullptr;
1991  } else {
1992    DomBlock = *pred_begin(IfBlock1);
1993    for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
1994         ++I)
1995      if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
1996        // This is not an aggressive instruction that we can promote.
1997        // Because of this, we won't be able to get rid of the control flow, so
1998        // the xform is not worth it.
1999        return false;
2000      }
2001  }
2002
2003  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2004    IfBlock2 = nullptr;
2005  } else {
2006    DomBlock = *pred_begin(IfBlock2);
2007    for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2008         ++I)
2009      if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2010        // This is not an aggressive instruction that we can promote.
2011        // Because of this, we won't be able to get rid of the control flow, so
2012        // the xform is not worth it.
2013        return false;
2014      }
2015  }
2016
2017  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2018               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2019
2020  // If we can still promote the PHI nodes after this gauntlet of tests,
2021  // do all of the PHI's now.
2022  Instruction *InsertPt = DomBlock->getTerminator();
2023  IRBuilder<NoFolder> Builder(InsertPt);
2024
2025  // Move all 'aggressive' instructions, which are defined in the
2026  // conditional parts of the if's up to the dominating block.
2027  if (IfBlock1)
2028    DomBlock->getInstList().splice(InsertPt->getIterator(),
2029                                   IfBlock1->getInstList(), IfBlock1->begin(),
2030                                   IfBlock1->getTerminator()->getIterator());
2031  if (IfBlock2)
2032    DomBlock->getInstList().splice(InsertPt->getIterator(),
2033                                   IfBlock2->getInstList(), IfBlock2->begin(),
2034                                   IfBlock2->getTerminator()->getIterator());
2035
2036  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2037    // Change the PHI node into a select instruction.
2038    Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2039    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2040
2041    Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2042    PN->replaceAllUsesWith(Sel);
2043    Sel->takeName(PN);
2044    PN->eraseFromParent();
2045  }
2046
2047  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2048  // has been flattened.  Change DomBlock to jump directly to our new block to
2049  // avoid other simplifycfg's kicking in on the diamond.
2050  TerminatorInst *OldTI = DomBlock->getTerminator();
2051  Builder.SetInsertPoint(OldTI);
2052  Builder.CreateBr(BB);
2053  OldTI->eraseFromParent();
2054  return true;
2055}
2056
2057/// If we found a conditional branch that goes to two returning blocks,
2058/// try to merge them together into one return,
2059/// introducing a select if the return values disagree.
2060static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2061                                           IRBuilder<> &Builder) {
2062  assert(BI->isConditional() && "Must be a conditional branch");
2063  BasicBlock *TrueSucc = BI->getSuccessor(0);
2064  BasicBlock *FalseSucc = BI->getSuccessor(1);
2065  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2066  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2067
2068  // Check to ensure both blocks are empty (just a return) or optionally empty
2069  // with PHI nodes.  If there are other instructions, merging would cause extra
2070  // computation on one path or the other.
2071  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2072    return false;
2073  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2074    return false;
2075
2076  Builder.SetInsertPoint(BI);
2077  // Okay, we found a branch that is going to two return nodes.  If
2078  // there is no return value for this function, just change the
2079  // branch into a return.
2080  if (FalseRet->getNumOperands() == 0) {
2081    TrueSucc->removePredecessor(BI->getParent());
2082    FalseSucc->removePredecessor(BI->getParent());
2083    Builder.CreateRetVoid();
2084    EraseTerminatorInstAndDCECond(BI);
2085    return true;
2086  }
2087
2088  // Otherwise, figure out what the true and false return values are
2089  // so we can insert a new select instruction.
2090  Value *TrueValue = TrueRet->getReturnValue();
2091  Value *FalseValue = FalseRet->getReturnValue();
2092
2093  // Unwrap any PHI nodes in the return blocks.
2094  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2095    if (TVPN->getParent() == TrueSucc)
2096      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2097  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2098    if (FVPN->getParent() == FalseSucc)
2099      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2100
2101  // In order for this transformation to be safe, we must be able to
2102  // unconditionally execute both operands to the return.  This is
2103  // normally the case, but we could have a potentially-trapping
2104  // constant expression that prevents this transformation from being
2105  // safe.
2106  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2107    if (TCV->canTrap())
2108      return false;
2109  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2110    if (FCV->canTrap())
2111      return false;
2112
2113  // Okay, we collected all the mapped values and checked them for sanity, and
2114  // defined to really do this transformation.  First, update the CFG.
2115  TrueSucc->removePredecessor(BI->getParent());
2116  FalseSucc->removePredecessor(BI->getParent());
2117
2118  // Insert select instructions where needed.
2119  Value *BrCond = BI->getCondition();
2120  if (TrueValue) {
2121    // Insert a select if the results differ.
2122    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2123    } else if (isa<UndefValue>(TrueValue)) {
2124      TrueValue = FalseValue;
2125    } else {
2126      TrueValue =
2127          Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2128    }
2129  }
2130
2131  Value *RI =
2132      !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2133
2134  (void)RI;
2135
2136  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2137               << "\n  " << *BI << "NewRet = " << *RI
2138               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2139
2140  EraseTerminatorInstAndDCECond(BI);
2141
2142  return true;
2143}
2144
2145/// Return true if the given instruction is available
2146/// in its predecessor block. If yes, the instruction will be removed.
2147static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2148  if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2149    return false;
2150  for (Instruction &I : *PB) {
2151    Instruction *PBI = &I;
2152    // Check whether Inst and PBI generate the same value.
2153    if (Inst->isIdenticalTo(PBI)) {
2154      Inst->replaceAllUsesWith(PBI);
2155      Inst->eraseFromParent();
2156      return true;
2157    }
2158  }
2159  return false;
2160}
2161
2162/// Return true if either PBI or BI has branch weight available, and store
2163/// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2164/// not have branch weight, use 1:1 as its weight.
2165static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2166                                   uint64_t &PredTrueWeight,
2167                                   uint64_t &PredFalseWeight,
2168                                   uint64_t &SuccTrueWeight,
2169                                   uint64_t &SuccFalseWeight) {
2170  bool PredHasWeights =
2171      PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2172  bool SuccHasWeights =
2173      BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2174  if (PredHasWeights || SuccHasWeights) {
2175    if (!PredHasWeights)
2176      PredTrueWeight = PredFalseWeight = 1;
2177    if (!SuccHasWeights)
2178      SuccTrueWeight = SuccFalseWeight = 1;
2179    return true;
2180  } else {
2181    return false;
2182  }
2183}
2184
2185/// If this basic block is simple enough, and if a predecessor branches to us
2186/// and one of our successors, fold the block into the predecessor and use
2187/// logical operations to pick the right destination.
2188bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2189  BasicBlock *BB = BI->getParent();
2190
2191  Instruction *Cond = nullptr;
2192  if (BI->isConditional())
2193    Cond = dyn_cast<Instruction>(BI->getCondition());
2194  else {
2195    // For unconditional branch, check for a simple CFG pattern, where
2196    // BB has a single predecessor and BB's successor is also its predecessor's
2197    // successor. If such pattern exisits, check for CSE between BB and its
2198    // predecessor.
2199    if (BasicBlock *PB = BB->getSinglePredecessor())
2200      if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2201        if (PBI->isConditional() &&
2202            (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2203             BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2204          for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2205            Instruction *Curr = &*I++;
2206            if (isa<CmpInst>(Curr)) {
2207              Cond = Curr;
2208              break;
2209            }
2210            // Quit if we can't remove this instruction.
2211            if (!checkCSEInPredecessor(Curr, PB))
2212              return false;
2213          }
2214        }
2215
2216    if (!Cond)
2217      return false;
2218  }
2219
2220  if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2221      Cond->getParent() != BB || !Cond->hasOneUse())
2222    return false;
2223
2224  // Make sure the instruction after the condition is the cond branch.
2225  BasicBlock::iterator CondIt = ++Cond->getIterator();
2226
2227  // Ignore dbg intrinsics.
2228  while (isa<DbgInfoIntrinsic>(CondIt))
2229    ++CondIt;
2230
2231  if (&*CondIt != BI)
2232    return false;
2233
2234  // Only allow this transformation if computing the condition doesn't involve
2235  // too many instructions and these involved instructions can be executed
2236  // unconditionally. We denote all involved instructions except the condition
2237  // as "bonus instructions", and only allow this transformation when the
2238  // number of the bonus instructions does not exceed a certain threshold.
2239  unsigned NumBonusInsts = 0;
2240  for (auto I = BB->begin(); Cond != &*I; ++I) {
2241    // Ignore dbg intrinsics.
2242    if (isa<DbgInfoIntrinsic>(I))
2243      continue;
2244    if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2245      return false;
2246    // I has only one use and can be executed unconditionally.
2247    Instruction *User = dyn_cast<Instruction>(I->user_back());
2248    if (User == nullptr || User->getParent() != BB)
2249      return false;
2250    // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2251    // to use any other instruction, User must be an instruction between next(I)
2252    // and Cond.
2253    ++NumBonusInsts;
2254    // Early exits once we reach the limit.
2255    if (NumBonusInsts > BonusInstThreshold)
2256      return false;
2257  }
2258
2259  // Cond is known to be a compare or binary operator.  Check to make sure that
2260  // neither operand is a potentially-trapping constant expression.
2261  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2262    if (CE->canTrap())
2263      return false;
2264  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2265    if (CE->canTrap())
2266      return false;
2267
2268  // Finally, don't infinitely unroll conditional loops.
2269  BasicBlock *TrueDest = BI->getSuccessor(0);
2270  BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2271  if (TrueDest == BB || FalseDest == BB)
2272    return false;
2273
2274  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2275    BasicBlock *PredBlock = *PI;
2276    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2277
2278    // Check that we have two conditional branches.  If there is a PHI node in
2279    // the common successor, verify that the same value flows in from both
2280    // blocks.
2281    SmallVector<PHINode *, 4> PHIs;
2282    if (!PBI || PBI->isUnconditional() ||
2283        (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2284        (!BI->isConditional() &&
2285         !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2286      continue;
2287
2288    // Determine if the two branches share a common destination.
2289    Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2290    bool InvertPredCond = false;
2291
2292    if (BI->isConditional()) {
2293      if (PBI->getSuccessor(0) == TrueDest) {
2294        Opc = Instruction::Or;
2295      } else if (PBI->getSuccessor(1) == FalseDest) {
2296        Opc = Instruction::And;
2297      } else if (PBI->getSuccessor(0) == FalseDest) {
2298        Opc = Instruction::And;
2299        InvertPredCond = true;
2300      } else if (PBI->getSuccessor(1) == TrueDest) {
2301        Opc = Instruction::Or;
2302        InvertPredCond = true;
2303      } else {
2304        continue;
2305      }
2306    } else {
2307      if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2308        continue;
2309    }
2310
2311    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2312    IRBuilder<> Builder(PBI);
2313
2314    // If we need to invert the condition in the pred block to match, do so now.
2315    if (InvertPredCond) {
2316      Value *NewCond = PBI->getCondition();
2317
2318      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2319        CmpInst *CI = cast<CmpInst>(NewCond);
2320        CI->setPredicate(CI->getInversePredicate());
2321      } else {
2322        NewCond =
2323            Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2324      }
2325
2326      PBI->setCondition(NewCond);
2327      PBI->swapSuccessors();
2328    }
2329
2330    // If we have bonus instructions, clone them into the predecessor block.
2331    // Note that there may be multiple predecessor blocks, so we cannot move
2332    // bonus instructions to a predecessor block.
2333    ValueToValueMapTy VMap; // maps original values to cloned values
2334    // We already make sure Cond is the last instruction before BI. Therefore,
2335    // all instructions before Cond other than DbgInfoIntrinsic are bonus
2336    // instructions.
2337    for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2338      if (isa<DbgInfoIntrinsic>(BonusInst))
2339        continue;
2340      Instruction *NewBonusInst = BonusInst->clone();
2341      RemapInstruction(NewBonusInst, VMap,
2342                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2343      VMap[&*BonusInst] = NewBonusInst;
2344
2345      // If we moved a load, we cannot any longer claim any knowledge about
2346      // its potential value. The previous information might have been valid
2347      // only given the branch precondition.
2348      // For an analogous reason, we must also drop all the metadata whose
2349      // semantics we don't understand.
2350      NewBonusInst->dropUnknownNonDebugMetadata();
2351
2352      PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2353      NewBonusInst->takeName(&*BonusInst);
2354      BonusInst->setName(BonusInst->getName() + ".old");
2355    }
2356
2357    // Clone Cond into the predecessor basic block, and or/and the
2358    // two conditions together.
2359    Instruction *New = Cond->clone();
2360    RemapInstruction(New, VMap,
2361                     RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2362    PredBlock->getInstList().insert(PBI->getIterator(), New);
2363    New->takeName(Cond);
2364    Cond->setName(New->getName() + ".old");
2365
2366    if (BI->isConditional()) {
2367      Instruction *NewCond = cast<Instruction>(
2368          Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2369      PBI->setCondition(NewCond);
2370
2371      uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2372      bool HasWeights =
2373          extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2374                                 SuccTrueWeight, SuccFalseWeight);
2375      SmallVector<uint64_t, 8> NewWeights;
2376
2377      if (PBI->getSuccessor(0) == BB) {
2378        if (HasWeights) {
2379          // PBI: br i1 %x, BB, FalseDest
2380          // BI:  br i1 %y, TrueDest, FalseDest
2381          // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2382          NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2383          // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2384          //               TrueWeight for PBI * FalseWeight for BI.
2385          // We assume that total weights of a BranchInst can fit into 32 bits.
2386          // Therefore, we will not have overflow using 64-bit arithmetic.
2387          NewWeights.push_back(PredFalseWeight *
2388                                   (SuccFalseWeight + SuccTrueWeight) +
2389                               PredTrueWeight * SuccFalseWeight);
2390        }
2391        AddPredecessorToBlock(TrueDest, PredBlock, BB);
2392        PBI->setSuccessor(0, TrueDest);
2393      }
2394      if (PBI->getSuccessor(1) == BB) {
2395        if (HasWeights) {
2396          // PBI: br i1 %x, TrueDest, BB
2397          // BI:  br i1 %y, TrueDest, FalseDest
2398          // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2399          //              FalseWeight for PBI * TrueWeight for BI.
2400          NewWeights.push_back(PredTrueWeight *
2401                                   (SuccFalseWeight + SuccTrueWeight) +
2402                               PredFalseWeight * SuccTrueWeight);
2403          // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2404          NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2405        }
2406        AddPredecessorToBlock(FalseDest, PredBlock, BB);
2407        PBI->setSuccessor(1, FalseDest);
2408      }
2409      if (NewWeights.size() == 2) {
2410        // Halve the weights if any of them cannot fit in an uint32_t
2411        FitWeights(NewWeights);
2412
2413        SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2414                                           NewWeights.end());
2415        PBI->setMetadata(
2416            LLVMContext::MD_prof,
2417            MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
2418      } else
2419        PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2420    } else {
2421      // Update PHI nodes in the common successors.
