1; Test 32-bit ANDs in which the second operand is constant. 2; 3; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z196 | FileCheck %s 4 5; ANDs with 1 can use NILF. 6define i32 @f1(i32 %a) { 7; CHECK-LABEL: f1: 8; CHECK: nilf %r2, 1 9; CHECK: br %r14 10 %and = and i32 %a, 1 11 ret i32 %and 12} 13 14; ...but RISBLG is available as a three-address form. 15define i32 @f2(i32 %a, i32 %b) { 16; CHECK-LABEL: f2: 17; CHECK: risblg %r2, %r3, 31, 159, 0 18; CHECK: br %r14 19 %and = and i32 %b, 1 20 ret i32 %and 21} 22 23; ...same for 4. 24define i32 @f3(i32 %a, i32 %b) { 25; CHECK-LABEL: f3: 26; CHECK: risblg %r2, %r3, 29, 157, 0 27; CHECK: br %r14 28 %and = and i32 %b, 4 29 ret i32 %and 30} 31 32; ANDs with 5 must use NILF. 33define i32 @f4(i32 %a) { 34; CHECK-LABEL: f4: 35; CHECK: nilf %r2, 5 36; CHECK: br %r14 37 %and = and i32 %a, 5 38 ret i32 %and 39} 40 41; ...a single RISBLG isn't enough. 42define i32 @f5(i32 %a, i32 %b) { 43; CHECK-LABEL: f5: 44; CHECK-NOT: risb 45; CHECK: br %r14 46 %and = and i32 %b, 5 47 ret i32 %and 48} 49 50; Check the highest 16-bit constant that must be handled by NILF. 51define i32 @f6(i32 %a) { 52; CHECK-LABEL: f6: 53; CHECK: nilf %r2, 65533 54; CHECK: br %r14 55 %and = and i32 %a, 65533 56 ret i32 %and 57} 58 59; ...a single RISBLG isn't enough. 60define i32 @f7(i32 %a, i32 %b) { 61; CHECK-LABEL: f7: 62; CHECK-NOT: risb 63; CHECK: br %r14 64 %and = and i32 %b, 65533 65 ret i32 %and 66} 67 68; Check the next highest value, which can use NILF. 69define i32 @f8(i32 %a) { 70; CHECK-LABEL: f8: 71; CHECK: nilf %r2, 65534 72; CHECK: br %r14 73 %and = and i32 %a, 65534 74 ret i32 %and 75} 76 77; ...although the three-address case should use RISBLG. 78define i32 @f9(i32 %a, i32 %b) { 79; CHECK-LABEL: f9: 80; CHECK: risblg %r2, %r3, 16, 158, 0 81; CHECK: br %r14 82 %and = and i32 %b, 65534 83 ret i32 %and 84} 85 86; ANDs of 0xffff are zero extensions from i16. 87define i32 @f10(i32 %a, i32 %b) { 88; CHECK-LABEL: f10: 89; CHECK: llhr %r2, %r3 90; CHECK: br %r14 91 %and = and i32 %b, 65535 92 ret i32 %and 93} 94 95; Check the next value up, which must again use NILF. 96define i32 @f11(i32 %a) { 97; CHECK-LABEL: f11: 98; CHECK: nilf %r2, 65536 99; CHECK: br %r14 100 %and = and i32 %a, 65536 101 ret i32 %and 102} 103 104; ...but the three-address case can use RISBLG. 105define i32 @f12(i32 %a, i32 %b) { 106; CHECK-LABEL: f12: 107; CHECK: risblg %r2, %r3, 15, 143, 0 108; CHECK: br %r14 109 %and = and i32 %b, 65536 110 ret i32 %and 111} 112 113; Check the lowest useful NILH value. 114define i32 @f13(i32 %a) { 115; CHECK-LABEL: f13: 116; CHECK: nilh %r2, 1 117; CHECK: br %r14 118 %and = and i32 %a, 131071 119 ret i32 %and 120} 121 122; ...but RISBLG is OK in the three-address case. 123define i32 @f14(i32 %a, i32 %b) { 124; CHECK-LABEL: f14: 125; CHECK: risblg %r2, %r3, 15, 159, 0 126; CHECK: br %r14 127 %and = and i32 %b, 131071 128 ret i32 %and 129} 130 131; Check the highest useful NILF value. 132define i32 @f15(i32 %a) { 133; CHECK-LABEL: f15: 134; CHECK: nilf %r2, 4294901758 135; CHECK: br %r14 136 %and = and i32 %a, -65538 137 ret i32 %and 138} 139 140; Check the next value up, which is the highest useful NILH value. 141define i32 @f16(i32 %a) { 142; CHECK-LABEL: f16: 143; CHECK: nilh %r2, 65534 144; CHECK: br %r14 145 %and = and i32 %a, -65537 146 ret i32 %and 147} 148 149; Check the next value up, which is the first useful NILL value. 150define i32 @f17(i32 %a) { 151; CHECK-LABEL: f17: 152; CHECK: nill %r2, 0 153; CHECK: br %r14 154 %and = and i32 %a, -65536 155 ret i32 %and 156} 157 158; ...although the three-address case should use RISBLG. 159define i32 @f18(i32 %a, i32 %b) { 160; CHECK-LABEL: f18: 161; CHECK: risblg %r2, %r3, 0, 143, 0 162; CHECK: br %r14 163 %and = and i32 %b, -65536 164 ret i32 %and 165} 166 167; Check the next value up again, which can still use NILL. 168define i32 @f19(i32 %a) { 169; CHECK-LABEL: f19: 170; CHECK: nill %r2, 1 171; CHECK: br %r14 172 %and = and i32 %a, -65535 173 ret i32 %and 174} 175 176; Check the next value up again, which cannot use RISBLG. 177define i32 @f20(i32 %a, i32 %b) { 178; CHECK-LABEL: f20: 179; CHECK-NOT: risb 180; CHECK: br %r14 181 %and = and i32 %b, -65534 182 ret i32 %and 183} 184 185; Check the last useful mask, which can use NILL. 186define i32 @f21(i32 %a) { 187; CHECK-LABEL: f21: 188; CHECK: nill %r2, 65534 189; CHECK: br %r14 190 %and = and i32 %a, -2 191 ret i32 %and 192} 193 194; ...or RISBLG for the three-address case. 195define i32 @f22(i32 %a, i32 %b) { 196; CHECK-LABEL: f22: 197; CHECK: risblg %r2, %r3, 0, 158, 0 198; CHECK: br %r14 199 %and = and i32 %b, -2 200 ret i32 %and 201} 202 203; Test that RISBLG can be used when inserting a non-wraparound mask 204; into another register. 205define i64 @f23(i64 %a, i32 %b) { 206; CHECK-LABEL: f23: 207; CHECK: risblg %r2, %r3, 30, 158, 0 208; CHECK: br %r14 209 %and1 = and i64 %a, -4294967296 210 %and2 = and i32 %b, 2 211 %ext = zext i32 %and2 to i64 212 %or = or i64 %and1, %ext 213 ret i64 %or 214} 215 216; ...and when inserting a wrap-around mask. 217define i64 @f24(i64 %a, i32 %b) { 218; CHECK-LABEL: f24: 219; CHECK: risblg %r2, %r3, 30, 156 220; CHECK: br %r14 221 %and1 = and i64 %a, -4294967296 222 %and2 = and i32 %b, -5 223 %ext = zext i32 %and2 to i64 224 %or = or i64 %and1, %ext 225 ret i64 %or 226} 227