2422      for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2423        ConstantInt *PBI_C = cast<ConstantInt>(
2424            PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2425        assert(PBI_C->getType()->isIntegerTy(1));
2426        Instruction *MergedCond = nullptr;
2427        if (PBI->getSuccessor(0) == TrueDest) {
2428          // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2429          // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2430          //       is false: !PBI_Cond and BI_Value
2431          Instruction *NotCond = cast<Instruction>(
2432              Builder.CreateNot(PBI->getCondition(), "not.cond"));
2433          MergedCond = cast<Instruction>(
2434              Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2435          if (PBI_C->isOne())
2436            MergedCond = cast<Instruction>(Builder.CreateBinOp(
2437                Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2438        } else {
2439          // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2440          // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2441          //       is false: PBI_Cond and BI_Value
2442          MergedCond = cast<Instruction>(Builder.CreateBinOp(
2443              Instruction::And, PBI->getCondition(), New, "and.cond"));
2444          if (PBI_C->isOne()) {
2445            Instruction *NotCond = cast<Instruction>(
2446                Builder.CreateNot(PBI->getCondition(), "not.cond"));
2447            MergedCond = cast<Instruction>(Builder.CreateBinOp(
2448                Instruction::Or, NotCond, MergedCond, "or.cond"));
2449          }
2450        }
2451        // Update PHI Node.
2452        PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2453                                  MergedCond);
2454      }
2455      // Change PBI from Conditional to Unconditional.
2456      BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2457      EraseTerminatorInstAndDCECond(PBI);
2458      PBI = New_PBI;
2459    }
2460
2461    // TODO: If BB is reachable from all paths through PredBlock, then we
2462    // could replace PBI's branch probabilities with BI's.
2463
2464    // Copy any debug value intrinsics into the end of PredBlock.
2465    for (Instruction &I : *BB)
2466      if (isa<DbgInfoIntrinsic>(I))
2467        I.clone()->insertBefore(PBI);
2468
2469    return true;
2470  }
2471  return false;
2472}
2473
2474// If there is only one store in BB1 and BB2, return it, otherwise return
2475// nullptr.
2476static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2477  StoreInst *S = nullptr;
2478  for (auto *BB : {BB1, BB2}) {
2479    if (!BB)
2480      continue;
2481    for (auto &I : *BB)
2482      if (auto *SI = dyn_cast<StoreInst>(&I)) {
2483        if (S)
2484          // Multiple stores seen.
2485          return nullptr;
2486        else
2487          S = SI;
2488      }
2489  }
2490  return S;
2491}
2492
2493static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2494                                              Value *AlternativeV = nullptr) {
2495  // PHI is going to be a PHI node that allows the value V that is defined in
2496  // BB to be referenced in BB's only successor.
2497  //
2498  // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2499  // doesn't matter to us what the other operand is (it'll never get used). We
2500  // could just create a new PHI with an undef incoming value, but that could
2501  // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2502  // other PHI. So here we directly look for some PHI in BB's successor with V
2503  // as an incoming operand. If we find one, we use it, else we create a new
2504  // one.
2505  //
2506  // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2507  // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2508  // where OtherBB is the single other predecessor of BB's only successor.
2509  PHINode *PHI = nullptr;
2510  BasicBlock *Succ = BB->getSingleSuccessor();
2511
2512  for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2513    if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2514      PHI = cast<PHINode>(I);
2515      if (!AlternativeV)
2516        break;
2517
2518      assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2519      auto PredI = pred_begin(Succ);
2520      BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2521      if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2522        break;
2523      PHI = nullptr;
2524    }
2525  if (PHI)
2526    return PHI;
2527
2528  // If V is not an instruction defined in BB, just return it.
2529  if (!AlternativeV &&
2530      (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2531    return V;
2532
2533  PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2534  PHI->addIncoming(V, BB);
2535  for (BasicBlock *PredBB : predecessors(Succ))
2536    if (PredBB != BB)
2537      PHI->addIncoming(
2538          AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2539  return PHI;
2540}
2541
2542static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2543                                           BasicBlock *QTB, BasicBlock *QFB,
2544                                           BasicBlock *PostBB, Value *Address,
2545                                           bool InvertPCond, bool InvertQCond) {
2546  auto IsaBitcastOfPointerType = [](const Instruction &I) {
2547    return Operator::getOpcode(&I) == Instruction::BitCast &&
2548           I.getType()->isPointerTy();
2549  };
2550
2551  // If we're not in aggressive mode, we only optimize if we have some
2552  // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2553  auto IsWorthwhile = [&](BasicBlock *BB) {
2554    if (!BB)
2555      return true;
2556    // Heuristic: if the block can be if-converted/phi-folded and the
2557    // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2558    // thread this store.
2559    unsigned N = 0;
2560    for (auto &I : *BB) {
2561      // Cheap instructions viable for folding.
2562      if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2563          isa<StoreInst>(I))
2564        ++N;
2565      // Free instructions.
2566      else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2567               IsaBitcastOfPointerType(I))
2568        continue;
2569      else
2570        return false;
2571    }
2572    return N <= PHINodeFoldingThreshold;
2573  };
2574
2575  if (!MergeCondStoresAggressively &&
2576      (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2577       !IsWorthwhile(QFB)))
2578    return false;
2579
2580  // For every pointer, there must be exactly two stores, one coming from
2581  // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2582  // store (to any address) in PTB,PFB or QTB,QFB.
2583  // FIXME: We could relax this restriction with a bit more work and performance
2584  // testing.
2585  StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2586  StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2587  if (!PStore || !QStore)
2588    return false;
2589
2590  // Now check the stores are compatible.
2591  if (!QStore->isUnordered() || !PStore->isUnordered())
2592    return false;
2593
2594  // Check that sinking the store won't cause program behavior changes. Sinking
2595  // the store out of the Q blocks won't change any behavior as we're sinking
2596  // from a block to its unconditional successor. But we're moving a store from
2597  // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2598  // So we need to check that there are no aliasing loads or stores in
2599  // QBI, QTB and QFB. We also need to check there are no conflicting memory
2600  // operations between PStore and the end of its parent block.
2601  //
2602  // The ideal way to do this is to query AliasAnalysis, but we don't
2603  // preserve AA currently so that is dangerous. Be super safe and just
2604  // check there are no other memory operations at all.
2605  for (auto &I : *QFB->getSinglePredecessor())
2606    if (I.mayReadOrWriteMemory())
2607      return false;
2608  for (auto &I : *QFB)
2609    if (&I != QStore && I.mayReadOrWriteMemory())
2610      return false;
2611  if (QTB)
2612    for (auto &I : *QTB)
2613      if (&I != QStore && I.mayReadOrWriteMemory())
2614        return false;
2615  for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2616       I != E; ++I)
2617    if (&*I != PStore && I->mayReadOrWriteMemory())
2618      return false;
2619
2620  // OK, we're going to sink the stores to PostBB. The store has to be
2621  // conditional though, so first create the predicate.
2622  Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2623                     ->getCondition();
2624  Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2625                     ->getCondition();
2626
2627  Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2628                                                PStore->getParent());
2629  Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2630                                                QStore->getParent(), PPHI);
2631
2632  IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2633
2634  Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2635  Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2636
2637  if (InvertPCond)
2638    PPred = QB.CreateNot(PPred);
2639  if (InvertQCond)
2640    QPred = QB.CreateNot(QPred);
2641  Value *CombinedPred = QB.CreateOr(PPred, QPred);
2642
2643  auto *T =
2644      SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2645  QB.SetInsertPoint(T);
2646  StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
2647  AAMDNodes AAMD;
2648  PStore->getAAMetadata(AAMD, /*Merge=*/false);
2649  PStore->getAAMetadata(AAMD, /*Merge=*/true);
2650  SI->setAAMetadata(AAMD);
2651
2652  QStore->eraseFromParent();
2653  PStore->eraseFromParent();
2654
2655  return true;
2656}
2657
2658static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
2659  // The intention here is to find diamonds or triangles (see below) where each
2660  // conditional block contains a store to the same address. Both of these
2661  // stores are conditional, so they can't be unconditionally sunk. But it may
2662  // be profitable to speculatively sink the stores into one merged store at the
2663  // end, and predicate the merged store on the union of the two conditions of
2664  // PBI and QBI.
2665  //
2666  // This can reduce the number of stores executed if both of the conditions are
2667  // true, and can allow the blocks to become small enough to be if-converted.
2668  // This optimization will also chain, so that ladders of test-and-set
2669  // sequences can be if-converted away.
2670  //
2671  // We only deal with simple diamonds or triangles:
2672  //
2673  //     PBI       or      PBI        or a combination of the two
2674  //    /   \               | \
2675  //   PTB  PFB             |  PFB
2676  //    \   /               | /
2677  //     QBI                QBI
2678  //    /  \                | \
2679  //   QTB  QFB             |  QFB
2680  //    \  /                | /
2681  //    PostBB            PostBB
2682  //
2683  // We model triangles as a type of diamond with a nullptr "true" block.
2684  // Triangles are canonicalized so that the fallthrough edge is represented by
2685  // a true condition, as in the diagram above.
2686  //
2687  BasicBlock *PTB = PBI->getSuccessor(0);
2688  BasicBlock *PFB = PBI->getSuccessor(1);
2689  BasicBlock *QTB = QBI->getSuccessor(0);
2690  BasicBlock *QFB = QBI->getSuccessor(1);
2691  BasicBlock *PostBB = QFB->getSingleSuccessor();
2692
2693  bool InvertPCond = false, InvertQCond = false;
2694  // Canonicalize fallthroughs to the true branches.
2695  if (PFB == QBI->getParent()) {
2696    std::swap(PFB, PTB);
2697    InvertPCond = true;
2698  }
2699  if (QFB == PostBB) {
2700    std::swap(QFB, QTB);
2701    InvertQCond = true;
2702  }
2703
2704  // From this point on we can assume PTB or QTB may be fallthroughs but PFB
2705  // and QFB may not. Model fallthroughs as a nullptr block.
2706  if (PTB == QBI->getParent())
2707    PTB = nullptr;
2708  if (QTB == PostBB)
2709    QTB = nullptr;
2710
2711  // Legality bailouts. We must have at least the non-fallthrough blocks and
2712  // the post-dominating block, and the non-fallthroughs must only have one
2713  // predecessor.
2714  auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
2715    return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
2716  };
2717  if (!PostBB ||
2718      !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
2719      !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
2720    return false;
2721  if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
2722      (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
2723    return false;
2724  if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
2725    return false;
2726
2727  // OK, this is a sequence of two diamonds or triangles.
2728  // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
2729  SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
2730  for (auto *BB : {PTB, PFB}) {
2731    if (!BB)
2732      continue;
2733    for (auto &I : *BB)
2734      if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2735        PStoreAddresses.insert(SI->getPointerOperand());
2736  }
2737  for (auto *BB : {QTB, QFB}) {
2738    if (!BB)
2739      continue;
2740    for (auto &I : *BB)
2741      if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2742        QStoreAddresses.insert(SI->getPointerOperand());
2743  }
2744
2745  set_intersect(PStoreAddresses, QStoreAddresses);
2746  // set_intersect mutates PStoreAddresses in place. Rename it here to make it
2747  // clear what it contains.
2748  auto &CommonAddresses = PStoreAddresses;
2749
2750  bool Changed = false;
2751  for (auto *Address : CommonAddresses)
2752    Changed |= mergeConditionalStoreToAddress(
2753        PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
2754  return Changed;
2755}
2756
2757/// If we have a conditional branch as a predecessor of another block,
2758/// this function tries to simplify it.  We know
2759/// that PBI and BI are both conditional branches, and BI is in one of the
2760/// successor blocks of PBI - PBI branches to BI.
2761static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
2762                                           const DataLayout &DL) {
2763  assert(PBI->isConditional() && BI->isConditional());
2764  BasicBlock *BB = BI->getParent();
2765
2766  // If this block ends with a branch instruction, and if there is a
2767  // predecessor that ends on a branch of the same condition, make
2768  // this conditional branch redundant.
2769  if (PBI->getCondition() == BI->getCondition() &&
2770      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2771    // Okay, the outcome of this conditional branch is statically
2772    // knowable.  If this block had a single pred, handle specially.
2773    if (BB->getSinglePredecessor()) {
2774      // Turn this into a branch on constant.
2775      bool CondIsTrue = PBI->getSuccessor(0) == BB;
2776      BI->setCondition(
2777          ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
2778      return true; // Nuke the branch on constant.
2779    }
2780
2781    // Otherwise, if there are multiple predecessors, insert a PHI that merges
2782    // in the constant and simplify the block result.  Subsequent passes of
2783    // simplifycfg will thread the block.
2784    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2785      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2786      PHINode *NewPN = PHINode::Create(
2787          Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
2788          BI->getCondition()->getName() + ".pr", &BB->front());
2789      // Okay, we're going to insert the PHI node.  Since PBI is not the only
2790      // predecessor, compute the PHI'd conditional value for all of the preds.
2791      // Any predecessor where the condition is not computable we keep symbolic.
2792      for (pred_iterator PI = PB; PI != PE; ++PI) {
2793        BasicBlock *P = *PI;
2794        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
2795            PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
2796            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2797          bool CondIsTrue = PBI->getSuccessor(0) == BB;
2798          NewPN->addIncoming(
2799              ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
2800              P);
2801        } else {
2802          NewPN->addIncoming(BI->getCondition(), P);
2803        }
2804      }
2805
2806      BI->setCondition(NewPN);
2807      return true;
2808    }
2809  }
2810
2811  if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2812    if (CE->canTrap())
2813      return false;
2814
2815  // If both branches are conditional and both contain stores to the same
2816  // address, remove the stores from the conditionals and create a conditional
2817  // merged store at the end.
2818  if (MergeCondStores && mergeConditionalStores(PBI, BI))
2819    return true;
2820
2821  // If this is a conditional branch in an empty block, and if any
2822  // predecessors are a conditional branch to one of our destinations,
2823  // fold the conditions into logical ops and one cond br.
2824  BasicBlock::iterator BBI = BB->begin();
2825  // Ignore dbg intrinsics.
2826  while (isa<DbgInfoIntrinsic>(BBI))
2827    ++BBI;
2828  if (&*BBI != BI)
2829    return false;
2830
2831  int PBIOp, BIOp;
2832  if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
2833    PBIOp = 0;
2834    BIOp = 0;
2835  } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
2836    PBIOp = 0;
2837    BIOp = 1;
2838  } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
2839    PBIOp = 1;
2840    BIOp = 0;
2841  } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
2842    PBIOp = 1;
2843    BIOp = 1;
2844  } else {
2845    return false;
2846  }
2847
2848  // Check to make sure that the other destination of this branch
2849  // isn't BB itself.  If so, this is an infinite loop that will
2850  // keep getting unwound.
2851  if (PBI->getSuccessor(PBIOp) == BB)
2852    return false;
2853
2854  // Do not perform this transformation if it would require
2855  // insertion of a large number of select instructions. For targets
2856  // without predication/cmovs, this is a big pessimization.
2857
2858  // Also do not perform this transformation if any phi node in the common
2859  // destination block can trap when reached by BB or PBB (PR17073). In that
2860  // case, it would be unsafe to hoist the operation into a select instruction.
2861
2862  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2863  unsigned NumPhis = 0;
2864  for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
2865       ++II, ++NumPhis) {
2866    if (NumPhis > 2) // Disable this xform.
2867      return false;
2868
2869    PHINode *PN = cast<PHINode>(II);
2870    Value *BIV = PN->getIncomingValueForBlock(BB);
2871    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
2872      if (CE->canTrap())
2873        return false;
2874
2875    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2876    Value *PBIV = PN->getIncomingValue(PBBIdx);
2877    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
2878      if (CE->canTrap())
2879        return false;
2880  }
2881
2882  // Finally, if everything is ok, fold the branches to logical ops.
2883  BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
2884
2885  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2886               << "AND: " << *BI->getParent());
2887
2888  // If OtherDest *is* BB, then BB is a basic block with a single conditional
2889  // branch in it, where one edge (OtherDest) goes back to itself but the other
2890  // exits.  We don't *know* that the program avoids the infinite loop
2891  // (even though that seems likely).  If we do this xform naively, we'll end up
2892  // recursively unpeeling the loop.  Since we know that (after the xform is
2893  // done) that the block *is* infinite if reached, we just make it an obviously
2894  // infinite loop with no cond branch.
2895  if (OtherDest == BB) {
2896    // Insert it at the end of the function, because it's either code,
2897    // or it won't matter if it's hot. :)
2898    BasicBlock *InfLoopBlock =
2899        BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
2900    BranchInst::Create(InfLoopBlock, InfLoopBlock);
2901    OtherDest = InfLoopBlock;
2902  }
2903
2904  DEBUG(dbgs() << *PBI->getParent()->getParent());
2905
2906  // BI may have other predecessors.  Because of this, we leave
2907  // it alone, but modify PBI.
2908
2909  // Make sure we get to CommonDest on True&True directions.
2910  Value *PBICond = PBI->getCondition();
2911  IRBuilder<NoFolder> Builder(PBI);
2912  if (PBIOp)
2913    PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
2914
2915  Value *BICond = BI->getCondition();
2916  if (BIOp)
2917    BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
2918
2919  // Merge the conditions.
2920  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2921
2922  // Modify PBI to branch on the new condition to the new dests.
2923  PBI->setCondition(Cond);
2924  PBI->setSuccessor(0, CommonDest);
2925  PBI->setSuccessor(1, OtherDest);
2926
2927  // Update branch weight for PBI.
2928  uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2929  uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
2930  bool HasWeights =
2931      extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2932                             SuccTrueWeight, SuccFalseWeight);
2933  if (HasWeights) {
2934    PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2935    PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
2936    SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2937    SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2938    // The weight to CommonDest should be PredCommon * SuccTotal +
2939    //                                    PredOther * SuccCommon.
2940    // The weight to OtherDest should be PredOther * SuccOther.
2941    uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
2942                                  PredOther * SuccCommon,
2943                              PredOther * SuccOther};
2944    // Halve the weights if any of them cannot fit in an uint32_t
2945    FitWeights(NewWeights);
2946
2947    PBI->setMetadata(LLVMContext::MD_prof,
2948                     MDBuilder(BI->getContext())
2949                         .createBranchWeights(NewWeights[0], NewWeights[1]));
2950  }
2951
2952  // OtherDest may have phi nodes.  If so, add an entry from PBI's
2953  // block that are identical to the entries for BI's block.
2954  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2955
2956  // We know that the CommonDest already had an edge from PBI to
2957  // it.  If it has PHIs though, the PHIs may have different
2958  // entries for BB and PBI's BB.  If so, insert a select to make
2959  // them agree.
2960  PHINode *PN;
2961  for (BasicBlock::iterator II = CommonDest->begin();
2962       (PN = dyn_cast<PHINode>(II)); ++II) {
2963    Value *BIV = PN->getIncomingValueForBlock(BB);
2964    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2965    Value *PBIV = PN->getIncomingValue(PBBIdx);
2966    if (BIV != PBIV) {
2967      // Insert a select in PBI to pick the right value.
2968      SelectInst *NV = cast<SelectInst>(
2969          Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
2970      PN->setIncomingValue(PBBIdx, NV);
2971      // Although the select has the same condition as PBI, the original branch
2972      // weights for PBI do not apply to the new select because the select's
2973      // 'logical' edges are incoming edges of the phi that is eliminated, not
2974      // the outgoing edges of PBI.
2975      if (HasWeights) {
2976        uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2977        uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
2978        uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2979        uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2980        // The weight to PredCommonDest should be PredCommon * SuccTotal.
2981        // The weight to PredOtherDest should be PredOther * SuccCommon.
2982        uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
2983                                  PredOther * SuccCommon};
2984
2985        FitWeights(NewWeights);
2986
2987        NV->setMetadata(LLVMContext::MD_prof,
2988                        MDBuilder(BI->getContext())
2989                            .createBranchWeights(NewWeights[0], NewWeights[1]));
2990      }
2991    }
2992  }
2993
2994  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2995  DEBUG(dbgs() << *PBI->getParent()->getParent());
2996
2997  // This basic block is probably dead.  We know it has at least
2998  // one fewer predecessor.
2999  return true;
3000}
3001
3002// Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3003// true or to FalseBB if Cond is false.
3004// Takes care of updating the successors and removing the old terminator.
3005// Also makes sure not to introduce new successors by assuming that edges to
3006// non-successor TrueBBs and FalseBBs aren't reachable.
3007static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3008                                       BasicBlock *TrueBB, BasicBlock *FalseBB,
3009                                       uint32_t TrueWeight,
3010                                       uint32_t FalseWeight) {
3011  // Remove any superfluous successor edges from the CFG.
3012  // First, figure out which successors to preserve.
3013  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3014  // successor.
3015  BasicBlock *KeepEdge1 = TrueBB;
3016  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3017
3018  // Then remove the rest.
3019  for (BasicBlock *Succ : OldTerm->successors()) {
3020    // Make sure only to keep exactly one copy of each edge.
3021    if (Succ == KeepEdge1)
3022      KeepEdge1 = nullptr;
3023    else if (Succ == KeepEdge2)
3024      KeepEdge2 = nullptr;
3025    else
3026      Succ->removePredecessor(OldTerm->getParent(),
3027                              /*DontDeleteUselessPHIs=*/true);
3028  }
3029
3030  IRBuilder<> Builder(OldTerm);
3031  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3032
3033  // Insert an appropriate new terminator.
3034  if (!KeepEdge1 && !KeepEdge2) {
3035    if (TrueBB == FalseBB)
3036      // We were only looking for one successor, and it was present.
3037      // Create an unconditional branch to it.
3038      Builder.CreateBr(TrueBB);
3039    else {
3040      // We found both of the successors we were looking for.
3041      // Create a conditional branch sharing the condition of the select.
3042      BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3043      if (TrueWeight != FalseWeight)
3044        NewBI->setMetadata(LLVMContext::MD_prof,
3045                           MDBuilder(OldTerm->getContext())
3046                               .createBranchWeights(TrueWeight, FalseWeight));
3047    }
3048  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3049    // Neither of the selected blocks were successors, so this
3050    // terminator must be unreachable.
3051    new UnreachableInst(OldTerm->getContext(), OldTerm);
3052  } else {
3053    // One of the selected values was a successor, but the other wasn't.
3054    // Insert an unconditional branch to the one that was found;
3055    // the edge to the one that wasn't must be unreachable.
3056    if (!KeepEdge1)
3057      // Only TrueBB was found.
3058      Builder.CreateBr(TrueBB);
3059    else
3060      // Only FalseBB was found.
3061      Builder.CreateBr(FalseBB);
3062  }
3063
3064  EraseTerminatorInstAndDCECond(OldTerm);
3065  return true;
3066}
3067
3068// Replaces
3069//   (switch (select cond, X, Y)) on constant X, Y
3070// with a branch - conditional if X and Y lead to distinct BBs,
3071// unconditional otherwise.
3072static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3073  // Check for constant integer values in the select.
3074  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3075  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3076  if (!TrueVal || !FalseVal)
3077    return false;
3078
3079  // Find the relevant condition and destinations.
3080  Value *Condition = Select->getCondition();
3081  BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
3082  BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
3083
3084  // Get weight for TrueBB and FalseBB.
3085  uint32_t TrueWeight = 0, FalseWeight = 0;
3086  SmallVector<uint64_t, 8> Weights;
3087  bool HasWeights = HasBranchWeights(SI);
3088  if (HasWeights) {
3089    GetBranchWeights(SI, Weights);
3090    if (Weights.size() == 1 + SI->getNumCases()) {
3091      TrueWeight =
3092          (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()];
3093      FalseWeight =
3094          (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()];
3095    }
3096  }
3097
3098  // Perform the actual simplification.
3099  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3100                                    FalseWeight);
3101}
3102
3103// Replaces
3104//   (indirectbr (select cond, blockaddress(@fn, BlockA),
3105//                             blockaddress(@fn, BlockB)))
3106// with
3107//   (br cond, BlockA, BlockB).
3108static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3109  // Check that both operands of the select are block addresses.
3110  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3111  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3112  if (!TBA || !FBA)
3113    return false;
3114
3115  // Extract the actual blocks.
3116  BasicBlock *TrueBB = TBA->getBasicBlock();
3117  BasicBlock *FalseBB = FBA->getBasicBlock();
3118
3119  // Perform the actual simplification.
3120  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3121                                    0);
3122}
3123
3124/// This is called when we find an icmp instruction
3125/// (a seteq/setne with a constant) as the only instruction in a
3126/// block that ends with an uncond branch.  We are looking for a very specific
3127/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3128/// this case, we merge the first two "or's of icmp" into a switch, but then the
3129/// default value goes to an uncond block with a seteq in it, we get something
3130/// like:
3131///
3132///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3133/// DEFAULT:
3134///   %tmp = icmp eq i8 %A, 92
3135///   br label %end
3136/// end:
3137///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3138///
3139/// We prefer to split the edge to 'end' so that there is a true/false entry to
3140/// the PHI, merging the third icmp into the switch.
3141static bool TryToSimplifyUncondBranchWithICmpInIt(
3142    ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3143    const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3144    AssumptionCache *AC) {
3145  BasicBlock *BB = ICI->getParent();
3146
3147  // If the block has any PHIs in it or the icmp has multiple uses, it is too
3148  // complex.
3149  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3150    return false;
3151
3152  Value *V = ICI->getOperand(0);
3153  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3154
3155  // The pattern we're looking for is where our only predecessor is a switch on
3156  // 'V' and this block is the default case for the switch.  In this case we can
3157  // fold the compared value into the switch to simplify things.
3158  BasicBlock *Pred = BB->getSinglePredecessor();
3159  if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3160    return false;
3161
3162  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3163  if (SI->getCondition() != V)
3164    return false;
3165
3166  // If BB is reachable on a non-default case, then we simply know the value of
3167  // V in this block.  Substitute it and constant fold the icmp instruction
3168  // away.
3169  if (SI->getDefaultDest() != BB) {
3170    ConstantInt *VVal = SI->findCaseDest(BB);
3171    assert(VVal && "Should have a unique destination value");
3172    ICI->setOperand(0, VVal);
3173
3174    if (Value *V = SimplifyInstruction(ICI, DL)) {
3175      ICI->replaceAllUsesWith(V);
3176      ICI->eraseFromParent();
3177    }
3178    // BB is now empty, so it is likely to simplify away.
3179    return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3180  }
3181
3182  // Ok, the block is reachable from the default dest.  If the constant we're
3183  // comparing exists in one of the other edges, then we can constant fold ICI
3184  // and zap it.
3185  if (SI->findCaseValue(Cst) != SI->case_default()) {
3186    Value *V;
3187    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3188      V = ConstantInt::getFalse(BB->getContext());
3189    else
3190      V = ConstantInt::getTrue(BB->getContext());
3191
3192    ICI->replaceAllUsesWith(V);
3193    ICI->eraseFromParent();
3194    // BB is now empty, so it is likely to simplify away.
3195    return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3196  }
3197
3198  // The use of the icmp has to be in the 'end' block, by the only PHI node in
3199  // the block.
3200  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3201  PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3202  if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3203      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3204    return false;
3205
3206  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3207  // true in the PHI.
3208  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3209  Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3210
3211  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3212    std::swap(DefaultCst, NewCst);
3213
3214  // Replace ICI (which is used by the PHI for the default value) with true or
3215  // false depending on if it is EQ or NE.
3216  ICI->replaceAllUsesWith(DefaultCst);
3217  ICI->eraseFromParent();
3218
3219  // Okay, the switch goes to this block on a default value.  Add an edge from
3220  // the switch to the merge point on the compared value.
3221  BasicBlock *NewBB =
3222      BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3223  SmallVector<uint64_t, 8> Weights;
3224  bool HasWeights = HasBranchWeights(SI);
3225  if (HasWeights) {
3226    GetBranchWeights(SI, Weights);
3227    if (Weights.size() == 1 + SI->getNumCases()) {
3228      // Split weight for default case to case for "Cst".
3229      Weights[0] = (Weights[0] + 1) >> 1;
3230      Weights.push_back(Weights[0]);
3231
3232      SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3233      SI->setMetadata(
3234          LLVMContext::MD_prof,
3235          MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
3236    }
3237  }
3238  SI->addCase(Cst, NewBB);
3239
3240  // NewBB branches to the phi block, add the uncond branch and the phi entry.
3241  Builder.SetInsertPoint(NewBB);
3242  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3243  Builder.CreateBr(SuccBlock);
3244  PHIUse->addIncoming(NewCst, NewBB);
3245  return true;
3246}
3247
3248/// The specified branch is a conditional branch.
3249/// Check to see if it is branching on an or/and chain of icmp instructions, and
3250/// fold it into a switch instruction if so.
3251static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3252                                      const DataLayout &DL) {
3253  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3254  if (!Cond)
3255    return false;
3256
3257  // Change br (X == 0 | X == 1), T, F into a switch instruction.
3258  // If this is a bunch of seteq's or'd together, or if it's a bunch of
3259  // 'setne's and'ed together, collect them.
3260
3261  // Try to gather values from a chain of and/or to be turned into a switch
3262  ConstantComparesGatherer ConstantCompare(Cond, DL);
3263  // Unpack the result
3264  SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3265  Value *CompVal = ConstantCompare.CompValue;
3266  unsigned UsedICmps = ConstantCompare.UsedICmps;
3267  Value *ExtraCase = ConstantCompare.Extra;
3268
3269  // If we didn't have a multiply compared value, fail.
3270  if (!CompVal)
3271    return false;
3272
3273  // Avoid turning single icmps into a switch.
3274  if (UsedICmps <= 1)
3275    return false;
3276
3277  bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3278
3279  // There might be duplicate constants in the list, which the switch
3280  // instruction can't handle, remove them now.
3281  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3282  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3283
3284  // If Extra was used, we require at least two switch values to do the
3285  // transformation.  A switch with one value is just a conditional branch.
3286  if (ExtraCase && Values.size() < 2)
3287    return false;
3288
3289  // TODO: Preserve branch weight metadata, similarly to how
3290  // FoldValueComparisonIntoPredecessors preserves it.
3291
3292  // Figure out which block is which destination.
3293  BasicBlock *DefaultBB = BI->getSuccessor(1);
3294  BasicBlock *EdgeBB = BI->getSuccessor(0);
3295  if (!TrueWhenEqual)
3296    std::swap(DefaultBB, EdgeBB);
3297
3298  BasicBlock *BB = BI->getParent();
3299
3300  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3301               << " cases into SWITCH.  BB is:\n"
3302               << *BB);
3303
3304  // If there are any extra values that couldn't be folded into the switch
3305  // then we evaluate them with an explicit branch first.  Split the block
3306  // right before the condbr to handle it.
3307  if (ExtraCase) {
3308    BasicBlock *NewBB =
3309        BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3310    // Remove the uncond branch added to the old block.
3311    TerminatorInst *OldTI = BB->getTerminator();
3312    Builder.SetInsertPoint(OldTI);
3313
3314    if (TrueWhenEqual)
3315      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3316    else
3317      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3318
3319    OldTI->eraseFromParent();
3320
3321    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3322    // for the edge we just added.
3323    AddPredecessorToBlock(EdgeBB, BB, NewBB);
3324
3325    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3326                 << "\nEXTRABB = " << *BB);
3327    BB = NewBB;
3328  }
3329
3330  Builder.SetInsertPoint(BI);
3331  // Convert pointer to int before we switch.
3332  if (CompVal->getType()->isPointerTy()) {
3333    CompVal = Builder.CreatePtrToInt(
3334        CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3335  }
3336
3337  // Create the new switch instruction now.
3338  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3339
3340  // Add all of the 'cases' to the switch instruction.
3341  for (unsigned i = 0, e = Values.size(); i != e; ++i)
3342    New->addCase(Values[i], EdgeBB);
3343
3344  // We added edges from PI to the EdgeBB.  As such, if there were any
3345  // PHI nodes in EdgeBB, they need entries to be added corresponding to
3346  // the number of edges added.
3347  for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3348    PHINode *PN = cast<PHINode>(BBI);
3349    Value *InVal = PN->getIncomingValueForBlock(BB);
3350    for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3351      PN->addIncoming(InVal, BB);
3352  }
3353
3354  // Erase the old branch instruction.
3355  EraseTerminatorInstAndDCECond(BI);
3356
3357  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3358  return true;
3359}
3360
3361bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3362  if (isa<PHINode>(RI->getValue()))
3363    return SimplifyCommonResume(RI);
3364  else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3365           RI->getValue() == RI->getParent()->getFirstNonPHI())
3366    // The resume must unwind the exception that caused control to branch here.
3367    return SimplifySingleResume(RI);
3368
3369  return false;
3370}
3371
3372// Simplify resume that is shared by several landing pads (phi of landing pad).
3373bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3374  BasicBlock *BB = RI->getParent();
3375
3376  // Check that there are no other instructions except for debug intrinsics
3377  // between the phi of landing pads (RI->getValue()) and resume instruction.
3378  BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3379                       E = RI->getIterator();
3380  while (++I != E)
3381    if (!isa<DbgInfoIntrinsic>(I))
3382      return false;
3383
3384  SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
3385  auto *PhiLPInst = cast<PHINode>(RI->getValue());
3386
3387  // Check incoming blocks to see if any of them are trivial.
3388  for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3389       Idx++) {
3390    auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3391    auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3392
3393    // If the block has other successors, we can not delete it because
3394    // it has other dependents.
3395    if (IncomingBB->getUniqueSuccessor() != BB)
3396      continue;
3397
3398    auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3399    // Not the landing pad that caused the control to branch here.
3400    if (IncomingValue != LandingPad)
3401      continue;
3402
3403    bool isTrivial = true;
3404
3405    I = IncomingBB->getFirstNonPHI()->getIterator();
3406    E = IncomingBB->getTerminator()->getIterator();
3407    while (++I != E)
3408      if (!isa<DbgInfoIntrinsic>(I)) {
3409        isTrivial = false;
3410        break;
3411      }
3412
3413    if (isTrivial)
3414      TrivialUnwindBlocks.insert(IncomingBB);
3415  }
3416
3417  // If no trivial unwind blocks, don't do any simplifications.
3418  if (TrivialUnwindBlocks.empty())
3419    return false;
3420
3421  // Turn all invokes that unwind here into calls.
3422  for (auto *TrivialBB : TrivialUnwindBlocks) {
3423    // Blocks that will be simplified should be removed from the phi node.
3424    // Note there could be multiple edges to the resume block, and we need
3425    // to remove them all.
3426    while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3427      BB->removePredecessor(TrivialBB, true);
3428
3429    for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3430         PI != PE;) {
3431      BasicBlock *Pred = *PI++;
3432      removeUnwindEdge(Pred);
3433    }
3434
3435    // In each SimplifyCFG run, only the current processed block can be erased.
3436    // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3437    // of erasing TrivialBB, we only remove the branch to the common resume
3438    // block so that we can later erase the resume block since it has no
3439    // predecessors.
3440    TrivialBB->getTerminator()->eraseFromParent();
3441    new UnreachableInst(RI->getContext(), TrivialBB);
3442  }
3443
3444  // Delete the resume block if all its predecessors have been removed.
3445  if (pred_empty(BB))
3446    BB->eraseFromParent();
3447
3448  return !TrivialUnwindBlocks.empty();
3449}
3450
3451// Simplify resume that is only used by a single (non-phi) landing pad.
3452bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3453  BasicBlock *BB = RI->getParent();
3454  LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3455  assert(RI->getValue() == LPInst &&
3456         "Resume must unwind the exception that caused control to here");
3457
3458  // Check that there are no other instructions except for debug intrinsics.
3459  BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3460  while (++I != E)
3461    if (!isa<DbgInfoIntrinsic>(I))
3462      return false;
3463
3464  // Turn all invokes that unwind here into calls and delete the basic block.
3465  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3466    BasicBlock *Pred = *PI++;
3467    removeUnwindEdge(Pred);
3468  }
3469
3470  // The landingpad is now unreachable.  Zap it.
3471  BB->eraseFromParent();
3472  if (LoopHeaders)
3473    LoopHeaders->erase(BB);
3474  return true;
3475}
3476
3477static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3478  // If this is a trivial cleanup pad that executes no instructions, it can be
3479  // eliminated.  If the cleanup pad continues to the caller, any predecessor
3480  // that is an EH pad will be updated to continue to the caller and any
3481  // predecessor that terminates with an invoke instruction will have its invoke
3482  // instruction converted to a call instruction.  If the cleanup pad being
3483  // simplified does not continue to the caller, each predecessor will be
3484  // updated to continue to the unwind destination of the cleanup pad being
3485  // simplified.
3486  BasicBlock *BB = RI->getParent();
3487  CleanupPadInst *CPInst = RI->getCleanupPad();
3488  if (CPInst->getParent() != BB)
3489    // This isn't an empty cleanup.
3490    return false;
3491
3492  // We cannot kill the pad if it has multiple uses.  This typically arises
3493  // from unreachable basic blocks.
3494  if (!CPInst->hasOneUse())
3495    return false;
3496
3497  // Check that there are no other instructions except for benign intrinsics.
3498  BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3499  while (++I != E) {
3500    auto *II = dyn_cast<IntrinsicInst>(I);
3501    if (!II)
3502      return false;
3503
3504    Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3505    switch (IntrinsicID) {
3506    case Intrinsic::dbg_declare:
3507    case Intrinsic::dbg_value:
3508    case Intrinsic::lifetime_end:
3509      break;
3510    default:
3511      return false;
3512    }
3513  }
3514
3515  // If the cleanup return we are simplifying unwinds to the caller, this will
3516  // set UnwindDest to nullptr.
3517  BasicBlock *UnwindDest = RI->getUnwindDest();
3518  Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3519
3520  // We're about to remove BB from the control flow.  Before we do, sink any
3521  // PHINodes into the unwind destination.  Doing this before changing the
3522  // control flow avoids some potentially slow checks, since we can currently
3523  // be certain that UnwindDest and BB have no common predecessors (since they
3524  // are both EH pads).
3525  if (UnwindDest) {
3526    // First, go through the PHI nodes in UnwindDest and update any nodes that
3527    // reference the block we are removing
3528    for (BasicBlock::iterator I = UnwindDest->begin(),
3529                              IE = DestEHPad->getIterator();
3530         I != IE; ++I) {
3531      PHINode *DestPN = cast<PHINode>(I);
3532
3533      int Idx = DestPN->getBasicBlockIndex(BB);
3534      // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3535      assert(Idx != -1);
3536      // This PHI node has an incoming value that corresponds to a control
3537      // path through the cleanup pad we are removing.  If the incoming
3538      // value is in the cleanup pad, it must be a PHINode (because we
3539      // verified above that the block is otherwise empty).  Otherwise, the
3540      // value is either a constant or a value that dominates the cleanup
3541      // pad being removed.
3542      //
3543      // Because BB and UnwindDest are both EH pads, all of their
3544      // predecessors must unwind to these blocks, and since no instruction
3545      // can have multiple unwind destinations, there will be no overlap in
3546      // incoming blocks between SrcPN and DestPN.
3547      Value *SrcVal = DestPN->getIncomingValue(Idx);
3548      PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3549
3550      // Remove the entry for the block we are deleting.
3551      DestPN->removeIncomingValue(Idx, false);
3552
3553      if (SrcPN && SrcPN->getParent() == BB) {
3554        // If the incoming value was a PHI node in the cleanup pad we are
3555        // removing, we need to merge that PHI node's incoming values into
3556        // DestPN.
3557        for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3558             SrcIdx != SrcE; ++SrcIdx) {
3559          DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3560                              SrcPN->getIncomingBlock(SrcIdx));
3561        }
3562      } else {
3563        // Otherwise, the incoming value came from above BB and
3564        // so we can just reuse it.  We must associate all of BB's
3565        // predecessors with this value.
3566        for (auto *pred : predecessors(BB)) {
3567          DestPN->addIncoming(SrcVal, pred);
3568        }
3569      }
3570    }
3571
3572    // Sink any remaining PHI nodes directly into UnwindDest.
3573    Instruction *InsertPt = DestEHPad;
3574    for (BasicBlock::iterator I = BB->begin(),
3575                              IE = BB->getFirstNonPHI()->getIterator();
3576         I != IE;) {
3577      // The iterator must be incremented here because the instructions are
3578      // being moved to another block.
3579      PHINode *PN = cast<PHINode>(I++);
3580      if (PN->use_empty())
3581        // If the PHI node has no uses, just leave it.  It will be erased
3582        // when we erase BB below.
3583        continue;
3584
3585      // Otherwise, sink this PHI node into UnwindDest.
3586      // Any predecessors to UnwindDest which are not already represented
3587      // must be back edges which inherit the value from the path through
3588      // BB.  In this case, the PHI value must reference itself.
3589      for (auto *pred : predecessors(UnwindDest))
3590        if (pred != BB)
3591          PN->addIncoming(PN, pred);
3592      PN->moveBefore(InsertPt);
3593    }
3594  }
3595
3596  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3597    // The iterator must be updated here because we are removing this pred.
3598    BasicBlock *PredBB = *PI++;
3599    if (UnwindDest == nullptr) {
3600      removeUnwindEdge(PredBB);
3601    } else {
3602      TerminatorInst *TI = PredBB->getTerminator();
3603      TI->replaceUsesOfWith(BB, UnwindDest);
3604    }
3605  }
3606
3607  // The cleanup pad is now unreachable.  Zap it.
3608  BB->eraseFromParent();
3609  return true;
3610}
3611
3612// Try to merge two cleanuppads together.
3613static bool mergeCleanupPad(CleanupReturnInst *RI) {
3614  // Skip any cleanuprets which unwind to caller, there is nothing to merge
3615  // with.
3616  BasicBlock *UnwindDest = RI->getUnwindDest();
3617  if (!UnwindDest)
3618    return false;
3619
3620  // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3621  // be safe to merge without code duplication.
3622  if (UnwindDest->getSinglePredecessor() != RI->getParent())
3623    return false;
3624
3625  // Verify that our cleanuppad's unwind destination is another cleanuppad.
3626  auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3627  if (!SuccessorCleanupPad)
3628    return false;
3629
3630  CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3631  // Replace any uses of the successor cleanupad with the predecessor pad
3632  // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3633  // funclet bundle operands.
3634  SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
3635  // Remove the old cleanuppad.
3636  SuccessorCleanupPad->eraseFromParent();
3637  // Now, we simply replace the cleanupret with a branch to the unwind
3638  // destination.
3639  BranchInst::Create(UnwindDest, RI->getParent());
3640  RI->eraseFromParent();
3641
3642  return true;
3643}
3644
3645bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
3646  // It is possible to transiantly have an undef cleanuppad operand because we
3647  // have deleted some, but not all, dead blocks.
3648  // Eventually, this block will be deleted.
3649  if (isa<UndefValue>(RI->getOperand(0)))
3650    return false;
3651
3652  if (mergeCleanupPad(RI))
3653    return true;
3654
3655  if (removeEmptyCleanup(RI))
3656    return true;
3657
3658  return false;
3659}
3660
3661bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
3662  BasicBlock *BB = RI->getParent();
3663  if (!BB->getFirstNonPHIOrDbg()->isTerminator())
3664    return false;
3665
3666  // Find predecessors that end with branches.
3667  SmallVector<BasicBlock *, 8> UncondBranchPreds;
3668  SmallVector<BranchInst *, 8> CondBranchPreds;
3669  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3670    BasicBlock *P = *PI;
3671    TerminatorInst *PTI = P->getTerminator();
3672    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
3673      if (BI->isUnconditional())
3674        UncondBranchPreds.push_back(P);
3675      else
3676        CondBranchPreds.push_back(BI);
3677    }
3678  }
3679
3680  // If we found some, do the transformation!
3681  if (!UncondBranchPreds.empty() && DupRet) {
3682    while (!UncondBranchPreds.empty()) {
3683      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
3684      DEBUG(dbgs() << "FOLDING: " << *BB
3685                   << "INTO UNCOND BRANCH PRED: " << *Pred);
3686      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
3687    }
3688
3689    // If we eliminated all predecessors of the block, delete the block now.
3690    if (pred_empty(BB)) {
3691      // We know there are no successors, so just nuke the block.
3692      BB->eraseFromParent();
3693      if (LoopHeaders)
3694        LoopHeaders->erase(BB);
3695    }
3696
3697    return true;
3698  }
3699
3700  // Check out all of the conditional branches going to this return
3701  // instruction.  If any of them just select between returns, change the
3702  // branch itself into a select/return pair.
3703  while (!CondBranchPreds.empty()) {
3704    BranchInst *BI = CondBranchPreds.pop_back_val();
3705
3706    // Check to see if the non-BB successor is also a return block.
3707    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
3708        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
3709        SimplifyCondBranchToTwoReturns(BI, Builder))
3710      return true;
3711  }
3712  return false;
3713}
3714
3715bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
3716  BasicBlock *BB = UI->getParent();
3717
3718  bool Changed = false;
3719
3720  // If there are any instructions immediately before the unreachable that can
3721  // be removed, do so.
3722  while (UI->getIterator() != BB->begin()) {
3723    BasicBlock::iterator BBI = UI->getIterator();
3724    --BBI;
3725    // Do not delete instructions that can have side effects which might cause
3726    // the unreachable to not be reachable; specifically, calls and volatile
3727    // operations may have this effect.
3728    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
3729      break;
3730
3731    if (BBI->mayHaveSideEffects()) {
3732      if (auto *SI = dyn_cast<StoreInst>(BBI)) {
3733        if (SI->isVolatile())
3734          break;
3735      } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
3736        if (LI->isVolatile())
3737          break;
3738      } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
3739        if (RMWI->isVolatile())
3740          break;
3741      } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
3742        if (CXI->isVolatile())
3743          break;
3744      } else if (isa<CatchPadInst>(BBI)) {
3745        // A catchpad may invoke exception object constructors and such, which
3746        // in some languages can be arbitrary code, so be conservative by
3747        // default.
3748        // For CoreCLR, it just involves a type test, so can be removed.
3749        if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
3750            EHPersonality::CoreCLR)
3751          break;
3752      } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
3753                 !isa<LandingPadInst>(BBI)) {
3754        break;
3755      }
3756      // Note that deleting LandingPad's here is in fact okay, although it
3757      // involves a bit of subtle reasoning. If this inst is a LandingPad,
3758      // all the predecessors of this block will be the unwind edges of Invokes,
3759      // and we can therefore guarantee this block will be erased.
3760    }
3761
3762    // Delete this instruction (any uses are guaranteed to be dead)
3763    if (!BBI->use_empty())
3764      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3765    BBI->eraseFromParent();
3766    Changed = true;
3767  }
3768
3769  // If the unreachable instruction is the first in the block, take a gander
3770  // at all of the predecessors of this instruction, and simplify them.
3771  if (&BB->front() != UI)
3772    return Changed;
3773
3774  SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
3775  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3776    TerminatorInst *TI = Preds[i]->getTerminator();
3777    IRBuilder<> Builder(TI);
3778    if (auto *BI = dyn_cast<BranchInst>(TI)) {
3779      if (BI->isUnconditional()) {
3780        if (BI->getSuccessor(0) == BB) {
3781          new UnreachableInst(TI->getContext(), TI);
3782          TI->eraseFromParent();
3783          Changed = true;
3784        }
3785      } else {
3786        if (BI->getSuccessor(0) == BB) {
3787          Builder.CreateBr(BI->getSuccessor(1));
3788          EraseTerminatorInstAndDCECond(BI);
3789        } else if (BI->getSuccessor(1) == BB) {
3790          Builder.CreateBr(BI->getSuccessor(0));
3791          EraseTerminatorInstAndDCECond(BI);
3792          Changed = true;
3793        }
3794      }
3795    } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
3796      for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
3797           ++i)
3798        if (i.getCaseSuccessor() == BB) {
3799          BB->removePredecessor(SI->getParent());
3800          SI->removeCase(i);
3801          --i;
3802          --e;
3803          Changed = true;
3804        }
3805    } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
3806      if (II->getUnwindDest() == BB) {
3807        removeUnwindEdge(TI->getParent());
3808        Changed = true;
3809      }
3810    } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3811      if (CSI->getUnwindDest() == BB) {
3812        removeUnwindEdge(TI->getParent());
3813        Changed = true;
3814        continue;
3815      }
3816
3817      for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
3818                                             E = CSI->handler_end();
3819           I != E; ++I) {
3820        if (*I == BB) {
3821          CSI->removeHandler(I);
3822          --I;
3823          --E;
3824          Changed = true;
3825        }
3826      }
3827      if (CSI->getNumHandlers() == 0) {
3828        BasicBlock *CatchSwitchBB = CSI->getParent();
3829        if (CSI->hasUnwindDest()) {
3830          // Redirect preds to the unwind dest
3831          CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
3832        } else {
3833          // Rewrite all preds to unwind to caller (or from invoke to call).
3834          SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
3835          for (BasicBlock *EHPred : EHPreds)
3836            removeUnwindEdge(EHPred);
3837        }
3838        // The catchswitch is no longer reachable.
3839        new UnreachableInst(CSI->getContext(), CSI);
3840        CSI->eraseFromParent();
3841        Changed = true;
3842      }
3843    } else if (isa<CleanupReturnInst>(TI)) {
3844      new UnreachableInst(TI->getContext(), TI);
3845      TI->eraseFromParent();
3846      Changed = true;
3847    }
3848  }
3849
3850  // If this block is now dead, remove it.
3851  if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
3852    // We know there are no successors, so just nuke the block.
3853    BB->eraseFromParent();
3854    if (LoopHeaders)
3855      LoopHeaders->erase(BB);
3856    return true;
3857  }
3858
3859  return Changed;
3860}
3861
3862static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
3863  assert(Cases.size() >= 1);
3864
3865  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3866  for (size_t I = 1, E = Cases.size(); I != E; ++I) {
3867    if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
3868      return false;
3869  }
3870  return true;
3871}
3872
3873/// Turn a switch with two reachable destinations into an integer range
3874/// comparison and branch.
3875static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3876  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3877
3878  bool HasDefault =
3879      !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3880
3881  // Partition the cases into two sets with different destinations.
3882  BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
3883  BasicBlock *DestB = nullptr;
3884  SmallVector<ConstantInt *, 16> CasesA;
3885  SmallVector<ConstantInt *, 16> CasesB;
3886
3887  for (SwitchInst::CaseIt I : SI->cases()) {
3888    BasicBlock *Dest = I.getCaseSuccessor();
3889    if (!DestA)
3890      DestA = Dest;
3891    if (Dest == DestA) {
3892      CasesA.push_back(I.getCaseValue());
3893      continue;
3894    }
3895    if (!DestB)
3896      DestB = Dest;
3897    if (Dest == DestB) {
3898      CasesB.push_back(I.getCaseValue());
3899      continue;
3900    }
3901    return false; // More than two destinations.
3902  }
3903
3904  assert(DestA && DestB &&
3905         "Single-destination switch should have been folded.");
3906  assert(DestA != DestB);
3907  assert(DestB != SI->getDefaultDest());
3908  assert(!CasesB.empty() && "There must be non-default cases.");
3909  assert(!CasesA.empty() || HasDefault);
3910
3911  // Figure out if one of the sets of cases form a contiguous range.
3912  SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
3913  BasicBlock *ContiguousDest = nullptr;
3914  BasicBlock *OtherDest = nullptr;
3915  if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
3916    ContiguousCases = &CasesA;
3917    ContiguousDest = DestA;
3918    OtherDest = DestB;
3919  } else if (CasesAreContiguous(CasesB)) {
3920    ContiguousCases = &CasesB;
3921    ContiguousDest = DestB;
3922    OtherDest = DestA;
3923  } else
3924    return false;
3925
3926  // Start building the compare and branch.
3927
3928  Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
3929  Constant *NumCases =
3930      ConstantInt::get(Offset->getType(), ContiguousCases->size());
3931
3932  Value *Sub = SI->getCondition();
3933  if (!Offset->isNullValue())
3934    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
3935
3936  Value *Cmp;
3937  // If NumCases overflowed, then all possible values jump to the successor.
3938  if (NumCases->isNullValue() && !ContiguousCases->empty())
3939    Cmp = ConstantInt::getTrue(SI->getContext());
3940  else
3941    Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3942  BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
3943
3944  // Update weight for the newly-created conditional branch.
3945  if (HasBranchWeights(SI)) {
3946    SmallVector<uint64_t, 8> Weights;
3947    GetBranchWeights(SI, Weights);
3948    if (Weights.size() == 1 + SI->getNumCases()) {
3949      uint64_t TrueWeight = 0;
3950      uint64_t FalseWeight = 0;
3951      for (size_t I = 0, E = Weights.size(); I != E; ++I) {
3952        if (SI->getSuccessor(I) == ContiguousDest)
3953          TrueWeight += Weights[I];
3954        else
3955          FalseWeight += Weights[I];
3956      }
3957      while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
3958        TrueWeight /= 2;
3959        FalseWeight /= 2;
3960      }
3961      NewBI->setMetadata(LLVMContext::MD_prof,
3962                         MDBuilder(SI->getContext())
3963                             .createBranchWeights((uint32_t)TrueWeight,
3964                                                  (uint32_t)FalseWeight));
3965    }
3966  }
3967
3968  // Prune obsolete incoming values off the successors' PHI nodes.
3969  for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
3970    unsigned PreviousEdges = ContiguousCases->size();
3971    if (ContiguousDest == SI->getDefaultDest())
3972      ++PreviousEdges;
3973    for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3974      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3975  }
3976  for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
3977    unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
3978    if (OtherDest == SI->getDefaultDest())
3979      ++PreviousEdges;
3980    for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3981      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3982  }
3983
3984  // Drop the switch.
3985  SI->eraseFromParent();
3986
3987  return true;
3988}
3989
3990/// Compute masked bits for the condition of a switch
3991/// and use it to remove dead cases.
3992static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
3993                                     const DataLayout &DL) {
3994  Value *Cond = SI->getCondition();
3995  unsigned Bits = Cond->getType()->getIntegerBitWidth();
3996  APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3997  computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
3998
3999  // We can also eliminate cases by determining that their values are outside of
4000  // the limited range of the condition based on how many significant (non-sign)
4001  // bits are in the condition value.
4002  unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4003  unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4004
4005  // Gather dead cases.
4006  SmallVector<ConstantInt *, 8> DeadCases;
4007  for (auto &Case : SI->cases()) {
4008    APInt CaseVal = Case.getCaseValue()->getValue();
4009    if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne ||
4010        (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4011      DeadCases.push_back(Case.getCaseValue());
4012      DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4013    }
4014  }
4015
4016  // If we can prove that the cases must cover all possible values, the
4017  // default destination becomes dead and we can remove it.  If we know some
4018  // of the bits in the value, we can use that to more precisely compute the
4019  // number of possible unique case values.
4020  bool HasDefault =
4021      !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4022  const unsigned NumUnknownBits =
4023      Bits - (KnownZero.Or(KnownOne)).countPopulation();
4024  assert(NumUnknownBits <= Bits);
4025  if (HasDefault && DeadCases.empty() &&
4026      NumUnknownBits < 64 /* avoid overflow */ &&
4027      SI->getNumCases() == (1ULL << NumUnknownBits)) {
4028    DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4029    BasicBlock *NewDefault =
4030        SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4031    SI->setDefaultDest(&*NewDefault);
4032    SplitBlock(&*NewDefault, &NewDefault->front());
4033    auto *OldTI = NewDefault->getTerminator();
4034    new UnreachableInst(SI->getContext(), OldTI);
4035    EraseTerminatorInstAndDCECond(OldTI);
4036    return true;
4037  }
4038
4039  SmallVector<uint64_t, 8> Weights;
4040  bool HasWeight = HasBranchWeights(SI);
4041  if (HasWeight) {
4042    GetBranchWeights(SI, Weights);
4043    HasWeight = (Weights.size() == 1 + SI->getNumCases());
4044  }
4045
4046  // Remove dead cases from the switch.
4047  for (ConstantInt *DeadCase : DeadCases) {
4048    SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase);
4049    assert(Case != SI->case_default() &&
4050           "Case was not found. Probably mistake in DeadCases forming.");
4051    if (HasWeight) {
4052      std::swap(Weights[Case.getCaseIndex() + 1], Weights.back());
4053      Weights.pop_back();
4054    }
4055
4056    // Prune unused values from PHI nodes.
4057    Case.getCaseSuccessor()->removePredecessor(SI->getParent());
4058    SI->removeCase(Case);
4059  }
4060  if (HasWeight && Weights.size() >= 2) {
4061    SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4062    SI->setMetadata(LLVMContext::MD_prof,
4063                    MDBuilder(SI->getParent()->getContext())
4064                        .createBranchWeights(MDWeights));
4065  }
4066
4067  return !DeadCases.empty();
4068}
4069
4070/// If BB would be eligible for simplification by
4071/// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4072/// by an unconditional branch), look at the phi node for BB in the successor
4073/// block and see if the incoming value is equal to CaseValue. If so, return
4074/// the phi node, and set PhiIndex to BB's index in the phi node.
4075static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4076                                              BasicBlock *BB, int *PhiIndex) {
4077  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4078    return nullptr; // BB must be empty to be a candidate for simplification.
4079  if (!BB->getSinglePredecessor())
4080    return nullptr; // BB must be dominated by the switch.
4081
4082  BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4083  if (!Branch || !Branch->isUnconditional())
4084    return nullptr; // Terminator must be unconditional branch.
4085
4086  BasicBlock *Succ = Branch->getSuccessor(0);
4087
4088  BasicBlock::iterator I = Succ->begin();
4089  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4090    int Idx = PHI->getBasicBlockIndex(BB);
4091    assert(Idx >= 0 && "PHI has no entry for predecessor?");
4092
4093    Value *InValue = PHI->getIncomingValue(Idx);
4094    if (InValue != CaseValue)
4095      continue;
4096
4097    *PhiIndex = Idx;
4098    return PHI;
4099  }
4100
4101  return nullptr;
4102}
4103
4104/// Try to forward the condition of a switch instruction to a phi node
4105/// dominated by the switch, if that would mean that some of the destination
4106/// blocks of the switch can be folded away.
4107/// Returns true if a change is made.
4108static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4109  typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap;
4110  ForwardingNodesMap ForwardingNodes;
4111
4112  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E;
4113       ++I) {
4114    ConstantInt *CaseValue = I.getCaseValue();
4115    BasicBlock *CaseDest = I.getCaseSuccessor();
4116
4117    int PhiIndex;
4118    PHINode *PHI =
4119        FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex);
4120    if (!PHI)
4121      continue;
4122
4123    ForwardingNodes[PHI].push_back(PhiIndex);
4124  }
4125
4126  bool Changed = false;
4127
4128  for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
4129                                    E = ForwardingNodes.end();
4130       I != E; ++I) {
4131    PHINode *Phi = I->first;
4132    SmallVectorImpl<int> &Indexes = I->second;
4133
4134    if (Indexes.size() < 2)
4135      continue;
4136
4137    for (size_t I = 0, E = Indexes.size(); I != E; ++I)
4138      Phi->setIncomingValue(Indexes[I], SI->getCondition());
4139    Changed = true;
4140  }
4141
4142  return Changed;
4143}
4144
4145/// Return true if the backend will be able to handle
4146/// initializing an array of constants like C.
4147static bool ValidLookupTableConstant(Constant *C) {
4148  if (C->isThreadDependent())
4149    return false;
4150  if (C->isDLLImportDependent())
4151    return false;
4152
4153  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
4154    return CE->isGEPWithNoNotionalOverIndexing();
4155
4156  return isa<ConstantFP>(C) || isa<ConstantInt>(C) ||
4157         isa<ConstantPointerNull>(C) || isa<GlobalValue>(C) ||
4158         isa<UndefValue>(C);
4159}
4160
4161/// If V is a Constant, return it. Otherwise, try to look up
4162/// its constant value in ConstantPool, returning 0 if it's not there.
4163static Constant *
4164LookupConstant(Value *V,
4165               const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4166  if (Constant *C = dyn_cast<Constant>(V))
4167    return C;
4168  return ConstantPool.lookup(V);
4169}
4170
4171/// Try to fold instruction I into a constant. This works for
4172/// simple instructions such as binary operations where both operands are
4173/// constant or can be replaced by constants from the ConstantPool. Returns the
4174/// resulting constant on success, 0 otherwise.
4175static Constant *
4176ConstantFold(Instruction *I, const DataLayout &DL,
4177             const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4178  if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4179    Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4180    if (!A)
4181      return nullptr;
4182    if (A->isAllOnesValue())
4183      return LookupConstant(Select->getTrueValue(), ConstantPool);
4184    if (A->isNullValue())
4185      return LookupConstant(Select->getFalseValue(), ConstantPool);
4186    return nullptr;
4187  }
4188
4189  SmallVector<Constant *, 4> COps;
4190  for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4191    if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4192      COps.push_back(A);
4193    else
4194      return nullptr;
4195  }
4196
4197  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4198    return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4199                                           COps[1], DL);
4200  }
4201
4202  return ConstantFoldInstOperands(I, COps, DL);
4203}
4204
4205/// Try to determine the resulting constant values in phi nodes
4206/// at the common destination basic block, *CommonDest, for one of the case
4207/// destionations CaseDest corresponding to value CaseVal (0 for the default
4208/// case), of a switch instruction SI.
4209static bool
4210GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4211               BasicBlock **CommonDest,
4212               SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4213               const DataLayout &DL) {
4214  // The block from which we enter the common destination.
4215  BasicBlock *Pred = SI->getParent();
4216
4217  // If CaseDest is empty except for some side-effect free instructions through
4218  // which we can constant-propagate the CaseVal, continue to its successor.
4219  SmallDenseMap<Value *, Constant *> ConstantPool;
4220  ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4221  for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4222       ++I) {
4223    if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4224      // If the terminator is a simple branch, continue to the next block.
4225      if (T->getNumSuccessors() != 1)
4226        return false;
4227      Pred = CaseDest;
4228      CaseDest = T->getSuccessor(0);
4229    } else if (isa<DbgInfoIntrinsic>(I)) {
4230      // Skip debug intrinsic.
4231      continue;
4232    } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4233      // Instruction is side-effect free and constant.
4234
4235      // If the instruction has uses outside this block or a phi node slot for
4236      // the block, it is not safe to bypass the instruction since it would then
4237      // no longer dominate all its uses.
4238      for (auto &Use : I->uses()) {
4239        User *User = Use.getUser();
4240        if (Instruction *I = dyn_cast<Instruction>(User))
4241          if (I->getParent() == CaseDest)
4242            continue;
4243        if (PHINode *Phi = dyn_cast<PHINode>(User))
4244          if (Phi->getIncomingBlock(Use) == CaseDest)
4245            continue;
4246        return false;
4247      }
4248
4249      ConstantPool.insert(std::make_pair(&*I, C));
4250    } else {
4251      break;
4252    }
4253  }
4254
4255  // If we did not have a CommonDest before, use the current one.
4256  if (!*CommonDest)
4257    *CommonDest = CaseDest;
4258  // If the destination isn't the common one, abort.
4259  if (CaseDest != *CommonDest)
4260    return false;
4261
4262  // Get the values for this case from phi nodes in the destination block.
4263  BasicBlock::iterator I = (*CommonDest)->begin();
4264  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4265    int Idx = PHI->getBasicBlockIndex(Pred);
4266    if (Idx == -1)
4267      continue;
4268
4269    Constant *ConstVal =
4270        LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
4271    if (!ConstVal)
4272      return false;
4273
4274    // Be conservative about which kinds of constants we support.
4275    if (!ValidLookupTableConstant(ConstVal))
4276      return false;
4277
4278    Res.push_back(std::make_pair(PHI, ConstVal));
4279  }
4280
4281  return Res.size() > 0;
4282}
4283
4284// Helper function used to add CaseVal to the list of cases that generate
4285// Result.
4286static void MapCaseToResult(ConstantInt *CaseVal,
4287                            SwitchCaseResultVectorTy &UniqueResults,
4288                            Constant *Result) {
4289  for (auto &I : UniqueResults) {
4290    if (I.first == Result) {
4291      I.second.push_back(CaseVal);
4292      return;
4293    }
4294  }
4295  UniqueResults.push_back(
4296      std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4297}
4298
4299// Helper function that initializes a map containing
4300// results for the PHI node of the common destination block for a switch
4301// instruction. Returns false if multiple PHI nodes have been found or if
4302// there is not a common destination block for the switch.
4303static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4304                                  BasicBlock *&CommonDest,
4305                                  SwitchCaseResultVectorTy &UniqueResults,
4306                                  Constant *&DefaultResult,
4307                                  const DataLayout &DL) {
4308  for (auto &I : SI->cases()) {
4309    ConstantInt *CaseVal = I.getCaseValue();
4310
4311    // Resulting value at phi nodes for this case value.
4312    SwitchCaseResultsTy Results;
4313    if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4314                        DL))
4315      return false;
4316
4317    // Only one value per case is permitted
4318    if (Results.size() > 1)
4319      return false;
4320    MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4321
4322    // Check the PHI consistency.
4323    if (!PHI)
4324      PHI = Results[0].first;
4325    else if (PHI != Results[0].first)
4326      return false;
4327  }
4328  // Find the default result value.
4329  SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4330  BasicBlock *DefaultDest = SI->getDefaultDest();
4331  GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4332                 DL);
4333  // If the default value is not found abort unless the default destination
4334  // is unreachable.
4335  DefaultResult =
4336      DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4337  if ((!DefaultResult &&
4338       !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4339    return false;
4340
4341  return true;
4342}
4343
4344// Helper function that checks if it is possible to transform a switch with only
4345// two cases (or two cases + default) that produces a result into a select.
4346// Example:
4347// switch (a) {
4348//   case 10:                %0 = icmp eq i32 %a, 10
4349//     return 10;            %1 = select i1 %0, i32 10, i32 4
4350//   case 20:        ---->   %2 = icmp eq i32 %a, 20
4351//     return 2;             %3 = select i1 %2, i32 2, i32 %1
4352//   default:
4353//     return 4;
4354// }
4355static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4356                                   Constant *DefaultResult, Value *Condition,
4357                                   IRBuilder<> &Builder) {
4358  assert(ResultVector.size() == 2 &&
4359         "We should have exactly two unique results at this point");
4360  // If we are selecting between only two cases transform into a simple
4361  // select or a two-way select if default is possible.
4362  if (ResultVector[0].second.size() == 1 &&
4363      ResultVector[1].second.size() == 1) {
4364    ConstantInt *const FirstCase = ResultVector[0].second[0];
4365    ConstantInt *const SecondCase = ResultVector[1].second[0];
4366
4367    bool DefaultCanTrigger = DefaultResult;
4368    Value *SelectValue = ResultVector[1].first;
4369    if (DefaultCanTrigger) {
4370      Value *const ValueCompare =
4371          Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4372      SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4373                                         DefaultResult, "switch.select");
4374    }
4375    Value *const ValueCompare =
4376        Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4377    return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4378                                SelectValue, "switch.select");
4379  }
4380
4381  return nullptr;
4382}
4383
4384// Helper function to cleanup a switch instruction that has been converted into
4385// a select, fixing up PHI nodes and basic blocks.
4386static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4387                                              Value *SelectValue,
4388                                              IRBuilder<> &Builder) {
4389  BasicBlock *SelectBB = SI->getParent();
4390  while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4391    PHI->removeIncomingValue(SelectBB);
4392  PHI->addIncoming(SelectValue, SelectBB);
4393
4394  Builder.CreateBr(PHI->getParent());
4395
4396  // Remove the switch.
4397  for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4398    BasicBlock *Succ = SI->getSuccessor(i);
4399
4400    if (Succ == PHI->getParent())
4401      continue;
4402    Succ->removePredecessor(SelectBB);
4403  }
4404  SI->eraseFromParent();
4405}
4406
4407/// If the switch is only used to initialize one or more
4408/// phi nodes in a common successor block with only two different
4409/// constant values, replace the switch with select.
4410static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4411                           AssumptionCache *AC, const DataLayout &DL) {
4412  Value *const Cond = SI->getCondition();
4413  PHINode *PHI = nullptr;
4414  BasicBlock *CommonDest = nullptr;
4415  Constant *DefaultResult;
4416  SwitchCaseResultVectorTy UniqueResults;
4417  // Collect all the cases that will deliver the same value from the switch.
4418  if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4419                             DL))
4420    return false;
4421  // Selects choose between maximum two values.
4422  if (UniqueResults.size() != 2)
4423    return false;
4424  assert(PHI != nullptr && "PHI for value select not found");
4425
4426  Builder.SetInsertPoint(SI);
4427  Value *SelectValue =
4428      ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4429  if (SelectValue) {
4430    RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4431    return true;
4432  }
4433  // The switch couldn't be converted into a select.
4434  return false;
4435}
4436
4437namespace {
4438/// This class represents a lookup table that can be used to replace a switch.
4439class SwitchLookupTable {
4440public:
4441  /// Create a lookup table to use as a switch replacement with the contents
4442  /// of Values, using DefaultValue to fill any holes in the table.
4443  SwitchLookupTable(
4444      Module &M, uint64_t TableSize, ConstantInt *Offset,
4445      const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4446      Constant *DefaultValue, const DataLayout &DL);
4447
4448  /// Build instructions with Builder to retrieve the value at
4449  /// the position given by Index in the lookup table.
4450  Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4451
4452  /// Return true if a table with TableSize elements of
4453  /// type ElementType would fit in a target-legal register.
4454  static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4455                                 Type *ElementType);
4456
4457private:
4458  // Depending on the contents of the table, it can be represented in
4459  // different ways.
4460  enum {
4461    // For tables where each element contains the same value, we just have to
4462    // store that single value and return it for each lookup.
4463    SingleValueKind,
4464
4465    // For tables where there is a linear relationship between table index
4466    // and values. We calculate the result with a simple multiplication
4467    // and addition instead of a table lookup.
4468    LinearMapKind,
4469
4470    // For small tables with integer elements, we can pack them into a bitmap
4471    // that fits into a target-legal register. Values are retrieved by
4472    // shift and mask operations.
4473    BitMapKind,
4474
4475    // The table is stored as an array of values. Values are retrieved by load
4476    // instructions from the table.
4477    ArrayKind
4478  } Kind;
4479
4480  // For SingleValueKind, this is the single value.
4481  Constant *SingleValue;
4482
4483  // For BitMapKind, this is the bitmap.
4484  ConstantInt *BitMap;
4485  IntegerType *BitMapElementTy;
4486
4487  // For LinearMapKind, these are the constants used to derive the value.
4488  ConstantInt *LinearOffset;
4489  ConstantInt *LinearMultiplier;
4490
4491  // For ArrayKind, this is the array.
4492  GlobalVariable *Array;
4493};
4494}
4495
4496SwitchLookupTable::SwitchLookupTable(
4497    Module &M, uint64_t TableSize, ConstantInt *Offset,
4498    const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4499    Constant *DefaultValue, const DataLayout &DL)
4500    : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4501      LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4502  assert(Values.size() && "Can't build lookup table without values!");
4503  assert(TableSize >= Values.size() && "Can't fit values in table!");
4504
4505  // If all values in the table are equal, this is that value.
4506  SingleValue = Values.begin()->second;
4507
4508  Type *ValueType = Values.begin()->second->getType();
4509
4510  // Build up the table contents.
4511  SmallVector<Constant *, 64> TableContents(TableSize);
4512  for (size_t I = 0, E = Values.size(); I != E; ++I) {
4513    ConstantInt *CaseVal = Values[I].first;
4514    Constant *CaseRes = Values[I].second;
4515    assert(CaseRes->getType() == ValueType);
4516
4517    uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4518    TableContents[Idx] = CaseRes;
4519
4520    if (CaseRes != SingleValue)
4521      SingleValue = nullptr;
4522  }
4523
4524  // Fill in any holes in the table with the default result.
4525  if (Values.size() < TableSize) {
4526    assert(DefaultValue &&
4527           "Need a default value to fill the lookup table holes.");
4528    assert(DefaultValue->getType() == ValueType);
4529    for (uint64_t I = 0; I < TableSize; ++I) {
4530      if (!TableContents[I])
4531        TableContents[I] = DefaultValue;
4532    }
4533
4534    if (DefaultValue != SingleValue)
4535      SingleValue = nullptr;
4536  }
4537
4538  // If each element in the table contains the same value, we only need to store
4539  // that single value.
4540  if (SingleValue) {
4541    Kind = SingleValueKind;
4542    return;
4543  }
4544
4545  // Check if we can derive the value with a linear transformation from the
4546  // table index.
4547  if (isa<IntegerType>(ValueType)) {
4548    bool LinearMappingPossible = true;
4549    APInt PrevVal;
4550    APInt DistToPrev;
4551    assert(TableSize >= 2 && "Should be a SingleValue table.");
4552    // Check if there is the same distance between two consecutive values.
4553    for (uint64_t I = 0; I < TableSize; ++I) {
4554      ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4555      if (!ConstVal) {
4556        // This is an undef. We could deal with it, but undefs in lookup tables
4557        // are very seldom. It's probably not worth the additional complexity.
4558        LinearMappingPossible = false;
4559        break;
4560      }
4561      APInt Val = ConstVal->getValue();
4562      if (I != 0) {
4563        APInt Dist = Val - PrevVal;
4564        if (I == 1) {
4565          DistToPrev = Dist;
4566        } else if (Dist != DistToPrev) {
4567          LinearMappingPossible = false;
4568          break;
4569        }
4570      }
4571      PrevVal = Val;
4572    }
4573    if (LinearMappingPossible) {
4574      LinearOffset = cast<ConstantInt>(TableContents[0]);
4575      LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4576      Kind = LinearMapKind;
4577      ++NumLinearMaps;
4578      return;
4579    }
4580  }
4581
4582  // If the type is integer and the table fits in a register, build a bitmap.
4583  if (WouldFitInRegister(DL, TableSize, ValueType)) {
4584    IntegerType *IT = cast<IntegerType>(ValueType);
4585    APInt TableInt(TableSize * IT->getBitWidth(), 0);
4586    for (uint64_t I = TableSize; I > 0; --I) {
4587      TableInt <<= IT->getBitWidth();
4588      // Insert values into the bitmap. Undef values are set to zero.
4589      if (!isa<UndefValue>(TableContents[I - 1])) {
4590        ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4591        TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4592      }
4593    }
4594    BitMap = ConstantInt::get(M.getContext(), TableInt);
4595    BitMapElementTy = IT;
4596    Kind = BitMapKind;
4597    ++NumBitMaps;
4598    return;
4599  }
4600
4601  // Store the table in an array.
4602  ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4603  Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4604
4605  Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
4606                             GlobalVariable::PrivateLinkage, Initializer,
4607                             "switch.table");
4608  Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
4609  Kind = ArrayKind;
4610}
4611
4612Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4613  switch (Kind) {
4614  case SingleValueKind:
4615    return SingleValue;
4616  case LinearMapKind: {
4617    // Derive the result value from the input value.
4618    Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4619                                          false, "switch.idx.cast");
4620    if (!LinearMultiplier->isOne())
4621      Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
4622    if (!LinearOffset->isZero())
4623      Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
4624    return Result;
4625  }
4626  case BitMapKind: {
4627    // Type of the bitmap (e.g. i59).
4628    IntegerType *MapTy = BitMap->getType();
4629
4630    // Cast Index to the same type as the bitmap.
4631    // Note: The Index is <= the number of elements in the table, so
4632    // truncating it to the width of the bitmask is safe.
4633    Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
4634
4635    // Multiply the shift amount by the element width.
4636    ShiftAmt = Builder.CreateMul(
4637        ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
4638        "switch.shiftamt");
4639
4640    // Shift down.
4641    Value *DownShifted =
4642        Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
4643    // Mask off.
4644    return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
4645  }
4646  case ArrayKind: {
4647    // Make sure the table index will not overflow when treated as signed.
4648    IntegerType *IT = cast<IntegerType>(Index->getType());
4649    uint64_t TableSize =
4650        Array->getInitializer()->getType()->getArrayNumElements();
4651    if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
4652      Index = Builder.CreateZExt(
4653          Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
4654          "switch.tableidx.zext");
4655
4656    Value *GEPIndices[] = {Builder.getInt32(0), Index};
4657    Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
4658                                           GEPIndices, "switch.gep");
4659    return Builder.CreateLoad(GEP, "switch.load");
4660  }
4661  }
4662  llvm_unreachable("Unknown lookup table kind!");
4663}
4664
4665bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
4666                                           uint64_t TableSize,
4667                                           Type *ElementType) {
4668  auto *IT = dyn_cast<IntegerType>(ElementType);
4669  if (!IT)
4670    return false;
4671  // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
4672  // are <= 15, we could try to narrow the type.
4673
4674  // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
4675  if (TableSize >= UINT_MAX / IT->getBitWidth())
4676    return false;
4677  return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
4678}
4679
4680/// Determine whether a lookup table should be built for this switch, based on
4681/// the number of cases, size of the table, and the types of the results.
4682static bool
4683ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
4684                       const TargetTransformInfo &TTI, const DataLayout &DL,
4685                       const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
4686  if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
4687    return false; // TableSize overflowed, or mul below might overflow.
4688
4689  bool AllTablesFitInRegister = true;
4690  bool HasIllegalType = false;
4691  for (const auto &I : ResultTypes) {
4692    Type *Ty = I.second;
4693
4694    // Saturate this flag to true.
4695    HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
4696
4697    // Saturate this flag to false.
4698    AllTablesFitInRegister =
4699        AllTablesFitInRegister &&
4700        SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
4701
4702    // If both flags saturate, we're done. NOTE: This *only* works with
4703    // saturating flags, and all flags have to saturate first due to the
4704    // non-deterministic behavior of iterating over a dense map.
4705    if (HasIllegalType && !AllTablesFitInRegister)
4706      break;
4707  }
4708
4709  // If each table would fit in a register, we should build it anyway.
4710  if (AllTablesFitInRegister)
4711    return true;
4712
4713  // Don't build a table that doesn't fit in-register if it has illegal types.
4714  if (HasIllegalType)
4715    return false;
4716
4717  // The table density should be at least 40%. This is the same criterion as for
4718  // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
4719  // FIXME: Find the best cut-off.
4720  return SI->getNumCases() * 10 >= TableSize * 4;
4721}
4722
4723/// Try to reuse the switch table index compare. Following pattern:
4724/// \code
4725///     if (idx < tablesize)
4726///        r = table[idx]; // table does not contain default_value
4727///     else
4728///        r = default_value;
4729///     if (r != default_value)
4730///        ...
4731/// \endcode
4732/// Is optimized to:
4733/// \code
4734///     cond = idx < tablesize;
4735///     if (cond)
4736///        r = table[idx];
4737///     else
4738///        r = default_value;
4739///     if (cond)
4740///        ...
4741/// \endcode
4742/// Jump threading will then eliminate the second if(cond).
4743static void reuseTableCompare(
4744    User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
4745    Constant *DefaultValue,
4746    const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
4747
4748  ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
4749  if (!CmpInst)
4750    return;
4751
4752  // We require that the compare is in the same block as the phi so that jump
4753  // threading can do its work afterwards.
4754  if (CmpInst->getParent() != PhiBlock)
4755    return;
4756
4757  Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
4758  if (!CmpOp1)
4759    return;
4760
4761  Value *RangeCmp = RangeCheckBranch->getCondition();
4762  Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
4763  Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
4764
4765  // Check if the compare with the default value is constant true or false.
4766  Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4767                                                 DefaultValue, CmpOp1, true);
4768  if (DefaultConst != TrueConst && DefaultConst != FalseConst)
4769    return;
4770
4771  // Check if the compare with the case values is distinct from the default
4772  // compare result.
4773  for (auto ValuePair : Values) {
4774    Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4775                                                ValuePair.second, CmpOp1, true);
4776    if (!CaseConst || CaseConst == DefaultConst)
4777      return;
4778    assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
4779           "Expect true or false as compare result.");
4780  }
4781
4782  // Check if the branch instruction dominates the phi node. It's a simple
4783  // dominance check, but sufficient for our needs.
4784  // Although this check is invariant in the calling loops, it's better to do it
4785  // at this late stage. Practically we do it at most once for a switch.
4786  BasicBlock *BranchBlock = RangeCheckBranch->getParent();
4787  for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
4788    BasicBlock *Pred = *PI;
4789    if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
4790      return;
4791  }
4792
4793  if (DefaultConst == FalseConst) {
4794    // The compare yields the same result. We can replace it.
4795    CmpInst->replaceAllUsesWith(RangeCmp);
4796    ++NumTableCmpReuses;
4797  } else {
4798    // The compare yields the same result, just inverted. We can replace it.
4799    Value *InvertedTableCmp = BinaryOperator::CreateXor(
4800        RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
4801        RangeCheckBranch);
4802    CmpInst->replaceAllUsesWith(InvertedTableCmp);
4803    ++NumTableCmpReuses;
4804  }
4805}
4806
4807/// If the switch is only used to initialize one or more phi nodes in a common
4808/// successor block with different constant values, replace the switch with
4809/// lookup tables.
4810static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
4811                                const DataLayout &DL,
4812                                const TargetTransformInfo &TTI) {
4813  assert(SI->getNumCases() > 1 && "Degenerate switch?");
4814
4815  // Only build lookup table when we have a target that supports it.
4816  if (!TTI.shouldBuildLookupTables())
4817    return false;
4818
4819  // FIXME: If the switch is too sparse for a lookup table, perhaps we could
4820  // split off a dense part and build a lookup table for that.
4821
4822  // FIXME: This creates arrays of GEPs to constant strings, which means each
4823  // GEP needs a runtime relocation in PIC code. We should just build one big
4824  // string and lookup indices into that.
4825
4826  // Ignore switches with less than three cases. Lookup tables will not make
4827  // them
4828  // faster, so we don't analyze them.
4829  if (SI->getNumCases() < 3)
4830    return false;
4831
4832  // Figure out the corresponding result for each case value and phi node in the
4833  // common destination, as well as the min and max case values.
4834  assert(SI->case_begin() != SI->case_end());
4835  SwitchInst::CaseIt CI = SI->case_begin();
4836  ConstantInt *MinCaseVal = CI.getCaseValue();
4837  ConstantInt *MaxCaseVal = CI.getCaseValue();
4838
4839  BasicBlock *CommonDest = nullptr;
4840  typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy;
4841  SmallDenseMap<PHINode *, ResultListTy> ResultLists;
4842  SmallDenseMap<PHINode *, Constant *> DefaultResults;
4843  SmallDenseMap<PHINode *, Type *> ResultTypes;
4844  SmallVector<PHINode *, 4> PHIs;
4845
4846  for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
4847    ConstantInt *CaseVal = CI.getCaseValue();
4848    if (CaseVal->getValue().slt(MinCaseVal->getValue()))
4849      MinCaseVal = CaseVal;
4850    if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
4851      MaxCaseVal = CaseVal;
4852
4853    // Resulting value at phi nodes for this case value.
4854    typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy;
4855    ResultsTy Results;
4856    if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
4857                        Results, DL))
4858      return false;
4859
4860    // Append the result from this case to the list for each phi.
4861    for (const auto &I : Results) {
4862      PHINode *PHI = I.first;
4863      Constant *Value = I.second;
4864      if (!ResultLists.count(PHI))
4865        PHIs.push_back(PHI);
4866      ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
4867    }
4868  }
4869
4870  // Keep track of the result types.
4871  for (PHINode *PHI : PHIs) {
4872    ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
4873  }
4874
4875  uint64_t NumResults = ResultLists[PHIs[0]].size();
4876  APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
4877  uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
4878  bool TableHasHoles = (NumResults < TableSize);
4879
4880  // If the table has holes, we need a constant result for the default case
4881  // or a bitmask that fits in a register.
4882  SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
4883  bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
4884                                          &CommonDest, DefaultResultsList, DL);
4885
4886  bool NeedMask = (TableHasHoles && !HasDefaultResults);
4887  if (NeedMask) {
4888    // As an extra penalty for the validity test we require more cases.
4889    if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
4890      return false;
4891    if (!DL.fitsInLegalInteger(TableSize))
4892      return false;
4893  }
4894
4895  for (const auto &I : DefaultResultsList) {
4896    PHINode *PHI = I.first;
4897    Constant *Result = I.second;
4898    DefaultResults[PHI] = Result;
4899  }
4900
4901  if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
4902    return false;
4903
4904  // Create the BB that does the lookups.
4905  Module &Mod = *CommonDest->getParent()->getParent();
4906  BasicBlock *LookupBB = BasicBlock::Create(
4907      Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
4908
4909  // Compute the table index value.
4910  Builder.SetInsertPoint(SI);
4911  Value *TableIndex =
4912      Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx");
4913
4914  // Compute the maximum table size representable by the integer type we are
4915  // switching upon.
4916  unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
4917  uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
4918  assert(MaxTableSize >= TableSize &&
4919         "It is impossible for a switch to have more entries than the max "
4920         "representable value of its input integer type's size.");
4921
4922  // If the default destination is unreachable, or if the lookup table covers
4923  // all values of the conditional variable, branch directly to the lookup table
4924  // BB. Otherwise, check that the condition is within the case range.
4925  const bool DefaultIsReachable =
4926      !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4927  const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
4928  BranchInst *RangeCheckBranch = nullptr;
4929
4930  if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4931    Builder.CreateBr(LookupBB);
4932    // Note: We call removeProdecessor later since we need to be able to get the
4933    // PHI value for the default case in case we're using a bit mask.
4934  } else {
4935    Value *Cmp = Builder.CreateICmpULT(
4936        TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
4937    RangeCheckBranch =
4938        Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
4939  }
4940
4941  // Populate the BB that does the lookups.
4942  Builder.SetInsertPoint(LookupBB);
4943
4944  if (NeedMask) {
4945    // Before doing the lookup we do the hole check.
4946    // The LookupBB is therefore re-purposed to do the hole check
4947    // and we create a new LookupBB.
4948    BasicBlock *MaskBB = LookupBB;
4949    MaskBB->setName("switch.hole_check");
4950    LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
4951                                  CommonDest->getParent(), CommonDest);
4952
4953    // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
4954    // unnecessary illegal types.
4955    uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
4956    APInt MaskInt(TableSizePowOf2, 0);
4957    APInt One(TableSizePowOf2, 1);
4958    // Build bitmask; fill in a 1 bit for every case.
4959    const ResultListTy &ResultList = ResultLists[PHIs[0]];
4960    for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
4961      uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
4962                         .getLimitedValue();
4963      MaskInt |= One << Idx;
4964    }
4965    ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
4966
4967    // Get the TableIndex'th bit of the bitmask.
4968    // If this bit is 0 (meaning hole) jump to the default destination,
4969    // else continue with table lookup.
4970    IntegerType *MapTy = TableMask->getType();
4971    Value *MaskIndex =
4972        Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
4973    Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
4974    Value *LoBit = Builder.CreateTrunc(
4975        Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
4976    Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
4977
4978    Builder.SetInsertPoint(LookupBB);
4979    AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
4980  }
4981
4982  if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4983    // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
4984    // do not delete PHINodes here.
4985    SI->getDefaultDest()->removePredecessor(SI->getParent(),
4986                                            /*DontDeleteUselessPHIs=*/true);
4987  }
4988
4989  bool ReturnedEarly = false;
4990  for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
4991    PHINode *PHI = PHIs[I];
4992    const ResultListTy &ResultList = ResultLists[PHI];
4993
4994    // If using a bitmask, use any value to fill the lookup table holes.
4995    Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
4996    SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
4997
4998    Value *Result = Table.BuildLookup(TableIndex, Builder);
4999
5000    // If the result is used to return immediately from the function, we want to
5001    // do that right here.
5002    if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5003        PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5004      Builder.CreateRet(Result);
5005      ReturnedEarly = true;
5006      break;
5007    }
5008
5009    // Do a small peephole optimization: re-use the switch table compare if
5010    // possible.
5011    if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5012      BasicBlock *PhiBlock = PHI->getParent();
5013      // Search for compare instructions which use the phi.
5014      for (auto *User : PHI->users()) {
5015        reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5016      }
5017    }
5018
5019    PHI->addIncoming(Result, LookupBB);
5020  }
5021
5022  if (!ReturnedEarly)
5023    Builder.CreateBr(CommonDest);
5024
5025  // Remove the switch.
5026  for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5027    BasicBlock *Succ = SI->getSuccessor(i);
5028
5029    if (Succ == SI->getDefaultDest())
5030      continue;
5031    Succ->removePredecessor(SI->getParent());
5032  }
5033  SI->eraseFromParent();
5034
5035  ++NumLookupTables;
5036  if (NeedMask)
5037    ++NumLookupTablesHoles;
5038  return true;
5039}
5040
5041bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5042  BasicBlock *BB = SI->getParent();
5043
5044  if (isValueEqualityComparison(SI)) {
5045    // If we only have one predecessor, and if it is a branch on this value,
5046    // see if that predecessor totally determines the outcome of this switch.
5047    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5048      if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5049        return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5050
5051    Value *Cond = SI->getCondition();
5052    if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5053      if (SimplifySwitchOnSelect(SI, Select))
5054        return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5055
5056    // If the block only contains the switch, see if we can fold the block
5057    // away into any preds.
5058    BasicBlock::iterator BBI = BB->begin();
5059    // Ignore dbg intrinsics.
5060    while (isa<DbgInfoIntrinsic>(BBI))
5061      ++BBI;
5062    if (SI == &*BBI)
5063      if (FoldValueComparisonIntoPredecessors(SI, Builder))
5064        return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5065  }
5066
5067  // Try to transform the switch into an icmp and a branch.
5068  if (TurnSwitchRangeIntoICmp(SI, Builder))
5069    return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5070
5071  // Remove unreachable cases.
5072  if (EliminateDeadSwitchCases(SI, AC, DL))
5073    return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5074
5075  if (SwitchToSelect(SI, Builder, AC, DL))
5076    return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5077
5078  if (ForwardSwitchConditionToPHI(SI))
5079    return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5080
5081  if (SwitchToLookupTable(SI, Builder, DL, TTI))
5082    return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5083
5084  return false;
5085}
5086
5087bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5088  BasicBlock *BB = IBI->getParent();
5089  bool Changed = false;
5090
5091  // Eliminate redundant destinations.
5092  SmallPtrSet<Value *, 8> Succs;
5093  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5094    BasicBlock *Dest = IBI->getDestination(i);
5095    if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5096      Dest->removePredecessor(BB);
5097      IBI->removeDestination(i);
5098      --i;
5099      --e;
5100      Changed = true;
5101    }
5102  }
5103
5104  if (IBI->getNumDestinations() == 0) {
5105    // If the indirectbr has no successors, change it to unreachable.
5106    new UnreachableInst(IBI->getContext(), IBI);
5107    EraseTerminatorInstAndDCECond(IBI);
5108    return true;
5109  }
5110
5111  if (IBI->getNumDestinations() == 1) {
5112    // If the indirectbr has one successor, change it to a direct branch.
5113    BranchInst::Create(IBI->getDestination(0), IBI);
5114    EraseTerminatorInstAndDCECond(IBI);
5115    return true;
5116  }
5117
5118  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5119    if (SimplifyIndirectBrOnSelect(IBI, SI))
5120      return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5121  }
5122  return Changed;
5123}
5124
5125/// Given an block with only a single landing pad and a unconditional branch
5126/// try to find another basic block which this one can be merged with.  This
5127/// handles cases where we have multiple invokes with unique landing pads, but
5128/// a shared handler.
5129///
5130/// We specifically choose to not worry about merging non-empty blocks
5131/// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5132/// practice, the optimizer produces empty landing pad blocks quite frequently
5133/// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5134/// sinking in this file)
5135///
5136/// This is primarily a code size optimization.  We need to avoid performing
5137/// any transform which might inhibit optimization (such as our ability to
5138/// specialize a particular handler via tail commoning).  We do this by not
5139/// merging any blocks which require us to introduce a phi.  Since the same
5140/// values are flowing through both blocks, we don't loose any ability to
5141/// specialize.  If anything, we make such specialization more likely.
5142///
5143/// TODO - This transformation could remove entries from a phi in the target
5144/// block when the inputs in the phi are the same for the two blocks being
5145/// merged.  In some cases, this could result in removal of the PHI entirely.
5146static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5147                                 BasicBlock *BB) {
5148  auto Succ = BB->getUniqueSuccessor();
5149  assert(Succ);
5150  // If there's a phi in the successor block, we'd likely have to introduce
5151  // a phi into the merged landing pad block.
5152  if (isa<PHINode>(*Succ->begin()))
5153    return false;
5154
5155  for (BasicBlock *OtherPred : predecessors(Succ)) {
5156    if (BB == OtherPred)
5157      continue;
5158    BasicBlock::iterator I = OtherPred->begin();
5159    LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5160    if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5161      continue;
5162    for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5163    }
5164    BranchInst *BI2 = dyn_cast<BranchInst>(I);
5165    if (!BI2 || !BI2->isIdenticalTo(BI))
5166      continue;
5167
5168    // We've found an identical block.  Update our predecessors to take that
5169    // path instead and make ourselves dead.
5170    SmallSet<BasicBlock *, 16> Preds;
5171    Preds.insert(pred_begin(BB), pred_end(BB));
5172    for (BasicBlock *Pred : Preds) {
5173      InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5174      assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5175             "unexpected successor");
5176      II->setUnwindDest(OtherPred);
5177    }
5178
5179    // The debug info in OtherPred doesn't cover the merged control flow that
5180    // used to go through BB.  We need to delete it or update it.
5181    for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5182      Instruction &Inst = *I;
5183      I++;
5184      if (isa<DbgInfoIntrinsic>(Inst))
5185        Inst.eraseFromParent();
5186    }
5187
5188    SmallSet<BasicBlock *, 16> Succs;
5189    Succs.insert(succ_begin(BB), succ_end(BB));
5190    for (BasicBlock *Succ : Succs) {
5191      Succ->removePredecessor(BB);
5192    }
5193
5194    IRBuilder<> Builder(BI);
5195    Builder.CreateUnreachable();
5196    BI->eraseFromParent();
5197    return true;
5198  }
5199  return false;
5200}
5201
5202bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5203                                          IRBuilder<> &Builder) {
5204  BasicBlock *BB = BI->getParent();
5205
5206  if (SinkCommon && SinkThenElseCodeToEnd(BI))
5207    return true;
5208
5209  // If the Terminator is the only non-phi instruction, simplify the block.
5210  // if LoopHeader is provided, check if the block is a loop header
5211  // (This is for early invocations before loop simplify and vectorization
5212  // to keep canonical loop forms for nested loops.
5213  // These blocks can be eliminated when the pass is invoked later
5214  // in the back-end.)
5215  BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5216  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5217      (!LoopHeaders || !LoopHeaders->count(BB)) &&
5218      TryToSimplifyUncondBranchFromEmptyBlock(BB))
5219    return true;
5220
5221  // If the only instruction in the block is a seteq/setne comparison
5222  // against a constant, try to simplify the block.
5223  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5224    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5225      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5226        ;
5227      if (I->isTerminator() &&
5228          TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
5229                                                BonusInstThreshold, AC))
5230        return true;
5231    }
5232
5233  // See if we can merge an empty landing pad block with another which is
5234  // equivalent.
5235  if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5236    for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5237    }
5238    if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5239      return true;
5240  }
5241
5242  // If this basic block is ONLY a compare and a branch, and if a predecessor
5243  // branches to us and our successor, fold the comparison into the
5244  // predecessor and use logical operations to update the incoming value
5245  // for PHI nodes in common successor.
5246  if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5247    return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5248  return false;
5249}
5250
5251static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5252  BasicBlock *PredPred = nullptr;
5253  for (auto *P : predecessors(BB)) {
5254    BasicBlock *PPred = P->getSinglePredecessor();
5255    if (!PPred || (PredPred && PredPred != PPred))
5256      return nullptr;
5257    PredPred = PPred;
5258  }
5259  return PredPred;
5260}
5261
5262bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5263  BasicBlock *BB = BI->getParent();
5264
5265  // Conditional branch
5266  if (isValueEqualityComparison(BI)) {
5267    // If we only have one predecessor, and if it is a branch on this value,
5268    // see if that predecessor totally determines the outcome of this
5269    // switch.
5270    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5271      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5272        return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5273
5274    // This block must be empty, except for the setcond inst, if it exists.
5275    // Ignore dbg intrinsics.
5276    BasicBlock::iterator I = BB->begin();
5277    // Ignore dbg intrinsics.
5278    while (isa<DbgInfoIntrinsic>(I))
5279      ++I;
5280    if (&*I == BI) {
5281      if (FoldValueComparisonIntoPredecessors(BI, Builder))
5282        return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5283    } else if (&*I == cast<Instruction>(BI->getCondition())) {
5284      ++I;
5285      // Ignore dbg intrinsics.
5286      while (isa<DbgInfoIntrinsic>(I))
5287        ++I;
5288      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5289        return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5290    }
5291  }
5292
5293  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5294  if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5295    return true;
5296
5297  // If this basic block has a single dominating predecessor block and the
5298  // dominating block's condition implies BI's condition, we know the direction
5299  // of the BI branch.
5300  if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5301    auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5302    if (PBI && PBI->isConditional() &&
5303        PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
5304        (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) {
5305      bool CondIsFalse = PBI->getSuccessor(1) == BB;
5306      Optional<bool> Implication = isImpliedCondition(
5307          PBI->getCondition(), BI->getCondition(), DL, CondIsFalse);
5308      if (Implication) {
5309        // Turn this into a branch on constant.
5310        auto *OldCond = BI->getCondition();
5311        ConstantInt *CI = *Implication
5312                              ? ConstantInt::getTrue(BB->getContext())
5313                              : ConstantInt::getFalse(BB->getContext());
5314        BI->setCondition(CI);
5315        RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5316        return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5317      }
5318    }
5319  }
5320
5321  // If this basic block is ONLY a compare and a branch, and if a predecessor
5322  // branches to us and one of our successors, fold the comparison into the
5323  // predecessor and use logical operations to pick the right destination.
5324  if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5325    return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5326
5327  // We have a conditional branch to two blocks that are only reachable
5328  // from BI.  We know that the condbr dominates the two blocks, so see if
5329  // there is any identical code in the "then" and "else" blocks.  If so, we
5330  // can hoist it up to the branching block.
5331  if (BI->getSuccessor(0)->getSinglePredecessor()) {
5332    if (BI->getSuccessor(1)->getSinglePredecessor()) {
5333      if (HoistThenElseCodeToIf(BI, TTI))
5334        return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5335    } else {
5336      // If Successor #1 has multiple preds, we may be able to conditionally
5337      // execute Successor #0 if it branches to Successor #1.
5338      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5339      if (Succ0TI->getNumSuccessors() == 1 &&
5340          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5341        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5342          return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5343    }
5344  } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5345    // If Successor #0 has multiple preds, we may be able to conditionally
5346    // execute Successor #1 if it branches to Successor #0.
5347    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5348    if (Succ1TI->getNumSuccessors() == 1 &&
5349        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5350      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5351        return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5352  }
5353
5354  // If this is a branch on a phi node in the current block, thread control
5355  // through this block if any PHI node entries are constants.
5356  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5357    if (PN->getParent() == BI->getParent())
5358      if (FoldCondBranchOnPHI(BI, DL))
5359        return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5360
5361  // Scan predecessor blocks for conditional branches.
5362  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5363    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5364      if (PBI != BI && PBI->isConditional())
5365        if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5366          return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5367
5368  // Look for diamond patterns.
5369  if (MergeCondStores)
5370    if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5371      if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5372        if (PBI != BI && PBI->isConditional())
5373          if (mergeConditionalStores(PBI, BI))
5374            return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5375
5376  return false;
5377}
5378
5379/// Check if passing a value to an instruction will cause undefined behavior.
5380static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5381  Constant *C = dyn_cast<Constant>(V);
5382  if (!C)
5383    return false;
5384
5385  if (I->use_empty())
5386    return false;
5387
5388  if (C->isNullValue() || isa<UndefValue>(C)) {
5389    // Only look at the first use, avoid hurting compile time with long uselists
5390    User *Use = *I->user_begin();
5391
5392    // Now make sure that there are no instructions in between that can alter
5393    // control flow (eg. calls)
5394    for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
5395      if (i == I->getParent()->end() || i->mayHaveSideEffects())
5396        return false;
5397
5398    // Look through GEPs. A load from a GEP derived from NULL is still undefined
5399    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5400      if (GEP->getPointerOperand() == I)
5401        return passingValueIsAlwaysUndefined(V, GEP);
5402
5403    // Look through bitcasts.
5404    if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5405      return passingValueIsAlwaysUndefined(V, BC);
5406
5407    // Load from null is undefined.
5408    if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5409      if (!LI->isVolatile())
5410        return LI->getPointerAddressSpace() == 0;
5411
5412    // Store to null is undefined.
5413    if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5414      if (!SI->isVolatile())
5415        return SI->getPointerAddressSpace() == 0 &&
5416               SI->getPointerOperand() == I;
5417
5418    // A call to null is undefined.
5419    if (auto CS = CallSite(Use))
5420      return CS.getCalledValue() == I;
5421  }
5422  return false;
5423}
5424
5425/// If BB has an incoming value that will always trigger undefined behavior
5426/// (eg. null pointer dereference), remove the branch leading here.
5427static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5428  for (BasicBlock::iterator i = BB->begin();
5429       PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5430    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5431      if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5432        TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5433        IRBuilder<> Builder(T);
5434        if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5435          BB->removePredecessor(PHI->getIncomingBlock(i));
5436          // Turn uncoditional branches into unreachables and remove the dead
5437          // destination from conditional branches.
5438          if (BI->isUnconditional())
5439            Builder.CreateUnreachable();
5440          else
5441            Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5442                                                       : BI->getSuccessor(0));
5443          BI->eraseFromParent();
5444          return true;
5445        }
5446        // TODO: SwitchInst.
5447      }
5448
5449  return false;
5450}
5451
5452bool SimplifyCFGOpt::run(BasicBlock *BB) {
5453  bool Changed = false;
5454
5455  assert(BB && BB->getParent() && "Block not embedded in function!");
5456  assert(BB->getTerminator() && "Degenerate basic block encountered!");
5457
5458  // Remove basic blocks that have no predecessors (except the entry block)...
5459  // or that just have themself as a predecessor.  These are unreachable.
5460  if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
5461      BB->getSinglePredecessor() == BB) {
5462    DEBUG(dbgs() << "Removing BB: \n" << *BB);
5463    DeleteDeadBlock(BB);
5464    return true;
5465  }
5466
5467  // Check to see if we can constant propagate this terminator instruction
5468  // away...
5469  Changed |= ConstantFoldTerminator(BB, true);
5470
5471  // Check for and eliminate duplicate PHI nodes in this block.
5472  Changed |= EliminateDuplicatePHINodes(BB);
5473
5474  // Check for and remove branches that will always cause undefined behavior.
5475  Changed |= removeUndefIntroducingPredecessor(BB);
5476
5477  // Merge basic blocks into their predecessor if there is only one distinct
5478  // pred, and if there is only one distinct successor of the predecessor, and
5479  // if there are no PHI nodes.
5480  //
5481  if (MergeBlockIntoPredecessor(BB))
5482    return true;
5483
5484  IRBuilder<> Builder(BB);
5485
5486  // If there is a trivial two-entry PHI node in this basic block, and we can
5487  // eliminate it, do so now.
5488  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5489    if (PN->getNumIncomingValues() == 2)
5490      Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5491
5492  Builder.SetInsertPoint(BB->getTerminator());
5493  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5494    if (BI->isUnconditional()) {
5495      if (SimplifyUncondBranch(BI, Builder))
5496        return true;
5497    } else {
5498      if (SimplifyCondBranch(BI, Builder))
5499        return true;
5500    }
5501  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5502    if (SimplifyReturn(RI, Builder))
5503      return true;
5504  } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
5505    if (SimplifyResume(RI, Builder))
5506      return true;
5507  } else if (CleanupReturnInst *RI =
5508                 dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
5509    if (SimplifyCleanupReturn(RI))
5510      return true;
5511  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
5512    if (SimplifySwitch(SI, Builder))
5513      return true;
5514  } else if (UnreachableInst *UI =
5515                 dyn_cast<UnreachableInst>(BB->getTerminator())) {
5516    if (SimplifyUnreachable(UI))
5517      return true;
5518  } else if (IndirectBrInst *IBI =
5519                 dyn_cast<IndirectBrInst>(BB->getTerminator())) {
5520    if (SimplifyIndirectBr(IBI))
5521      return true;
5522  }
5523
5524  return Changed;
5525}
5526
5527/// This function is used to do simplification of a CFG.
5528/// For example, it adjusts branches to branches to eliminate the extra hop,
5529/// eliminates unreachable basic blocks, and does other "peephole" optimization
5530/// of the CFG.  It returns true if a modification was made.
5531///
5532bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
5533                       unsigned BonusInstThreshold, AssumptionCache *AC,
5534                       SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
5535  return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
5536                        BonusInstThreshold, AC, LoopHeaders)
5537      .run(BB);
5538}
5539